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RÉSUMÉ

Une règle de sélection associe à tout ensemble d’options réalisables et tout statu quo y

appartenant un sous-ensemble des options réalisables. Une telle règle est non-dégradante s’il

existe un ordre sur l’ensemble de toutes les options concevables pour lequel les options

sélectionnées ne sont jamais pires que le statu quo. Nous caractérisons de telles règles dans

des contextes abstrait et économique.

Mots clés : fonctions de choix, rationalité individuelle, statu quo

ABSTRACT

We analyze an alternative to the standard rationalizability requirement for observed

choices by considering non-deteriorating selections. A selection function is a generalization of

a choice function where selected alternatives may depend on a reference (or status quo)

alternative in addition to the set of feasible options. A selection function is non-deteriorating if

there exists an ordering over the universal set of alternatives such that the selected

alternatives are at least as good as the reference option. We characterize non-deteriorating

selection functions in an abstract framework and in an economic environment.

Key words : choice functions, individual rationality, status quo



1 Introduction

In traditional choice theory, the decision maker is assumed to possess a preference relation

over all conceivable alternatives. It then chooses from any feasible set it may face the

maximal elements of that relation in that set. The testable restrictions implied by this

preference maximization hypothesis are well known: they constitute the so-called theory

of revealed preference pioneered by Samuelson (1938), Houthakker (1950), Arrow (1959),

Richter (1966), and Sen (1971), among others. Normatively appealing as it may be,

preference maximization does not have strong empirical support; in fact, rather systematic

violations have been recorded in a variety of contexts (see, for example, the surveys by

Camerer, 1994, and Shafir and Tversky, 1995). Therefore, it is useful to analyze alternative

models of choice.

In this paper, we explore one such alternative. We deviate from standard choice

theory by assuming that, in each feasible set, there exists a reference alternative which,

in addition to the feasible set itself, may influence the choice of the agent. The reference

alternative can be interpreted in various ways, depending on the structure of the problem.

In general, we can think of it as an option representing the status quo. This interpretation

is appropriate, for example, in dynamic choice situations where consecutive choices are

observed. In a multi-stage choice problem of that nature, a plausible reference alternative

at a given stage is the one that has been selected in the previous stage, provided it remains

feasible. In economic environments (such as economies with private goods), it is natural

to consider endowment vectors to be the reference alternatives relevant to the choice.

The idea that the status quo matters is, of course, not novel. It dates back at least to

Simon (1955, 1956) and remained an important theme in the literature on bounded ratio-

nality ever since. Only recently, however, did Zhou (1997) approach it from the revealed

preference angle. Zhou asked the following general question: what testable restrictions,

if any, are implied by theories of bounded rationality where the status quo plays a role?

He then focused on one such theory according to which the agent maximizes a “quasi-

complete” transitive relation over the set of alternatives that are better than the status

quo.

The alternative rationality requirement we consider in this paper merely demands that

there exist an ordering (or indeed just a transitive preference relation) according to which

the observed choices never make the agent worse off than the reference alternative. This

requirement, which is devoid of any idea of maximization, is often referred to as indi-

vidual rationality. However, to avoid confusion with the rationality requirement imposed
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in revealed preference theory, we prefer to speak of non-deteriorating choice. Though

non-deteriorating choice is a weak behavioral assumption, it is far from being a vacuous

requirement: as shown in this paper, it yields substantial testable restrictions on observed

choices.

Our general model is basically the same as the one in Zhou (1997). A selection

function assigns to each pair of a feasible set and a reference alternative (required to be

an element of the feasible set) a set of chosen alternatives which is a subset of the feasible

set. This selection function is non-deteriorating if there exists a preference ordering over

the universal set of alternatives such that, for all elements in the domain of the selection

function, all chosen alternatives are at least as good as the reference alternative. As

is the case for rational choice, the formulation of necessary and sufficient conditions for

non-deteriorating choice depends crucially on the domain of the selection function. We

analyze two types of domains in this paper. The first deals with the case where no

restrictions are imposed on the structure of the domain. Second, we discuss a more

structured environment where alternatives are represented as vectors in a Euclidean space.

These vectors can be interpreted as consumption bundles and, therefore, it is natural to

impose additional regularity requirements such as continuity, monotonicity, or convexity

on preference relations for which the observed choices are non-deteriorating.

In Section 2, we present the abstract version of our model. We provide a necessary and

sufficient condition that is analogous to Richter’s (1966) congruence axiom characterizing

rational choice. In order to avoid degenerate situations where any selection function is

declared non-deteriorating by employing the universal indifference relation, we require the

relation for which the selection function is non-deteriorating to be antisymmetric in that

section.

Section 3 deals with economic environments. This more structured version of our

model lends itself to empirical testing. With this application in mind, we restrict the

domain of the selection function to be finite, in which case an equivalent formulation in

terms of data sets can be employed. Again, we provide necessary and sufficient conditions

for non-deteriorating choice, where natural restrictions are imposed on the relation for

which the selections are non-deteriorating. While we do not assume antisymmetry in

this section, we employ monotonicity and convexity assumptions and characterize non-

deteriorating choice in three cases: for strictly monotonic preferences, for strictly convex

preferences, and for preference orderings that are strictly monotonic and strictly convex.

It should be noted that adding continuity to the list of properties of the relation does not

have any consequences: continuity by itself imposes no testable restrictions at all (again,
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the universal indifference relation can be employed to demonstrate this observation) and,

in the context of finite economic domains, it is redundant when strict monotonicity or

strict convexity are imposed in the first place.

Section 4 concludes, and the equivalence between selection functions and data sets in

the case of economic environments with finite domains is established in the Appendix.

2 Abstract Choices

Let N (N0) denote the set of positive (nonnegative) integers and, for m ∈ N, let Rm denote

Euclidean m-space. Let X be a nonempty set of alternatives. The set of all nonempty

subsets of X is denoted by P(X). A quasi-ordering over X is a reflexive and transitive

binary relation R ⊆ X×X, and an ordering is a complete quasi-ordering. The symmetric

and asymmetric factors of R are denoted by I and P . The relation R is antisymmetric if,

for all x, y ∈ X, xIy implies x = y.

A (selection) problem is a pair (S, x) such that S ∈ P(X) and x ∈ S. We interpret

S as the feasible set of alternatives and x as the reference point for the problem under

consideration. The domain of problems is denoted by D. We assume that D is nonempty

but otherwise, no restrictions are imposed in this section.

A selection function is a mapping C:D → P(X) such that C(S, x) ⊆ S for all (S, x) ∈
D. Note that C(S, x) could contain several alternatives but single-valued choices are

included as a special case.

Given an ordering R over X, a selection function C is non-deteriorating for R if xRy

for all (S, y) ∈ D and for all x ∈ C(S, y).

In the characterization result of this section, we restrict attention to selection functions

that are non-deteriorating for an antisymmetric ordering to prevent the concept of non-

deterioration from becoming vacuous. Clearly, without a restriction such as antisymmetry,

any selection function would be non-deteriorating for the universal indifference relation.

An obvious necessary condition for a selection function to be non-deteriorating for

an antisymmetric ordering is that if, for some problem, an alternative y is chosen when

x 6= y is the reference alternative, then x cannot be chosen for any problem where y is

the reference alternative. Consider the following example.

Example 1. Let X = {x, y} and D = {({x, y}, x), ({x, y}, y)}, and define the selection

function C by letting C({x, y}, x) = {y} and C({x, y}, y) = {x}. It is immediate that C

cannot be non-deteriorating for any antisymmetric relation R over X.
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On the other hand, the above-described requirement is not sufficient for non-deteriorating

choice for a transitive and antisymmetric relation, as demonstrated in the following ex-

ample.

Example 2. Let X = {x, y, z} and D = {(S,w) : S ∈ P(X), |S| = 2, and w ∈ S}.
Define the selection function C by letting

C({x, y}, x) = C({x, y}, y) = {x},
C({y, z}, y) = C({y, z}, z) = {y},
C({x, z}, x) = C({x, z}, z) = {z}.

C satisfies the above condition but it is not non-deteriorating for any transitive and

antisymmteric relation R.

Example 2 suggests that no cycles of revealed preference should occur. Therefore, a

necessary and sufficient condition has to take into consideration the transitive closure of

direct revealed preferences. To formulate such a necessary and sufficient condition, we

introduce the following direct and indirect revealed preference relations associated with

a selection function C. These relations are analogous to those that are familiar from the

literature on rational choice.

The direct revealed preference relation RC associated with C is defined as follows. For

all x, y ∈ X, xRCy if there exists S ∈ P(X) such that (S, y) ∈ D and x ∈ C(S, y).

The (indirect) revealed preference relation RC corresponding to C is the transitive

closure of RC . Formally, it is defined by letting, for all x, y ∈ X, xRCy if there existK ∈ N
and x0, . . . , xK ∈ X such that x = x0, y = xK , and xk−1RCx

k for all k ∈ {1, . . . , K}.
Clearly,

RC ⊆ RC. (1)

The following axiom is analogous to Richter’s (1966) congruence axiom which is neces-

sary and sufficient for the rationalizability of a choice function with an arbitrary domain.

ND-Congruence. For all x, y ∈ X such that x 6= y, for all S ∈ P(X) such that

(S, x) ∈ D, if xRCy, then y 6∈ C(S, x).

Before stating the main theorem of this section, we provide the following lemma which

will be used in the proof.

Lemma 1. If R is an antisymmetric ordering for which C is a non-deteriorating selection

function, then RC ⊆ R.

Proof. Suppose C is non-deteriorating for an antisymmetric ordering R.
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First, we show that RC ⊆ R. Suppose xRCy for x, y ∈ X. Then there exists S ∈ P(X)

such that (S, y) ∈ D and x ∈ C(S, y). Because C is non-deteriorating for R, this implies

xRy.

Now suppose xRCy for x, y ∈ X. Then there exist K ∈ N and x0, . . . , xK ∈ X such

that x = x0, y = xK , and xk−1RCx
k for all k ∈ {1, . . . , K} Because RC ⊆ R, it follows

that xk−1Rxk for all k ∈ {1, . . . , K}. Because R is transitive, this implies xRy.

The above lemma is analogous to the relationship between the revealed preference

relation and a rationalizing relation in the context of rational choice (see, for example,

Samuelson, 1938, 1948, and Richter, 1971).

We are now ready to prove:

Theorem 1. There exists an antisymmetric ordering R for which C is non-deteriorating

if and only if C satisfies ND-Congruence.

Proof. (a) “Only if.” Suppose C is non-deteriorating for an antisymmetric ordering R

over X. By way of contradiction, suppose C violates ND-Congruence. Then there exist

x, y ∈ X with x 6= y and S ∈ P(X) such that (S, x) ∈ D, xRCy, and y ∈ C(S, x). By

definition, this implies yRCx and, by (1) and Lemma 1, yRx. Because xRCy, Lemma 1

implies xRy. Because x 6= y, this contradicts the antisymmetry of R.

(b) “If.” Suppose C satisfies ND-Congruence. First, we prove that RC is antisym-

metric. By way of contradiction, suppose there exist x, y ∈ X with x 6= y such that

xRCy and yRCx. Then there exist K,L ∈ N, x0, . . . , xK ∈ X, and z0, . . . , zL ∈ X such

that x = x0 = zL, y = xK = z0, xk−1RCx
k for all k ∈ {1, . . . , K}, and z`−1RCz

` for all

` ∈ {1, . . . , L}. This implies xRCz
L−1. Because zL−1RCz

L = x, there exists S ∈ P(X)

such that (S, x) ∈ D and zL−1 ∈ C(S, x). But this contradicts ND-Congruence.

Now define the ordering R∗ over X by letting, for all x, y ∈ X, xR∗y if and only if

xRCy or x = y. Clearly, R∗ is reflexive and, because RC is transitive and antisymmetric,

so is R∗. By Szpilrajn’s (1930) result on extending transitive and antisymmetric quasi-

orderings, there exists an antisymmetric ordering R over X such that

R∗ ⊆ R. (2)

It remains to be shown that C is non-deteriorating for R. Suppose x ∈ C(S, y) for some

x, y ∈ X and S ∈ P(X) such that (S, y) ∈ D. Then xRCy by definition of the direct

revealed preference relation. Furthermore, by (1), Lemma 1, and (2), we have

RC ⊆ RC ⊆ R∗ ⊆ R
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and, hence, xRy.

As is apparent from the proof of Theorem 1, ND-Congruence remains necessary and

sufficient for non-deteriorating choice if the assumption that R is an ordering is weakened

to transitivity. Note that RC is a transitive relation for which a selection function satis-

fying ND-Congruence is non-deteriorating, and the part of the above proof extending RC

to the ordering R could be omitted if R is merely required to be transitive. Furthermore,

the “only if” part of the proof and Lemma 1 remain valid if R is transitive without having

any further properties. Thus, the testable restrictions identified in the theorem are robust

with respect to weakening the requirements on the relation R.

3 Economic Choices

In this section, we turn to economic environments: the universal set X is Rm, m-

dimensional vectors are interpreted as commodity bundles, and preferences are orderings

over Rm. Our notation for vector inequalities is ≥, >,� .

The following concept will prove convenient. A data set is a mapping (s, e, c) from some

nonempty and finite index set T into P(Rm)×Rm×Rm such that, for each t ∈ T, e(t) ∈ s(t)
and c(t) ∈ s(t). We interpret s(t) as the feasible set at “time” t or at “observation” t,

and e(t) and c(t) as the endowment and consumption choice at t. This formulation is in

fact equivalent to the selection function formulation used in Section 2, provided that the

domain under consideration is finite; see the Appendix for details. From now on, we fix

T.

If (s, e, c) is a data set and R is a preference ordering on Rm, we say that (s, e, c) is

non-deteriorating for R if, for all t ∈ T, c(t) R e(t).

Our goal is to identify necessary and sufficient conditions for a data set to be non-

deteriorating for some preference ordering R satisfying suitable restrictions. We say that

R is strictly monotonic if, for all x, y ∈ Rm, x > y ⇒ xPy. We call R strictly convex

if, for all distinct x, y ∈ Rm and for all λ ∈ (0, 1), xRy ⇒ [λx + (1 − λ)y]Py. We shall

consider strictly monotonic orderings in the first subsection and strictly convex orderings

in the second. The third subsection deals with orderings that are strictly monotonic and

strictly convex.
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3.1 Strict Monotonicity

For any Y ⊆ Rm, define up Y = {x ∈ Rm : there exists y ∈ Y such that x ≥ y} and low

Y = {y ∈ Y : there is no x ∈ Y such that x < y}. Consider the following condition on a

data set (s, e, c).

No Strong Dominance. For every nonempty Q ⊆ T such that c(Q) = low c(Q) and

e(Q) ⊆ up c(Q), there is a nonempty Q0 ⊆ Q such that e(Q0) ⊆ c(Q0).

If we restrict attention to those subsets of T which are singletons, this condition implies

that for all t ∈ T , e(t) ≥ c(t) ⇒ e(t) = c(t), a condition we call No Direct Dominance.

This condition is necessary if (s, e, c) is to be non-deteriorating for a strictly monotonic

preference ordering. No Strong Dominance, however, is more demanding, as the following

example shows.

Example 3. Let m = 2, T = {1, 2}, and s(1) = s(2) = R
2. Assume e(1) = c(2) = (2, 0),

c(1) = (0, 1), and e(2) = (1, 2). It is easily seen that there is no strictly monotonic

preference ordering for which this data set is non-deteriorating. No Direct Dominance is

satisfied but No Strong Dominance is violated.

On the other hand, No Strong Dominance does not rule out all forms of dominance of

the endowments over the choices, as our next example illustrates.

Example 4. Let again m = 2, T = {1, 2}, and s(1) = s(2) = R
2. Assume e(1) = (1, 0),

c(1) = (0, 1), and e(2) = c(2) = (2, 2). Note that for each t there is a t′ for which

e(t′) ≥ c(t), and this inequality is strict for some pair of indices, namely t = 1, t′ = 2.

Yet, it is easy to find a strictly monotonic preference ordering for which this data set is

non-deteriorating. No Strong Dominance is satisfied.

We are now ready to prove:

Theorem 2. There exists a strictly monotonic preference ordering R for which (s, e, c)

is non-deteriorating if and only if (s, e, c) satisfies No Strong Dominance.

Proof. Since the feasible set mapping s plays no role in the proof, we drop it from our

notation.

(a) “Only if.” Fix a data set (e, c) and letR be a strictly monotonic preference ordering

for which (e, c) is non-deteriorating, that is,

for all t ∈ T, c(t) R e(t). (3)

Let Q ⊆ T be a nonempty set such that

c(Q) = low c(Q) (4)
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and

e(Q) ⊆ up c(Q). (5)

Let f(Q) = e(Q)∪c(Q) and define W to be the set of worst elements in f(Q) according

to R, that is, W = {x ∈ f(Q) : for all y ∈ f(Q), yRx}. Since R is an ordering and f(Q)

is nonempty and finite, W is nonempty. By strict monotonicity of R, W ⊆ low f(Q). By

(4) and (5), low f(Q) = low c(Q) = c(Q). Therefore, W ⊆ c(Q). Define the nonempty

set

Q0 = {t ∈ Q : c(t) ∈W}.

Since W ⊆ c(Q), W = c(Q0). To complete the proof, it suffices to check that e(Q0) ⊆
c(Q0). Fix t ∈ Q0. By definition, c(t) ∈W, and it follows from (3) that e(t) ∈W = c(Q0),

as desired.

(b) “If.” Let (e, c) satisfy No Strong Dominance.

Step 1. We first claim that No Strong Dominance implies the following condition.

For every nonempty Q ⊆ T such that c(Q) = low c(Q) and e(Q) ⊆ up c(Q), there is a

nonempty set Q
0 ⊆ Q such that e(Q

0
) ⊆ c(Q0

) and

c(Q \Q0
) ∩ c(Q0

) = ∅. (6)

To prove this claim, let Q ⊆ T be a nonempty set such that c(Q) = low c(Q) and

e(Q) ⊆ up c(Q). By No Strong Dominance, there is a nonempty Q0 ⊆ Q such that

e(Q0) ⊆ c(Q0). (7)

Let Q0∗ be the union of all nonempty subsets Q0 of Q satisfying property (7). Because

that property is preserved under unions, Q0∗ possesses it. If c(Q \Q0∗) ∩ c(Q0∗) = ∅, we

are done. Otherwise, let

Q = Q \ {q ∈ Q0∗ : ∃t ∈ Q \Q0∗ such that c(q) = c(t)}.

Clearly, ∅ 6= Q ⊆ Q and c(Q) = c(Q). Hence, c(Q) = low c(Q) and e(Q) ⊆ e(Q) ⊆ up

c(Q) = up c(Q). We may therefore apply No Strong Dominance again and conclude that

there exists a nonempty Q
0 ⊆ Q such that e(Q

0
) ⊆ c(Q

0
). To complete the proof, we

check property (6). By definition of Q0∗, we know that Q
0 ⊆ Q0∗. Since Q

0 ⊆ Q ∩Q0∗, it

follows from the definition of Q that c(Q \Q0
) ∩ c(Q0

) = ∅, as desired.

Step 2. Let f(T ) = e(T ) ∪ c(T ). We define an algorithm that yields a partition

{X0, X1, . . . , XJ} of f(T ) and construct a strictly monotonic preference ordering R whose

indifference sets in f(T ) are, from worst to best, X0, X1, . . . , XJ .
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To define the algorithm, let F0 = f(T ). At step i ∈ N0, we construct Fi+1 by removing

from Fi a set Xi that we define as follows. First, let

X1(Fi) = {x ∈ low Fi : there is no t ∈ T such that x = c(t)}, (8)

X2(Fi) = {x ∈ low Fi : for all t ∈ T, x = c(t)⇒ e(t) /∈ Fi}. (9)

If both of these sets are empty, define X3(Fi) as follows. If Fi = ∅, let X3(Fi) = ∅.
Otherwise, let

Ti = {t ∈ T : c(t) ∈ low Fi}.

Clearly, c(Ti) = low c(Ti). Moreover, since X1(Fi) = X2(Fi) = ∅, we know that Ti 6= ∅
and e(Ti) ⊆ up c(Ti). By No Strong Dominance and Step 1, there must exist a nonempty

T 0
i ⊆ Ti such that

e(T 0
i ) ⊆ c(T 0

i ), (10)

and

c(Ti \ T 0
i ) ∩ c(T 0

i ) = ∅. (11)

Pick any such set and let

X3(Fi) = c(T 0
i ).

Define, for each i ∈ N0,

Xi =


X1(Fi) if X1(Fi) 6= ∅,
X2(Fi) if X1(Fi) = ∅ 6= X2(Fi),

X3(Fi) if X1(Fi) = X2(Fi) = ∅.
(12)

First, note that there is a nonnegative integer J < |f(T )| such that Xi 6= ∅ = Xj

whenever i ≤ J < j. Moreover, each x in f(T ) belongs to Xi for one and only one

i ∈ {0, . . . , J}.
Second, observe that for each i ∈ {0, . . . , J}, we have Xi ⊆ low Fi. This implies that,

for all x, y ∈ Xi, neither x < y nor x > y.

These two observations allow us to construct a strictly monotonic preference ordering

R on Rm whose indifference sets in f(T ) are, from worst to best, X0, . . . , XJ .

Step 3. We show that (e, c) is non-deteriorating for R. To that end, we claim that,

for all i ∈ {0, . . . , J}, and for all t ∈ T,

c(t) ∈ Xi ⇒ there exists j ∈ {0, . . . , i} such that e(t) ∈ Xj .

To check this claim, fix t ∈ T and assume c(t) ∈ Xi. By (8) and (12), X1(Fi) = ∅. If

Xi = X2(Fi), (8), (9), and (12) imply that e(t) /∈ Fi. Hence, e(t) ∈ Xj for some j < i, and
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we are done. Finally, assume Xi = X3(Fi). Since this set is nonempty (as c(t) belongs to

it), there is a nonempty set T 0
i satisfying (10) and (11) such that Xi = c(T 0

i ). By (11),

c(t) ∈ c(T 0
i )⇒ t ∈ T 0

i . Hence, from (10), e(t) ∈ c(T 0
i ) and, therefore, e(t) ∈ Xi.

3.2 Strict Convexity

If Y is a convex subset of Rm, an extreme point of Y is a point y ∈ Y such that

[x, z ∈ Y, λ ∈ (0, 1), and y = λx+ (1− λ)z]⇒ [x = y = z].

For any Y ⊆ Rm, we let co Y denote the convex hull of Y and we denote by extco Y the

set of extreme points of co Y. Consider the following condition on a data set (s, e, c).

No Strong Inclusion. For every nonempty Q ⊆ T such that c(Q) = extco c(Q) and

e(Q) ⊆ co c(Q), there is a nonempty Q0 ⊆ Q such that e(Q0) ⊆ c(Q0).

The formal similarity with No Strong Dominance is worth pointing out: the “extco”

operator replaces “low” while “co” replaces “up.” In the example below, No Strong

Inclusion is violated.

Example 5. In all examples, m = 2 and s(t) = R
2 for all t ∈ T.

(a) Let T = {1, 2, 3}. Suppose c(1) = (0, 0), c(2) = (4, 0), c(3) = (0, 4), while e(1) =

(1, 1), e(2) = (2, 1), e(3) = (1, 2). Since e(T ) is in the interior of the convex hull of c(T ),

No Strong Inclusion is clearly violated. There is no strictly convex preference ordering for

which this data set is non-deteriorating. For suppose R were such an ordering. Assume,

without loss of generality, that c(t) R c(1) for all t ∈ T. By strict convexity, e(1)Pc(1), a

contradiction.

(b) Again, let T = {1, 2, 3}. Suppose c(1) = e(2) = (0, 0), c(2) = e(3) = (4, 0),

c(3) = (0, 4), and e(1) = (1, 1). It is easily checked that there is no strictly convex

preference ordering for which this data set is non-deteriorating. No Strong Inclusion is

violated.

(c) Finally, let T = {1, 2, 3, 4}. Define c and e on {1, 2, 3} as in (b) and let c(4) = (0, 0),

e(4) = (0, 4). Here again, c(T ) = extco c(T ), e(T ) ⊆ co c(T ), but there is a nonempty

set T 0 ⊆ T such that e(T 0) ⊆ c(T 0), namely, T 0 = {2, 3, 4}. No Strong Inclusion is

nevertheless violated. Contrary to the previous examples, “the violation occurs in a

strict subset of T,” namely, Q = {1, 2, 3} : there is no nonempty Q0 ⊆ Q such that

e(Q0) ⊆ c(Q0). There is no strictly convex preference ordering for which this data set is

non-deteriorating.
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No Strong Inclusion does not rule out all instances of inclusion of the endowments in

the convex hull of the choices. The following example makes this point clear.

Example 6. Let m = 2 and s(t) = R
2 for all t ∈ T.

(a) Let T = {1, 2, 3} and c(1) = e(2) = (0, 0), c(2) = e(3) = (4, 0), c(3) = e(1) = (0, 4).

Obviously, there is a strictly convex preference ordering for which this data set is non-

deteriorating: it suffices to declare all endowment and choices in the data set indifferent.

No Strong Inclusion is satisfied.

(b) Let T = {1, 2, 3} and c(1) = (0, 0), c(2) = e(3) = (4, 0), c(3) = e(2) = (0, 4), and

e(1) = (1, 1). This example is quite close to Example 5 (b) above. Here, however, our

condition is satisfied and there is a strictly convex preference ordering for which the data

set is non-deteriorating. We are now ready to state:

Theorem 3. There exists a strictly convex preference ordering R for which (s, e, c) is

non-deteriorating if and only if (s, e, c) satisfies No Strong Inclusion.

Proof. Mutatis mutandis, the proof is the same as that of Theorem 2. The only required

changes are as follows: i) replace every instance of “low” with “extco” and every instance

of “up” with “co;” ii) replace every instance of “monotonic(ity)” with “convex(ity)” and

every instance of “No Strong Dominance” with “No Strong Inclusion;” and iii) in the

second observation in Step 2, replace the phrase “for all x, y ∈ Xi, neither x < y nor

x > y” with “every x ∈ Xi is an extreme point of the convex hull of Xi.”

3.3 Strict Monotonicity and Strict Convexity

If we require a preference ordering to be strictly monotonic and strictly convex, the

conjunction of No Strong Dominance and No Strong Inclusion is not sufficient to guarantee

non-deteriorating choice. Consider the following example.

Example 7. Let m = 2, T = {1, 2}, s(t) = R
2 for all t ∈ T, c(1) = (4, 0), c(2) = (0, 4),

e(1) = (3, 2), and e(2) = (2, 3). This data set satisfies No Strong Dominance and No

Strong Inclusion but it is not non-deteriorating for any strictly monotonic and strictly

convex preference ordering. For suppose R were such an ordering. Assume, without

loss of generality, that c(2) R c(1). By strict monotonicity and strict convexity, e(1) =

(3, 2) P (2, 2) = [ 1
2
c(1) + 1

2
c(2)] P c(1), a contradiction.

The following axiom turns out to be necessary and sufficient for non-deteriorating

choice, given the properties of preferences imposed in this subsection.
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No Extended Dominance. For every nonempty Q ⊆ T such that c(Q) = extco low co

c(Q) and e(Q) ⊆ up co c(Q), there is a nonempty Q0 ⊆ Q such that e(Q0) ⊆ c(Q0).

Before stating the characterization result of this subsection formally, we present the

following lemma. It introduces a property of the operator “extco low co” that will be

used in the proof.

Lemma 2. For all nonempty Y ⊆ Rm, extco low co Y ⊆ Y .

Proof. Suppose

x ∈ extco low co Y . (13)

This implies x ∈ co Y . Hence, there exist a positive integer K, K distinct points

x1, . . . , xK ∈ Y , and positive numbers α1, . . . , αK such that
∑K
k=1 α

k = 1 and x =∑K
k=1 α

kxk.

If K = 1, then x = x1 ∈ Y and we are done. Now suppose K > 1 and, by way of

contradiction, x 6∈ Y . By (13), there exists k ∈ {1, . . . , K} such that xk 6∈ low co Y , say,

k = 1. Because x1 ∈ Y ⊆ co Y , this means that there exists y1 ∈ co Y such that y1 < x1.

Define y = α1y1 +
∑K
k=2 α

kxk. Clearly y ∈ co Y and y < x. Therefore x 6∈ low co Y ,

contradicting (13) since obviously extco low co Y ⊆ low co Y .

The following theorem characterizes non-deteriorating choice for strictly monotonic

and strictly convex preferences. Though the structure of the proof is analogous to that of

Theorem 2, we present it in detail because the complexity of the operator “extco low co”

necessitates some more elaborate arguments than those employed in the proof of Theorem

2.

Theorem 4. There exists a strictly monotonic and strictly convex preference ordering

R for which (s, e, c) is non-deteriorating if and only if (s, e, c) satisfies No Extended

Dominance.

Proof. Again, because the mapping s is irrelevant for the proof, we omit it from our

notation.

(a) “Only if.” Fix a data set (e, c), and let R be a strictly monotonic and strictly

convex ordering for which (e, c) is non-deteriorating. Therefore,

for all t ∈ T, c(t) R e(t). (14)

Let Q ⊆ T be a nonempty set such that

c(Q) = extco low co c(Q) (15)

12



and

e(Q) ⊆ up co c(Q). (16)

Let f(Q) = e(Q)∪ c(Q).

Step 1. We prove that

extco low co f(Q) ⊆ extco low co c(Q). (17)

Suppose

x ∈ extco low co f(Q). (18)

By Lemma 2, x ∈ f(Q).

Because of (15), we need only show that x ∈ c(Q).

Suppose, by contradiction, that x 6∈ c(Q so that, necessarily, x ∈ e(Q). We first claim

that

x ∈ low co c(Q). (19)

Indeed, by (16), x ∈ up co c(Q). If x ∈ up co c(Q)\ co c(Q), there exists y ∈ co c(Q) ⊆ co

f(Q) such that y < x. Therefore x 6∈ low co f(Q), contradicting (18). Hence, x ∈ co

c(Q). Now, if (19) is false, there exists y ∈ co c(Q) ⊆ co f(Q) such that y < x, hence

x 6∈ low co f(Q), contradicting (18).

Next, because of (19) and since x 6∈ c(Q) = extco low co c(Q), there exist an integer

K > 1, K distinct points x1, . . . , xK ∈ low co c(Q), and positive numbers α1, . . . , αK such

that
∑K
k=1 α

k = 1 and x =
∑K
k=1 α

kxk. By (18), there exists k ∈ {1, . . . , K} such that

xk 6∈ low co f(Q), say, k = 1. Because x1 ∈ co c(Q) ⊆ co f(Q), this means that there

exists y1 ∈ co f(Q) such that y1 < x1. Then again, y = α1y1 +
∑K
k=2 α

kxk ∈ co f(Q) and

y < x. Hence, x 6∈ low co f(Q), contradicting (18). This completes the proof of (17).

Step 2. Let W = {x ∈ f(Q) : for all y ∈ f(Q), yRx}. Because R is an ordering and

f(Q) is finite, W 6= ∅. We claim that

W ⊆ extco low co f(Q). (20)

Suppose x ∈W . First, we prove that x ∈ low co f(Q). If not, there exists y ∈ co f(Q)

such that y < x. The strict monotonicity of R implies xPy. If y ∈ f(Q), x cannot be a

worst element in f(Q), contradicting the assumption x ∈W . If y ∈ co f(Q) \ f(Q), there

exist an integer K > 1, K distinct points x1, . . . , xK ∈ f(Q), and K positive numbers

α1, . . . , αK ∈ f(Q) such that
∑K
K=1 α

k = 1 and y =
∑K
k=1 α

kxk. Because R is strictly

convex, yPxk for some k ∈ {1, . . . , K}. Because R is transitive, it follows that xPxk,

again contradicting the assumption that x is a worst element in f(Q).
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To complete the proof of (20), suppose, by way of contradiction, that x 6∈ extco low
co f(Q). Because x ∈ low co f(Q) as just proven, this implies that there exist an integer

K > 1, K distinct points x1, . . . , xK ∈ f(Q), and K positive numbers α1, . . . , αK ∈ low
co f(Q) such that

∑K
K=1 α

k = 1 and x =
∑K
k=1 α

kxk. Because these points xk can be

chosen to be in f(Q), the convexity of R again yields a contradiction to the assumption

x ∈W . This proves (20).

Step 3. By (17) and (15), extco low co f(Q) ⊆ extco low co c(Q) = c(Q) and, hence,

W ⊆ c(Q). (21)

Defining Q0 = {t ∈ Q : c(t) ∈W}, it follows from (21) that W = c(Q0). To complete the

proof of part (a), it remains to be shown that e(Q0) ⊆ c(Q0). If t ∈ Q0, then c(t) ∈ W
and, from (14) and the definition of W , e(t) ∈W . Because W = c(Q0), we conclude that

e(t) ∈ c(Q0), as desired.

(b) “If.” Let (e, c) satisfy No Extended Dominance.

Step 1. Our first claim is that No Extended Dominance implies the following condition.

For every nonempty Q ⊆ T such that c(Q) = extco low co c(Q) and e(Q) ⊆ up co c(Q),

there is a nonempty set Q
0 ⊆ Q such that e(Q

0
) ⊆ c(Q

0
) and c(Q \ Q0

) ∩ c(Q0
) = ∅.

Because the proof of this claim can be obtained from Step 1 in the proof of Theorem 2

by a change in notation, we omit it here.

Step 2. Let f(T ) = e(T ) ∪ c(T ). We define an algorithm that yields a partition

{X0, X1, . . . , XJ} of f(T ) and construct a strictly monotonic and strictly convex preference

ordering R whose indifference sets in f(T ) are, from worst to best, X0, X1, . . . , XJ .

To define the algorithm, let F0 = f(T ). At step i ∈ N0, we construct Fi+1 by removing

from Fi a set Xi that we define as follows. First, let

X1(Fi) = {x ∈ extco low co Fi : there is no t ∈ T such that x = c(t)},

X2(Fi) = {x ∈ extco low co Fi : for all t ∈ T, x = c(t)⇒ e(t) /∈ Fi}.

If both of these sets are empty, define X3(Fi) as follows. If Fi = ∅, let X3(Fi) = ∅.
Otherwise, let

Ti = {t ∈ T : c(t) ∈ extco low co Fi}.

We claim

c(Ti) = extco low co c(Ti). (22)

To prove (22), note first that

extco low co c(Ti) ⊆ c(Ti) (23)
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follows from Lemma 2. Because X1(Fi) = ∅, it follows that

c(Ti) = ext low co Fi. (24)

To complete the proof of (22), it remains to show that extco low co Fi ⊆ ext low co c(Ti).

First, we prove that extco low co Fi ⊆ low co c(Ti). Let x ∈ extco low co Fi. By

(24), x ∈ c(Ti) ⊆ co c(Ti). Suppose x 6∈ low co c(Ti). Then there exists y ∈ co c(Ti) ⊆ co

Fi such that y < x, implying x 6∈ low co Fi and hence x 6∈ extco low co Fi, the desired

contradiction.

Now suppose x ∈ extco low co Fi but x 6∈ extco low co c(Ti). Because x ∈ low co

c(Ti), there exist an integer K > 1, K distinct points x1, . . . , xK ∈ extco low co c(Ti),

and positive numbers α1, . . . , αK such that
∑K
k=1 α

k = 1 and x =
∑K
k=1 α

kxk. By (23)

and (24), x1, . . . , xK ∈ c(Ti) = extco low co Fi, which implies x 6∈ extco low co Fi, a

contradiction which completes the proof of (22).

Next, we prove that

e(Ti) ⊆ up co c(Ti). (25)

Because X2(Fi) = ∅, e(Ti) ⊆ Fi. Because X1(Fi) = ∅, (24) is true. Therefore, the proof

of (25) is completed by showing that Fi ⊆ up co extco low co Fi or, equivalently, Fi ⊆ up

co low co Fi.

Let x ∈ Fi. This implies x ∈ co Fi. If x ∈ low co Fi, then x ∈ up co low co Fi because

low co Fi ⊆ up co low co Fi. If x ∈ co Fi \ low co Fi, there exists y ∈ co Fi such that

y < x, and we can choose y ∈ low co Fi ⊆ co low co Fi. Hence x ∈ up co low co Fi, which

completes the proof of (25).

By (22), (25), No Extended Dominance, and Step 1, there is a nonempty T 0
i ⊆ Ti such

that e(T 0
i ) ⊆ c(T 0

i ) and c(Ti \ T 0
i ) ∩ c(T 0

i ) = ∅. Pick any such set and let

X3(Fi) = c(T 0
i ).

Define, for each i ∈ N0,

Xi =


X1(Fi) if X1(Fi) 6= ∅,
X2(Fi) if X1(Fi) = ∅ 6= X2(Fi),

X3(Fi) if X1(Fi) = X2(Fi) = ∅.

The first observation of Step 2 of the proof of Theorem 2 is true again and the second

observation is true if “Xi ⊆ low Fi” is replaced with “Xi ⊆ extco low co Fi.” The rest of

the proof is identical to the rest of the proof of Theorem 2.
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4 Concluding Remarks

Non-deteriorating choice is a consistency requirement that deviates from the standard

rational choice model by not requiring choices to be best or maximal elements—selected

alternatives merely have to be at least as good as a given reference option. This paper

provides an analysis of this condition, and we identify testable restrictions on observed

choices that allow us to check whether these choices conform to the behavioural hypothesis

on which non-deteriorating choice is based.

We did not explicitly include continuity as a property of a preference ordering for which

a data set is non-deteriorating. The reason is that continuity does not add any restrictions,

neither by itself nor in conjunction with any combination of the other properties considered

here. Note that if continuity alone is imposed on R, any data set is non-deteriorating for

the universal indifference relation R. Furthermore, the orderings constructed in the proofs

of Theorems 2 and 3 can be chosen to be continuous and, therefore, it is not necessary to

impose this property explicitly.

The necessary and sufficient conditions presented in Section 3 are formulated directly

in terms of the observed data sets rather than employing a revealed preference approach

analogous to the one used in Section 2. Given that the economic environment has con-

siderable structure as compared to the abstract model, we believe those formulations are

more transparent than conditions involving transitive closures of direct revealed prefer-

ences. However, revealed preference approaches could be examined as alternatives. For

example, in the case of strictly monotonic preference orderings, consider the following

construction. For all x, y ∈ e(T ) ∪ c(T ), let xRM
C y if x ≥ y or there exists t ∈ T such

that x = c(t) and y = e(t). The transitive closure of RM
C is denoted by R

M

C . The follow-

ing axiom is necessary and sufficient for non-deteriorating choice for strictly monotonic

preferences; details are available on request.

NDM-Congruence. For all x, y ∈ e(T )∪ c(T ), if xR
M

C y and y ≥ x, then y = x.

We restrict attention to single-agent choice situations in this paper. A natural sugges-

tion for an extension is to examine non-deteriorating choice, possibly together with other

restrictions such as efficiency, in a multi-agent setting. This could be accomplished by

using a framework analogous to the one employed in Bossert and Sprumont (2000) where

core rationalizability is examined in a two-agent exchange economy.
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Appendix

In this Appendix, we illustrate that, in the case of an economic environment, the formu-

lation of our problem in terms of a finite data set is equivalent to the selection function

formulation with a finite domain.

We first show how a selection correspondence can be derived from a given (finite) data

set. Suppose X = R
m, T = {1, . . . , |T |} with |T | ∈ N, and (s, e, c):T → P(X)×X×X =

P(Rm)×Rm×Rm describe a data set. Define D = {(S, x) : ∃t ∈ T such that (s(t), e(t)) =

(S, x)} and C:D → R
m by C(S, x) = {c(t) : t ∈ T and (s(t), e(t)) = (S, x)}. Clearly, C

is a well-defined selection function.

Now consider the following procedure to move from a selection funtion to a data set.

Suppose X = R
m, D is finite, and C:D → P(X) = P(Rm) is a selection function. Let

|T | =
∑

(S,x)∈D
|C(S, x)|

and T = {1, . . . , |T |}. Let g: {1, . . . , |D|} → D be a bijection. For all j ∈ {1, . . . , |D|}, let

fj: {1, . . . , |C(g(j))|} → C(g(j)) be a bijection.

For all t ∈ {1, . . . , |C(g(1))|}, let

(s(t), e(t), c(t)) = (g(1), f1(t)).

For all k ∈ {2, . . . , |D|} and for all t ∈ {∑k−1
j=1 |C(g(j))|+1, . . . ,

∑k−1
j=1 |C(g(j))|+|C(g(k))|}

(provided that |D| > 1), let

(s(t), e(t), c(t)) = (g(k), fk(t−
k−1∑
j=1

|C(g(j))|)).

The above constructions allow us to go back and forth between selection functions

and data sets. Note that, of course, the data set derived from a selection function is

not unique because the assignment of triples of feasible sets, reference points, and chosen

points to T is arbitrary.
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