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RESUME

Un grand éventail de tests d'hétéroscédasticité a été proposé en économetrie et en
statistique. Bien qu'il existe quelques tests d’homoscédasticité exacts, les procédures
couramment utilisées sont généralement fondées sur des approximations asymptotiques qui
ne procurent pas un bon contréle du niveau dans les échantillons finis. Plusieurs études
récentes ont tenté d'améliorer la fiabilité des tests d'hétéroscédasticité usuels, sur base de
méthodes de type Edgeworth, Bartlett, jackknife et bootstrap. Cependant, ces méthodes
demeurent approximatives. Dans cet article, nous décrivons une solution au probleme de
contrdle du niveau des tests d’homoscédasticité dans les modéles de régression linéaire.
Nous étudions des procédures basées sur les criteres de test standard [e.g., les criteres de
Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White et
Szroeter], de méme que des tests pour I'hétéroscédasticité autoregressive conditionnelle (les
modeles de type ARCH). Nous suggeérons plusieurs extensions des procédures usuelles (les
statistiques de type-sup ou combinées) pour tenir compte de points de ruptures inconnus dans
la variance des erreurs. Nous appliquons la technique des tests de Monte Carlo (MC) de facon
a obtenir des seuils de signification marginaux (les valeurs-p) exacts pour les tests usuels et
les nouveaux tests que nous proposons. Nous démontrons que la procédure de MC permet
de résoudre les problemes des distributions compliquées sous I'hypothese nulle, en particulier
ceux associés aux statistiques de type-sup, aux statistiques combinées et aux paramétres de
nuisance non-identifiés sous I'hypotheése nulle. La méthode proposée fonctionne exactement
de la méme maniére en présence de lois Gaussiennes et non Gaussiennes [comme par
exemple les lois aux queues épaisses ou les lois stables]. Nous évaluons la performance des
procédures proposeées par simulation. Les expériences de Monte Carlo que nous effectuons
portent sur : (1) les alternatives de type ARCH, GARCH et ARCH-en-moyenne; (2) le cas
ou la variance augmente de maniére monotone en fonction : (i) d'une variable exogene, et
(i) de la moyenne de la variable dépendante; (3) I'hétéroscédasticité groupée; (4) les
ruptures en variance a des points inconnus. Nos résultats montrent que les tests proposés

permettent de controler parfaitement le niveau et ont une bonne puissance.

Mots clés : hétéroscédasticité, homoscédasticité, régression linéaire, test de Monte Carlo, test
exact, test valide en échantillon fini, test de spécification, ARCH, GARCH, ARCH-
en-moyenne, distribution stable, stabilité structurelle



ABSTRACT

A wide range of tests for heteroskedasticity have been proposed in the econometric
and statistics literature. Although a few exact homoskedasticity tests are available, the
commonly employed procedures are quite generally based on asymptotic approximations
which may not provide good size control in finite samples. There has been a number of recent
studies that seek to improve the reliability of common heteroskedasticity tests using
Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In
this paper, we describe a solution to the problem of controlling the size of homoskedasticity
tests in linear regression contexts. We study procedures based on the standard test statistics
[e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White
and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-
type models). We also suggest several extensions of the existing procedures (sup-type of
combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the
technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the
new tests suggested. We show that the MC test procedure conveniently solves the intractable
null distribution problem, in particular those raised by the sup-type and combined test statistics
as well as (when relevant) unidentified nuisance parameter problems under the null
hypothesis. The method proposed works in exactly the same way with both Gaussian and
non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The
performance of the procedures is examined by simulation. The Monte Carlo experiments
conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where
the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the
dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points.
We find that the proposed tests achieve perfect size control and have good power.

Key words : heteroskedasticity, homoskedasticity, linear regression, Monte Carlo test, exact
test, finite-sample test, specification test, ARCH, GARCH, ARCH-in-mean, stable

distribution, structural stability
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1. Introduction

Detecting and making adjustments for the presence of heteroskedasticity in the disturbances of
statistical models is one of the fundamental problems of econometric methodology. We study here
the problem of testing the homoskedasticity of linear regression disturbances, under parametric
(possibly non-Gaussian) distributional assumptions, against a wide range of alternatives, especially
in view of obtaining more reliable or more powerful procedures. The heteroskedastic schemes we
consider include random volatility models, such as ARCH and GARCH error structures, variances
which are functions of exogenous variables, as well as discrete breaks at (possibly unknown) points.

The statistical and econometric literatures on testing for heteroskedasticity is quite extensive; for
reviews, the reader may consult Judge, Griffiths, Carter Hill, Litkepohl, and Lee (1985), Godfrey
(1988), Pagan and Pak (1993) and Davidson and MacKinnon (1993, Chapters 11 and 16). In linear
regression contexts, the most popular procedures include the Goldfeld-Quéesit[Goldfeld and
Quandt (1965)], Glejser’s regression-type tests [Glejser (1969)], Ramsey’s versions of the Bartlett
(1937) test [Ramsey (1969)], the Breusch-Pagan-Godfrey Lagrange multiplier (LM) test [Godfrey
(1978), Breusch and Pagan (1979)], White’s general test [White (1980)], Koenker’s studentized
test [Koenker (1981)], and Cochran-Hartley-type tests against grouped heteroskedasticity [Cochran
(1941), Hartley (1950), Rivest (1986)]; see the literature survey results in Table 1. Other proposed
methods include likelihood (LR) tests against specific alternatives [see, for example, Harvey (1976),
Buse (1984), Maekawa (1988) or Binkley (1992)] and “robust procedures”, such as the Goldfeld and
Quandt (1965) peak test and the procedures suggested by Bickel (1978), Koenker and Bassett (1982)
and Newey and Powell (1987).

The above methods do not usually take variances as a primary object of interest, but as nuisance
parameters that must be taken into account (and eventually eliminated) when making inference on
other model parameters (such as regression coefficients). More recently, in time series contexts and
especially financial data analysis, the modeling of variances (volatilities) as a stochastic process has
come to be viewed also as an important aspect of data analysis, leading to the current popularity of
ARCH, GARCH and other similar models; see Engle (1982, 1995), Engle, Hendry, and Trumble
(1985), Bollerslev, Engle, and Nelson (1994), LeRoy (1996), Palm (1996), and Gouriéroux (1997).
As a result, detecting the presence of conditional stochastic heteroskedasticity has become an im-
portant issue, and a number of tests against the presence of such effects have been proposed; see
Engle (1982), Lee and King (1993), Bera and Ra (1995) and Hong and Shehadeh (1999).

Despite the large spectrum of tests available, the vast majority of the proposed procedures are
based on large-sample approximations, even when it is assumed that the disturbances are indepen-
dent and identically distributed (i.i.d.) with a normal distribution under the null hypothesis. So there
has been a number of recent studies that seek to improve the finite-sample reliability of commonly
used homoskedasticity tests. In particular, Honda (1988) and Cribari-Neto and Ferrari (1995) de-
rived Edgeworth and Bartlett modifications for the Breusch-Pagan-Godfrey criteria, while Cribari-
Neto and Zarkos (1998) considered bootstrap versions of the latter procedures. Tests based on the
jackknife method have also been considered; see, for example, Giaccotto and Sharma (1988) and
Sharma and Giaccotto (1991). In a multi-equations framework, Bewley and Theil (1987) suggested
a simulation-based test for a particular testing problem; however, they did not supply a distributional



Table 1. Survey of empirical literature on the use heteroskedasticity tests

Heteroskedasticity test used Literature Share
Tests for ARCH and GARCH effects 25.3%
Breusch-Pagan-Godfrey-Koenker 20.9%
White's test 11.3%
Goldfeld-Quandt 6.6%
Glejser’s test 2.9%
Hartley’s test 0.3%
Other tests 1.9%
Use of heteroskedasticity consistent standard errors 30.3%

Note _ This survey is based on 379 papers published in The Journal of Business and Economic Statistics, The Journal
of Applied Econometrics, Applied Economics, the Canadian Journal of Economics, Economics Letters, over the period
1980 -1997. These results were generously provided by Judith Giles.

theory, either exact or asymptotic.

A limited number of provably exact heteroskedasticity tests, for which the level can be con-
trolled for any given sample size, have been suggested. These include: (1) the familiar Goldfeld-
QuandtF'-test and its extensions based on BLUS [Theil (1971)] and recursive residuals [Harvey
and Phillips (1974)], which are built against a very specific (two-regime) alternative; (2) a number
of procedures in the class introduced by Szroeter (1978), which also include Goldfeld-Quandt-type
tests as a special case [see Harrison and McCabe (1979), Harrison (1980, 1981, 1982), King (1981)
and Evans and King (1985a)]; (3) the procedures proposed by Evans and King (1985b) and Mc-
Cabe (1986). All these tests are specifically designed to apply under the assumption that regression
disturbances are independent and identically distributed (i.i.d.) according to a normal distribution
under the null hypothesis. Further, except for the Goldfeld-Quandt procedure, these tests require
techniques for computing the distributions of general quadratic forms in normal variables such as
the Imhof (1961) method, and they are seldom used (see Table 1).

Several studies compare various heteroskedasticity tests from the reliability and power view-
points; see, for example, Ali and Giaccotto (1984), Buse (1984), MacKinnon and White (1985),
Griffiths and Surekha (1986), Farebrother (1987), Evans (1992), Godfrey (1996), and, in connec-
tion with GARCH tests, Engle, Hendry, and Trumble (1985), Lee and King (1993), Sullivan and
Giles (1995), Bera and Ra (1995) and Lumsdaine (1995). In addition, most of the references cited
above include Monte Carlo evidence on the relative performance of various tests. The main findings
that emerge from these studies are the following: (i) no single test has the greatest power against
all alternatives; (ii) tests based on OLS residuals perform best; (iii) the actual level of asymptoti-
cally justified tests is often quite far from the nominal level: some are over-sized [see, for example,
Honda (1988), Ali and Giaccotto (1984) and Binkley (1992)], while others are heavily under-sized,
leading to important power losses [see Lee and King (1993), Evans (1992), Honda (1988), Griffiths
and Surekha (1986), and Binkley (1992)]; (iv) the incidence of inconclusiveness is high among the
bounds tests; (v) the exact tests compare favorably with asymptotic tests but can be quite difficult to



implement in practice. Of course, these conclusions may be influenced by the special assumptions
and simulation designs that were considered.

In this paper, we describe a general solution to the problem of controlling the size of ho-
moskedasticity tests in linear regression contexts. We consider procedures based on the standard
tests as well as several extensions of the latter. Specifically, we focus on the following heteroskedas-
tic alternatives: (1) ARCH, GARCH and ARCH-in-mean (ARCH-M) effects; (2) breaks in variance
at possibly unknown points; (3) cases where the variance depends on a vector of exogenous vari-
ables; (4) the case where the variance is a function of the mean of the dependent variable; (5)
grouped heteroskedasticity. We exploit the technique of Monte Carlo (MC) tests [Dwass (1957),
Barnard (1963), Jockel (1986), Dufour and Kiviet (1996, 1998)] to obtain provably exact random-
ized analogues of the tests considered. This simulation-based procedure yields an exact test when-
ever the distribution of the test statistic does not depend on unknown nuisance parameters (i.e., it
is pivotal) under the null hypothesis. The fact that the relevant analytical distributions are quite
complicated is not a problem in this context: all we need is the possibility of simulating the relevant
test statistic under the null hypothesis. In particular, this covers many cases where the finite-sample
distribution of the test statistic is intractable or involves parameters which are unidentified under the
null hypothesis, as occurs in the problems studied by Davies (1977, 1987), Andrews and Ploberger
(1995), and Hansen (1996). Further the method allows one to consider any error distribution that
can be simulated, which of course covers both Gaussian and many non-Gaussian distributions (such
as stable distributions).

We show here that all the standard homoskedasticity test statistics considered are indeed piv-
otal. In particular, we observe that a large class of residual-based tests for heteroskedasticity [studied
from an asymptotic viewpoint by Pagan and Hall (1983)] are pivotal in finite samples, hence allow-
ing the construction of finite-sample MC versions of these. In this way, the size of many popular
asymptotic procedures, such as the Breusch-Pagan-Godfrey, White, Glejser, Bartlett, and Cochran-
Hartley-type tests, can be perfectly controlled for any parametric error distribution (Gaussian or
non-Gaussian) specified up to an unknown scale parameter. Tests for which a finite-sample theory
has been supplied for Gaussian distributions, such as the Goldfeld-Quandt and various Szroeter-type
tests, are extended to allow for non-Gaussian distributions. Further, we show that various bounds
procedures that were proposed to deal with intractable finite-sample distributions [e.g., by Szroeter
(1978), King (1981) and McCabe (1986)] can be avoided altogether in this way.

Our results also cover the important problem of testing for ARCH, GARCH and ARCH-M
effects. In this case, MC tests provide finite-sample homoskedasticity tests against standard ARCH-
type alternatives where the noise that drives the ARCH process is i.i.d. Gaussian, and allow one to
deal in a similar way with non-Gaussian disturbances. In non-standard test problems, such as the
ARCH-M case, we observe that the MC procedure circumvents the unidentified nuisance parameter
problem. Further, due to the convenience of MC test methods, we define a number of new test statis-
tics and show how they can be implemented. These include: (1) combined Breusch-Pagan-Godfrey
tests against a break in the variance at an unknown date (or point); (2) combined Goldfeld-Quandt
tests against a variance break at an unspecified point, based on the minimutype) or the prod-
uct of individualp-values; (3) extensions of the classic Cochran (1941) and Hartley (1950) tests,
against grouped heteroskedasticity, to the regression framework using pooled regression residuals.



Although the null distributions of many of these tests may be quite difficult to establish in finite
samples and even asymptotically, we show that the tests can easily be implemented as finite-sample
MC tests!

To assess the validity of residual-based homoskedasticity tests, Godfrey (1996, section 2) de-
fined the notion of “robustness to estimation effects”. In principle, a test is considered robust to
estimation effects if the underlying asymptotic distribution is the same irrespective of whether dis-
turbances or residuals are used to construct the test statistic. Our approach to residual-based tests
departs from Godfrey’'s asymptotic framework. As noted earlier, MC homoskedasticity tests are
based on a finite-sample distributional theory. Indeed, since the test criteria considered are pivotal
under the null hypothesis, we shall be able to control perfectly type | error probabilities whenever
the error distribution is specified up to an unknown scale parameter [e.g., the variance], even with
non-normal errors. Therefore, the adjustments proposed by Godfrey (1996) or Koenker (1981) are
not necessary for controlling size. It is also of interest to note that Breusch and Pagan (1979) rec-
ognized the pivotal property of the LM homoskedasticity test which might be exploited to obtain
simulation-based cut-off points. Here we provide a clear simulation-based strategy that allows one
to control the size of the tests even with a very small number of replications.

The performance of the proposed tests is examined by simulation. The MC studies we consider
assess the various tests, assuming a correctly specified model. We do not address the effects on the
tests which result from misspecifying the model and/or the testing problem. Our results indicate
that the MC versions of the popular tests typically have superior size and power properties.

The paper is organized as follows. Section 2 presents the statistical framework and Section 3
defines the test criteria considered. The Monte Carlo test procedure is described in Section 4. In
Section 5, we report the results of the Monte Carlo experiments. Section 6 concludes.

2. Framework

We consider the linear model

Yy = w8+ uy, (2.1)
Ut = O'téft,t:l,...,T, (22)
wherex; = (x4, ©2, ... , x), X = [x1, ..., x| is a full-column rankT x k matrix,
B = (0, ..., By) isak x 1 vector of unknown coefficients;y, ... , o are (possibly random)
scale parameters, and
e = (e1,...,er) isarandom vector with a completely specified
continuous distribution conditional ok . (2.3)

1For example, the combined test procedures proposed here provide solutions to a nuchbegetpoinproblems.
For further discussion of the related distributional issues, the reader may consult MacNeill (1978), Shaban (1980), Chu
and White (1992), Zivot and Andrews (1992), Andrews (1993) and Hansen (1997)]



Clearly the case where the disturbances are normally distributed is included as a special case. We
are concerned with the problem of testing the null hypothesis

Hy:0?=0%t=1,..., T, for someo, (2.4)

against the alternativel 4 : o? # o2, for at least one value dfands.
The hypothesis defined by (2.1) - (2.4) does not preclude dependence nor heterogeneity among
the components af. So in most cases of practical interest, one would further restrict the distribution
of e, for example by assuming that the elementg @ire independent and identically distributed
(i.i.d.), i.e.
1, ..., er are i.i.d. according to some given distributiéh , (2.5)

which entails thati, ... , ur are i.i.d. with distribution functiof?[u; < v] = Fy(v/o) underHy.
In particular, it is quite common to assume that

e, ..., er "KE N, 1], (2.6)

which entails thaty, ..., up are i.i.d. N[0, 02] underH,. However, as shown in Section 4, the
normality assumption is not needed for several of our results; in particular, it is not at all required
for the validity of MC tests for general hypotheses of the form (2.1) - (2.4), hence, a fortiori, if (2.4)
is replaced by the stronger assumption (2.5) or (2.6).

We shall focus on the following special cases of heteroskedastidify, namely:

H; : GARCH and ARCH-M alternatives;
H, : 0?2 depends monotonically on a linear functiga of a vectorz; of exogenous variables;
Hj : o7 is a monotonic function of(y;) (or | E(y:)|);

H, : o7 is the same withip subsets of the data but differs across the subsets; the latter specification
is frequently termedrouped heteroskedasticitiNote thatH, may include the hypothesis that
the variance changes discretely at some point in time (which may be specified or not).

In most cases, the tests considered are functions of the least squares residuals
u= (U, ..., ur) =y—XpB (2.7)

where = (X' X)~1 X'y denotes the ordinary least squares (OLS) estimaté diVe shall also
write:

=l

1 T
e DI (2.8)
t=1

3. Test statistics

As already mentioned, among the numerous tests for heteroskedasticity which have been proposed,
they are nowadays quite unevenly used [see Table 1], so we have tried to concentrate on the most



popular procedures and alternatives. Unless stated otherwise, we shall assume in this section that
(2.6) holds, even though the asymptotic distributional theory for several of the proposed procedures
can be obtained under weaker assumptions. The tests we shall study can be conveniently classified
in three (not mutually exclusive) categories: (i) the general class of tests based on an auxiliary re-
gression involving OLS residuals and some vector of explanatory varigti@sthe error variance;

(i) tests against ARCH-type alternatives; (iii) tests against grouped heteroskedasticity.

3.1. Tests based on auxiliary regressions
3.1.1. Standard auxiliary regression tests

To introduce these tests in their simplest form, consider the following auxiliary regressions:

W =zat+w,t=1,...,T, (3.2)

ﬂ§—32:zga+wt,t:1,...,T, (3.2)

[ie| = zja+wy, t=1, ..., T, (3.3)

wherez; = (1, zp, ... , zn) is a vector ofm fixed regressors on whick, may dependp =
(a1, ..., ap) andwy, t =1, ... , T, are treated as error terrisThe Breusch-Pagan-Godfrey

(BPG) LM criterion [Breusch and Pagan (1979), Godfrey (1978)] may be obtained as the explained
sum of square§ESS) from the regression associated with (3.1) divided8§. The Koenker K)
test statistic [Koenker (1981)] i§ times the uncenteref? from regression (3.2). White’§V)
test statistic ig” times the uncentereR? from regression (3.1) using fag ther x 1 observations
on the non redundant variables in the vectpr x;. These tests can be derived as LM-type tests
against alternatives of the form

Hy: o} = g(z0) (3.4)

whereg(.) is a twice differentiable function. Undéd{, and standard asymptotic regularity condi-
tions, we have:
BPG ¥ x*(m —1),
K% 3 (m—1),
asy

WA X2(T - 1)7

where the symboﬁiy indicates that the test statistic is asymptotically distributed as indicated (under
Hy asT — o0). The standard statistic to test, = ... = «,, = 0 in the context of (3.3) yields
the GlejserG) test [Glejser (1969)]. Again, undéf, and standard regularity conditions,

(T — k)G & x%(m —1).

Below, we shall also consider(m — 1,7 — k) distribution as an approximation to the null dis-
tribution of this statistic. Honda (1988) has also provided a size-correction formula féf e

2See Pagan and Hall (1983) for a formal regression interpretation of the tests.



statistic. White's test was designed against the general alterrdfivelhe above version of the
Glejser test is valid for the special case where the variance is proportiogjal.to

Godfrey (1996) has recently shown that, unless the error distribution is symmetriG, st
is deficient in the following sense. The residual-based test is not asymptotically equivalent to a
conformabley? test based on the true errors. Therefore (itest may not achieve size control. We
will show below that this difficulty is circumvented by our proposed MC version of the test. In the
same vein, we argue that from a MC test perspective, choosing the Koenker statistic rather than the
B PG has no incidence on size control. We provide a rigorous justification for the latter arguments
in Section 4.

Tests against discrete breaks in variance at some specified dzag be applied in the above
framework by defining; as a dummy variable of the form = z;(7), where

0, t<7
Zt(T):{l M (3.5)

Pagan and Hall (1983, p. 117) provide the relevant special form oBR€& test statistic. We also
suggest here extensions of this procedure to the case where the breaksdafeunspecified, and

thus may take any one of the values= 1, ... , T — 1. One may then compute a different test
statistic for each one of these possible break-dates. Note the problem of combining inference based
on the resulting multiple tests was not solved by Pagan and Hall (1983).

3.1.2. Auxiliary regression tests against an unknown variance breakpoint

Let BPG, be the BPG statistic obtained on using: = z/(r), wherer = 1, ... T — 1.
When used as a single test, tB’G,, statistic is significant at levek when BPG, > x2(1),
or equivalently wherG,, (BPG.) < «, whereyx?(1) solves the equatiof,, [x2(1)] = « and
Gy, (z) = P[x*(1) > ] is the survival function of thg?(1) probability distribution.G,, (BPG)
is the asymptotip-value associated witB PG... We propose here two methods for combining the
BPG, tests.

The first one rejectél; when at least one of thevalues forr € J is sufficiently small, where
J is some appropriate subset of the time inted@l2, ... , T'— 1}, such asJ = [ry, 72| where
1 <7 <79 <T—1.Intheory,J may be any non-empty subset@f, 2, ..., 7" — 1}. More
precisely, we rejecH at levela whenpuvy,i, (BPG; J) < po(a; J) where

PUmin(BPG; J) = min{G,, (BPG;) : 7 € J} (3.6)

andpy(«; J) is the largest point such th&[pvy,in(BPG; J) < po(a; J)] < a under Hy, or
equivalently wherF,,;,(BPG; J) > Fuin(a; J) where

Fuin(BPG; J) =1 —min{Gy, (BPG;) : 7 € J} (3.7)

andFin(a; J) = 1—po(a; J). In general, to avoid over-rejecting; («; J) should be smaller than
«. This method of combining tests was suggested by Tippett (1931) and Wilkinson (1951) in the case



of independent test statistics. Here, it is however clear that the stafisiics,, - =1, ..., T —1,
are not independent, with possibly a complex dependence structure.
The second method we consider consists in rejectliggvhen the product (rather than the

minimum) of thep-valuespv. (BPG; J) = [] G (BPG,) is small, or equivalently when
TeJ
Fy«(BPG; J) > Fx(J;«) where

F.(BPG; J)=1- []Gy, (BPG-) (3.8)
TeJ

and F (J; «) is the largest point such th&{F (BPG; J) > Fx(J;a)] < « underHy. This
general method of combining-values was originally suggested by Fisher (1932) and Pearson
(1933), again for independent test statisfiddle also propose here to consider a modified version
of F\(BPG; J) based on a subset of thevaluesG,, (BPG). Specifically, we shall consider a
variant of F, (BPG; J) based on the four smallestvalues:

Fy(BPG; Juy) =1— ][] Gy, (BPG,) (3.9)
T€-7(4)
Wheref(4) is the set of the four smallegtvalues in the serie§G,, (BPG;):7=1,2,...,T —

1}. We shall see later that this modified statistic has better power properties. Implicitly, the maxi-
mal number ofp-values retained (four in this case) may be chosen to reflect (prior) knowledge on
potential break dates.

We will see below that the technique of MC tests provides a simple way of controlling the size
of the testd,in(BPG; J), Fx (BPG; J) andFy (BPG; f(4)), although their finite-sample _ and
even their asymptotic _ distributions may be quite intractable.

3.2. Tests against ARCH-type heteroskedasticity

In the context of conditional heteroskedasticity, artificial regressions provide an easy way to com-
pute tests for GARCH effects. Engle (1982) proposed a LM test based on the following framework:

Yy = xéﬁ—l—ut,t:l,...,T,
ut‘t—l ~ N(O)U?)v

q
o7 = ao+ Z ou? (3.10)
i=1

3For further discussion of methods for combining tests, the reader may consult Miller (1981), Folks (1984), Savin
(1984), Dufour (1989, 1990), Westfall and Young (1993), Gouriéroux and Monfort (1995, Chapter 19), and Dufour and
Torres (1998, 2000).



where|, , denotes conditioning of information up to and including 1. The hypothesis of ho-
moskedasticity may then be formulated as follows:

Hy:o1=---=a,=0. (3.11)

The Engle test statistic is given ByR?, whereT is the sample size? is the coefficient of de-
termination in the regression of squared OLS residalsn a constantand? ; (i=1, ... , q).
Under standard regularity conditions, the asymptotic null distribution of this statistfq(is. Lee
(1991) has also shown that the same test is appropriate against GARGlternativesi.e.

p q
o? = ap + Z 0,02, + Z ou? (3.12)
i=1 =1
and the null hypothesis is
Hy:o1 = =ag=01=---=0,=0.

Lee and King (1993) proposed an alternative (G)ARCH test which exploits the one sided nature of
H 4. The test statistic is

T . . 1/2
{(T —a) > [@/5* - 1)] Z@?_z} / { > (a7/5* - 1)2}
LK =

t=q+1 =1 t=q+1

(T—q§;<§ﬁiﬁz‘aél(éﬁig>2

and its asymptotic null distribution is standard norrhal.

In this paper, we also consider tests against ARCH-M heteroskedasticity (where the shocks
affecting the conditional variance g@f also have an effect on its conditional mean). This model
is an extension of (3.10) which allows the conditional mean to be dependent on the time-varying
conditional variance. Formally, the model may be defined as follows:

e (3.13)

Yt = x;ﬁ—i—atgb—{—ut,t:l,...,T,
2
ut|t—1 ~ N(Ovat)7
q
a? = 0[0‘*’20@%24-
=1

Then the LM statistic for homoskedasticity hypothesis (3.11) for givén

1 2 _ !
M(p)=—AVIVV - ——V'XX'X)'X'V| V7 3.14
(@) = 5V V'V - S v ee) SRRERYY

“We have applied the corrected test formula provided by Lee and King in 1994 [equation (13)].




wherey is aT x 1 vector with elements

Yy = (W /7)* = 1] + ¢t /G
andV isaT x (¢ + 1) matrix whoset-th row is

Vi=(1, @y, o0y Ty)s

see Bera and Ra (1995). In this case, unfdgrthe parametey is unidentified. Only the sum of

¢ and the intercepy + (3,) is identifiable unde#,, although an “estimate” af can be produced

under both the null and the alternative hypotheses. In practice, the latter estimate is substituted for
¢ to implement the LM test using a cut-off point from tiyé(q) distribution. Bera and Ra (1995)

also discuss the application of the Davies sup-LM test to this problem and show that this leads
to more reliable inference.lt is clear, however, that the asymptotic distribution required is quite
complicated. We will show below that the MC test procedure may be applied to this sup-LM test.
The unidentified nuisance parameter is not a problem for implementing the MC version of the test.
Indeed, it is easy to see that the statistic’s finite sample null distribution is nuisance-parameter-free.
The simulation experiment in Section 5.1 shows that this method works very well in terms of size
and power.

3.3. Tests based on grouping

An alternative class of tests assumes that observations can be ordered so that the variance is non-
decreasing. In practice, the data are typically sorted according to time or some regressor. In the case
of H3, the ranking may be based gn yet this choice may affect the finite-sample null distributions

of the test statistics. For further referenceiigf,t = 1, ... , T, denote the OLS residuals obtained

after reordering the observations (if needed).

3.3.1. Goldfeld-Quandt tests against an unknown variance breakpoint

The most familiar test in this class is the Goldfeld and Quandt (1965, GQ) test which involves
separating the ordered sample into three subsets and computing separate OLS regressions on the
first and last data subsets. LBt i = 1, 2, 3, denote the number of observations in each of these
subsetg7T = T + T» + T3). Under (2.1) - (2.6) and{y, the test statistic is

_ S3/(Ts — k)

GQ(T1,T3,k) = S /(T =k

(3.15)

5In a recent paper, Demos and Sentana (1998) have proposed one-sided LM tests for ARCH effects as well as critical
values for LR and Wald tests which take into account the one-sided nature of the problem. Similarly, Beg, Silvapulle, and
Silvapulle (1998) have introduced a one-sided sup-type generalization of the Bera-Ra test, together with simulation-based
cut-off points, because of the untractable asymptotic null distributions involved. For further discussion of the difficult
asymptotic distributional issues assiciated with such problems, see also Andrews (1999) and Klippelberg, Maller, Van
De Vyver, and Wee (2000). The MC test method should also prove to be useful with these procedures.
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where S; and S; are the sum of squared residuals from the fifstand the lasfls observations
(wherek < Ty andk < T3). Under the null,lGQ(Ty,T5,k) «~ F(T5 — k,Th — k). The latter
distributional result is exact provided the ranking index does not depend on the parameters of the
constrained model. Settir@yy(r, i1, k) (x) = P[F(T3 — k,T1 — k) > x|, we denote

polGQ; Th, T3, k) = Gpepy k1 1) [GQ(T1, 15, k)] (3.16)

thep-value associated witdQ (71, T3, k).
TheGQ test is especially relevant in testing for breaks in varigh@e.account for an unknown
(or unspecified) break-date, we propose here (as for the BPG test) statistics of the form:

Fuin(GQ; K) = 1—min{po[GQ; T1, T3, k] : (T1,T3) € K}, (3.17)
F(GQ K) = 1— [ wIGQ T, T3k, (3.18)
(Th,T3)eK

whereK is any appropriate non-empty subset of
Kk, T)={(T),T3) €Z* : k+1<T1 <T—-k—1landk+1<T3<T-Ti}, (3.19)

the set of the possible subsample sizes compatible with the definition 6f@hstatistic. Reason-
able choices foK could beK = S, (T, Ts, Lo, Up) with

S1(T, Ty, Lo, Up) = {(1T1,13) : Lo < Ty <Upandiz =T — Ty — T» > 0}, (3.20)

whereT5, represents the number of central observations whjlandU, are minimal and maximal
sizes for the subsampléd <7, <T —2k -2, Lo > k+1, Uy <T —-Ty —k—1),0r

K = So(T, Lo, Up) = {(T1,T3) : Ly < T = T3 < Up} (3.21)

whereLy > k + 1 andUy < I[T/2]; I[x] is the largest integer less than or equattd\ccording

to definition (3.20){GQ(T1,T5,k) : (T1,T3) € K} defines a set of7() statistics, such that the
numberT;, of central observations is kept constant (although the sets of the central observations
differ across the7 (@) statistics considered); with (3.21)GQ(71,T5, k) : (11,T3) € K} leads to

GQ statistics such thal; = T3 (hence with different numbers of central observations). As with the
BPG statistics, we also consider

F(GQi Kw)=1— [  plGQ; 11, T5, k]
(T1,T5)€ K4

where IA((4) selects the four smallegtvalues from the sefpv[GQ; 11, Ts, k] : (T1,T3) € K}.
It is clear the null distribution of these statistics may be quite difficult to obtain, even asymptot-
ically. We will see below that the level of a test procedure based on any one of these statistics can

5pagan and Hall (1983, page 177) show that@@ test for a break in variance and the relevant dummy-variable
basedB PG test are highly related.
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be controlled quite easily on using the MC version of these tests.

3.3.2. Generalized Bartlett tests

Under the Gaussian assumption (2.6), the likelihood ratio criterion for tesfinggainstH, is a
(strictly) monotone increasing transformation of the statistic:

LRy, =Tz Z T; In( (3.22)

wheres? is the ML estimator (assuming i.i.d. Gaussian errors) from the pooled regression (2.1)
while 3?, 1 =1,..., p,are the ML estimators of the error variances for pheubgroups [which,

due to the common regression coefficients require an iterative estimation procedure]. If one further
allows the regression coefficient vectors to differ between groups (under both the null and the alter-
native hypothesis), one gets the extension to the linear regression setup of the well-known Bartlett
(1937) test for variance homogeneitilote Bartlett (1937) studied the special case where the only
regressor is a constant, which is allowed to differ across groups. Other (quasi-LR) variants of the
Bartlett test, involving degrees of freedom corrections or different ways of estimating the group
variances, have also been suggested; see, for example, Binkley (1992).

In the context ofH,, Ramsey (1969) suggested a modification to Bartlett’s test that can be run
on BLUS residuals from ordered observations. Following Griffiths and Surekha (1986), we consider
an OLS-based version of Ramsey'’s test which involves separating the resigyats=1, ... , 7,
into three disjoint subsets; with T;, i = 1, 2, 3, observations respectively. The test statistic is:

RB =T In(G ZT In(G (3.23)
where
1 T
ot =5 Uy 5 Z“(t)
t=1 tGG

Under the nullLRB ‘&Y x2(2).

3.3.3. Szroeter-type tests

Szroeter (1978) introduced a wide class of tests. The Szroeter tests are based on statistics of the

form
h= (Z hﬂf) / (Z a?) (3.24)
teA teA

’In this case, the estimated variances@fe= S;/T;,i =1, ..., p, andg> = P TiS;/T, whereS; is the sum
of squared errors from a regression which only involves the observationsistitgroup. This of course requires one to
use groups with sufficient numbers of observations.
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where A is some non-empty subset ff, 2, ... , T'}, theu,'s are a set of residuals, tltg’s are

a set of nonstochastic scalars such thak h, if s < t. Szroeter suggested several special cases
of this statistic (obtained by selecting different weightg, among which we shall consider the
following ones which are based on the OLS residuals from a single regreggieni | :

SKH = [iz 1—cost ] <Z ) (3.25)

T \Y2(Xlta, T4
e <T61> ( ) (3.2
- 2t=1 Uy
T
SF = Z <Zu t)) SF Tl, T — T1 Tg) . (327)
t=T1+1>+1

Under the null hypothesisy follows a N (0, 1) distribution asymptotically. Exact critical points
for SK H [under (2.6)] may be obtained using the Imhof method. Szroeter recommends the fol-
lowing bounds tests. Let; andhj; denote the bounds for the Durbin and Watson (1950) test
corresponding td" + 1 observations andé regressors. Reject the homoskedasticity hypothesis if
SKH >4 — hj,acceptifSKH < 4 — h;, and otherwise treat the model as inconclusive. King
(1981) provided revised bounds for use Wik H calculated from data sorted such that, under the
alternative, the variances are non-increasing. Harrison (1980, 1981, 1982) however showed there
is a high probability that the Szroeter and King bounds tests be inconclusive; in view of this, he
derived and tabulated beta-approximate critical values based on the Fisher distribution.

As with theGQ test, the SzroeterSy statistic may be interpreted as a variant of@h@ statistic
where the residuals from separate regressions have been replaced by those from the regression based
on all the observations, so th{ is replaced bys; = 3.7 T+ Tyt 1 ﬂ( ;) andssy by Sy =nh,
Harrison and McCabe (1979) suggested a related test statistic based on the ratio of t?\e sum of
squares of a subset §fi,y, t = 1, ... , T, } to the total sum of squares:

T T
M = <Z a%t)> / (Z agt)> (3.28)
t=1 t=1

whereT; = I[T'/2]. Although the test critical points may also be derived using the Imhof method,
Harrison and McCabe proposed the following bounds test. Let

-1

b = <1+ (T_Tl)FO‘TH:;Tl’T_k)> : (3.29)
-1

by = <1 Gl e k)?g_ h- k’T1)> : (3.30)

whereF, (l1,l2) refers to the leved critical value from thef'(l;, l5) distribution. Hy is rejected if
HM < by, itis accepted ifff M > bj;, and otherwise the test is inconclusive. Beta approximations
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to the null distribution of theZ M statistic have also been suggested. However, as argued in Harrison
(1981), the two-moment beta approximation offers little savings in computational cost over the exact
tests.

McCabe (1986) proposed a generalization of i@/ test to the case of heteroskedasticity
occurring at unknown points. The test involves computing the maxiduvh criterion over several
sample subgroups (of size). The author suggests Bonferroni-based significance points using the
quantiles of the Beta distribution with parametérs/2, (t — m — k)/2]. McCabe discusses an
extension to the case whene is unknown. The proposed test is based on the maximum of the
successive differences of the order statistics and also uses approximate beta critical points.

3.3.4. Generalized Cochran-Hartley tests

Cochran (1941) and Hartley (1950) proposed two classic tests against grouped heteroskedasticity
(henceforth denote@ and H, respectively) in the context of simple Gaussian location-scale models
(i.e., regressions that include only a constant). These are based on maximum and minimum sub-
group error variances. Extensions of these tests to the more general framework of linear regressions
have been considered by Rivest (1986). The relevant statistics then take the form:

- 2 2
C= max(s;)/ <§—1 Si (3.31)

_ 2)/ min (s2
H = max (s;)/ min (s7) (3.32)

wheres? is the unbiased error variance estimator from #tle separate regressidgin < i < p).
Although critical values have been tabulated for the simple location-scale model [see Pearson and
Hartley (1976, pp. 202-203)], these are not valid for more general regression models, and Rivest
(1986) only offers an asymptotic justification.

We will see below that the Cochran and Hartley tests can easily be implemented as finite-sample
MC tests in the context of the regression model (2.1) - (2.4). Further, it will be easy to use in the
same way variants of these tests that may be easier to implement or more powerful than the original
procedures. Here we shall study Cochran and Hartley-type tests where the residuals from separate
regressions are replaced by the OLS residuals from the pooled regression (2.1), possibly after the
data have been resorted according to some exogenous variable. This will reduce the loss in degrees
of freedom due to the separate regressions. The resulting test statistics will be deénaiet! R,
respectively. Clearly, standard distributional theory does not apply to these modified test criteria,
but they satisfy the conditions required to implement them as MC tests.

3.3.5. Grouping tests against a mean dependent variance

Most of the tests based on grouping, as originally suggested, are valid for alternatives of the form
H,. A natural extension to alternatives such s involves sorting the data conformably with

ut; see Pagan and Hall (1983) or Ali and Giaccotto (1984). However this complicates the finite-
sample distributional theory. In this case, or whenever the alternative tested requires ordering the

14



sample following the fitted values of a preliminary regression, we suggest the following variants
of the tests. Rather than sorting the data, sort the residiyals= 1, ... , T, following y; and
proceed. Provided the fitted valug@s, ... , yr)’ are independent of the least-squares residuals
(u1, ..., ur) under the null hypothesis, as occurs for example under the Gaussian assumption
(2.6), this will preserve the pivotal property of the tests and allow the use of MC tests.

4. Finite-sample distributional theory

We will now show that all the statistics described in Section 3 have null distributions which are free
of nuisance parameters and show how this fact can be used to perform a finite-sample MC test of
homoskedasticity using any one of these statistics. For that purpose, we shall exploit the following
general proposition.

Proposition 4.1 CHARACTERIZATION OF PIVOTAL STATISTICS Under the assumptions and

notations(2.1) — (2.2), let S(y, X) = (S1(y, X), Sa(y, X), ..., Sm(y, X)) be any vector of
real-valued statistics$;(y, X),i =1, ..., m, such that
S(ey + Xd, X) = S(y, X), forall ¢ > 0 andd € R. (4.1)

Then, for any positive constant > 0, we can write
S(y7 X):S(’LL/O'(), X)7 (42)

and the conditional distribution of (y, X), given X, is completely determined by the matix
and the conditional distribution af /oy = Ae/og givenX, whereA = diag(oy :t =1, ..., T).
In particular, underHy in (2.4), we have

S(y, X) = S(e, X) (4.3)

wheres = u/o, and the conditional distribution of (y, X)), givenX, is completely determined by
the matrixX and the conditional distribution aof given X.

PROOF. The result follows on taking = 1/0¢ andd = —3/o0¢, which entails, by(2.1),
cy+Xd= (XB+u)/og—XpB/og=u/og.

Then, using (4.1), we get (4.2), so the conditional distributio§'@f, X) only depends otX and
the conditional distribution of./o( given X. The identityug = Ae follows from (2.2). Finally,
under Hy in (2.4), we haveu = Ae = o¢, hence, on takingp = o, we getu/op = ¢ and
Sy, X)=S5(, X). 1

It is of interest to note that the representation (4.2) holds under both the general heteroskedastic
model (2.1) - (2.2) and the homoskedastic model obtained by imposing (2.4), without any parametric
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distributional assumption on the disturbance veatfsuch as (2.3)]. Then, assuming (2.3), we see
that the conditional distribution & (y, X), given X, is free of nuisance parameters and thus may
be simulated. Of course, the same will hold for any transformation of the componesg,oX ),
such as statistics defined as the supremum or the product of several statigiiesl{tes).

It is relatively easy to check that all the statistics described in Section 3 satisfy the invariance
condition (4.1). In particular, on observing that model (2.1) - (2.2) and the hypothesis (2.4) are
invariant to general transformations gfto v, = cy + Xd, wherec > 0 andd € R*, ony, it
follows that LR test statistics against heteroskedasticity, such the Bartlett test basét] gy in
(3.22), satisfy (4.1) [see Dagenais and Dufour (1991) and Dufour and Dagenais (1992)], and so have
null distributions which are free of nuisance parameters.

For the other statistics, the required results follow on observing that they are scale-invariant
functions of OLS residuals. For that purpose, it will be useful to state the following corollary of
Propositiord. 1L

Corollary 4.2 PIVOTAL PROPERTY OF RESIDUALBASED STATISTICS Under the assumptions

and notationg2.1) — (2.2), let S(y, X) = (S1(y, X), Sa(y, X), ..., Sm(y, X))" be any vector
of real-valued statistic$;(y, X),i=1, ..., m, such thatS(y, X) can be written in the form
S(y, X) =S (A(X)y, X), (4.4)

whereA(X) is anyn x k matrix (n > 1) such that
AX)X =0 (4.5)
andS (A(X)y, X) satisfies the scale-invariance condition
S(cA(X)y, X)=S(A(X)y, X) , forallc>0. (4.6)
Then, for any positive constamg > 0, we can write
S(y, X) =S (A(X)u/og, X) 4.7)

and the conditional distribution of (y, X), given X, is completely determined by the mati&x
and the conditional distribution ofl(X)u /oo given X. In particular, underHy in (2.4), we have
S(y, X) = S(A(X)e, X), wheree = u/c, and the conditional distribution of (yy, X), given
X, is completely determined by the matfixand the conditional distribution ofl (X )e given X.

It is easy to see that the conditions (4.4) - (4.6) are satisfied by any scale-invariant function of
the OLS residuals from the regression (2.1), i.e. any statistic of the$gym X) = S (4, X) such
thatS (cii, X) = S (@, X) forall ¢ > 0 [in this case, we have (X) = It — X (X'X) "1 X’]. This
applies to all the tests based on auxiliary regressions described in Section 3.1 as well as the tests
against ARCH-type heteroskedasticity [Section 8.2]n the other hand, the tests designed against

8For the case of the Breusch-Pagan test, the fact that the test statistic follows a null distribution free of nuisance
parameters has been pointed out by Breusch and Pagan (1979) and Pagan and Pak (1993), although no proof is provided
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grouped heteroskedasticity [Section 3.3] involve residuals from subsets of observations. These also
satisfy the sufficient conditions of Corollady2 although thed (X ') matrix involved is different. For
example, for the Goldfeld-Quandt statistic, we have:

A(X) = 0 0 0 (4.8)
0 0 M(Xs)

whereM (X;) = I, — X;(X[!X;) "' X!, X = [X], X}, X}’ andX; is aT; x k matrix. Note the
numbern of rows in A(X) can be as large as one wishes so several regressions of this type can be
used to compute the test statistic, as done for the comlgifdgdtatistic [see (3.17)].

Let us now make the parametric distributional assumption (2.3). Then we can proceed as follows
to perform a finite-sample test based on any statistic,%ay S(y, X ), whose null distribution
(givenX) is free of nuisance parameters. &tr) be the survival function associated wih under
Hy,i.e. we assumé& : R — |0, 1] is the function such tha¥(z) = Pg, [So > ] for all z, where
P, refers to the relevant probability measure (undgy. Without loss of generality, we consider
a right-tailed procedurefl, rejected at levelkk when Sy > c¢(a), wherec(a) is the appropriate
critical value such tha€i[c(a))] = «, or equivalently (with probability 1) whe?(Sp) < « [i.e.
when thep-value associated with the observed value of the statistic is less than or eglial to

Now suppose we can generate (by Monte Carlo methyds)d. replications of the error vector
¢ according to assumption (2.3). This leadsMasimulated samples and independent realizations

of the test statisti®, ..., Sy. The associated MC critical region obtains as
PN (So) <« (4.9)
where N
—~ _ NGy(x)+1
Py (®) = =37 (4.10)
and
. 1 & 1, z€ A
GN(x) = N ; 1[0700)(51' — .1‘), lA(ac) = O, " ¢ A . (4.11)

Then, provided the distribution function 6§ induced byP ;,underH, is continuous, we have:

I'[a(N +1)]

PHO [ﬁN(SO) < a] - N +1

, for 0<a<1, (4.12)

see Dufour and Kiviet (1998)In particular, if N is chosen so that(N + 1) is an integer, we have:

PHO []/?\N(S(ﬁ S a] = . (4.13)

by them. The results given here provide a rigorous justification and considerably extend this important observation.

°If the distribution ofS, was not continuous, then we can wigr, [P (So) < a] < I [a(N +1)] /(N +1), so the
procedure described here will be conservative. Under the assumption (2.3), however, the statistics described in section 3
have continuous null distributions.

17



Thus the critical region (4.9) has the same size as the critical régish) < a.

The MC test so obtained is theoretically exact, irrespective of the numiloéreplications used.

Note that the procedure is closely related to the parametric bootstrap, with however a fundamental
difference: bootstrap tests are, in general, provably valider co. See Dufour and Kiviet (1996,
1998), Kiviet and Dufour (1997) and Dufour and Khalaf (2001) for some econometric applications
of MC tests.

Finally, it is clear from the statement of Assumption (2.3) that normality does not play any role
for the validity of the MC procedure just described. So we can consider in this way alternative error
distributions such as heavy-tailed distributions like the Cauchy distribution. The only tests for which
normality may play a central role in order to control size are those designed against a variance which
is a function of the mean and where the least squares (LS) residuals are sorted according to the LS

fitted valuesy;, t = 1, ..., T. Since the distribution of the latter depends on nuisance parameters
(for example, the regression coefficiepts it is not clear that a test statistic which depends on both
u= (U, ..., ur)andy = (g1, ..., yr)" will have a null distribution free of nuisance parameters

under the general distributional assumption (2.3). However, if we make the Gaussian assumption
(2.6), u andy are mutually independent undéfy, and we can apply the argument justifying the
MC test procedure conditional gn

5. Simulation experiments

In this section, we present simulation results illustrating the performance of the procedures de-
scribed in the preceding sections. Because the number of tests and alternative models is so large,
we have gathered our results in four groups corresponding to four basic types of alternatives:
(1) GARCH-type heteroskedasticity; (2) variance as a linear function of exogenous variables; (3)
grouped heteroskedasticity; (4) variance break at a (possibly unspecified) point.

5.1. Tests for ARCH and GARCH effects

For ARCH and GARCH alternatives, our simulation experiment was based on the following speci-
fication:

1
Y = ZC;,@ + Ethf + ht¢ y (514)
h = Wo+ (aweiy +ar)h1, t=1,..., T, (5.15)
wherez; is defined as in (2.1), ang id N(0,1), t =1, ..., T.We tookT = 25, 50, 100

andk = I[Tl/Q] + 1. In the case of tests against ARCH-M alternatives [experiment (iv)], we also
considered a number of alternative error distributions, according to the examples studied by Godfrey
(1996): N (0, 1), x%(2), U[-.5, .5], t(5) andCauchy.

The data were generated settifig= (1, 1, ... , 1) andw, = 1. In this framework, the model
with ¢ = 0 anda; = 0 is a standard ARCH(1) specification, while= 0 yields a GARCH(1,1)
model. The ARCH-M system discussed in Bera and Ra (1995) corresponds=00. The pa-
rameter combinations considered are given in Table 2 and were selected to make the results of our
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Table 2. Parameter values used for the GARCH models

Experiment 10) Qo Qq
() 0 0 0

(i) 0 d,5,.9 110
(iii) 0 1 5

0 .25 .65

0 4 5

0 15 .85

0 .05 .95

(iv) -2, -1,1,2(0,.1,.5,.9] 0

Table 3. Tests against ARCH and GARCH heteroskedasticity

T=25 T =50 T =100

(¢, g, 1) Engle | Lee-King | Engle | Lee-King | Engle | Lee-King

Hy (0,0,0) ASY | 221 3.22| 3.06 4.04| 3.63 4,72
MC 5.01 5.14| 4.94 5.01| 5.18 5.22

ARCH (0,.1,0) ASY | 3.26 498 | 6.42 9.67 ] 11.83 17.01
MC 6.16 7.94| 8.60 11.31| 13.61 17.22

(0,.5,0) ASY | 10.19 15.73| 31.56 39.96| 64.18 71.93

MC | 14.87 20.66 | 35.68 42.28| 66.43 71.54

(0,.9,0) ASY | 17.14 24.93 | 50.57 58.89 | 84.38 88.99

MC 23.10 31.17| 54.76 60.71| 85.82 88.97

(0,1,0) ASY | 24.49 26.80| 53.43 61.82| 86.40 90.60

MC | 18.59 33.03| 57.77 63.61| 87.50 90.24

GARCH | (0,.1,.5) ASY | 3.07 5.16 | 6.89 10.45| 12.54 17.89
MC 6.10 8.08| 9.16 12.05| 14.39 18.35

(0,.25,.65) | ASY | 4.87 8.72] 16.26 23.43 | 38.36 46.93

MC 8.44 12.60| 19.92 25.20| 40.74 47.29

(0,.40,.50) | ASY | 7.30 12.66| 26.12 34.48| 57.44 65.94

MC | 11.89 17.07 | 30.25 36.51| 59.65 65.69

(0,.15,.85) | ASY 4.42 8.40| 13.45 19.96| 28.97 37.11

MC 7.93 12.39| 16.79 21.70| 31.04 37.93

(0,.05,.95) | ASY | 3.75 7.31] 10.02 15.37| 18.17 25.92

MC 6.84 10.74| 12.77 17.05| 20.15 26.28

Note: In this table as well as in the subsequent ones, the rejection frequencies are reported in

percentages.
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Table 4. Empirical size of ARCH-M tests

Parameter values

Error distribution

ap=a;=0,¢=-2 N(0,1) 2(2) U[-.5,.5] t(5) Cauchy
Test T |D1 | D2 | D1 D2 | D1 | D2|D1| D2| D1| D2
Engle ASY 25122|22|18|13|27|24|23|08|18]| 0.6
MC 56(52]43|40|51|48|53|43|50]4.9

Lee-King | ASY 34142|128|23|27|37]24|17|19]|14
MC 50(48|54|40|46|45|51|40|52|53

Bera-Ra | MC 471451 36|41|54|46|49|47|52]|55
Engle ASY 50126|29|32|30|47|34|26|26]|16]| 1.7
MC 46| 42|163|62|65|45|62|50]|58]|55

Lee-King | ASY 43|146|41|44|151|161|3.7|36]|23]|23
MC 56| 40| 50|55|57|45|57|57|55]|5.0

Bera-Ra | MC 50[48|56(51|[51|{49|50|49|48| 4.8
Engle ASY | 100 4.1]139]29|29|52|48|27|28|18| 138
MC 47|153|52|52|56|54|53|48|59]|5.2

Lee-King | ASY 53(54|42|45|41,60|3.7|34|24]23
MC 53|51|54|53|45|50|54|50|55]|5.2

Bera-Ra | MC 566252525149 |51|45|4.7 |53
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Table 5. Power of MC ARCH-M tests: normal errors and D1 design

T=25 T =50 T =100
ag | ¢ | Test | Engle | Lee-King | Bera-Ra| Engle | Lee-King | Bera-Ra| Engle | Lee-King | Bera-Ra

1 | -2 | ASY 3.6 5.7 7.7 9.5 16.0 21.2
MC 6.3 9.2 9.4 9.5 13.9 12.6| 185 215 24.5

1 | -1 ] ASY 3.8 5.7 6.7 9.8 14.2 18.6
MC 6.4 8.9 8.7 8.4 11.9 9.8| 16.0 18.2 16.4

A |1 | ASY 3.8 5.4 6.9 9.7 13.5 17.8
MC 5.9 7.6 8.3 8.2 10.9 10.10| 151 17.1 17.1

1 | 2 | ASY 3.8 5.4 7.8 11.3 154 21.0
MC 6.4 8.4 9.0 9.8 12.5 13.0| 175 20.6 23.9

5 |-2| ASY | 105 16.7 314 41.7 67.2 73.0
MC 15.6 21.9 26.4| 36.5 43.6 56.2| 69.1 72.7 84.5

5 | -1] ASY 9.9 17.1 33.5 42.9 68.3 76.3
MC 16.2 22.9 22.6| 385 45.2 475| 70.5 75.6 78.1

5|11 | ASY | 10.2 15.2 324 41.5 64.8 74.8
MC 14.4 19.6 21.0| 36.8 43.2 46.2| 67.0 73.4 77.1

5|12 | ASY | 104 16.6 34.4 43.8 63.3 72.5
MC 16.0 22.4 26.6 | 38.0 45.3 56.6 | 66.3 70.9 84.6

9 |-2] ASY | 133 20.9 41.0 49.7 67.6 72.8
MC 19.6 24.7 33.6| 45.6 50.6 63.6| 69.4 72.6 86.6

9 |-1|ASY | 164 24.6 46.7 56.4 79.3 84.2
MC 22.6 30.6 33.0| 521 58.8 67.5]| 80.7 84.1 91.6

9 |1 | ASY | 157 23.7 47.0 56.6 75.7 815
MC 21.3 29.5 319| 512 58.1 65.3| 77.6 82.0 89.9

9 |2 | ASY | 149 22.9 40.7 48.3 65.9 70.4
MC 21.2 27.0 33.3| 443 49.8 63.5| 66.9 70.1 85.1
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Table 6. Power of MC ARCH-M tests: various error distributions and D2 design

= -2 T =25 T =50 T =100
ag | Error Test | Engle | Lee-King | Bera-Ra| Engle | Lee-King | Bera-Ra| Engle | Lee-King | Bera-Ra

1 | N(0,1) | ASY 4.1 7.5 8.4 13.2 17.4 24.8
MC 8.2 8.8 9.3]| 11.2 12.5 13.8| 19.8 23.3 25.0

2(2) ASY 9.3 16.4 30.1 38.9 54.5 61.3
MC 20.7 23.0 27.6| 40.2 42.2 475| 59.7 60.5 65.4

U[-.5,.5] | ASY 2.3 4.0 3.2 6.0 5.1 7.0
MC 4.7 4.1 4.6 4.4 4.9 5.0 5.6 6.2 5.2

t(5) ASY 4.5 9.4 22.4 34.6 53.2 61.4
MC 20.9 26.7 37.1| 473 51.4 60.9| 711 72.6 79.0

Cauchy | ASY | 125 21.3 45.0 52.4 66.1 71.3
MC 32.6 36.9 41.6| 64.0 67.8 73.7| 817 83.9 86.7

5| N(0,1) | ASY | 122 22.5 33.1 42.2 61.8 69.8
MC 20.6 24.3 32.8| 36.7 41.0 55.7 | 64.6 68.3 81.4

2(2) ASY | 18.6 22.4 33.3 42.3 52.9 59.8
MC 25.4 26.9 35.4| 429 43.8 61.7| 58.3 58.3 77.4

U[-.5,.5] | ASY 2.3 4.6 4.3 7.6 7.4 13.0
MC 4.8 5.4 6.6 5.1 6.1 8.0 7.5 10.5 154

t(5) ASY | 121 17.9 50.7 58.5 70.2 74.6
MC 30.1 34.0 38.9| 67.2 69.1 716 80.5 81.3 84.4

Cauchy | ASY | 24.0 30.9 64.1 70.7 78.4 82.3
MC 40.2 47.7 51.9| 77.7 81.6 83.8| 89.3 91.1 92.3

9 | N(0,1) | ASY 9.1 18.4 37.9 46.8 61.7 68.5
MC 16.4 21.6 27.7| 42.0 44.9 62.6 | 64.2 65.9 82.1

2(2) ASY | 14.2 21.3 27.8 32.4 40.9 45.9
MC 24.0 27.1 37.3| 33.9 35.0 54.4 | 43.8 44.3 66.9

U[-.5,.5] | ASY 2.6 5.6 4.6 10.4 12.4 19.2
MC 5.0 6.4 9.1 5.6 7.4 15.4 11.8 175 35.4

t(5) ASY | 16.8 30.1 27.5 37.6 45.8 54.2
MC 41.6 44.9 50.2| 47.8 50.9 57.7| 62.3 63.5 73.1

Cauchy | ASY | 21.6 32.1 54.4 62.3 71.6 76.5
MC 44.5 50.1 546 | 73.8 76.9 80.6| 85.2 87.5 90.0

22



study comparable with those obtained by Lee and King (1993), Lumsdaine (1995) and Bera and Ra
(1995). Note that some combinations fall on the boundary of the regieha; < 1.

The regressors were generated as i.i.d. according.i@al0) distribution and kept constant
over each individual experiment. In the case of tests against ARCH-M alternatives [experiment (iv)],
we also considered an alternative regressor set, obtained by drawing (independently) form a Cauchy
distribution (centered and re-scaled conformably with the previous design). For further reference,
we shall denote by D1 then: form-based design D1 and by D2 th&uchy-based design. Both
D1 and D2 include a constant regressor.

The MC tests were implemented wilfi = 99 replications. The Engle and Lee-King tests were
applied in all cases. In experiment (iv), we also applied the Bera-Ra sup-LM test (see Section 3.2
for formulae and related references), in which case we have only computed MC versions of the tests.

Tables 3, 4, 5 and 6 report rejection percentages for a nominal le%&5,0£0000 replications
were considered for experiments (i) - (ii)) and 1000 for experiment (iv); in these tables (as well as
later ones), the figures associated with best performing exact procedures in terms of power (under
the alternatives) are setbold face characters.

In general, the most notable observation is that the Engle test is undersized, ev&n=witho,
which can lead to substantial power losses. This is in accordance with the results of Lee and King
(1993) and several references cited there. Although undersize problems are evident under D1 and
normal errors, more serious size distortions are observedy#ith), ¢(5) and Cauchy errors. The
size of the Lee-King test is better than that of the Engle test but is still below the nominal level
particularly withx?(2), t(5) and Cauchy errors, and f@r < 100 under D1 and normal errors.

So MC tests yield important effective power gains. The effective power advantage of MC tests
is noticeable, even with uniform designs and normal errors. In the cagg®f, ¢(5) and Cauchy
errors, improvements in power are quite substantial (such as a 50% increasé with0). The
Lee-King MC test is always more powerful than the Engle test. It is also worth noting that possible
problems at boundary parameter values were not observed. Further the MC Lee-King test has the
best power. As emphasized in Bera and Ra (1995), power improvements in the case of ARCH and
GARCH tests are especially important since failing to detect conditional variance misspecifications
leads to inconsistencies in conditional moments estimates.

Turning now to ARCH-M tests, we see that: (i) the Engle test has the lowest power among the
three tests considered, and (i) there is a substantial power gain from using the sup-LM MC test. The
Lee-King MC test performs better than the Engle test and in a few cases marginally outperforms the
sup test. This suggests that a MC version of the Beg, Silvapulle, and Silvapulle (1998) one-sided
test for ARCH-M may also result in power improvements. The power advantage of the MC sup-LM
along with the documented difficulties regarding the Davies sup-LM test, makes the MC Bera-Ra
test quite attractive. Further, these results show clearly that the MC test provides a straightforward
finite-sample solution to the problem of unidentified nuisance parameters.
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5.2. Tests of variance as a linear function of exogenous variables

The model used is (2.1) with = 25, 50, 100 andk = 6.1° The regression coefficients were set to
one. The following specifications for the error variance were considered:

() 0? =2}a, t=1, ..., T,where
a=(1,0,...,0), underHy,
=(1,1,..., 1), underHy.
(i) 07 =ap+aizey, t=1,..., T where

ag=1, a3 =0, underHy,
ap =0, a1 =1, underHy.

The former specification implies that the variance is a linear functiafi(df,) and the latter is the
case where the variance is proportional to one regressor. The regressors are genérgiethas
The tests examined (refer to Section 3 for formulae and related references) are the following:

1. the Goldfeld-QuandtG'Q) test [see (3.15)], with, =T/5, T1 = T3 = (T — 13) /2;

2. the Breusch-Pagan-GodfréB PG) test [see (3.1)], based on the asymptotic distribution
(ASY) or using the size correction formula (BRT) proposed by Honda (1988, section 2);

. Koenker's(K) test [see (3.2)];
. White’s (W) test [ see (3.1)];
. Glejser's(G) test based on (3.3);

o o1 b~ W

. Ramsey’s version of Bartlett’s teRB) [see (3.23)], withT}, = 75 = I[T/3] andT> =
T —(Th + T3);

\‘

. Szroeter'sSy test [ see (3.27)], where for conveniengg,andT; are set as in thé'Q test;

8. Szroeter'sSK H test [see (3.25)]; the critical points for the bounds test are taken from King
(1981, Table 2) and the beta-approximate cut-off points from Harrison (1982, Table 4);

9. Szroeter'sSy test [ see (3.26)];
10. the Harrison-McCabéH M) test [ see (3.28)], with, = I[T'/2].

In the case of (ii), we have observed that sorting the observations or the OLS residuals by the value
of iy leads to equivalent MC tests. Tables 7 and 8 report rejection percentages for a nominal level of

5% and10000 replications. The MC tests are implemented withsimulated samples. Based on
these two experiments, we make the following observations.

OTables of critical points required for the Szroeter’s tests are availabbe for100 andk < 6; see King (1981) and
Harrison (1982).
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Table 7. Variance proportional to a regressor

T=25 T =50 T =100
Hy Ha Hy Ha Hy Ha

Goldfeld-QuandtGQ) F 495 | 27.64| 4.68| 81.41| 4.95| 98.25
Breusch-Pagan-Godfrey| ASY 4.13 | 33.84| 4.14| 80.57| 4.59| 98.75
(BPG) BRT 442 | 35.17| 4.64| 81.67| 4.71| 98.79

MC 5.37 | 36.80| 4.99| 80.86| 4.58 | 98.36

Koenker () ASY 5.18 | 30.81| 4.74| 75.14| 4.51| 97.52
MC 5.29 | 30.20| 4.98| 74.70| 4.46| 96.77

White (W) ASY 0.00 0.00| 2.60| 20.20| 4.42 | 34.64
MC 5.31 8.08| 4.67| 26.70| 4.65| 33.99

Glejser (7) ASYp 554 | 34.58| 5.09| 80.04| 4.66| 98.82
ASY 6.72 | 38.62| 5.76 | 81.30| 5.03| 98.90

MC 5.07 | 32.32| 5.12| 78.48| 4.58| 98.44

Ramsey-Bartlett R B) ASY 6.67 | 31.87| 5.50| 80.06| 5.22| 97.96
MC 5.27 | 27.63| 458 | 77.03| 4.76 | 97.49

Szroeter §r) MC 498 | 51.26| 4.77| 88.71| 4.88| 99.12
Szroeter §) ASY 3.11 | 45.46| 4.28| 91.94| 4.87| 99.63
MC 497 | 53.45| 5.08| 92.09| 4.69| 99.51

Szroeter-King-Harisson | Beta 401 | 50.34( 6.41| 94.71| 8.32| 99.83
(SKH) Bound 0.18 | 10.43| 0.71| 74.74| 1.54 | 98.09

Inc. bound| 34.61| 82.53| 19.6 | 24.23| 12.38| 1.83

MC 498 | 53.87| 4.98| 91.68| 4.79| 99.43

Harisson-McCabeH{ M) | Bound 0.05 352 0.79|61.31| 1.91| 94.61
Inc. bound| 20.37 | 75.29| 13.48 | 33.75| 9.67| 4.52

MC 469 | 46.63| 4.78| 84.64| 5.20| 97.38

25



Table 8. Variance as a function of the mean

T=25 T =50 T =100
Hy Hy Hy Hy Hy Hy

Goldfeld-QuandtGQ) F 464 | 593| 5.24| 11.56| 4.95( 22.90
Breusch-Pagan-Godfrey| ASY 412 556| 4.38| 8.69| 5.01| 16.57
(BPG) BRT 3.28| 4.70| 4.19| 8.39| 4.95| 16.22

MC 5,06 6.81| 4.74| 9.54| 5.02| 16.30

Koenker (K) ASY 3.34| 3.96| 4.02| 7.06| 4.32| 13.77
MC 5.17| 6.13| 5.08| 8.10| 4.73| 14.63

White (W) ASY 0.00f 0.00| 2.60| 3.45| 4.42| 7.53
MC 531| 595| 4.67| 598| 4.65| 7.93

Glejser (7) ASYr 598 6.92| 546| 9.04| 5.14]| 15.21
ASY 11.75| 12.88| 7.66| 12.05| 5.98| 17.42

MC 493 599| 5.11| 8.21| 5.02| 14.54

Ramsey-BartlettR B) ASY 594 7.57| 5.75| 11.99| 5.41| 21.01
MC 5.03| 6.03| 5.03| 11.02| 4.90| 19.78

Szroeter §r) MC 466 | 11.18| 5.18| 19.29 5.3 | 33.61
Szroeter § ) ASY 3.93| 10.74| 5.32| 21.91| 4.91| 39.64
MC 468 | 12.09| 5.07| 21.38| 4.84 | 38.90

Szroeter-King-Harisson | Beta 4.67] 12.06| 7.96| 28.07| 8.28] 48.09
(SKH) Bound 0.19( 0.82| 096| 6.17| 1.50]| 21.02

Bound inconc.| 39.29 | 58.58 | 20.89 | 48.02| 12.51| 39.41

MC 462 11.77| 4.97| 21.04| 5.01| 37.49

Harisson-McCabeH{ M) | Bound 0.08| 0.17| 0.74] 4.18| 1.85| 16.25
Bound inconc.| 22.29| 37.47 | 14.67| 34.61 | 10.06 | 30.44

MC 498 | 10.69| 5.02| 17.82| 5.48| 29.25
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5.2.1. Level

The BPG, K, Sy andW tests reject the null less frequently than implied by their nominal size,
particularly in small samples. Th& Wald-type test and the Harrison approximat& H test have

a tendency to over-reject. The bounds tests based oH tleand S K H statistics are inconclusive

in a large proportion of cases. As expected, MC tests have the correct size. In the case of the
B PG criterion, Honda’s size correction improves both the reliability and the power properties of
the test; the superiority of the MC technique is especially notable with small samples. It is worth
emphasizing that, whereas Honda’s formula is generally effective, it is based on an asymptotic
approximation; the MC test method is theoretically exact in finite samples.

5.2.2. Power

Here, we again discuss the performance of the MC versions of the tests considered, because we
restrict attention to size correct procedures. We observe thahilend theS K H MC tests (whose
performance is very similar) are most powerful, followed closely by&heand theH M MC test,

and by thez and B PG MC tests. TheZ(Q) andRB MC tests rank next whereas thé test performs

very poorly. Note that the Szroeté&lQ-type testSy performs much better than the standér@;

this is expected since the latter is based on residuals from a single regression on the whole sample.
Overall, the most noticeable fact is the superiority of the Szroeter MC tests when compared to
the commonly used procedures (e.g. the Breusch-Pagntype tests). As mentioned earlier,

the Szroeter tests as initially proposed have not gained popularity due to their non-standard null
distributions. Given the ease with which exact MC versions of these tests can be computed, this
experiment clearly demonstrates that a sizable improvement in power results from replacing the
commonly used LM-type tests with either Szroeter-type MC tests. Similar conclusions are reported
in Griffiths and Surekha (1986) with respectSg, the member of the Szroeter family whose null
distribution is asymptotically normal. However, these authors also document the asymptotic tests’
incorrect finite sample size.

5.3. Grouped heteroskedasticity

To illustrate the performance of MC tests for grouped heteroskedasti€ity we follow the design
of Binkley (1992). The model used is (2.1) with

T, =15, 25, 50; ki =4,6,8 m=2,3, 4.

The regressors were drawn forni/40, 10) distribution and differed across subgrodpsThe re-
gressors were drawn only once. The regression coefficients were set to one, and the variances across
groups were selected so that

2

§=Tmax _q 9 3 5,
O min

\We considered other choices for the design matrices, including Cauchy, lognormal, and identical regressors (across
subgroups) and obtained qualitatively similar results.
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with the intermediate variances set at equal intervals, whgre ando?,,, represent respectively

the smallest and largest error variance amongrtlgroups. The errors were drawn from the normal
distribution. We considered the LR statistic, the Goldfeld-Quandt statistic, the Breusch-Pagan and
Koenker statistics, the Glejser and White statistics, and the Cochran and Hartley ofitddac;,
andH,). We also studied alternative likelihood-based test criteria introduced in Binkley (1992, Page
565), namelyLR1, LR2, LR3 and BPG»,*? and considered as well a Koenker-type adjustment to
BPG5 (which we denotek,). The results are summarized in Tablé39.We report empirical
rejections for a nominal size of 5% 9000 replications. The MC test is obtained with simulated

samples. Our findings can be summarized as follows.

5.3.1. Level

In general, LM-type asymptotic tests are undersized, whereas the asymptotic LR-type tests tend to
over-reject. The variants of the LM and LR tests based on residuals from individual regressions
are over-sized. As expected, size problems are more severe with small samples. Although the
behavior of the size-correctdd PG appears to be satisfactory, the modification technique yields
over-rejections when applied 8PG,. Note that Honda (1988) verified that the formulae does not
work well in the case of the Koenker test. Finally, the empirical size of the Cochran and Hartley
statistics exceeds the nominal size. In contrast, the MC versions of all the tests considered achieve
perfect size control in all cases.

5.3.2. Power

In order to compare tests of equal size, we only discuss the power of the MC tests. First of all, we
observe that the MC technique improves the effective power of the LM and White tests. Although
the correction from Honda (1988) achieves a comparable effect, its application is restricted to the
standardB PG criterion. Secondly, comparing the LR and QLR tests, there is apparently no advan-
tage to using full maximum likelihood estimation [for a similar observation in the context of SURE
models, see Dufour and Khalaf (1998, 1999)].

In general, the tests may be ranked in terms of power as folldws, QLR, BPG and H
performed best, followed quite closely by the K andC. The W test performed poorly: its power
hardly exceeds the size. Overall, with the exception ofith&est, no test is uniformly dominated.

The MC tests constructed using variance estimates from separate regressions have a slight power
disadvantage. This is somewhat expected, since the simulated samples where drawn imposing
equality of the individual regression coefficients.

Finally, note that the MC Hartley’s test compared favorably with the LM and LR test. This,
together with the fact that it is computationally so simple, suggest that the application of the MC

2| R1 is obtained as in (3.22) replacing by estimates of group variances from partitionitg LR2 is obtained as
in (3.22) replacing:? by variance estimates from separate regressions, over the sample subgroupdaadveighted
average of thesd.R3 is obtained likeL R2, using unbiased variance estimatés”G is a variant of theB PG test for
Hj3 based on residuals from individual group regressions.

13For convenience, our notation differs from Binkley (1992). TheR test refers to Binkley's.R1, the LR, (ASY'1)
andLR, (ASY?2) refer to LR2 and LR3 tests;BPG,, corresponds t@ PG». Note thatL R3 obtains as a monotonic
transformation ofL R2, which yields the same MC test.

28



Table 9. Grouped heteroskedasticity
Two Groups {n = 2)

T; GQ LR QLR LR, H, C,
F ASY MC ASY MC | ASY; ASY, MC MC MC

15 5.17| 10.10 4.92| 552 5.01| 9.88 5.67 4.94 5.01| 5.01
25 4.95 9.08 4.79| 5.14 497, 9.00 5.23 5.02| 4.97| 4.97
50 5.18 761 535| 526 525 7.62 5.26 5.30] 5.25| 5.25
15| 18.08| 29.95 18.43| 20.00 18.65| 28.37 19.30 17.4§ 18.65| 18.65
25| 31.08| 42.25 30.67| 31.86 30.44| 41.80 32.22 30.24 30.44| 30.44
50 | 60.04| 67.50 59.21| 60.68 58.77| 66.72 60.52 58.83 58.77 | 58.77
15| 40.16| 55.80 40.63| 52.10 39.60| 54.00 42.11 39.14 39.60| 39.60
25| 64.79| 75.56 63.44| 63.93 61.81] 7450 65.84 6251 61.81| 61.81
50 | 93.86| 96.06 93.52| 93.99 093.14| 95.86 94.01 93.21 93.14| 93.14
15| 71.95| 8345 71.98| 71.55 69.00] 81.61 73.29 70.24 69.00| 69.00
25| 92.88| 96.29 92.39| 91.26 90.04| 95.85 93.08 92.04 90.04 | 90.04
50 | 99.89| 99.94 99.82| 99.90 99.81| 99.92 99.89 99.85 99.81| 99.81

BPG BPG, K Ky

ASY BRT MC | ASY BRT MC ASY MC | ASY MC

15 3.93 487 5.01f 7.80 9.03 494 454 5.07| 828 4.97
25 4.26 480 497 7.71 8.46 5.020 4.67 5.14| 8.16 5.06
50 4.90 5.12 525 7.05 7.38 530 4.90 5.24| 733 525
15| 15.95 18.47 18.65| 24.27 26.81 17.45 14.70 15.73| 21.83 14.63
25| 29.04 30.70 30.44 39.02 40.69 30.28 26.79 27.38| 36.22 26.80
50 | 58.90 60.08 58.77 65.20 66.09 58.82 56.55 55.54| 63.61 55.30
15| 35.81 39.80 39.6Q 48.69 51.88 39.16 30.57 31.68| 41.77 29.83
25| 60.63 62.61 6181 7191 7359 6251 55.68 55.27| 66.63 54.62
50 | 93.48 93.77 93.14 9551 9571 93.21 91.80 90.80| 94.40 90.89
15| 66.17 69.62 69.0Q 78.36 80.36 70.24 54.20 55.16| 67.27 52.57
25| 89.92 90.67 90.04 95.02 9553 92.06 83.59 82.67| 91.54 83.12
50 | 99.86 99.90 99.81 99.92 99.92 99.85 99.69 99.52| 99.88 99.64

Glejser White C H

ASYr ASYy MC | ASY MC ASY MC | ASY MC

15 5.01 6.24 5.04 386 5.01 1041 4.94] 9.45 494
25 4.89 552 5.03| 4.02 4.72 6.80 5.02| 8.08 5.02
50 5.02 5.22 511 4.47 5.08 495 530 6.13 5.30
15| 16.38 18.74 16.09 520 6.28 2952 17.45| 27.46 17.45
25| 26.33 28.22 2594 455 517 36.79 30.28| 39.92 30.28
50 | 53.56 54.76 5187 3.86 4.26 50.38 58.82| 62.78 58.82
15| 3294 36.38 31.84 6.07 7.27 55.02 39.16| 52.86 39.16
25| 5456 56.61 53.03 4.97 574 69.85 62.51| 72.75 62.51
50 | 89.34 89.79 88.32 351 4.14 93.69 93.21| 94.81 93.21
15| 58.09 62.03 56.3§ 6.97 8.40 82.42 70.24| 81.00 70.24
25| 83.88 85.17 8252 518 6.16 94.49 92.06| 95.20 92.06
50 | 99.55 99.57 99.39 329 394 99.89 99.85| 99.90 99.85
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Table 9. Grouped heteroskedasticity (continued)
Three Groupsr = 3)

T; GQ LR QLR LR, C, H,
F ASY MC ASY MC | ASY; ASY, MC MC MC

15 - 9.94 5.09| 535 5.05| 12.07 5.63 497 525| 5.24
25 - 8.89 5.22| 549 5.28| 10.89 5.36 497 5.12| 5.14
50 - 728 5.11| 533 525/ 8.16 5.22 490 5.13| 5.24
15 - 25.87 15.80| 17.12 16.05| 27.79 16.00 14.73 14.58| 15.75
25 -| 35.94 25.70| 26.99 25.66| 37.63 25.43 23.94 21.89| 25.43
50 -| 59.72 51.93| 53.45 51.84| 59.98 50.84 48.99 41.26| 51.37
15 - | 49.17 35.08| 36.69 34.30] 49.21 33.91 31.17 26.96| 30.87
25 -| 68.62 57.51|58.91 56.61] 68.32 55.62 52.94 42.27| 56.65
50 -| 93.84 90.85| 91.44 90.43] 93.27 89.96 88.74 73.11| 90.79
15 -| 79.44 66.26| 66.79 63.75| 78.50 64.49 60.39 43.54| 64.18
25 -| 94.63 89.79| 89.92 88.40| 94.58 89.10 86.94 65.18 | 88.96
50 - | 99.90 99.80| 99.81 99.72| 99.92 99.79 99.79 93.36| 99.77

BPG BPG, K Ky

ASY BRT MC | ASY BRT MC ASY MC | ASY MC

15 3.92 5.06 5.51] 8.99 11.07 5.18 4.08 5.09| 886 4.95
25 4.45 5.19 5.20, 8.89 10.02 490 457 517| 854 4.88
50 4.62 493 516 755 8.15 493 472 529 7.39 5.06
15| 13.15 16.09 15.68 22.12 25.60 14.04 11.74 13.46| 19.11 11.74
25| 23.33 25.26 24.67 33.33 35.61 22.87 20.52 22.23| 30.31 20.35
50 | 50.29 51.46 5057 56.79 58.21 47.45 47.48 47.56| 54.27 45.03
15| 27.89 32.34 31.63 39.85 4456 28.20 22.65 25.59| 33.31 22.05
25| 52.04 54.77 53.8Q 62.81 65.17 48.98 45.09 46.60| 56.01 41.96
50 | 89.57 90.05 88.98 91.49 92.08 87.03 86.49 85.94| 89.54 83.38
15| 53.62 58.94 57.34 67.09 71.61 50.68 41.01 44.50| 54.26 38.42
25| 8494 86.66 84.94 91.22 9218 81.94 7550 76.10| 83.79 70.39
50 | 99.72 99.74 99.58 99.85 99.85 99.54 99.37 99.11| 99.65 98.82

Glejser White C H

ASYr ASYy MC | ASY MC ASY MC | ASY MC

15 4.97 5,92 5.060 431 4.74 11.6 5.16| 11.2 5.04
25 5.03 570 5.15 5.11 5.19 7.28 5.0] 9.36 4.88
50 5.09 547 499 554 529 444 501| 1150 5.13
15| 13.35 15.63 13.4(Q 546 591 2439 13.36| 25.91 14.00
25| 2157 2348 21.48 7.06 7.09 25.96 20.20| 34.15 23.78
50 | 45.46  46.58 44.61 4.87 4.46 39.49 39.47| 66.72 48.72
15| 27.21 30.66 26.89 593 6.28 39.14 24.78| 47.65 30.87
25| 47.76 50.06 46.33 7.88 7.90 46.38 39.00( 65.58 52.89
50| 85.19 85.84 8387 4.40 4.12 70.66 70.31) 95.41 89.01
15| 50.97 5547 49.4Q0 6.36 6.78 56.27 39.89| 77.55 60.94
25| 80.72 8235 7874 8.76 8.73 68.83 60.83| 93.78 87.53
50 | 99.29 99.34 99.08§ 3.86 3.68 92.24 91.66| 99.94 99.77
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Table 9. Grouped heteroskedasticity (continued)
Four Groupsi = 4)

T; GQ LR QLR LR, C, H,
F ASY MC | ASY MC | ASY; ASY, MC MC MC

15 - 9.70 5.25 57 53| 14.41 5.75 534 5.60| 5.30
25 - 8.05 4.64| 523 4.92| 11.82 535 5.01 496 | 4.94
50 - 6.70 5.05| 524 4.90| 9.02 498 493 465| 5.26
15 - 24.09 1546 16.72 15.14| 29.42 15.33 13.5§5 13.97| 1451
25 - | 3427 2545 27.01 25.60| 37.80 23.42 21.74 20.77| 24.40
50 -| 57,55 50.40| 52.15 50.07| 58.62 48.24 46.62 36.47 | 48.77
15 - | 46.38 34.23| 36.42 34.04] 49.70 31.98 29.03 24.83| 32.19
25 -| 67.58 57.20| 59.13 56.94| 68.72 52.91 50.93 39.34| 55.89
50 -| 94.03 91.31| 92.09 91.10, 93.27 89.02 87.84 68.41| 90.42
15 -| 76.88 65.17| 66.65 63.34| 77.78 60.85 56.69 38.98| 63.37
25 -| 9459 90.65|91.22 89.81 94.18 87.65 85.471 60.91| 89.96
50 - | 99.99 99.95| 99.98 99.93] 99.98 99.89 99.84 91.13| 99.96

BPG BPG, K K,
ASY BRT MC | ASY BRT MC ASY MC | ASY MC
15 4.52 5.47 5.44 11.06 12.75 530 441 5.47| 10.37 5.31
25 451 499 5.08 9.97 11.14 482 419 477 977 490
50 4.48 483 491 8.02 837 463 4.38 448 7.82 494
15| 13.44 15.64 15.39 24.17 26.84 1359 11.81 13.51| 20.7 125
25| 2395 2545 25.07 33.86 35.66 21.13 20.98 22.60( 30.55 19.07
50 | 48.79  49.91 4854 55.37 56.39 44.63 45.66 45.98| 52.42 41.94
15| 28.37 3216 31.34 41.13 44.47 26.92 22.78 25.49| 34.47 21.96
25| 5241 54.74 53.27 61.87 63.97 4554 45.09 46.56] 55.90 40.47
50 [ 89.53 90.07 88.91 91.11 91.65 85.59 86.55 85.67| 89.08 81.66
15| 52.12 56.23 54.70 65.42 68.99 47.03 40.12 43.79| 53.63 36.31
25| 84.81 86.17 84.58 89.37 90.48 77.6Q 75.14 76.00| 82.62 67.70
50 [ 99.88 99.91 99.82 99.88 99.91 99.59 99.53 99.27| 99.68 99.80
Glejser White C H

ASYr ASYy MC [ ASY MC Tab. MC | Tab. MC
15 5.42 6.58 5.47| 4.97 5.1 1252 5.37| 1297 5.04
25 4.89 5.40 479 4.77 4.64 7.25 497 9.77 5.20
50 4.61 489 484 541 526 434 492| 341 5.26
15| 13.33 15.25 13.3Q0 5.97 6.30 2457 12.74| 26.61 12.79
25| 21.36 23.36 21.17 5.82 5.47 24.07 18.38| 32.86 20.63
50| 4387 45.04 4263 536 5.29 33.28 33.38| 50.59 45.26
15] 2659 2986 26.11 6.65 6.89 37.88 22.28| 46.20 27.63
25| 48.15 50.44 47.08 6.26 6.15 42.43 34.15| 63.92 48.70
50 [ 85.09 85.86 8392 531 527 64.77 65.01) 90.58 87.30
15] 50.20 54.12 4887 7.21 7.35 52.99 34.99| 7551 56.81
25| 81.06 82.68 79.44 6.79 6.52 63.55 54.60| 93.13 85.91
50 [ 99.57 99.61 99.42 548 5.29 89.09 88.34| 99.95 99.82
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technique to Hartley’s criterion yields a very useful homoskedasticity test.

5.4. Tests for break in variance

The model used is (2.1) withl" = 25, 50, 100 andk = 6. The following specification for the
error variance was considered:

o? =oy, if t <79,
=o1+46, ift>rg,

whered > 0 andrq is the break time (assumed unknown). The regressors and the regression
coefficients parameters were chosen as in Section 5.3. Furthetimetel, andé andr were set

so that:
(01 + (5)

o1
We applied the MC versions of the standard testg, BPG and K (using artificial regressions
onz =t 1 <t <T), w, G, RB, Sp, SKH, Sy and HM tests, as well as the proposed
combined test$’, (BPG; J( )), Frin(BPG; J), FX(GQ,K ), Frin(GQ; K). For each one of
the combined tests, we considered two possible “windoWs”K). The first one is a relatively
uninformative “wide” window:

To
=14, 16, and—= = .3, .5, .7.
bJ ) ) T ) )

JA = {1,...,T -1}, (5.16)
K4 = ST, Ty, k+1,T—Ty—k—1), (5.17)

with T, = [T'/5]. The second set of windows were based on a predetermined interval around the
true break-date, namely we considered:

J¥ = {Lo, Lo+1, ..., Uy}, (5.18)
KS = Sl(T’ 13, Tg(k)ng(k))v (519)

whereT, = [T'/5],
75 (k) = max {k + 1,70 — I[T/5]} , 7§ (k) = min {T — k — Ty, 7o + I[T/5]} . (5.20)

This yields the statistic& (BPG; J',\), Fuin(BPG; J), FX(GQ;IA(&)), Fuin(GQ; KY), i =
A, S. The results are reported in Ta iafe 10.
As expected, the MC versions of all the tests achieve perfect size control. The results on relative
power across tests agree roughly with those from the other experiments. Two points are worth
noting. First, a remarkable finding here is the good performance of the Szroeter-type MC tests,
which outperform commonly used tests such asiteG and theGQ tests. Forrg /T = 0.3, the
Bartlett test performs quite well in this experiment; note however that the test is implemented with
T, = Ty, = I[T/3]. Second, the combined criteria perform well, and in several cases [especially,
with T' = 50, 100] exhibit the best performance. Among these tests, product-type combined criteria
perform better than min-type. The combined GQ criteria clearly dominate the standard GQ); the
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Table 10. Break in variance at unknown points

T =25 Hy | 70/T=3| 170/T=.5 | 70/T=.7
oa/01 1 2 4 2 4 2 4
GQ F 39| 88 16.1| 215 73.1f171 625
BPG ASY 41| 98 17.1| 229 529|33.0 770
BRT 41| 9.8 17.3| 229 53.0|331 77.2
MC 5.0 10.8 17.7| 246 54.4| 33.2 79.0
K ASY 5.6 | 10.2 16.2| 22.7 39.6( 28.7 56.9
MC 55| 9.7 15.4| 20.9 38.2( 26,5 54.7
w ASY 00| 0.0 00| 00O o0.0f 00 00
MC 441 55 42| 8.3 80| 7.8 111
G ASY g 6.0 129 22.0| 243 50.2( 27.5 60.9
ASYy 7.7] 151 25.8| 27.9 55.0f31.6 655
MC 5.9] 12.1 20.2| 22.2 47.9| 26.1 584
RB ASY 5.2 159 33.3| 22.3 55.0( 349 8138
MC 40| 13.8 30.0| 19.3 50.3| 31.8 79.8
Sk MC 7.0]| 206 33.4| 445 83.1|39.0 8338
SN ASY 49| 17.7 29.0| 37.8 68.4| 45.1 87.2
MC 591 19.2 31.1| 389 69.4( 464 86.6
SKH Beta 5.8 20.6 33.5| 443 76.6| 49.8 90.0
Bound 01| 14 34| 7.0 240|117 544
Boundinconc.| 39.1| 75.1 82.6| 81.7 74.8| 76.7 45.1
MC 6.2 19.9 30.9| 42.6 73.5( 47.7 88.6
HM Bound 00| 05 12| 40 234 19 170
Boundinconc.| 22.8 | 51.6 61.4| 784 75.1] 71.2 79.3
MC 6.1 20.2 29.8| 42.6 86.8| 36.9 827
Tests maximized over the whole sample
F.(BPG; f(“}l)) MC 5.2 11.1 14.0| 24.1 46.2| 40.9 80.6
Foin(BPG; jﬁ)) MC 44| 89 10.7| 184 32.2| 326 70.6
F, (GQ; f(ﬁ)) MC 5.6 | 18.6 31.3| 354 83.2| 31.8 784
Fuin(GQ; Jfi) | MC 48| 165 279|291 776|268 735
Tests maximized over a sub-sample
F. (BPG; f(i)) MC 55| 8.8 17.3| 33.6 68.2( 48.7 86.9
Fiin (BPG; f(i)) MC 55| 8.8 17.3| 33.6 68.2| 48.7 86.9
F (GQ; f(i)) MC 5.6 | 19.2 325|354 83.2| 322 723
Frin(GQ; f(i)) MC 5.6 | 19.2 325|354 83.2| 322 732
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Table 10. Break in variance at unknown points (continued)

T =50 Hy | 70/T=3 | 170/T=.5 | 7/T=.7

oa/01 1 2 4 2 4 2 4

GQ F 55| .35 59.9| 71.2 99.8| 57.1 99.3
BPG ASY 53] 326 59.3|] 67.0 96.5| 73.7 99.6
BRT 55| 33.7 60.6| 68.5 96.7| 75.0 99.7

MC 5.8 33.7 59.1| 67.2 96.3| 73.2 99.6

K ASY 521295 50.3| 58.6 86.4| 625 96.1
MC 551 29.8 47.7| 57.2 85.6( 61.8 95.7

w ASY 19| 20 15| 1.0 04| 14 1.5
MC 36| 35 35| 19 10| 32 32

G ASY g 53] 370 69.6/ 63.0 95.1| 58.8 975
ASYy 58] 39.7 71.6| 64.8 955| 60.9 97.7

MC 541359 68.0] 60.6 93.8|56.5 97.1

RB ASY 5.2 53.1 89.1| 55.7 96.8 72.7 1.0
MC 49502 87.2| 55.0 96.6| 69.8 99.7

Sp MC 721470 703|829 995|733 994
SN ASY 56| 47.7 72.3] 80.8 99.1| 82.3 99.9
MC 6.2 | 455 70.8| 77.4 98.1| 80.4 99.7

SKH Beta 9.0 585 795|879 99.8(871 1.0
Bound 13| 18.8 41.3| 539 94.3| 594 99.3

Bound inconc.| 22.8| 64.5 52.0| 42.7 5.71 36.0 0.7

MC 6.8 46.7 71.9| 81.9 99.0| 81.1 99.8

HM Bound 0.6 157 285| 68.1 99.3| 39.4 974
Bound inconc.| 16.8| 45.5 49.3| 294 0.7| 493 26

MC 56| 35,5 54.7|1 89.6 99.9( 69.3 99.2

Tests maximized over the whole sample
F.(BPG; fa)) MC 53] 16.1 26.1| 45.3 86.7| 725 995
Fuin(BPG; ‘7(34)) MC 55| 12.7 18.0f 31.7 66.5| 62.6 98.7
F (GQ; f(i)) MC 56| 56.8 98.6| 79.1 100| 73.3 99.7
Fuin(GQ; J5) | MC 6.0 50.0 98.2| 71.6 99.8| 67.2 99.4
Tests maximized over a sub-sample

F. (BPG; f(ﬁ)) MC 6.0 38.0 79.8| 76.9 99.4| 81.7 99.9
Fiin(BPG; f(i)) MC 58| 37.1 77.8| 75.7 99.2| 79.4 99.9
F. (GQ; f(i)) MC 54607 98.0]| 80.0 99.9( 749 99.7
Frin(GQ; fa)) MC 6.2 53.1 983|787 100 75.0 995
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Table 10. Break in variance at unknown points (continued)

T =100 Hy | 70/T=3 | 170/T=.5 | 7/T=.7
oa/01 1 2 4 2 4 2 4
GQ F 56| 658 87.7/ 974 100 91.9 100
BPG ASY 5.2 65.8 92.3| 96.0 100( 95.6 100
BRT 571 67.1 92.7| 96.4 100( 95.7 100
MC 5.9 ] 65.2 92.7| 95.8 100| 95.3 100
K ASY 53] 59.0 824|919 99.6] 92.1 99.9
MC 55| 585 829]|90.8 99.2 924 99.9
w ASY 45| 2.7 20| 4.0 28| 51 5.3
MC 43| 31 25| 39 27| 60 53
G ASY g 541695 97.8| 93.8 100( 88.9 100
ASYy 541 70.6 98.0] 94.0 100( 89.2 100
MC 51| 68.3 97.11 92.4 100 | 88.5 100
RB ASY 541 86.0 98.7| 90.6 100( 96.3 100
MC 49860 984|899 100|954 100
Sp MC 55| 745 919|982 100| 953 100
SN ASY 49| 784 96.4| 98.4 100( 97.7 100
MC 55| 785 95.6|98.0 100 97.9 100
SKH Beta 8.1] 857 98.1| 989 100( 98.4 100
Bound 15|57.1 87.4(96.0 100|94.2 100
Bound inconc.| 12.3| 34.7 11.8| 3.5 0.00f 4.9 0.00
MC 53| 77.4 95.2| 98.2 100| 97.6 100
HM Bound 18| 413 67.1| 98.7 100| 85.7 100
Bound inconc.| 8.9 | 34.7 215 1.2 0.00f{ 12.1 0.00
MC 52611 79.6/ 99.7 100| 93.6 100
Tests maximized over the whole sample
F.(BPG; f(ﬁ)) MC 591 26.3 523|825 100| 94.6 100
Fuin(BPG; f(‘j)) MC 591 20.0 33.1| 645 99.3| 90.0 100
F (GQ; f(‘i)) MC 561915 100| 97.3 100| 96.0 100
Frin(GQ; j(’j)) MC 54(89.1 100| 96.6 100| 94.3 100
Tests maximized over a sub-sample
F. (BPG; f(ﬁ)) MC 551834 100|98.1 100( 98.2 100
Fiin(BPG; f(i)) MC 521826 100|97.8 100( 98.2 100
Fu(GQ; T MC 5.7 | 944 100| 98.2 100 | 96.8 100
Froin(GQ; f(i)) MC 51927 100|98.0 100| 96.8 100
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same holds true for the BPG-based tests, if the search window is not uninformative. Power increases
importantly, where we consider the sup-tests maximized over the shorter, more informative window.
These results have much to recommend the intuitively appealing combined tests, in association with
the MC test method, in order to deal with problems of unknown shift in variance.

6. Conclusion

In this paper we have described how finite sample homoskedasticity tests can be obtained for a
regression model with a specified error distribution. The latter exploit the MC test procedure which
yields simulation-based exact randomizedalues irrespective of the number of replications used.

The tests considered include tests for GARCH-type heteroskedasticity and sup-type tests against
breaks in variance at unknown points. On observing that all test criteria are pivotal, the problem
of “robustness to estimation effects” emphasized in Godfrey (1996) becomes irrelevant from our
viewpoint. It is important to note that the general approach used here to obtain exact tests is not
limited to the particular case of normal errors. In particular, the method proposed allows one to
consider non-normal _ possibly heavy-tailed (e.g., Cauchy) _error distributions, for which standard
asymptotic theory would not apply.

The results of our simulation experiments suggest that Hartley-type and Szroeter-type tests seem
to be the best choice in terms of power. Such tests have not gained popularity given the non-standard
null distribution problem which we have solved here. We have introduced various MC combined
tests, based on the minimurup-type tests) or the product (Fisher's combination method) of a set
of p-values, and demonstrated their good performance. Although the particular test statistics con-
sidered here are designed against a two-regime variance, it would be straightforward to implement,
with similar MC methods, statistics aimed at detecting a larger number of variance regimes. Finally,
in the context of conditional heteroskedasticity, we have solved the unidentified nuisance parameter
problem relating to ARCH-M testing.
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