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RÉSUMÉ 
 

 Dans ce texte, nous étudions plusieurs tests pour l’égalité de deux distributions 

inconnues. Deux de ces tests sont basés sur des fonctions de distribution empiriques, trois 

autres sur des estimateurs non paramétriques de fonctions de densité et les trois derniers 

sur des moments empiriques. Nous proposons de contrôler la taille des tests (sous des 

hypothèses non paramétriques) en employant des versions permutationnelles de ces tests 

conjointement avec la méthode des tests de Monte Carlo ajustée pour tenir compte de la 

possibilité de distributions discontinues. Nous proposons aussi une méthode pour combiner 

plusieurs de ces tests, le niveau de ces procédures étant aussi contrôlé par la technique 

des tests de Monte Carlo, laquelle possède de meilleures propriétés de puissance que les 

tests individuels combinés. Finalement, nous montrons dans une étude de simulation que la 

technique suggérée contrôle parfaitement la taille des différents tests considérés et que les 

nouveaux tests proposés peuvent fournir de notables améliorations de puissance. 

 

Mots clés : méthodes non paramétriques, problème des deux échantillons, distribution 
discrète, distribution discontinue, test d’ajustement, test de Kolmogorov-
Smirnov, Cramér-von Mises, estimateur à noyau pour une densité, test exact, 
test de permutations, test de Monte Carlo, bootstrap, test combiné, test induit 

 

ABSTRACT 

 

In this paper, we study several tests for the equality of two unknown distributions. 

Two are based on empirical distribution functions, three others on nonparametric probability 

density estimates, and the last ones on differences between sample moments. We suggest 

controlling the size of such tests (under nonparametric assumptions) by using permutational 

versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal 

with discrete distributions. We also propose a combined test procedure, whose level is 

again perfectly controlled through the Monte Carlo test technique and has better power 

properties than the individual tests that are combined. Finally, in a simulation experiment, 

we show that the technique suggested provides perfect control of test size and that the new 

tests proposed can yield sizeable power improvements. 

 

Key words : nonparametric methods, two-sample problem, discrete distribution, 
discontinuous distribution, goodness-of-fit test, Kolmogorov-Smirnov test, 
Cramér-von Mises, kernel density estimator, exact test, permutation test, 
Monte Carlo test, bootstrap, combined test procedure, induced test 

 





1. Introduction

An important problem in statistics consists in testing whether the distributions of two random vari-
ables are identical against the alternative that they differ in some way. Specifically, consider two
random samplesX1, . . . , Xn andY1, . . . , Ym such thatF (x) = P[Xi ≤ x], i = 1, ... , n, and
G(x) = P[Yj ≤ x], j = 1, ... , m. We shall not impose here additional restrictions on the form
of the cumulative distribution functions (cdf)F andG, which may be continuous or discrete. The
problem consists in testing the null hypothesis

H0 : F = G (1.1)

against the alternative
H1 : F 6= G . (1.2)

H0 is a nonparametric hypothesis, so testingH0 requires a distribution-free procedure. Thus,
many users who have to make such a confrontation resort to a goodness-of-fit test, usually the two-
sample Kolmogorov-Smirnov (KS) test [Smirnov (1939, 1948)] or the Cramér-von Mises (CM )
test [Lehmann (1951), Rosenblatt (1952) and Fisz (1960)]. Other procedures that have been sug-
gested include permutation tests based onL1 andL2 distances between kernel-type estimators of
the relevant probability density functions (pdf) [Allen (1997)] and tests based on the difference
of the means of the two samples considered [Pitman (1937), Dwass (1957), Efron and Tibshirani
(1993)]. Except for the last procedure, which is designed to have power against samples that differ
through their means, the exact and limiting distributions of the test statistics are not standard, and
tables for the exact distributions are only available for a limited number of sample sizes. Thus these
tests are usually performed with the help of tables based on asymptotic distributions. This leads to
procedures that do not have the targeted size (which can easily be too small or too large) and may
have low power.

In this paper, we aim at finding test procedures with two basic features. Namely, the latter
should be: (1) truly distribution-free, irrespective of whether the underlying distributionF is dis-
crete or continuous, and (2) exact in finite samples (i.e., they must achieve the desired size even
for small samples). In this respect, it is important to note that the finite and large sample distribu-
tions of usual test statistics are not necessarily distribution-free underH0. In particular, while the
KS andCM statistics are distribution-free when the observations are independent and identically
distributed(i.i.d.) with a continuous distribution, this is not anymore the case when they follow a
discrete distribution. For the statistics based on kernel-type density estimators, distribution-freeness
does not obtain even fori.i.d observations with a continuous distribution. This difficulty can be
relaxed by considering a permutational version of these tests which uses the fact that all permuta-
tions of the pooled observations are equally likely when the observations arei.i.d with a continuous
distributions. The latter property, however, does not hold when the observations follow a discrete
distribution. So none of the procedures proposed to date for testingH0 satisfies the double require-
ment of yielding a test that is both distribution-free and exact.

Given recent progress in computing power, a way to solve this difficulty consists in using
simulation-based methods, such as bootstrapping or Monte Carlo tests. The bootstrap technique
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however does not ensure that the level will be fully controlled in finite samples [for further dis-
cussion of bootstrapping, see Efron and Tibshirani (1993), Hall (1992), Shao and Tu (1995) and
Davison and Hinkley (1997)]. For this reason, we favor Monte Carlo (MC) test methods. MC
tests were introduced by Dwass (1957) and Barnard (1963). Further discussions and extensions
are also available in Birnbaum (1974), Foutz (1980), Jöckel (1986), Dufour (1995), Kiviet and Du-
four (1997), Dufour, Farhat, Gardiol and Khalaf (1998), Dufour and Kiviet (1998) and Dufour and
Khalaf (2001)].

In this paper, wefirst show how the size of all the two-sample homogeneity tests described
above can be perfectly controlled for bothcontinuousand discretedistributions on considering
their permutational distribution and using the technique of MC tests properly adjusted to deal with
discrete distributions. As a result, in order to implement these tests, it is not anymore necessary to
establish the distributions of the test statistics, either in finite samples or asymptotically.

Second, as a consequence of the great flexibility allowed by the MC test technique in selecting
test criteria, we suggest alternative procedures that can provide power gains. These include: (i)
a statistic based on theL∞ distances between kernel-type pdf estimators; (ii) extensions of the
permutational test based on the difference of two-sample means to higher order moments, such as
sample variances, asymmetry (as third moments) and kurtosis sample coefficients.

Thirdly, on observing that no single test uniformly dominates the others with respect to power,
we show that different tests can be combined easily to obtain procedures with better overall power
and robustness properties. Note that such control would be much more difficult, using standard dis-
tributional methods, which typically only yield finite-sample (conservative) bounds or large-sample
approximations. Typically combined test procedures are based on the assumption of independence
between the test statistics [see the review of Folks (1984)], which does not hold here, or the use
of approximations based on bounds or large-sample arguments [see Miller (1981), Dufour (1989,
1990), Dufour and Torrès (1998, 2000), Westfall and Young (1993)]. Here, we shall control the size
of the combined test through the use of the MC test technique which will automatically take account
of the dependence between the test statistics.

Fourth, on observing that none of the different test statistics considered has the best power
against different alternatives, we consider procedures based on combining several tests. These in-
volve three steps: (1) in order to make the different statistics comparable, the latter are standardized
using first and second moments estimated by simulation; (2) the combined test statistic is defined as
the maximum of the standardized test statistics; (3) the MC test technique is used to control the size
of a test based on the combined statistic. Depending of the statistics considered different combined
tests can be built in this way.

Fifth, we present the results of a MC experiment which shows clearly that usual large-sample
critical values do not control size, while the MC versions of the tests achieve this aim perfectly.
Further, we see that the new procedures introduced, either individually or combined with other
procedures, can lead to substantial power gains.

Section 2 presents the test statistics studied. In Section 3, we explain how the technique of
MC tests can be applied to all these statistics to control the size of the corresponding tests under
nonparametric assumptions. In Section 4, we describe the method for combining several tests us-
ing simulation-based moments. Section 5 describes the results of our study, first for continuous
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distributions and then for discrete distributions. We conclude in Section 6.

2. Test statistics

Let X1, . . . , Xn be a sample of independent and identically distributed observations with common
cdf F (x) = P[Xi ≤ x] andY1, . . . , Ym a samplei.i.d. observations with cdfG(x) = P[Yi ≤ x].
The problem is to test the homogeneity hypothesisH0 in (1.1) and, for that matter, our study will
include the following test statistics. In all the tests presented below,H0 is rejected when the test
statistic is large.

The first two criteria are theKS andCM statistics. TheKS test was introduced by Smirnov
(1939, 1948) and uses the statistic

KS = sup
x
|Fn(x)−Gm(x)| (2.1)

whereFn(x) andGm(x) are the usual empirical distribution functions (edf) associated with theX
andY samples respectively. It is well known thatKS is distribution-free [see Conover (1971, page
313)] underH0 when the common distribution functionF is continuous, but its exact and limiting
distributions are not standard [see Massey (1951b, 1951a, 1952), Drion (1952), Gnedenko (1954),
Darling (1957), Hodges (1958), Birnbaum and Hall (1960), Korolyuk (1961), Barton and Mallows
(1965), Kim (1969), Steck (1969), Kim and Jennrich (1970) and Gibbons and Chakraborti (1992,
Chapter 7)]. In particular, Massey (1952), Birnbaum and Hall (1960), Kim (1969) and Kim and
Jennrich (1970) have supplied tables for its distribution. Further, it is important to note thatKS is
not distribution-free whenF is a discrete distribution, although it has been noted that the critical
values obtained under continuity are conservative for discrete distributions [see Goodman (1954),
Noether (1963), Walsh (1963), Hájek and Šidák (1967, Section 8.2)]. Consequently, power losses
may occur if the discrete nature of the distribution is not taken into account.

The two-sampleCM statistic is defined as

CM =
mn

(m + n)2
{ n∑

i=1

[
Fn(Xi)−Gm(Xi)

]2 +
m∑

j=1

[
Fn(Yj)−Gm(Yj)

]2
}

. (2.2)

CM is also distribution-free underH0 with F continuous and, again, the exact and limiting null
distributions ofCM are not standard. Anderson (1962) and Burr (1963, 1964) provide tables for
the exact distribution in the case of small sample sizes(n + m ≤ 17). Otherwise, a table of the
asymptotic distribution is available from Anderson and Darling (1952).

The next three statistics are based on distances(L1, L2 andL∞) between kernel-based pdf
estimators. Iff is the pdf associated with the cdfF , Allen (1997) considered the following kernel-
type density estimators:

fn(x) =
CX

n

n∑

i=1

K[CX(x−Xi)] , fn(x) =
CY

n

m∑

i=1

K[CY (x− Yi)] (2.3)
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where

CX = n1/5/(2sX), CY = n1/5/(2sY ), K(x) =
{

1
2 , if |x| ≤ 1,
0 , if |x| > 1,

andsX =
[∑n

i=1

(
Xi − X̄

)2
/(n − 1)

]1/2
is the usual estimator of the population standard de-

viation [if sX = 0, we setCX = 1, so fn(x) simply becomes the frequency ofx]. If g is the
pdf associated with the cdfG, its estimatorgm(x) is defined in a way analogous to (2.3). The
L1-distance test initially proposed by Allen (1997) is based on the statistic

L̂1 =
n∑

i=1

|fn(Xi)− gm(Xi)|+
m∑

j=1

|fn(Yj)− gm(Yj)| . (2.4)

TheL2-distance andL∞-distance tests are based on the statistics

L̂2 =
{ n∑

i=1

[
fn(Xi)− gm(Xi)

]2 +
m∑

j=1

[
fn(Yj)− gm(Yj)

]2
}1/2

(2.5)

and

L̂∞ = sup
x
|fn − gm| = max

1≤i≤n, 1≤j≤m

{ |fn(Xi)− gm(Xi)| , |fn(Yj)− gm(Yj)|
}

(2.6)

respectively. When the distribution functionF is continuous, theKS and CM statistics are
distribution-free under the null hypothesis, but this is not the case (at least in finite samples) for
the statisticŝL1, L̂2 andL̂∞. WhenF andG are discrete, the pdff andg are not well defined and
may have to be replaced by mass functions. However, theL̂1, L̂2 and L̂∞ statistics remain well
defined and may still be used as test statistics; the main problem that remains consists in controlling
the size of such tests (which will be done below). WhenF is discrete, none of the above statistics
is distribution-free.

The next statistic to enter our study is the difference of the sample means

θ̂1 = X̄ − Ȳ . (2.7)

Permutation tests based onθ̂1 were initially proposed by Fisher (1935) and used by Dwass (1957)
for testing the equality of means, but Efron and Tibshirani (1993, Chapter 15) suggested to extend
their use, along with bootstrap tests, for testing the equality of two unknown distributions. Contrary
to Allen (1997) who also considered bootstrap tests, the statistic based on the studentized difference
of sample means

t̂ =
(X̄ − Ȳ )/

√
1
n + 1

m{[∑n
i=1(Xi − X̄)2 +

∑m
j=1(Yj − Ȳ )2

]
/(n + m− 2)

}1/2

will not be considered since our study is restricted to permutation tests and it is straightforward to
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see that such tests based onθ̂1 and t̂ are equivalent [see, for instance, Lehmann (1986)]. Further,
we suggest here alternative test statistics based on comparing higher-order moments. Namely, the
difference between unbiased estimators of sample variances,

θ̂2 =

∣∣∣∣∣
1

n− 1

n∑

i=1

(
Xi − X̄

)2 − 1
m− 1

m∑

i=1

(
Yi − Ȳ

)2

∣∣∣∣∣ , (2.8)

as well as statistics based on comparing sample skewness and kurtosis coefficients:

θ̂3 =

∣∣∣∣∣
1
n

n∑

i=1

(
Xi − X̄

sX

)3

− 1
m

m∑

i=1

(
Yi − Ȳ

sY

)3
∣∣∣∣∣ , (2.9)

θ̂4 =

∣∣∣∣∣
1
n

n∑

i=1

(
Xi − X̄

sX

)4

− 1
m

m∑

i=1

(
Yi − Ȳ

sY

)4
∣∣∣∣∣ , (2.10)

where

s2
X =

1
n

n∑

i=1

(Xi − X̄)2 and s2
Y =

1
m

m∑

i=1

(Yi − Ȳ )2.

By convention, ifsX = 0, we set(Xi − X̄)/sX = 0 for all i, because in such a case we have
X1 = · · · = Xn, and similarly forY if sY = 0. Note that skewness and kurtosis coefficients play a
central role in testing normality [see Jarque and Bera (1987) and Dufour et al. (1998)].

3. Exact randomized permutation tests

Except for the Dwass (1957) procedure, all the tests described in the previous section involve im-
perfectly tabulated null distributions or are not distribution-free in finite samples. Consequently, the
latter may lead to arbitrarily large size distortions. In view of obtaining distribution-free tests with
known size in finite samples, we first note that truly distribution-free tests (for any given sample
size) can be based on the statisticsKS, CM, L1, L2, L∞, t̂, θ̂1, θ̂2, θ̂3 andθ̂4 by considering the
distribution obtained on permuting in all possible ways (with equal probabilities) them+n grouped
observationsX1, . . . , Xn, Y1, . . . , Ym. Since these permutations are equally probable under the
null hypothesisH0, irrespective of the unknown distributionF , any test which rejectsH0 by using
an exact critical value obtained from its permutational distribution [i.e., its conditional distribution
given the ordered statistics of the grouped observations] will have the same level conditionally (on
the ordered statistics) as well as unconditionally.

If T designates a pivotal test statistic (i.e. its distribution does not depend on unknown pa-
rameters under the null hypothesis), we can proceed as follows to conduct a MC test. De-
note by T0 the test statistic computed from the observed sample. When the null hypothesis
is rejected for large values ofT0, the associated critical region of sizeα may be expressed as
G(T0) ≤ α, whereG(x) = P [T ≥ x |H0] is thep-value function. GenerateN independent sam-

ples(X(i)
1 , . . . , X

(i)
n , Y

(i)
1 , . . . , Y

(i)
m ), i = 1, , . . . , N, drawn from the specified null distribution
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F0. This leads toN independent realizationsT (i) = T
(
X

(i)
1 , . . . , X

(i)
n , Y

(i)
1 , . . . , Y

(i)
m

)
, i =

1, , . . . , N, from which we can compute an empiricalp-value function:

p̂N (x) =
NĜN (x) + 1

N + 1
(3.1)

where

ĜN (x) =
1
N

N∑

i=1

1[0,∞)(T
(i) − x), 1A(x) =

{
1, x ∈ A
0, x /∈ A

.

The associated MC critical region is defined as

p̂N (T0) ≤ α , (3.2)

wherep̂N (T0) may be interpreted as an estimate ofG(T0). WhenT has a continuous distribution,
it can be shown that [see Dufour (1995) or Dufour and Kiviet (1998)]:

P
[
p̂N (T0) ≤ α |H0

]
=

I [α(N + 1)]
N + 1

, 0 ≤ α ≤ 1 , (3.3)

whereI[x] denotes the largest integer not exceedingx. Thus ifN is chosen such thatα(N + 1) is
an integer, the critical region (3.2) has the same size as the critical regionG(T0) ≤ α. The MC test
so obtained is theoretically exact, irrespective of the numberN of replications used.

The above procedure is closely related to the parametric bootstrap, with a fundamental differ-
ence however. Bootstrap tests are, in general, provably valid forN →∞. In contrast, we see from
(3.3) thatN is explicitly taken into consideration in establishing the validity of MC tests. Although
the value ofN has no incidence on size control, it may have an impact on power which typically
increases withN .

Note that (3.3) holds for tests based on statistics with continuous distributions. In such a case,
ties have non-zero probability. Nevertheless, the technique of MC tests can be adapted to discrete
distributions by appeal to the following randomized tie-breaking procedure [see Dufour (1995),
Dufour and Kiviet (1998), and Dufour and Khalaf (2001)]. DrawN + 1 uniformly distributed
variatesU0, U1, ... , UN , independently of theT (i)’s and arrange the pairs(T (i), Ui) following the
lexicographic order:

(T (i), Ui) < (T (j), Uj) ⇔
[
T (i) < T (j) or (T (i) = T (j) andUi < Uj)

]
.

Then, proceed as in the continuous case and compute

p̃N (x) =
NG̃N (x) + 1

N + 1
, (3.4)
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where

G̃N (x) = 1− 1
N

N∑

i=1

1[0,∞)(x− T (i)) +
1
N

N∑

i=1

1[0](T
(i) − x) 1[0,∞)(Ui − U0).

The resulting critical regionp̃N (T0) ≤ α has the same level as the regionG(T0) ≤ α, provided
againα(N + 1) is an integer. More precisely,

P
[
p̂N (T0) ≤ α |H0

] ≤ P
[
p̃N (T0) ≤ α |H0

]
=

I[α(N + 1)]
N + 1

, 0 ≤ α ≤ 1. (3.5)

If a null hypothesis ensures that the random sample is made up of exchangeable variables and
if it should be rejected for large values of the test statistic, a MC test of that hypothesis is carried
out in five steps: first, the test statistic is computed with the help of the observed sample which
gives a valueT0, say; second,N permutations of the sample are chosen at random and without
replacement from all possible permutations; third, the test statistic is recomputed for each of the
permuted samples which gives the valuesT1, . . . , TN , say; fourth, ifR0 designates the rank ofT0

among the set{T0, T1, . . . , TN} [in the case of ties, one may resort to the randomization method
suggested by Dufour (1995)], thep-value associated with the MC test of the null hypothesis is given
by 1−R0/(N + 1); lastly, a decision is reached according to the chosen level [see Dufour (1995)].
The fact that the procedure is randomized plays a central role in controlling the size of the test. In
bootstrap-type procedures, one does as if the number of replications were infinite.

4. Monte Carlo standardized combined tests

Once the simulation study based on the above statistics was performed, we noticed that a group of
MC tests gave rise to sizable power for a first subset of alternatives but to rather poor power for a
second subset. On the other hand, another group of MC tests showed the opposite profile. Moreover,
none of the six MC tests maintained a high power against all the alternatives considered. To exploit
this fact, we suggest combining statistics having different profiles in the hope of improving the
power of the corresponding test over the range of all considered alternatives. Further, through the use
of the MC test technique, we will be able to automatically take account of the dependence between
the test statistics, hence avoiding the assumption of independence often made in the literature on
combining tests [see Folks (1984)] or the use of approximations based on bounds or asymptotic
arguments [see Miller (1981), Dufour (1989, 1990), Dufour and Torrès (1998, 2000), Westfall and
Young (1993)].

To be more specific, we shall consider here tests based on the maximum of several standardized
statistics. The standardization aims at ensuring comparability between the different statistics and
simply consists of subtracting the empirical mean from each statistic and dividing the result by the
corresponding empirical standard error, where the empirical mean and standard error are computed
from the observed and simulated values of the test statistics. Formally, ifV = (T1, . . . , Tk)′

denotes a vector ofk selected statistics, letV (0) = (T (0)
1 , . . . , T

(0)
k ) be its value based on the
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original grouped(X, Y )-sample and letV (i) = (T (i)
1 , . . . , T

(i)
k ) , i = 1, . . . , N, be the values

based on theN random permutations of the(X1, . . . , Xn, Y1, . . . , Ym) sample. The standardized
statistics are then:

T̃
(i)
j =

T
(i)
j − T j

sj
, j = 1, . . . , k, i = 0, 1, . . . , N, (4.6)

where

T j =
1

N + 1

N∑

i=0

T
(i)
j , sj =

{ 1
N

N∑

i=0

(
T

(i)
j − T j

)2
}1/2

, j = 1, . . . , k . (4.7)

For the observed vector of test statisticsV (0) and each simulated vector
(
V (i) , i = 1, . . . , N

)
, we

can then compute the following combined statistics:

Q̂
(
V (i)

)
= max

1≤j≤k

{
T̃

(i)
j

}
, i = 0, 1, . . . , N, (4.8)

and
Q̂a

(
V (i)

)
= max

1≤j≤k

{∣∣T̃ (i)
j

∣∣} , i = 0, 1, . . . , N. (4.9)

The combined test based on the statisticQ̂ rejects the null hypothesis when the maximum of the
standardized statistics is “large”, while the one based onQ̂a does so when the absolute value of
the standardized statistics is “large”. In (4.8) - (4.9),Q̂

(
V (0)

)
andQ̂a

(
V (0)

)
represent the statistics

associated with the “actual sample” (although they also depend on randomly permuted samples
thorough the empirical means and standard errors used to standardize the statistics), whileQ̂

(
V (i)

)

andQ̂a

(
V (i)

)
for i 6= 0 can be interpreted as values based on “simulated” (permuted) samples.

It is straightforward to see that the variables

Q̂
(
V (i)

)
, i = 0, 1, . . . , N, are exchangeable underH0 , (4.10)

and similarly forQ̂a

(
V (i)

)
, i = 0, 1, . . . , N. Consequently, we can write:

P
[
p̂N

(
Q̂(0)

) ≤ α
] ≤ P

[
p̃N

(
Q̂(0)

) ≤ α |H0

]
=

I[α(N + 1)]
N + 1

, 0 ≤ α ≤ 1, (4.11)

whereQ̂(i) ≡ Q̂
(
V (i)

)
, i = 0, 1, . . . , N, and p̂N , p̃N are defined as in (3.1) - (3.4) withTi

replaced byQ̂(i). Of course, the same holds for tests based onQ̂
(i)
a ≡ Q̂a

(
V (i)

)
, i = 0, 1, . . . , N.

Below we shall consider two special cases of such combined test statistics:

Q̂i ≡ Q̂(Vi) , Q̂ai ≡ Q̂a(Vi) , i = 1, 2 , (4.12)

where
V1 = (KS, L̂∞)′ , V2 = (KS, L̂∞, θ̂1, θ̂2, θ̂3, θ̂4)′ . (4.13)
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The first choice(V1) emphasizes two overall distance measures between the two empirical distri-
butions (KS andL̂∞), while the second one(V2) also uses the differences between the first four
moments of the two distributions, and thus should provide more sensitivity to differences that affect
the first four moments. We will see below that no individual test has the best power against all the
alternatives considered in this study.

5. Simulation study

In the simulation study, all tests [both the original tests as well as their MC counterparts] were
performed at the5% level using 10000 trials. This entails that the95% confidence interval for the
nominal level is[4.57%, 5.43%]. Furthermore, they were all conducted with equal sample sizes
m = n = 22. As mentioned earlier, each MC test was carried out by picking at randomN = 99
permutations of the original grouped sample and this was done by using the IMSL (1987) Program
Library random number generator. In his simulation study, Allen (1997) used 2500 trials and each
permutation or bootstrap test was carried out with 499 samples.

For the first part of the study whereF andG are both continuous, the following distributions
were considered: normalN(0, 1), exponentialExp(0, 1.5), gammaΓ (2, 1), betaB(2, 3), logistic
Log(−1, 1), lognormalΛ(4, 1.5) and uniformU(0, 1). In this choice, care was taken to have at the
same time simple parameters as well as appreciably different means and variances. Table 1 gives
the list of those means and variances. Four types of situations were considered: (i) the distributions
were standardized, and thus had common zero mean and unit variance; (ii) the distributions were
only centered, and thus had the zero mean but different variances; (iii) the distributions were only
scaled, and thus had different means and common unit variance; (iv) the distributions remained as
is and thus had different means and different variances. Whatever the situation, a null hypothesis is
obtained each timeF andG share the same distribution from the list and an alternative hypothesis
is obtained each timeF andG possess different distributions from that list.

For the second part of the study whereF andG are discrete, the five most commonly used
distributions were retained: discrete uniform[DU(n)] on the integers{1, 2 , . . . , n}, binomial
[Bin(n, p)], geometric[Geo(p)], negative binomial[Nbin(N, p)] and Poisson[P (λ)]. Since it
is a prohibitive task to find parameters that will simultaneously give rise to either common mean
and common variance, the following three situations were considered: (i) the distributions were
DU(19), Bin(20, 0.5), Geo(0.1), Nbin(8, 0.2), P (10) and, thus had common mean 10 and
variance 30, 5, 90, 2.5 and 10 respectively; (ii) the distributions wereDU(10), Bin(33, 0.5),
Geo

(
(
√

34 − 1)/16.5
)
, Nbin

(
3, (

√
108 − 3)/16.5

)
, P (8.25) and, thus had mean 5.5, 16.5,

3.42, 2.23 and 8.25 respectively but common variance 8.25; (iii) the distributions wereDU(10),
Bin

(
10, 0.1

)
, Geo(0.3), Nbin

(
10, 0.2

)
, P (5) and, thus had mean 5.5, 1, 3.33, 50 and 5 respec-

tively and variance 8.25, 0.9, 7.78, 200 and 5 respectively.
As a check on the accuracy of our study, Tables 1 and 2 of Allen (1997) were reproduced adding,

however, theCM , the L̂∞ and the combined MC tests and by excluding the bootstrap tests. The
results appear in Table 2 and they are quite similar to those of Allen (1997).

Most statistics described in the preceding sections have not been well tabulated, so a study of
the reliability of tabulated critical values can only be limited. In Tables 3 and 4, we present some
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Table 1. Continuous distributions with their means and variances

Distribution N(0, 1) Exp(0, 1.5) Γ (2, 1) B(2, 3) Log(−1, 1) Λ(4, 1.5) U(0, 1)

Mean 0 1.50 2 .40 -1 168.17 .50
Variance 1 2.25 2 .04 0.55133−2 240055 1/12

Table 2. Empirical level and power for MC permutation tests of equality of two distributions
(m = n = 22, α = 0.05)

F = N(0, 1)

G KS CM θ̂1 θ̂2 θ̂3 θ̂4 L̂1 L̂2 L̂∞ Q̂1 Q̂2 Q̂a1 Q̂a2

N(0, 1) 5.0 4.8 4.7 5.1 4.8 5.0 5.0 5.0 4.8 5.1 4.8 5.1 4.7
N(0.2, 1) 5.7 5.9 5.7 5.2 4.9 5.1 5.9 5.8 5.8 5.7 5.5 5.8 5.5
N(0.3, 1) 8.0 8.9 9.6 4.3 5.4 5.2 6.6 6.5 6.2 7.3 7.4 7.3 7.4
N(0.4, 1) 13.1 15.0 15.7 4.9 5.3 5.4 10.0 9.7 9.0 11.8 10.5 11.6 10.5
N(0.5, 1) 28.2 33.0 36.0 3.7 6.3 5.8 19.3 18.8 17.0 24.3 22.8 24.2 22.8
N(0.7, 1) 49.2 56.8 61.9 3.2 6.5 6.7 35.2 34.2 31.7 43.5 43.1 43.4 43.1

N(0, 1.22) 5.6 5.3 4.5 12.1 4.8 5.0 10.0 10.3 10.6 8.7 7.7 8.7 7.7
N(0, 1.42) 7.1 6.7 4.8 28.5 4.2 5.0 22.6 23.1 23.4 18.7 15.3 18.6 15.3
N(0, 1.62) 9.6 8.6 4.7 48.7 3.4 4.4 41.5 42.0 42.1 35.0 28.8 34.9 28.8
N(0, 1.82) 13.4 11.8 4.9 67.9 3.2 3.7 60.4 61.2 60.4 52.8 43.8 52.7 43.8
N(0, 2.02) 17.5 15.9 5.2 80.4 2.7 3.4 74.7 75.5 75.0 67.8 59.8 67.8 59.8

Table 3. Some illustrations for empirical level for KS and CM tests of equality of two continuous
distributions(α = 0.05)

Original tests MC tests

n = m = 8 n = m = 22 n = m = 50 n = m = 8 n = m = 22 n = m = 50

F = G KS CM KS CM KS CM KS CM KS CM KS CM

N 1.9 4.9 5.0 4.9 2.3 4.9 4.7 4.8 5.0 4.8 5.0 4.7
Exp 1.8 4.7 4.8 4.8 2.2 5.0 4.8 4.5 4.9 4.8 4.7 5.2
Gam 1.9 5.3 4.9 5.0 2.1 5.1 5.3 5.0 5.0 5.1 4.9 5.2
B 1.8 5.1 5.0 5.1 2.3 4.7 5.1 5.1 4.9 5.1 4.6 4.6
Log 1.8 5.0 5.3 5.4 2.2 5.3 5.1 5.2 5.4 5.3 5.4 5.3
Ln 1.9 5.2 5.3 5.5 2.3 5.1 4.9 4.9 5.4 5.1 5.2 5.1
U 1.9 5.0 5.1 5.2 2.4 4.9 4.7 4.9 5.4 5.0 5.0 5.1
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Table 4. Some illustrations for empirical level for KS and CM tests of equality of two discrete
distributions(α = 0.05)

Original tests MC tests

n = m = 8 n = m = 22 n = m = 50 n = m = 8 n = m = 22 n = m = 50

F = G KS CM KS CM KS CM KS CM KS CM KS CM

UD 1.0 5.5 6.0 5.6 1.9 5.3 5.1 4.9 4.8 4.8 4.8 4.7
Bin 0.4 11.1 2.7 23.0 0.6 55.4 4.8 4.5 4.9 4.9 4.9 4.8
Geo 0.9 7.7 5.1 12.1 1.2 28.0 5.0 5.1 4.6 4.9 5.0 5.3
BinN 0.7 7.0 4.3 7.8 1.2 9.4 5.0 5.2 4.7 4.6 5.3 4.9
Poi 0.8 6.6 4.8 6.1 1.3 5.3 4.6 5.2 4.6 4.7 4.4 4.3

results on this issue for theKS andCM tests. For continuous distributions, we see that the standard
KS andCM tests satisfy the level constraint, although the rejection frequencies of theKS test are
in some cases notably lower than the level. This can be explained by the fact the 0.05 level cannot
be achieved by a non-randomized procedure (due to the discrete character of the distribution), so
that the critical values used correspond to smaller sizes. In the case of discrete distributions, it is
of interest to note that theKS test can be quite conservative (as predicted by earlier theoretical
results), while theCM test can substantially overreject: theCM test is not generally conservative
for discrete distributions. In all cases, irrespective of whether the distributions are continuous or
discrete, the permutational MC tests have rejection frequencies essentially identical to their nominal
levels (as expected).

Tables 5 to 8 contain the results of our study for the case where bothF andG are continuous.
The following conclusions can be drawn. First, it is clear the test based onθ̂1 has little power for
detecting distributions that differ through other characteristics than their mean. Two distributions
cannot be equal if they do not have the same mean but the converse is not true. Consequently, if the
test based on̂θ1 accepts the hypothesisH0, it should not be interpreted as an acceptance of the fact
thatF = G but rather that these distributions have equal means.

Second,̂θ2 has the best power for testing the Gaussian distribution against most of the other
distributions considered, but it does not perform as well in the other cases.

Thirdly, theL̂1 andL̂2 tests behave almost identically and differ slightly from theL̂∞ test. In
the same way, the power of theKS test is not very different from that of theCM test.

Fourth, if we compare the powers of the tests based on edf‘s (KS andCM ) with those based
on pdf estimates (̂L1, L̂2 andL̂∞), we notice some large power differences, one cannot conclude
that a test from one group is more powerful than all the tests in the other group. The edf tests are
more powerful than those based on pdf estimates when two distributions have the same variance but
different means (see Tables 2 and 6). On the other hand, if the two distributions have the same mean
but different variances, the tests based on pdf estimates are the most powerful (see Tables 2 and 7).

Fifth, the combined MC tests exhibit a robust performance in the sense that their power is either
the best or is only slightly lower than the one of any other test. There is no uniform dominance
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between the test based on the smaller set of statistics (Q̂1) and the one based on the larger one (Q̂2).
Not surprisingly,Q̂2 tends to perform better than̂Q1 when the distributions compared have different
variances (becausêθ2 is used byQ̂2 but not byQ̂1). The combined statisticŝQ andQ̂a exhibit very
similar behaviors, so there appears to be little ground for preferring one over the other.

Let us now consider the case where bothF andG are discrete. The results of our simulation are
presented in Tables 9 to 11. From a qualitative viewpoint, the conclusions that emerge from these
are quite similar to those reached in the continuous case: size is perfectly controlled by the MC test
technique, the powers of different tests can differ widely depending on the case considered, no test
procedure uniformly dominates the others, and the combined test procedures exhibit a good robust
overall performance.

6. Conclusion

In this paper, we first showed that finite-sample distribution-free two-sample homogeneity tests, for
both continuous and discrete distributions, can be easily obtained on combining two techniques: (1)
by considering permutational versions of most proposed tests for that problem; (2) by implementing
the permutation procedures as Monte Carlo tests with an appropriate tie-breaking technique to take
account of the discreteness of the test null distributions. Second, due to the flexibility of the Monte
Carlo test technique, we could easily introduce and implement several alternative procedures, in-
cluding permutation tests comparing higher-order moments and procedures based on combining
several test statistics. Thirdly, in a simulation study, it was shown that the procedures proposed
work as expected form the viewpoint of size control, while the new test statistics suggested yield
power gains.
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Table 5. Empirical level and power for MC permutation tests of equality of two continuous
distributions having same mean and same variance (m = n = 22 andα = 0.05)

F = N

G KS CM θ̂1 θ̂2 θ̂3 θ̂4 L̂1 L̂2 L̂∞ Q̂1 Q̂2 Q̂a1 Q̂a2

N 5.0 4.8 4.7 5.1 4.8 5.0 5.0 5.0 4.8 5.1 4.8 5.1 4.7
Exp 13.8 12.4 5.6 10.5 42.0 15.8 17.3 17.1 15.6 17.1 24.2 17.1 24.1
Γ 8.9 8.8 5.3 7.7 27.0 9.5 11.1 11.0 10.4 10.5 14.2 10.4 14.2
B 5.4 4.9 4.9 5.4 7.5 7.0 5.7 5.9 5.8 5.7 6.4 5.5 6.4
Log 5.7 5.3 5.6 5.1 5.4 6.3 5.3 5.2 5.5 5.4 5.7 5.3 5.7
Λ 71.8 65.2 5.7 59.0 70.2 62.7 68.6 67.6 65.7 79.4 88.9 79.7 88.3
U 6.7 5.7 4.9 6.0 6.4 16.6 6.1 6.5 6.9 6.6 11.1 6.6 11.1

F = Exp

Exp 4.8 5.0 5.2 4.9 4.7 5.0 5.2 5.2 5.2 5.0 4.8 4.9 4.9
Γ 6.0 6.0 4.7 5.6 8.3 6.5 6.0 5.9 5.9 6.1 6.8 6.2 6.9
B 11.1 9.1 4.8 12.9 35.9 20.8 15.9 16.0 15.8 15.2 24.6 15.1 24.6
Log 13.4 12.7 5.4 8.5 36.4 11.7 14.5 14.3 12.9 15.3 19.6 15.2 19.5
Λ 85.4 73.1 5.4 50.3 30.6 31.5 54.9 54.6 54.5 86.7 86.8 86.9 86.7
U 17.1 13.7 5.5 17.2 54.8 35.3 22.5 22.7 24.1 23.4 41.5 23.3 41.5

F = Γ

Γ 4.5 4.8 4.7 5.4 5.0 4.8 4.9 4.9 5.0 4.8 4.9 4.9 4.9
B 7.3 6.6 5.0 8.8 20.3 12.5 9.8 9.9 9.6 9.2 13.8 9.3 13.8
Log 9.7 8.8 5.5 6.3 23.4 7.4 10.0 10.1 9.3 10.1 11.7 10.0 11.6
Λ 80.5 67.6 5.3 54.2 41.8 42.5 60.9 60.5 60.6 84.1 86.9 84.3 86.7
U 10.5 9.5 5.1 12.6 35.9 25.1 14.6 14.8 15.2 14.0 26.2 13.8 26.2

F = B

B 5.0 5.0 5.0 4.9 5.1 4.9 5.2 4.9 5.0 4.8 5.2 4.8 5.2
Log 6.1 5.6 4.7 6.0 8.3 10.9 6.8 6.7 6.9 6.6 9.1 6.6 9.0
Λ 77.2 70.4 5.5 62.5 74.9 70.3 71.8 71.2 69.6 84.0 93.2 84.2 92.8
U 5.5 5.2 5.1 5.4 8.1 10.5 5.6 5.5 5.8 5.6 8.5 5.6 8.5

F = Log

Log 5.0 5.0 5.1 5.0 5.0 5.1 4.6 4.6 4.8 4.8 4.9 4.9 4.8
Λ 66.9 59.8 5.8 54.9 60.2 52.6 64.2 63.3 61.2 75.1 83.9 75.4 83.4
U 8.0 6.7 5.2 8.3 8.9 25.6 8.7 9.0 9.6 9.4 16.6 9.3 16.6

F = Λ

Λ 5.0 4.9 5.1 5.6 5.0 4.9 5.4 5.4 5.3 5.4 5.2 5.4 5.2
U 82.2 77.4 5.8 65.5 90.3 83.5 76.6 75.6 73.4 88.0 96.5 88.6 96.1
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Table 6. Empirical level and power for MC permutation tests of equality of two continuous
distributions having different means but same variance(m = n = 22 andα = 0.05)

F = N

G KS CM θ̂1 θ̂2 θ̂3 θ̂4 L̂1 L̂2 L̂∞ Q̂1 Q̂2 Q̂a1 Q̂a2

N 5.0 4.8 4.7 5.1 4.8 5.0 5.0 5.0 4.8 5.1 4.8 5.1 4.7
Exp 90.1 88.9 92.5 5.0 19.3 13.8 38.0 38.6 47.7 83.8 86.6 83.9 86.4
Γ 98.6 99.4 99.9 1.4 14.5 10.2 77.2 77.6 82.2 97.0 98.7 97.1 98.8
B 100 100 100 0.1 7.2 12.4 99.1 99.1 99.4 100 100 100 100
Log 36.1 40.4 42.6 3.8 7.2 8.0 23.6 22.8 21.0 30.4 29.5 30.2 29.4
Λ 88.4 75.7 22.8 55.8 66.0 62.9 68.5 67.8 67.8 90.1 94.0 90.3 93.5
U 99.6 99.9 100 0.1 6.6 18.2 95.2 95.3 96.2 98.9 99.8 98.9 99.8

F = Exp

Exp 4.8 5.0 5.2 4.9 4.7 5.0 5.2 5.2 5.2 5.0 4.8 4.9 4.9
Γ 36.9 42.1 30.0 4.5 11.4 9.6 17.9 17.3 15.7 30.8 27.1 30.8 27.0
B 90.3 94.0 86.5 4.4 51.4 41.3 78.8 78.5 75.9 87.9 85.5 87.9 85.5
Log 100 100 100 1.9 35.1 18.1 84.3 85.6 92.9 99.9 100 100 100
Λ 93.4 96.0 76.7 18.7 33.7 30.6 60.7 59.4 55.3 90.5 88.9 90.6 88.7
U 67.6 72.7 63.4 12.0 64.2 49.3 61.4 60.8 57.5 66.6 69.1 66.6 69.1

F = Γ

Γ 4.5 4.8 4.7 5.4 5.0 4.8 4.9 4.9 5.0 4.8 4.9 4.9 4.9
B 48.5 53.7 48.0 5.5 28.6 20.7 40.5 40.2 36.6 45.1 42.6 45.1 42.6
Log 100 100 100 0.5 32.0 19.8 98.5 98.8 99.6 100 100 100 100
Λ 100 100 93.0 9.6 51.7 47.8 82.6 81.7 80.5 99.9 99.8 99.9 99.8
U 24.7 24.5 19.4 11.7 41.5 30.5 28.0 27.5 24.7 26.9 34.9 26.7 34.9

F = B

B 5.0 5.0 5.0 4.9 5.1 4.9 5.2 4.9 5.0 4.8 5.2 4.8 5.2
Log 100 100 100 0.1 17.0 33.8 100 100 100 100 100 100 100
Λ 100 100 98.2 14.2 86.9 79.2 95.7 95.7 96.7 100 100 100 100
U 8.7 10.0 12.6 4.6 6.8 8.2 6.9 7.0 6.8 8.1 9.5 8.0 9.5

F = Log

Log 5.0 5.0 5.1 5.0 5.0 5.1 4.6 4.6 4.8 4.8 4.9 4.9 4.8
Λ 100 99.5 93.3 41.8 66.4 57.6 76.0 75.7 79.9 99.9 99.9 99.9 99.9
U 100 100 100 0.0 14.9 43.4 99.8 99.8 99.9 100 100 100 100

F = Λ

Λ 5.0 4.9 5.1 5.6 5.0 4.9 5.4 5.4 5.3 5.4 5.2 5.4 5.2
U 100 100 96.4 45.9 91.5 81.0 91.4 91.3 92.9 100 100 100 100
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Table 7. Empirical level and power for MC permutation tests of equality of two continuous
distributions having same mean but different variances(m = n = 22 andα = 0.05)

F = N

G KS CM θ̂1 θ̂2 θ̂3 θ̂4 L̂1 L̂2 L̂∞ Q̂1 Q̂2 Q̂a1 Q̂a2

N 5.0 4.8 4.7 5.1 4.8 5.0 5.0 5.0 4.8 5.1 4.8 5.1 4.7
Exp 19.2 18.4 6.4 18.0 37.6 6.8 18.0 18.7 19.1 20.6 22.3 20.4 22.0
Γ 12.4 11.8 5.4 19.4 22.9 5.2 19.1 19.4 19.9 17.8 16.5 17.6 16.4
B 75.1 76.4 5.5 100 0.4 0.1 100 100 100 100 100 100 100
Log 11.1 9.9 5.7 57.0 2.6 2.3 50.9 51.6 51.1 43.2 34.4 43.1 34.2
Λ 100 100 24.1 99.9 18.3 8.5 100 100 100 100 100 100 100
U 51.9 49.1 5.3 99.8 0.2 0.0 99.8 99.8 99.6 99.5 98.7 99.5 98.7

F = Exp

Exp 4.8 5.0 5.2 4.9 4.7 5.0 5.2 5.2 5.2 5.0 4.8 4.9 4.9
Γ 5.9 6.1 4.8 4.9 7.7 6.0 5.3 5.2 5.3 5.8 6.2 5.8 6.2
B 96.2 96.3 8.3 100 1.2 0.5 100 100 100 100 100 100 100
Log 13.9 12.4 5.4 17.9 36.3 15.7 24.0 24.0 22.9 22.4 26.5 22.4 26.5
Λ 100 100 24.5 99.8 1.4 8.3 100 100 100 100 100 100 100
U 89.5 88.0 8.2 99.9 6.2 1.1 100 100 100 100 100 100 100

F = Γ

Γ 4.5 4.8 4.7 5.4 5.0 4.8 4.9 4.9 5.0 4.8 4.9 4.9 4.9
B 93.5 93.5 6.9 100 0.5 0.2 100 100 100 100 100 100 100
Log 9.5 8.8 5.4 18.2 23.0 9.7 21.0 21.1 20.6 18.3 18.9 18.2 19.1
Λ 100 100 24.0 99.8 2.1 8.1 100 100 100 100 100 100 100
U 82.8 81.2 6.8 99.9 2.1 0.2 100 100 100 100 100 100 100

F = B

B 5.0 5.0 5.0 4.9 5.1 4.9 5.2 4.9 5.0 4.8 5.2 4.8 5.2
Log 92.4 93.7 5.9 100 0.2 0.0 100 100 100 100 100 100 100
Λ 100 100 25.3 99.9 8.5 11.0 100 100 100 100 100 100 100
U 12.5 10.9 4.9 56.8 9.3 12.3 32.7 35.6 41.8 31.1 37.6 30.8 37.6

F = Log

Log 5.0 5.0 5.1 5.0 5.0 5.1 4.6 4.6 4.8 4.8 4.9 4.9 4.8
Λ 100 100 24.2 99.9 23.2 7.0 100 100 100 100 100 100 100
U 81.4 80.1 5.4 100 0.1 0.0 100 100 100 100 100 100 100

F = Λ

Λ 5.0 4.9 5.1 5.6 5.0 4.9 5.4 5.4 5.3 5.4 5.2 5.4 5.2
U 100 100 24.9 99.8 14.8 14.8 100 100 100 100 100 100 100
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Table 8. Empirical level and power for MC permutation tests of equality of two continuous
distributions having different means and different variances(m = n = 22 andα = 0.05)

F = N

G KS CM θ̂1 θ̂2 θ̂3 θ̂4 L̂1 L̂2 L̂∞ Q̂1 Q̂2 Q̂a1 Q̂a2

N 5.0 4.8 4.7 5.1 4.8 5.0 5.0 5.0 4.8 5.1 4.8 5.1 4.7
Exp 94.9 96.8 99.0 0.5 15.5 4.0 48.1 47.6 53.6 90.0 95.8 90.0 95.6
Γ 99.9 100 100 0.1 17.9 5.0 90.7 90.7 92.9 99.5 100 99.5 100
B 92.6 90.4 43.4 99.8 0.7 0.1 100 100 100 100 100 100 100
Log 62.9 67.2 59.0 46.5 4.2 3.2 76.4 75.9 74.2 75.2 68.8 75.0 68.7
Λ 100 100 100 15.6 69.9 17.6 100 100 100 100 100 100 100
U 89.5 85.4 59.8 98.3 0.6 0.2 99.9 99.9 99.9 99.8 99.6 99.8 99.6

F = Exp

Exp 4.8 5.0 5.2 4.9 4.7 5.0 5.2 5.2 5.2 5.0 4.8 4.9 4.9
Γ 31.0 35.5 23.1 5.5 10.0 8.7 13.8 13.2 12.3 25.2 22.0 25.1 21.8
B 97.8 96.5 99.5 81.5 11.8 0.2 100 100 99.9 99.8 99.7 99.8 99.7
Log 100 100 99.8 5.5 38.8 23.3 87.2 88.2 94.6 99.9 99.9 99.9 99.9
Λ 100 100 100 17.3 20.4 8.9 100 100 100 100 100 100 100
U 90.7 85.4 96.7 81.2 21.9 0.3 99.3 99.2 98.8 98.0 97.0 98.0 96.8

F = Γ

Γ 4.5 4.8 4.7 5.4 5.0 4.8 4.9 4.9 5.0 4.8 4.9 4.9 4.9
B 100 100 100 46.6 6.2 0.1 100 100 100 100 100 100 100
Log 100 100 100 3.0 32.4 21.6 98.4 98.6 99.5 100 100 100 100
Λ 100 100 100 17.8 32.1 12.1 100 100 100 100 100 100 100
U 100 100 100 47.6 13.1 0.1 100 100 100 100 100 100 100

F = B

B 5.0 5.0 5.0 4.9 5.1 4.9 5.2 4.9 5.0 4.8 5.2 4.8 5.2
Log 100 100 92.5 97.0 2.3 0.4 100 100 100 100 100 100 100
Λ 100 100 100 16.6 60.8 20.0 100 100 100 100 100 100 100
U 27.4 26.4 24.3 52.8 9.4 9.3 45.0 46.8 48.0 42.6 40.9 42.2 40.9

F = Log

Log 5.0 5.0 5.1 5.0 5.0 5.1 4.6 4.6 4.8 4.8 4.9 4.9 4.8
Λ 100 100 100 15.7 68.5 13.8 100 100 100 100 100 100 100
U 100 99.9 95.4 95.0 1.3 1.5 100 100 100 100 100 100 100

F = Λ

Λ 5.0 4.9 5.1 5.6 5.0 4.9 5.4 5.4 5.3 5.4 5.2 5.4 5.2
U 100 100 100 16.7 69.7 23.7 100 100 100 100 100 100 100
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Table 9. Empirical level and power for MC permutation tests of equality of two discrete
distributions having same mean but different variances(m = n = 22 andα = 0.05)

F = UD

G KS CM θ̂1 θ̂2 θ̂3 θ̂4 L̂1 L̂2 L̂∞ Q̂1 Q̂2 Q̂a1 Q̂a2

UD 4.9 4.9 4.8 4.8 4.7 5.0 4.5 4.7 4.8 4.6 4.9 4.6 4.9
Bin 51.5 45.1 4.8 99.2 7.6 14.4 97.1 97.1 96.7 95.2 96.2 95.2 96.3
Geo 16.4 17.8 6.0 36.4 34.7 8.4 21.8 22.9 26.0 22.1 23.2 22.1 22.7
BinN 83.1 71.5 5.6 99.9 25.3 21.5 99.9 99.9 99.9 99.7 99.8 99.7 99.8
Poi 25.1 20.5 5.0 82.8 12.3 24.2 69.0 71.2 71.7 65.3 70.1 65.3 70.1

F = Bin

Bin 5.1 5.0 4.9 5.2 4.9 5.0 5.1 4.9 4.9 5.2 5.2 5.1 5.2
Geo 82.4 82.2 8.5 99.6 13.9 1.3 99.7 99.7 99.7 99.4 99.0 99.4 98.9
BinN 10.2 7.4 5.0 33.8 16.6 9.8 28.3 28.7 26.9 24.3 25.3 24.0 25.4
Poi 8.4 8.0 5.0 29.0 5.5 4.5 21.9 22.1 21.7 18.5 16.7 18.3 16.7

F = Geo

Geo 5.0 4.9 4.8 4.7 4.8 4.8 4.4 4.6 4.5 4.8 4.8 4.8 4.8
BinN 97.1 91.7 8.5 99.9 1.2 2.6 100 100 100 100 99.9 100 99.9
Poi 61.0 57.3 7.1 94.7 11.0 2.1 92.9 93.6 93.5 91.7 87.8 91.6 87.4

F = BinN

BinN 4.7 4.9 4.9 4.8 4.7 4.9 4.6 4.5 4.5 4.8 4.7 4.9 4.7
Poi 23.5 21.4 5.4 78.1 9.3 9.2 62.9 64.4 65.0 58.4 60.3 58.3 60.5
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Table 10. Empirical level and power for MC permutation tests of equality of two discrete
distributions having different means and same variance(m = n = 22 andα = 0.05)

F = UD

G KS CM θ̂1 θ̂2 θ̂3 θ̂4 L̂1 L̂2 L̂∞ Q̂1 Q̂2 Q̂a1 Q̂a2

UD 4.8 4.8 4.8 4.8 4.7 4.7 4.7 4.7 4.9 4.7 5.0 4.7 5.0
Bin 100 100 100 0.0 8.1 55.6 100 100 100 100 100 100 100
Geo 67.5 76.9 64.2 12.0 67.1 51.2 60.5 59.7 57.6 65.7 69.3 65.4 69.3
BinN 20.4 13.5 5.4 47.7 40.8 38.1 36.3 37.7 39.2 35.2 54.7 35.0 54.7
Poi 65.3 72.7 86.9 2.0 3.2 9.7 46.9 46.9 47.8 58.6 68.4 58.4 68.4

F = Bin

Bin 5.3 5.3 5.3 4.8 4.8 5.0 5.1 5.2 5.1 5.2 5.2 5.3 5.2
Geo 100 100 100 0.3 63.8 79.9 100 100 100 100 100 100 100
BinN 100 100 100 0.0 40.0 61.7 100 100 100 100 100 100 100
Poi 100 100 100 0.0 15.7 32.4 100 100 100 100 100 100 100

F = Geo

Geo 5.4 5.1 4.9 4.9 5.1 5.0 4.9 4.9 4.8 5.1 5.1 5.1 5.2
BinN 95.9 92.7 72.1 21.6 14.2 20.6 69.8 71.8 76.3 94.0 89.8 93.9 89.8
Poi 99.9 100 99.7 3.5 55.8 49.9 99.6 99.6 99.3 99.9 99.8 99.9 99.8

F = BinN

BinN 5.0 5.0 4.9 5.0 5.2 5.3 4.9 5.0 4.9 5.1 5.1 5.0 5.1
Poi 90.9 92.4 94.0 10.3 29.3 19.8 84.8 84.5 83.7 89.9 89.0 90.0 89.0
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Table 11. Empirical level and power for MC permutation tests of equality of two discrete
distributions having different means and different variances(m = n = 22 andα = 0.05)

F = UD

G KS CM θ̂1 θ̂2 θ̂3 θ̂4 L̂1 L̂2 L̂∞ Q̂1 Q̂2 Q̂a1 Q̂a2

UD 4.8 4.8 4.8 4.8 4.7 4.7 4.7 4.7 4.9 4.7 5.0 4.7 5.0
Bin 100 100 100 61.9 19.6 11.1 99.8 99.9 99.9 100 100 100 100
Geo 69.8 79.1 67.2 13.0 67.0 52.5 62.7 61.9 59.7 68.0 71.5 67.9 71.5
BinN 100 100 100 0.2 27.4 33.3 100 100 100 100 100 100 100
Poi 15.5 13.1 9.4 32.8 14.4 26.2 25.7 26.5 26.0 24.7 32.6 24.4 32.5

F = Bin

Bin 5.1 4.8 5.2 4.9 4.7 4.9 4.6 5.1 5.2 5.2 4.7 5.1 4.8
Geo 94.0 84.4 99.7 14.8 3.9 1.0 65.2 66.3 70.7 93.0 96.5 92.9 96.3
BinN 100 100 100 0.0 7.8 81.1 100 100 100 100 100 100 100
Poi 100 100 100 7.4 13.7 9.9 100 100 100 100 100 100 100

F = Geo

Geo 5.0 5.3 4.7 4.7 4.9 5.1 4.5 4.6 4.6 4.7 4.8 4.7 4.7
BinN 100 100 100 8.3 33.1 76.1 100 100 100 100 100 100 100
Poi 76.6 74.6 57.2 12.2 40.5 22.6 54.8 55.3 56.3 71.9 66.2 71.9 66.2

F = BinN

BinN 4.9 5.0 5.3 5.1 4.6 5.0 5.0 4.9 4.7 4.9 4.8 5.1 4.8
Poi 100 100 100 0.2 15.6 49.4 100 100 100 100 100 100 100
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