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RÉSUMÉ 
 

Ce papier prouve un nouveau théorème de représentation pour des domaines avec 

des variables tant discrètes que continues. Le résultat généralise le théorème de 

représentation bien connu de Debreu dans des domaines connexes. Un renforcement de 

l'axiome de continuité standard est employé pour garantir l'existence d'une représentation. 

Une généralisation du théorème principal et une application du résultat plus général sont 

aussi présentées. 

 
Mots clés : variables continues et discrètes, représentations 

 

 

 

 

ABSTRACT 
 
 This paper proves a new representation theorem for domains with both discrete and 

continuous variables. The result generalizes Debreu's well-known representation theorem 

on connected domains. A strengthening of the standard continuity axiom is used in order to 

guarantee the existence of a representation. A generalization of the main theorem and an 

application of the more general result are also presented. 
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1. Introduction

This paper provides a generalization of Debreu’s [1959] classical result on the representabil-

ity of an ordering. Debreu’s [1959, pp. 56–59] theorem shows that any continuous ordering

defined on a nonempty, connected subset of a Euclidean space has a continuous representa-

tion. In most approaches to the representability problem, the universal set of alternatives

is interpreted as a set of consumption bundles or, more generally, a set of vectors of

continuous economic variables. Results in more abstract settings make use of continuity

properties as well; see, for example, Herden [1995] for a summary of some of these.

We consider ‘mixed’ domains with both discrete and continuous variables. Our do-

main can be represented as a Cartesian product of a set of vectors with integer components

only and a connected set of vectors in a Euclidean space. We show that a natural gener-

alization of continuity is not sufficient to guarantee the existence of a representation but

a suitable strengthening of the continuity condition is.

The domains considered here are of importance in economic models where perfectly

divisible goods as well as indivisible goods (or ‘bads’) are present. Such environments are

natural if a comprehensive account of well-being, such as that of Griffin [1986], is employed

because many determinants of well-being are, by their very nature, best described as

discrete variables.

The main result of the paper—a representation theorem for mixed domains—is a

generalization of a result in Blackorby, Bossert and Donaldson [2001]. The current paper

uses a more general approach by considering a wider range of applications (Blackorby,

Bossert and Donaldson [2001] is concerned exclusively with population ethics) and, unlike

the earlier contribution, does not employ any monotonicity conditions.

Section 2 introduces our notation and definitions, along with a brief review of some

classical results. Our new representation theorem is stated and proved in Section 3. A

generalization of the main theorem is provided in Section 4. It allows the domain to

include vectors of different dimensions for both discrete and continuous variables and,

furthermore, the possible values of the continuous variables may depend on the values of

the discrete variables. This generalization is then used to prove a representation theorem on

a domain which is the union of connected subsets of Euclidean spaces, possibly of different

dimensions. A straightforward corollary generalizes Debreu’s theorem to domains that are

unions of connected subsets of the same Euclidean space.

2. Preliminaries

The set of all (positive) integers is denoted by Z (Z++) and the set of real numbers by R.

In addition, for n ∈ Z++, let Zn be the n-fold Cartesian product of Z and Rn the n-fold

Cartesian product of R.

1



Let X 6= ∅ be a universal set of alternatives. An ordering on X is a reflexive, transitive

and complete binary relation �. The asymmetric and symmetric factors of � are denoted

by � and ∼. A function U :X →R is a representation of � if and only if

x � y ⇔ U(x) ≥ U(y) for all x, y ∈ X.

It is obvious that reflexivity, transitivity and completeness are necessary conditions

on a relation � on X for the existence of a representation. Though those conditions are, in

general, not sufficient, they are in the special case where X is finite or countably infinite.

Although the result is well known, we present a proof for the sake of completeness.

Theorem 1: Let X be a nonempty finite or countably infinite set. � is an ordering on

X if and only if there exists a function U :X → R that represents it.

Proof. Clearly, if � is represented by U , it is an ordering.

Suppose that � is an ordering and that X is countably infinite, so that we can write

X = {x1, x2, . . .}. We construct a representation U :X → R recursively. Let U(x1) = 0

and suppose that U has been defined for x1, . . . , xk−1, where k ∈ Z++ \ {1}. If {U(xj) |
j ∈ {1, . . . , k − 1} and xj � xk} 6= ∅, let

umin(xk) = min{U(xj) | j ∈ {1, . . . , k − 1} and xj � xk}
and, if {U(xj) | j ∈ {1, . . . , k − 1} and xk � xj} 6= ∅, let

umax(xk) = max{Ui(xj) | j ∈ {1, . . . , k − 1} and xk � xj}.

Define

U(xk) =


U(xj) if ∃j ∈ {1, . . . , k − 1} such that xj ∼ xk,
max{U(xj) | j ∈ {1, . . . , k − 1}}+ 1 if xk � xj ∀j ∈ {1, . . . , k − 1},
min{U(xj) | j ∈ {1, . . . , k− 1}} − 1 if xj � xk ∀j ∈ {1, . . . , k − 1},
1
2 [umin(xk) + umax(xk)

]
otherwise.

Clearly, this function is well-defined and represents �. The proof for the case where X is

finite is a simplified version of the above.

If X is uncountable, not every ordering on X has a representation. For example, if

X = Rc for some c ∈ Z++, lexicographic orderings on X cannot be represented; see Debreu

[1959, pp. 72–73]. Thus, in the case of an uncountable universal set X, further restrictions

must be imposed on � in order to guarantee its representability. One such condition is

continuity, defined as follows. Let c ∈ Z++, and suppose X ⊆ Rc is a nonempty and

connected set.

Continuity: For all x ∈ X, the sets {y ∈ X | y � x} and {y ∈ X | x � y} are closed in

X.

The following theorem is due to Debreu [1959, pp. 56–59].
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Theorem 2: Let X ⊆ Rc for some c ∈ Z++, and suppose X is nonempty and connected.

� is an ordering on X satisfying continuity if and only there exists a continuous function

U :X → R that represents it.

3. A General Representation Theorem

Suppose that the elements of X are vectors that contain both discrete and continuous

components with X equal to the Cartesian product D × C, where D ⊆ Zd and C ⊆ Rc
for some d, c ∈ Z++. We assume that D and C are nonempty and C is connected. For

x ∈ X = D × C, we write x = (xD, xC) where xD ∈ D and xC ∈ C. For a function

U :D × C → R with image U(xD, xC) for all x = (xD, xC) ∈ X = D × C, we refer, for

simplicity, to xD as the first argument of U and to xC as the second argument of U even

though xD or xC may be composed of more than one component.

The natural definition of continuity in this setting requires the relevant property with

respect to the continuous components to hold conditionally for all fixed values of the

discrete components.

Conditional Continuity: For all x ∈ X, the sets {yC ∈ C | (xD, yC) � (xD, xC)} and

{yC ∈ C | (xD, xC) � (xD, yC)} are closed in C.

Conditional continuity is not sufficient to guarantee the existence of a representation.

Consider, for example, the relation � on X = Zd×Rc defined as follows. For all x, y ∈ X,

x � y ⇔ f(xC) > f(yC) or [f(xC) = f(yC) and g(xD) ≥ g(yD)]

where f :Rc → R is an arbitrary continuous and increasing function, and g:Zd → Z is an

arbitrary injective function. This relation is an ordering satisfying conditional continuity

but it does not have a representation. See Blackorby, Bossert and Donaldson [2001] for a

discussion.

The following axiom is a strengthening of conditional continuity.

Unconditional Continuity: For all x ∈ X and for all yD ∈ D, the sets {yC ∈ C |
(yD, yC) � (xD, xC)} and {yC ∈ C | (xD, xC) � (yD, yC)} are closed in C.

Note that, unlike conditional continuity, unconditional continuity applies to all values of

the discrete variables. Because the empty set and C are both closed in C, the axiom is

consistent with the possibility that, for some distinct x̄D, ȳD ∈ D, (x̄D, xC) � (ȳD, yC)

for all xC, yC ∈ C. In addition, because C is connected, if there exist ŷC , y̌C ∈ C such

that (yD, ŷC) � (xD, xC) and (xD, xC) � (yD, y̌C), there must be some ỹC ∈ C such that

(yD, ỹC) ∼ (xD, xC).
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Unconditional continuity is sufficient for the existence of a representation of an or-

dering on the mixed domain X = D × C. Before stating and proving our main theorem,

we present some preliminary observations. Note that these lemmas do not require the full

force of unconditional continuity—conditional continuity is sufficient. These results gener-

alize similar observations in Blackorby, Bossert and Donaldson [2001]; see also Blackorby

and Donaldson [1984].

Lemma 1: Let X = D× C with D ⊆ Zd and C ⊆ Rc for some d, c ∈ Z++, and suppose

D and C are nonempty and C is connected. If � is an ordering on X satisfying conditional

continuity, then there exists a family of continuous functions {UxD | xD ∈ D}, where

Ux
D

: C → R for all xD ∈ D, such that, for all x, y ∈ X such that xD = yD,

x � y ⇔ Ux
D

(xC) ≥ Ux
D

(yC).

Proof. Lemma 1 is an immediate consequence of applying Theorem 2 for each xD ∈ D.

Lemma 2: Let X = D× C with D ⊆ Zd and C ⊆ Rc for some d, c ∈ Z++, and suppose

D and C are nonempty and C is connected. If � is an ordering on X satisfying conditional

continuity, then there exists an ordering R on ∪xD∈D
(
{xD} × UxD(C)

)
such that, for all

xD ∈ D and for all γ, β ∈ UxD(C),

(xD, γ)R(xD, β)⇔ γ ≥ β

and, for all x, y ∈ X,

x � y ⇔
(
xD, Ux

D

(xC)
)
R
(
yD, Uy

D

(yC)
)

where the family of functions {UxD | xD ∈ D} is as in the statement of Lemma 1.

Proof. Define R by letting, for all n,m ∈ D, for all γ ∈ Un(C) and for all β ∈ Um(C),
(n, γ)R(m, β) if and only if there exist x, y ∈ X such that xD = n, yD = m, Un(xC) = γ,

Um(yC) = β, and x � y. The relation R is well-defined because it does not depend on the

choice of x and y with these properties. Furthermore, R is an ordering because � is. By

definition, R has the desired properties.

We use P and I to denote the asymmetric and symmetric factors of R.

Theorem 3: Let X = D × C with D ⊆ Zd and C ⊆ Rc for some d, c ∈ Z++, and

suppose D and C are nonempty and C is connected. � is an ordering on X satisfying

unconditional continuity if and only if there exists a function U :X → R, continuous in

its second argument, that represents it.
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Proof. Suppose, first, that � is an ordering satisfying unconditional continuity. Let

{UxD | xD ∈ D} be as in the statement of Lemma 1, and let the ordering R be as in

the statement of Lemma 2. We first define a function W :∪xD∈D
(
{xD} × UxD(C)

)
→ R

that represents R. Because D ⊆ Zd, the set D is countable and, therefore, there exists a

bijection ρ:D → Z where Z = {1, . . . , N} for some N ∈ Z++ if D is finite and Z = Z++ if

D is countably infinite. Thus, we can without loss of generality assume that D = Z with

Z = {1, . . . , N} or Z = Z++ in order to simplify our exposition.

Clearly, the result follows immediately from Theorem 2 if D = Z = {1}. Now suppose

D contains at least two elements. The following sets will be used in the remainder of the

proof. For n,m ∈ D = Z with n 6= m, let

Inm = {γ ∈ Un(C) | ∃β ∈ Um(C) such that (n, γ)I(m, β)}.

Clearly, Inm 6= ∅ if and only if Imn 6= ∅ for all n,m ∈ D with n 6= m. In addition, if γ ∈
Un(C) \ Inm, unconditional continuity implies that either (n, γ)P (m, β) for all β ∈ Um(C)
or (m, β)P (n, γ) for all β ∈ Um(C). We obtain

Lemma 3: Let n,m ∈ D be such that n 6= m. If Inm 6= ∅, then Inm is connected.

Proof of Lemma 3. By way of contradiction, suppose Inm 6= ∅ but Inm is not connected.

Then there exist γ̂, γ̌ ∈ Inm and γ̃ ∈ (γ̌, γ̂) such that γ̃ 6∈ Inm. Because Un is continuous,

Un(C) is an interval and, thus, γ̃ ∈ Un(C). By definition of Inm, there exist β̂, β̌ ∈
Um(C) such that (n, γ̂)I(m, β̂) and (n, γ̌)I(m, β̌). Because γ̂ > γ̃ > γ̌, it follows that

(n, γ̂)P (n, γ̃)P (n, γ̌), and the transitivity of R implies (m, β̂)P (n, γ̃) and (n, γ̃)P (m, β̌). By

unconditional continuity, there exists β̃ ∈ (β̌, β̂) such that (n, γ̃)I(m, β̃), a contradiction.

To construct a representation W of the ordering R, we begin by defining a function

W 1:∪j∈Z1

(
{n1

j}×U
n1
j (C)

)
→ R where Z1 ⊆ Z is a nonempty set indexing the components

of a vector n1 = (n1
j )j∈Z1

. This vector is defined as follows. Let n1
1 = 1. Let r > 1,

and suppose we have established r − 1 components of the vector n1. If there exists no

n ∈ Z \ {n1
1, . . . , n

1
r−1} such that ∪r−1

j=1Inn1
j
6= ∅, let n1 = (n1

1, . . . , n
1
r−1). If there is such a

value of n, let

n1
r = min

{
n ∈ Z \ {n1

1, . . . , n
1
r−1} | ∪r−1

j=1I
n
n1
j
6= ∅
}
.

This procedure generates a vector n1 = (n1
j)j∈Z1 with a finite or countably infinite number

of components. We now use this vector to construct the function W 1.

Define a continuous and increasing function W 1
n1

1
:Un

1
1(C)→ R with W 1

n1
1

(
Un

1
1(C)

)
=

Ã1
1, where Ã1

1 ⊆ R is a nonempty and bounded interval. Note that this is possible because

Un
1
1 is continuous and, thus, Un

1
1(C) is an interval. Let A1

1 = Ã1
1.
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If n1 = (n1
1), we define W 1 by letting W 1(n1

j , γ) = W 1
n1
j
(γ) for all j ∈ Z1 = {1} and

for all γ ∈ Un
1
j (C).

If n1 6= (n1
1), we employ a recursive construction to define W 1. Suppose n1 has at

least r > 1 components and a continuous and increasing function W 1
n1
j
:Un

1
j (C)→ R such

that W 1
n1
j

(
Un

1
j (C)

)
= A1

j , where A1
j is a nonempty and bounded interval, has been defined

for every j ∈ {1, . . . , r − 1}. Let

Γ̃1
r = ∪r−1

j=1I
n1
r

n1
j
,

Γ̂1
r = {γ̂ ∈ Un

1
r(C) | γ̂ > γ for all γ ∈ Γ̃1

r},

and

Γ̌1
r = {γ̌ ∈ Un

1
r(C) | γ̌ < γ for all γ ∈ Γ̃1

r}.

By definition of n1
r, Γ̃1

r 6= ∅. We prove another lemma before continuing with the proof of

the theorem.

Lemma 4: (i) Γ̃1
r is connected.

(ii) If Γ̂1
r 6= ∅, then (n1

r , γ̂)P (n1
j , β) for all γ̂ ∈ Γ̂1

r , for all j ∈ {1, . . . , r − 1} and for

all β ∈ Un
1
j (C).

(iii) If Γ̂1
r 6= ∅, then inf Γ̂1

r ∈ Γ̂1
r if and only if there do not exist ̄ ∈ {1, . . . , r−1} and

β̄ ∈ Un1
̄ (C) such that (n1

̄ , β̄)R(n1
j , β) for all j ∈ {1, . . . , r − 1} and for all β ∈ Un

1
j (C).

(iv) If Γ̌1
r 6= ∅, then (n1

j , β)P (n1
r, γ̌) for all γ̌ ∈ Γ̌1

r , for all j ∈ {1, . . . , r − 1} and for

all β ∈ Un
1
j (C).

(v) If Γ̌1
r 6= ∅, then sup Γ̌1

r ∈ Γ̌1
r if and only if there do not exist ̄ ∈ {1, . . . , r− 1} and

β̄ ∈ Un1
̄ (C) such that (n1

j , β)R(n1
̄ , β̄) for all j ∈ {1, . . . , r − 1} and for all β ∈ Un

1
j (C).

Proof of Lemma 4. (i) The case r = 2 is covered by Lemma 3. Suppose, therefore, that

r > 2. By definition,

∪q−1
j=1I

n1
q

n1
j
6= ∅ for all q ∈ {2, . . . , r}. (1)

Suppose Γ̃1
r is not connected. Using Lemma 3, there exist ̂, ̌ ∈ {1, . . . , r−1} and γ̂, γ̃, γ̌ ∈

Un
1
r(C) such that γ̂ > γ̃ > γ̌, γ̂ ∈ In

1
r

n1
̂

, γ̌ ∈ In
1
r

n1
̌
, and γ̃ /∈ In

1
r

n1
j

for all j ∈ {1, . . . , r − 1}.
Consequently,

(n1
̂ , β)P (n1

r, γ̃) for all β ∈ Un
1
̂ (C), (2)

(n1
r, γ̃)P (n1

̌ , β) for all β ∈ Un
1
̌ (C), (3)
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and, by unconditional continuity, for all j ∈ {1, . . . , r − 1},

(n1
j , β)P (n1

r, γ̃) for all β ∈ Un
1
j (C) (4)

or

(n1
r, γ̃)P (n1

j , β) for all β ∈ Un
1
j (C). (5)

Let Ŝ be the set of all j ∈ {1, . . . , r − 1} such that (4) is satisfied and Š be the set of

all j ∈ {1, . . . , r − 1} such that (5) is satisfied. (2) and (3) imply that both Ŝ and Š are

nonempty, and (4) and (5) imply that {Ŝ, Š} is a partition of {1, . . . , r−1}. Furthermore,

it follows that, for all j ∈ Ŝ and for all k ∈ Š,

(n1
j , β)P (n1

k, δ) for all β ∈ Un
1
j (C) and for all δ ∈ Un

1
k(C). (6)

Let j0 = min{j ∈ Ŝ} and k0 = min{k ∈ Š}. Because {Ŝ, Š} is a partition of {1, . . . , r−1}
and Ŝ and Š are nonempty, one of j0 and k0 is greater than one. Letting q = max{j0, k0},
(6) implies that ∪q−1

j=1I
n1
q

n1
j

= ∅, a contradiction to (1) which completes the proof of (i).

(ii) By way of contradiction, suppose there exist γ̃ ∈ Γ̂1
r , ̂ ∈ {1, . . . , r − 1} and

β̂ ∈ Un
1
̂ (C) such that (n1

̂ , β̂)R(n1
r , γ̃). By definition of Γ̂1

r , we must have (n1
̂ , β̂)P (n1

r, γ̃)

and, using unconditional continuity,

(n1
̂ , β)P (n1

r, γ̃) for all β ∈ Un
1
̂ (C). (7)

Because Γ̃1
r 6= ∅, there exist γ ∈ Γ̃1

r, ̌ ∈ {1, . . . , r − 1} and β̌ ∈ Un
1
̌ (C) such that

(n1
r, γ)I(n1

̌ , β̌). Because (n1
r, γ̃)P (n1

r, γ), we have (n1
r , γ̃)P (n1

̌ , β̌) and, again using uncon-

ditional continuity,

(n1
r, γ̃)P (n1

̌ , β) for all β ∈ Un
1
̌ (C). (8)

(7) and (8) are identical to (2) and (3), and a contradiction is obtained using the argument

employed in the proof of part (i).

(iii) Let γ̄ = inf Γ̂1
r . Suppose first that γ̄ ∈ Γ̂1

r . By part (ii), (n1
r, γ̄)P (n1

j , β) for all

j ∈ {1, . . . , r − 1} and for all β ∈ Un
1
j (C). By way of contradiction, suppose there exist

̄ ∈ {1, . . . , r − 1} and β̄ ∈ Un
1
̄ (C) such that (n1

̄ , β̄)R(n1
j , β) for all j ∈ {1, . . . , r − 1}

and for all β ∈ Un
1
j (C). This implies (n1

̄ , β̄)R(n1
r, γ) for all γ ∈ Γ̃1

r. By unconditional

continuity, we obtain (n1
̄ , β̄)R(n1

r , γ̄), a contradiction.

Now suppose γ̄ 6∈ Γ̂1
r. Therefore, γ̄ ∈ Γ̃1

r. By part (ii) and unconditional continuity,

(n1
r, γ̄)R(n1

j , β) for all j ∈ {1, . . . , r − 1} and for all β ∈ Un
1
j (C). By definition, there exist

̄ ∈ {1, . . . , r − 1} and β̄ ∈ Un1
̄ (C) such that (n1

̄ , β̄)I(n1
r, γ̄) and, thus, (n1

̄ , β̄)R(n1
j , β) for

all j ∈ {1, . . . , r − 1} and for all β ∈ Un
1
j (C).

The proofs of (iv) and (v) are analogous to the proofs of (ii) and (iii), respectively.
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Part (i) of Lemma 4 implies that {Γ̂1
r , Γ̃

1
r , Γ̌

1
r} is a partition of Un

1
r(C), where Γ̂1

r or

Γ̌1
r may be empty. We now define a continuous and increasing function W 1

n1
r
:Un

1
r(C)→R,

starting with the points in Γ̃1
r (which, by construction, is nonempty). For all γ ∈ Γ̃1

r , let

W 1
n1
r
(γ) = W 1

n1
j
(β), where j ∈ {1, . . . , r − 1} and β ∈ Un

1
j (C) are such that (n1

r , γ)I(n1
j , β).

Let Ã1
r = W 1

n1
r
(Γ̃1
r).

If Γ̂1
r 6= ∅, define the values of W 1

n1
r

for the points in Γ̂1
r so that W 1

n1
r
(Γ̂1
r) = Â1

r and W 1
n1
r

is continuous and increasing on Γ̂1
r , where Â1

r ⊆ R is a nonempty and bounded interval

such that a > b for all a ∈ Â1
r and for all b ∈ Ã1

r, and {h ∈ R | a > h > b for all a ∈
Â1
r and for all b ∈ Ã1

r} = ∅. Part (iii) of Lemma 4 ensures that this construction is

possible.

If Γ̌1
r 6= ∅, define the values of W 1

n1
r

for the points in Γ̌1
r so that W 1

n1
r
(Γ̌1
r) = Ǎ1

r and W 1
n1
r

is continuous and increasing on Γ̌1
r , where Ǎ1

r ⊆ R is a nonempty and bounded interval

such that a < b for all a ∈ Ǎ1
r and for all b ∈ Ã1

r, and {h ∈ R | a < h < b for all a ∈
Ǎ1
r and for all b ∈ Ã1

r} = ∅. Part (v) of Lemma 4 ensures that this construction is possible.

Let A1
r = Â1

r ∪ Ã1
r ∪ Ǎ1

r. Clearly, A1
r is a nonempty and bounded interval, and the

function W 1
n1
r

is continuous and increasing and maps onto A1
r. By parts (ii) and (iv) of

Lemma 4, we have

W 1
n1
r
(γ) ≥ W 1

n1
j
(β)⇔ (n1

r , γ)R(n1
j , β)

for all γ ∈ Un1
r(C), for all j ∈ {1, . . . , r − 1} and for all β ∈ Un

1
j (C).

Because Z1 contains a finite or countably infinite number of elements, the above

recursive construction of the functions {W 1
n1
j
| j ∈ Z1} is well-defined. We define the

function W 1:∪j∈Z1

(
{n1

j} × Un
1
j (C)

)
→ R by letting

W 1(n1
j , γ) = W 1

n1
j
(γ)

for all (n1
j , γ) ∈ ∪j∈Z1

(
{n1

j} × Un
1
j (C)

)
.

Now suppose the functions W i have been constructed in the above manner for all

i ∈ {1, . . . , t − 1} for some t > 1. If Z \
(
∪t−1
i=1 ∪j∈Zi{nij}

)
6= ∅, we define Zt ⊆ Z,

nt = (ntj)j∈Zt and W t:∪j∈Zt
(
{ntj} × Un

t
j (C)

)
→ R analogously. Because Z is finite or

countably infinite, it follows that either there exists T ∈ Z++ such that Z = ∪Tt=1∪j∈Zt{ntj}
or Z = ∪t∈Z++ ∪j∈Zt {ntj}. In the first case, let T = {1, . . . , T} and in the second case,

let T = Z++. Letting At = ∪j∈ZtAtj for all t ∈ T , it follows that

W t
(
∪j∈Zt

(
{ntj} × Un

t
j (C)

))
= At.
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Finally, we define the function W :∪n∈Z
(
{n} ×Un(C)

)
→ R by letting, for all t ∈ T ,

for all j ∈ Zt, and for all γ ∈ Un
t
j (C),

W (ntj , γ) = Ht
(
W t(ntj , γ)

)
where each Ht:At →R is continuous and increasing, Ht(At) is a nonempty and bounded

interval, and Ht(At)∩Hs(As) = ∅ for all s, t ∈ T such that s 6= t. By definition, if j ∈ Zt,
k ∈ Zs and s 6= t, either (ntj , γ)P (nsk, β) for all γ ∈ Un

t
j (C) and for all β ∈ Un

s
k(C) or

(nsk, β)P (ntj , γ) for all γ ∈ Un
t
j (C) and for all β ∈ Un

s
k(C). Therefore, the functions Ht

can be chosen so that all rankings according to R are preserved by W and, thus, W is a

representation of R.

Define the function U :D × C → R by

U(xD, xC) = W
(
ρ(xD), Uρ(xD)

(
xC)
)
.

Because W represents R, Lemma 2 implies that U represents �. U is continuous in its

second argument by construction.

Now suppose that � is represented by U :D × C → R and that U is continuous

in its second argument. To show that � satisfies unrestricted continuity, consider any

(xD, xC) ∈ D × C, yD ∈ D, and let U(xD, xC) = ū. If ū /∈ U(yD, C), then {yC ∈ C |
(yD, yC) � (xD, xC)} is equal to C or to ∅ and, in both cases, {yC ∈ C | (yD, yC) �
(xD, xC)} is closed in C. Similarly, {yC ∈ C | (xD, xC) � (yD, yC)} is closed in C.

If ū ∈ U(yD, C), then {yC ∈ C | (yD, yC) � (xD, xC)} = {yC ∈ C | U(yD, yC) ≥ ū}
and {yC ∈ C | (xD, xC) � (yD, yC)} = {yC ∈ C | U(yD, yC) ≤ ū}. Both are closed in C
because U is continuous in its second argument.

Unconditional continuity is sufficient but not necessary for the existence of a represen-

tation. There are orderings that violate unconditional continuity (but satisfy conditional

continuity) that are representable, but any representation W of the associated ordering R

is necessarily discontinuous in its second argument. See Blackorby, Bossert and Donaldson

[2001] for an example and a more detailed discussion.

4. Extensions

A natural generalization of Theorem 3 is possible. Suppose that an individual has pref-

erences over consumption vectors of more than one set of vectors of goods. In such an

environment, let D be the set of vectors of the labels of possible goods. A consumption

vector can be described as (xD, xC) where xD ∈ D is a vector naming the goods consumed

and xC is a vector of the corresponding quantities. D may contain vectors of different di-

mensions (depending on the number of goods) and the set of possible consumption vectors
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must be of the same dimension as xD. It follows that the set C must depend on xD and

we write it as C̄(xD) for each xD ∈ D.

A second example is one from population ethics. In that case, xD lists the identities of

those alive in an alternative and xC their lifetime utility levels. Again, because dimensions

must match, the set of possible utilities must depend on xD.

Formally, the domain considered now is defined as follows. Let X = {(xD, xC) | xD ∈
D and xC ∈ C̄(xD)} such that, for each xD ∈ D, there exists d ∈ Z++ such that xD ∈ Zd
and, for each xD ∈ D, there exists c ∈ Z++ such that C̄(xD) ⊆ Rc. Unconditional

continuity can easily be rewritten to fit this environment; all that is required is to replace

C with the function C̄.

Unconditional Continuity: For all x ∈ X and for all yD ∈ D, the sets {yC ∈ C̄(yD) |
(yD, yC) � (xD, xC)} and {yC ∈ C̄(yD) | (xD, xC) � (yD, yC)} are closed in C̄(yD).

A result analogous to that of Theorem 3 can be proved without difficulty in this environ-

ment. The only significant change is that the functions {UxD} have different domains for

each xD, that is, they are functions Ux
D

: C̄(xD) → R. As before, the image of Ux
D

can

vary with xD.

Theorem 4: Let X = {(xD, xC) | xD ∈ D and xC ∈ C̄(xD)} such that, for each xD ∈ D,

there exists d ∈ Z++ such that xD ∈ Zd and, for each xD ∈ D, there exists c ∈ Z++ such

that C̄(xD) ⊆ Rc, and suppose D is nonempty and C̄(xD) is nonempty and connected for

each xD ∈ D. � is an ordering on X satisfying unconditional continuity if and only if

there exists a function U :X → R, continuous in its second argument, that represents it.

The proof of Theorem 4 is almost identical to that of Theorem 3 and is omitted.

Theorem 3 is a special case of Theorem 4 in which C̄(xD) is the same for all xD and D is

of fixed dimension.

A related problem arises in population ethics when an anonymity requirement is

satisfied. The relevant information for each alternative is the vector of utilities of those

who are alive (identities are not needed). The set of possible population sizes is given by

Z++, and a social ordering ranks utility vectors in X = ∪j∈Z++Rj .
A more general domain for this is a union of connected sets of continuous variables

only and we write it as X = ∪j∈J Cj where J = {1, . . . ,m} with m ∈ Z++ if the number

of sets is finite and J = Z++ if it is not, and, for all j ∈ J , there exists cj ∈ Z++ such

that Cj ⊆ Rcj and Cj is nonempty and connected. Note that it is possible for two or more

of these sets to be subsets of the same Euclidean space.

The appropriate continuity axiom takes on a slightly different form in this case.
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Extended Continuity: For all x ∈ X and for all j ∈ J , the sets {y ∈ Cj | y � x} and

{y ∈ Cj | x � y} are closed in Cj .

The ordering � on this domain induces another ordering on a mixed domain. Theorem

4 can be applied to the resulting ordering and used to obtain the following result. For

any c ∈ Z++, we define Cc to be the set of all the Cjs that are subsets of Rc, that is,

Cc = {Cj | Cj ⊆ Rc}. In addition, let Jc = {j | cj = c} and ZJ = {c ∈ R++ | Jc 6= ∅}.

Theorem 5: Let X = ∪j∈J Cj where, for each j ∈ J , there exists cj ∈ Z++ such

that Cj ⊆ Rcj , and suppose that Cj is nonempty and connected for each j ∈ J . �
is an ordering on X satisfying extended continuity if and only if there exists a function

U :X → R, continuous on ∪j∈JcCj for all c ∈ ZJ , that represents it.

Proof. For all c ∈ ZJ , merge any sets in Jc whose union is a connected set. Because each

Cj is connected, the merged sets must be disjoint (see Berge [1963, p. 72]). To simplify

notation, we assume, without loss of generality, that no such merging is necessary and,

thus, Cj and Ck are disjoint for all c ∈ ZJ and all Cj , Ck ∈ Cc with Cj 6= Ck. Hence, each

x ∈ X belongs to a unique Cj .
Let X̃ = {(j, x) | j ∈ J and x ∈ Cj} and define the ordering R̃ on X̃ by

(j, x)R̃(k, y)⇔ x � y

for all (j, x), (k, y) ∈ X̃ . Note that x ∈ Cj and y ∈ Ck.
Extended continuity of � is equivalent to unconditional continuity of R̃ and, by

Theorem 4, there exists a function Ũ : X̃ → R, continuous in its second argument, that

represents R̃. Define the function U :X → R so that U(x) = Ũ (j, x) where x ∈ Cj for all

x ∈ X. Because such a j is uniquely determined for each x ∈ X, U is well-defined. For all

x, y ∈ X, let x ∈ Cj and y ∈ Ck. Then

x � y ⇔ (j, x)R̃(k, y)⇔ Ũ (j, x) ≥ Ũ(k, y)⇔ U(x) ≥ U(y),

so U represents �. Consider any j ∈ J . Because Ũ is continuous in its second argument,

U is continuous on Cj .
Now consider any c ∈ ZJ , and suppose Cj , Ck ∈ Cc are distinct. Cj and Ck are

disjoint by assumption. In addition, if a boundary point of Cj is in Ck, the two would

form a connected set. Therefore, all of the boundary points of Cj in ∪j∈J cCj are in Cj . It

follows that, because U is continuous on each Cj ∈ Cc, U is continuous on ∪j∈JcCj .
To establish sufficiency, an argument analogous to the one employed in the proof of

Theorem 3 can be used.

In Theorem 5, it is possible for each Cj to be a subset of the same Euclidean space.

In that case, extended continuity is equivalent to ordinary continuity and it is sufficient
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for the existence of a continuous representation. Therefore, we obtain the following result

as an immediate corollary of Theorem 5.

Theorem 6: Let X = ∪j∈JCj where there exists c ∈ Z++ such that Cj ⊆ Rc for each

j ∈ J , and suppose that Cj is nonempty and connected for each j ∈ J . � is an ordering

on X satisfying continuity if and only if there exists a continuous function U :X → R that

represents it.
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