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ABSTRACT

This paper proposes consistent instrumental variable estimators for linear
regression models with errors in the variables that require no extraneous information.
These estimators are based on sample moments of order higher than two. While
similar estimators proposed previoudy in the literature seem to be quite erratic, our
experimental findings suggest that our estimators perform better than ordinary least
squares estimators in terms of root mean squared errors and also in terms of size of
type | errors of standard tests in many typical situations of economic analyses. Tests

for the presence of errorsin the variables are also described.
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1. INTRODUCTION

Most data used in empirical analyses contain errors of measurement. Such errors
are probably relatively more important in macroeconomic studies [Morgenstern (1963),
Langanskens and Van Rickeghem (1974), Dagenais (1992)], but they are also present in
most microeconomic analyses [Rodgers, Brown and Duncan (1993); Duncan and
Hill (1985); Altonji and Siow (1987)]. Although the early econometricians insisted
greatly on the presence of errors in the variables, this phenomenon has not been
strongly emphasized in the ensuing developments of the discipline [Goldberger (1972);
Morgenstern (1963); Griliches and Hausman (1986); Griliches (1986)].1 In the present
state of the art, most econometric textbooks contain a rather short section where it is
demonstrated that in linear regresson models, errors in the explanatory variables lead
to inconsistent ordinary least squares (OLS) estimators. Unless information is available
on the variances of these errors, authors suggest essentialy the use of instrumental
variables [Fuller (1987), Bowden (1984), Aigner et al. (1984)] to obtain consistent

estimators. Despite the fact that in applied papers authors often warn the reader that
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very useful suggestions.

1 Adverse effects of the presence of errors in the variables in regresson models with

autocorrelated errors have been underlined in Dagenais (1994) and Grether and Maddala (1973).



the possible presence of errors in the variables may bias the results, in many cases, no
gpecial effort is made to resort to instrumental variable techniques to reduce the
possible biases and no special step is taken to test for the presence of errors in the
variables (EV) using, for example, Hausman's (1978) instrumental variable test. The
attitude of most applied researchers is probably due, in a number of cases, to the fact
that it is not always easy to verify that the available instrumental variables satisfy the
required conditions to justify their use [Pal (1980)]. In other cases, the eligible
instruments may simply not be easily accessible to the researcher [Klepper and
Leamer (1984)], and one may feel that the cost of collecting the additional data would
be too large in comparison to the benefit derived from the fact of possibly producing

somewhat more accurate estimators.

In line with the above considerations, one of the purposes of the present paper is
to insist on the perverse effects of the presence of errors of measurement in the
independent variables on statistical inference from standard linear regresson models.
Such errors in the variables lead to inconsistency of the OLS estimators of the
regression parameters, to larger mean- squared errors and probably, most importantly,

to larger than intended sizes of type | errors of Student tests.

Inconsistency. The case of the smple regression model is well known. If the single
regressor is measured with error, the probability limit of the OLS estimator of its
coefficient has always the same sign as the true coefficient itself and is smaller in
absolute value. Moreover, the OLS estimator remans consistent when the true
coefficient is equal to zero. The situation, however, is not as neat when the model
includes more than one regressor. For example, in the case of two correlated
regressors, the OLS estimator of the coefficient associated with one of the regressor

will generally remain inconsistent even when its true value is equal to zero, if the



coefficient associated with the other regressor is different from zero and there are errors
of measurement in at least one of the explanatory variables. Furthermore, with similar
measurement errors, the gaps between the true coefficients and the probability limits of
their OLS estimators may be considerably larger when the true explanatory variables

are strongly correlated.2

Mean- squared error.3 Although OLS estimators have relatively small variances in
regression models with errors in the independent variables, these estimators may have
larger mean- squared errors than alternative consistent estimators (with smaller finite
sample biases) when a) the variances of the errors of measurement are relatively large
since in this case, the biases of the OLS estimators will be important, b) the sample
size is relatively large since then, the variances of all estimators are small and the
relative importance of the squared biases of the OLS estimators is greater. Situations

of these types will be illustrated below, in the results of the Monte Carlo experiments.

Type | error. One of the most perverse effects of ignoring the presence of errors in the
independent variables, concerns the highly misleading determination of the confidence
intervals of the regression parameters and of the sizes of the type | errors when testing
hypotheses. Because OLS estimators have relatively small variances but are biased,

intended 95 % confidence intervals may in practice turn out to be aimost 0 % intervals,

2 This isillustrated in Dagenais and Dagenais (1994).

3 Note that OLS estimators may not have moments in finite samples when there are errors in the
explanatory variables, unless it is implicitly assumed that the density function of the
measurement errors is such that it excludes the sample points which could prevent the relevant

integrals from having finite values.



even when the errors of measurement are not exceedingly large, as will be illustrated
below! Similarly, Student t- tests using the critical values corresponding normally to
5% typel errors, may in fact correspond to tests with type | errors of size equal to
amost 100 %! This may have dramatic consequences since one may be induced to
reject a null hypothesis when this hypothesis is true, with a probability close to 100 %!
Contrary to the traditional case, increasing the sample size does not improve the matter
but worsens it, since the importance of the bias relative to that of the standard error of

the parameter estimator increases.

Now, even if one is convinced that it is important to take account of errorsin the
variables of one's data set, one is still left with the problem that it is not easy to
identify appropriate instrumental variables and that these variables may often not be
readily available [Pal (1980)]. An aternative to the instrumental variable approach that
has received little attention in the literature, is to use consistent estimators based on
sample moments of higher order than two. Pal (1980) presents a number of such
estimators which remain consistent under quite reasonable hypotheses. Pal proposes
severa estimators based on third- order sample moments for the simple regression
model. He mentions that one of these estimators had already been suggested by Durbin
(1954), another one by Drion (1951) and a third one by Geary (1942). In particular,
Durbin's estimator has the property of also being unbiased when there are no errors in
the variables. It also extends readily to the case of models containing more than one
regressor. Consistent estimators based on even higher sample moments also exist. For
the case of a single regressor, estimators based on fourth-order moments have been
proposed by Geary (1942) as well as Pal (1980). Although these estimators have not
been generalized for multiple regression models, we will see below that it is possible to

do so.



However, it has long been recognized that regression estimators based on higher
moments are notably more erratic than the corresponding least squares estimators
[Kendall and Stuart (1963), p. 56; Malinvaud (1978)]. This most probably explains
why such estimators have amost never been used in actual applications. The main
purpose of this paper is therefore to suggest new higher moment (HM) estimators
which in the examples considered in our numerical applications turn out to have

considerably smaller standard errors than the HM estimators previously suggested.4

In our numerical illustrations section based on Monte Carlo experiments, it will
be shown that in survey data analyses with several hundred observations, even when
the variance of the errors of measurement for a given variable is not very large (say
10 % of the variance of the variable), usual t tests based on OLS estimators performed
at the 5 % intended significance level may, in fact, have a probability of type | error of
more than 85 %. If the measurement errors are larger, the same problem may be
encountered for much smaller samples. In contrast, tests based on our HM estimators
have type | error probabilities of approximately the right size in all situations. In terms
of root mean- squared error, our experiments suggest that in a number of situations, the
OLS estimator beats our HM estimators in small samples, but that in larger samples,
the HM estimators are superior, even when the variances of the measurement errors are
small. Even in samples that are not very large, however, if the measurement errors
have relatively large variances (e.g., 25 % of the variances of the affected variables),
our findings indicate that the HM estimators may still, turn out to have smaller

mean- squared errors than the OL S estimator.

4 For an alternative approach to obtain consistent regression estimators applicable to a variety of

errors-in-variables models with panel data, see Griliches and Hausman (1986).



It is aso possible to use our suggested estimators to perform tests of errorsin the
variables. We shall indeed propose a ssmple procedure below. It appears from our
experiments that the proposed test may be useful when it really matters. This is the
case in large samples, even if the errors are relatively smal and if the multiple
correlation coefficient is low : a situation often encountered in microeconomic analyses
based on survey data. It is also the case in smaller samples, when the multiple
correlation coefficient is high and the measurement errors are relatively important : a

typical situation in macroeconomic studies.
2. THE SUGGESTED ESTIMATORS
Let us assume that we have the following regression model :
Y=ai +XB+u, (1)

where X is a N x K matrix of stochastic exogenous variables measured without error

and such that E(X'X /N) = Pl i m (X'X / N) = Q, where Q is a finite nonsingular

N o

matrix. The N x 1 vector u is a vector of normal residual errors, independent of the
variables contained in X, with covariance matrix @ NP is the N x 1 vector of
observations of the dependent variable and N IS the identity matrix of order N. The
K x 1 vector g and o are unknown parameters. The scalar o is aso an unknown

parameter.

We also assume that X is unobservable and that the matrix X is observed instead,

where

X=X+V 2



and V isa N x K matrix of normally distributed errors in the variables. It is further

assumed that V is uncorrelated with u and that

VarVeo(V)] =30l ©
where Var[ [J stands for the covariance matrix and § is a K x K symmetric positive
definite matrix. This last assumption implies that the errors in the variables are
independent between observations but not between variables. It also implies that for a
given variable, the errors of measurement are homoskedastic.

The above model may be rewritten as :

Y=o +XB+u- VB=a1 +XB+n. (4)

The HM estimator (6) of 6= (a, B)' is derived from the following orthogonality

conditions :
. EOO(Z'n /VN) =0 (5
where
Z= (12 o Z) (6)
z,=x0x,z,=x0y,z,=y Oy, @)
z,=x Ox Ox - 3x [E(xx/N) 01, ], 8)
ze=x Ox Oy - 2x [E(xy /N) OI ]
-y {g [ECex 7 N) D1 T3 ©)
z,=x 0y dy - x[Ey/N)] - 2y [E(yx/N)], (10)

z,=yOyOy- 3y[EYYy/N)], (11)



where the symbol [Jdesignates the Hadamard element by element matrix multiplication
operator and, as mentioned earlier, x and y correspond to X and Y with the variables

expressed in mean deviation form.5

The HM estimator isin fact an instrumental variable (IV) estimator, with Z as the
matrix of instrumental variables. Note that besides being uncorrelated with the
regression errors, the 1V variables must also be correlated with the regressors. For this
reason, a condition for 8 to be a consistent estimator is that the joint distribution of the
variables contained in X is not multivariate normal [Reiersol (1950), Pal (1980)].
Because traditional IV or GMM (general method of moments) estimators
[Hansen (1982)] that could be derived from the orthogonality conditions shown in
equation (5) may not have moments in finite sample, we proposss to use Fuller's
modified 1V estimator that possesses finite moments and improved small sample

properties [Fuller (1987)] :
=00 X) (1 X) - T- DS 00 XY Y- (- )S,q0, (12)

where y is a constant term that we set equal to 1, following Fuller's (1987, p 154)
suggestion. Furthermore, )Q \/} 822, 821 and v are defined as follows :

&, X) =zt z(v, X) . (13)

vV is the smallest root of

5  The proof that E(Z'1) / \/N) = 0 isgiven in appendix A. Note that since x is a matrix and y is a

vector, x [y = (x1 Ly, ..., X Uy), where Xj(j =1, .., K) isthe j'th column of x.

6 Following, in this matter, the advice of one of the referees.



N N N N
(Y, 1 X) (Y, 1 X) - v§|=0 (14)
where Sisa (K + 2) x(K + 2) matrix :

S=[(Y, 1 X) (Y, 1, X) = (Y, 1, Xy ZZ 27 Z (Y0, X/ (N- 6)  (15)

) IN7

and ¢ corresponds to the number of columnsin Z, namely : 5K + 3.

The vector 821 is a submatrix containing rows 2 to K + 2 and column 1 of S; and
822 IS a sguare symmetric submatrix containing rows 2 to K + 2 and columns 2 to
K+ 2 of S. Note that since the dummy variable I is measured without error, the
second row and the second column of S are vectors of zeros [Fuller (1987), p. 150].

A feasible estimator is obtained by replacing E xx/N, E xy/N and
NS o N oo

E yy/NinZ by xx/N,xy/Nandy'y/N.

[\

As shown in Appendix B, the asymptotic covariance matrix (V) of VN(@ - 6) can
be estimated by :

Ay N ~2 -1
V=A"B[ ) ZZ i;/N]BA (16)
i=1

where . = Y. - (1., X.) 6 and Z,, Y. as well as X, correspond respectively to the i'th

rowsof Z, Y and X. Now,

A=[(1,X) (4, X) - (F- )S,1/N (17)
and

B =(1,, X) Z@ZZ INy*IN. (18)
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We also consider, in the numerical illustrations of section 5, below, the smpler
estimator 6% obtained by replacing Z by Z = (|N, z,z 4), because we have noted that
the results that we obtain for the RMSE's with this estimator are even dightly better

than those obtained with O.
3. TESTING FOR THE PRESENCE OF ERRORS IN THE VARIABLES

The null hypothesis (HO) that there are no errors in the variables can be tested by
applying a Durbin- Wu-Hausman type test [Durbin (1954), Wu (1973),
Hausman (1978)]. This asymptotic test is most easily performed by the following
procedure [Davidson and MacKinnon (1993)].

1) Run the following augmented regression by OLS:

Y:a|N+XB+\7vnp+e, (29

N N
where w = X - X, U is a vector of parameters and ¢ is the vector of the regression

errors.
2) Test =0, using the usual F test.

If there are no errors in the variables, X =X and Y = an + XB + u. Therefore,

under HO, e=zuand g =0.
4. POSSIBLE EXTENSIONS
Several possible extensions of the HM estimators described in section 2 come to

mind. For example, if one is not willing to make the assumption that the nature of the

joint density function of the errors in the variables is known, but only that it is
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symmetric, z 4 should be removed from the definition of Z in equation (6), to preserve
the consistency of the estimator. Similarly, if one assumes that the density of the

regression errors is unknown but symmetric, z, should be removed for the same reason.7

One could also devise a pretest estimator by adopting the following procedure :
1) test for the presence of errors in the variables, 2) if H , cannot be regjected, use the

OLS estimator, otherwise use the HM estimator.

One could introduce on the right- hand side of equation (6), which defines the
Z matrix, other "instrumental variables' based on higher sample moments than the third
and fourth, or extraneous instrumental variables that are available. If some variables
are assumed to be observed without error, they could be introduced directly into the

Z matrix, as was done for the 1, vector. In the same vein, one could make separate EV

N
tests for each of the X variables, that is, make separate tests for each of the elements

7 If one assumes that the u's have a given known symmetric density other than the normal, Z,

could be retained, but the factor 3 appearing in the second term of the right-hand side of

equation (11), which defines s should then be replaced by K 1 where K is a known quantity

1
equal to the ratio of the fourth centered moment of the density of the u's divided by the square
of its second centered moment. Similarly, if one assumes that the joint density of the V'sis a
given joint symmetric density other than the normal and that this density has the following
property : (@i, j) = K, (2, 0) H(Z - j, j), for (i, j) = (40) or (i, J) = (3, 1), where (i, j)
designates the centered bivariate cross-moment of order i, j, the factor 3 appearing in the second
term of the right- hand side of equation (8), which defines z n should be replaced by K2. Note
that if the values of K1 and K2 are unknown, they could be considered as extra parameters to

be estimated. (Inthe case of the normal distribution, K2:3 [Kendall and Stuart

(1963), p. 91].)
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of ¢ in equation (19) and "instrument” only the variables for which the null hypothesis

IS rejected.

Some of the assumptions underlying the model presented in section 2 could also
be relaxed. For example, if the V's are assumed to be heteroskedastic, our estimator 8
would remain consistent, provided the distribution of the variances of the V's is
independent of the X's, and provided z 4 is excluded from Z. Similarly, if the u's are
assumed to be heteroskedastic, the estimators would remain consistent if the variances
of the u's are distributed independently of the X's, but z, would have to be removed
from Z. If the V's or the u's are serially correlated, provided they are stationary and
ergodic [White (1984)], our estimators would still be consistent. The asymptotic
covariance matrix of the estimators would, however, be somewhat more complicated to

evaluate.
5. NUMERICAL ILLUSTRATIONS
A) Description of data and experiment setup

The numerical experiments reported below concern essentially the performance

of the 8 and 6* estimators relative to the OL S estimator /é

The performance criteria generally used in such studies are the bias and the root
mean- squared error (RMSE).8 We also use the discrepancy between the intended and
true sizes of the type | errors for tests of null hypotheses, because this criterion appears

to be particularly important in the present context for reasons given previously.

8 For the OLS estimator, see our remark in footnote 3.
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The data used for the Monte Carlo experiments reported below are drawn from
the 1986 survey of Consumer Finances of Statistics Canada (1988). A simple model

relating total annual household consumption to the following variables was set up :

X, : total annual income of the household,
X, : age of the head of the household;
)?3 : number of person- weeks constituting the household during the year.

In order to preserve a certain homogeneity of the sample, we retained only the
observations for which the total income of the household ranged between $ 25,000 and
$55,000. The total sample available included 4,400 observations. We first ran a
regression using observed consumption and observed income, age and person- weeks.
Then we scaled the explanatory variables so that each of the estimated coefficients
became equal to one. We then used the independent variables thus scaled with
6=(1, 1,1, 1) to generate the consumption vectors used in our Monte Carlo

experiments.9

More precisely, the model used was the following :
Y.=X.+X.+X.+X.+ui(i=1,...,N) (20
where XOi =1 for every i, u is the normal regression error term, Yi is household

consumption and N is the sample size. All data are expressed in logarithms. Then

normal random errors in the variables were added to the Xli variable to obtain

I
X1

i+ V- Since no errors were added to X.. and X_., we have X.. = X_. and
i 1i 2i 3i 2 2i

I
X1

Xli
X3i 3i’

9 Setting all elements of B to 1 simplifies the analysis of the tables of results shown below.
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Because the squared multiple correlation coefficient (RZ) that was obtained when
we regressed the actual data was equal to approximately 0.40, we set, in al
experiments reported in the next subsection, the variance of U so as to obtain a
theoretical sguared multiple correlation coefficient of 0.40 when using our 4,400
available observations. Similarly, since studies made on the accuracy of reported
earnings data [Rodgers, Brown and Duncan (1993); Bound and Krueger (1991)] suggest
that the ratio (A) of the variance of measurement errors to the variance of declared
individual earnings expressed in logarithms is more than 0.2 for men, and since
measurement errors for total household income, which includes nonlabor income, is
believed to be greater than for earnings [Altonji and Siow (1987); Radner (1982)],
we set, in our first experiment, the variance of V, 0 as to obtain a vaue of

)\1 =( ozv /af ) equal to 0.3.10 Finally, in this same experiment, we set N = 2,000,
1 x
1

which is not a very large sample size, according to present standards, for household

surveys.11

10 Rodgers, Brown and Duncan (1993) also suggest that in the case of earnings, the measurement
errors are not independent of the true values, but they are negatively correlated
("mean reverting"). It is not known, however, if this is also the case for total income. The
possibility that measurement errors are correlated with the true values is not considered in the

present paper. Further research is needed to analyze this case.

11 Note that in these illustrative experiments, we have used the instrumental variables defined by
equations (7)-(11) for all three regressors, even if only the income variable Q 1 contained errors
of measurement. We could alternatively have assumed that the analyst knows that QZ and 93
are measured without error. In this case, 92 and QB could have been introduced directly into
the IV matrices, as suggested in Section 4 and illustrated in the application reported in

Section 6.
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We then made a second experiment where the value of )\1 was reduced markedly
to 0.1, and a third experiment where, in turn, N was reduced to 700. We also made a
fourth experiment where we set [33: 0 instead of 1 and verified the size of the
probability of reecting this (true) null hypothesis, using the different estimators.
Finally, since the collinearity between our independent variables is very small, we
made a fifth experiment analogous to the fourth, in which )?3 was transformed so as to
be much more highly correlated with )?1. Prior to transformation, the correlation

coefficient between X, and X, was 0.15 and after transformation it was equal to 0.5.

Before reporting our results, we would like to insist on the fact that the na/e
model presented here is used only for illustration purposes. It is clearly inadequate for
analyzing household consumption. It could be argued, on the one hand, that
consumption may be more closely related to perceived income than to actual income
and that declared income may be closer to perceived income than to true income. This
would suggest that the value of )\1 may be smaller than that used in all our
experiments, except possibly in the second experiment. On the other hand, if
consumption depends on "permanent” income, the discrepancy between this notion of
income and declared annual income might correspond to a much larger value of )\1.
This would most likely still be true even if X | were replaced by better approximations
to "permanent” income than the declared annual income.12 Finally, it must be pointed
out that present consumption might also be influenced by past savings [Avery (1991)]
or accumulated wealth [Avery, Elliehausen and Kennickel (1988)], and these variables

are likely to contain even much larger errors in the variables than income.

12 See Jeong and Maddala (1991) about measurement errors in expectations data.
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B) The results of the Monte Carlo experiments

We report, in Tablel, section A, from our first experiment,13 the root
mean- squared errors for the /é 6* and O estimators. In addition, similar results are
given for the HM estimators based only on Z, [Durbin (1954)] or z A [Pal (1980)]
designated respectively as 6 y and Gp. These results clearly illustrate why HM
estimators previoudly proposed in the literature were amost never used in practice.
For example, the averages of their RMSE's for all four parameters are approximately
from three to five times larger than the average RMSE for the elements of 6. They
are even larger than the average RMSE associated with /é which is itself 70 % larger
than that of 6* or 8. The first four columns of Table 1, Section B, give the squared
multiple correlation coefficients of the regressions of the true explanatory variables on
the set of instruments used for each HM estimator. The poor performance of 6 p and Gp
may be explained by the fact that the R%s associated with some of the X variables are

quite low.

One notices also that, on average, the RMSE's associated with the 0 estimator are
dightly larger than those associated with 6%, despite the fact that the latter uses only a
subset of the instruments. Asymptotically, RMSE's of 5 could not be smaller than
those of 6*. In finite samples, however, adding instruments that are weakly correlated
with the true Q's or that are strongly correlated with the subset of instruments already
used, may affect the performance of the estimator adversely [Bowden (1984, p. 38)].
In the case at hand, the additional instruments used for E are not strongly correlated
with those already used for 6%, but their correlations with the true regressors are weaker

than those of the instruments used for 6*. Indeed, on he one hand, the Rz's of the

13 All Monte Carlo experiments reported below are based on 1,000 replications. This number of
replications appeared to be largely sufficient to assure a two-digit accuracy (based on 95 %

confidence intervals) for most of the results presented in the tables.
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regressons of each of the eleven variables contained in Z, where

Z= (2, 24 2., 2, 2), ON va range from 0.030 to 0.350, with an average of 0.105. On

the other hand, the R?s of the regressions of the true Q's on the variables contained in
g are notably larger than those of the corresponding regressions on (|N, Z), as can be

verified by comparing columns (5) and (3) in Table 1, B. Finally, if the residuals of

the regressions of each of the true Q's on g are in turn regressed on Z, the R?s are very
low, namely 0.036, 0.051 and 0.008 for X, X.,, and X, respectively, thus confirming

that once the instruments contained in 2 have been introduced, the marginal

contribution of the instruments contained in Z is negligible.14

Table 2 also reports the results of experiment 1. It gives the biases and sizes of
type | errors associated with each parameter for /é 0* and 6. The sizes of the type |
errors were measured by calculating the percentage of replications for which the true
value of the parameter was not included in the computed 95 % confidence interval.
One notices that the bias of the OLS estimator of Bl Is close to what it would be in the
simple regression case, namely : 0.3/1.3 =0.231. This is not surprising since in this
example, the correlation between X, and X, as well as X, is very low. What is most
disturbing, however, is that the computed sizes of the typel errors for the
OLS estimators of a and Bl are equal to 100 %! The sizes of the type | errors for all
the elements of our HM estimators are, on the contrary, much closer to the intended

5% level. Finaly, the powers of the EV tests based on Z and Z are both quite high.

Table 3 gives the results of the second experiment. In this experiment, the

relative importance of the measurement errorsin )?1 was reduced notably, since A L was

14  Note that all variables contained in Z involve Y and in our experiments, the R2 between the Y's

and the ;Ls is rather low, namely 0.4. This could explain why the z variables contained in Z are

less correlated with the true regressors than those contained in E
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set to 0.1. Even then, the performance of our HM estimators is comparable to that of
the OLS estimator in terms of the average values of the root mean-squared errors.
However, the OLS estimator behaves rather poorly, as far as the sizes of type | errors
for a and /31 are considered. As could be anticipated, the power of the tests has
decreased notably. Note that these tests are based on 5 % critical values. In the case
of the Durbin- Watson autocorrelation test, Fomby and Guilkey (1978) have argued that
50 % critical values should be used instead of the traditional 5 %. A similar strategy

would clearly increase the power of our tests.

Table 4 presents the results of experiment 3. The purpose of this experiment was
to verify whether our HM estimators could still outperform /éwith smaller sample sizes.
One can see that even for N =700, the HM estimators are still preferable to /é
especialy in terms of the sizes of the type | errors for a and /31. Note also that in al
three experiments, the EV tests based on Z were more powerful than those based on Z.

Thisis particularly the case for experiment 3 in which the sample size was reduced.

A fourth experiment was made under the same conditions as experiment 1, but
the value of 53 was set equal to zero. Despite the facts that 1) in ssimple regression
models asymptotic biases disappear when the coefficient is equal to zero, 2) )?3 itself
did not contain errors of measurement but only )?1 was measured with errors and,
finally, 3) X, and )?3 were wegkly correlated (r,, = 0.153), the bias of the OLS
estimator of 33 was non- negligeable (0.103) and the size of the type | error associated
with the test that 33 =0 was rather large (26.90 %). This means that in more than
25 % of the cases, the t- test based on an intended 95 % confidence level would have
led one to reject the true hypothesis that 33 = 0. The other results pertaining to this
experiment are similar to those of experiment one and are not reported here. If the
correlation between X, and )?3 is raised to 0.5, as was done in the last experiment, the

bias of the OLS estimator of [33 increases to 0.358 and the size of the typel error
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reaches 99 %! The average RMSE of 8 also deteriorates markedly, as can be verified

from Table 5.15

C) Summary of experimental findings

The above Monte Carlo experiments, in combination with an extensive set of

experiments made in the early phases of this research project on the performance of

estimators similar to 6 [Dagenais and Dagenais (1993)] in which errors of

measurement were assumed to affect only one of the explanatory variables (say X 1),

suggest the following general conclusions.16

Bias

1) The value of the squared multiple correlation coefficient of the regression seems

to have no effect on biases.

15

16

The results obtained in a previous version of the paper [Dagenais and Dagenais (1994)] in which
more traditional IV estimators were used instead of Fuller's (1987) estimators, were similar to
those reported here. In most cases, the RMSE's obtained with Fuller's estimators are dightly
smaller than those obtained previoudy. The largest differences are found for experiment 5 (see
Table 5) where the average RMSE's comparable to those of 6% and B were 0.302 and 0.323

respectively, instead of 0.288 and 0.298.

In the following paragraphs, we use expressions such as : "small" samples and "small" values of
Aor RZ. Although it is difficult to be very precise in such matters, we would say that "small"
samples refer roughly to samples smaller than 500 observations. "Small" values of A or R2
indicate values of A smaller than, say, 0.05 and values of R2 lower than 0.25. In contrast,
"large" samples are samples of more than 1,000 observations, "large" values of A are values

greater than 0.25 and "large" R2's are Rz's greater than 0.75.
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2) The sample size has no effect on the biases of the elements of the OLS

estimator.

3) The biases of the elements of our HM estimators are notably smaller than those

of the corresponding elements of the OL S estimator, in small samples.

4) As the sample size grows, the biases of the elements of our HM estimators

vanish progressively.

5) The biases of the elements of the OL S estimators increase with A 1

6) In small samples, the biases of the elements of the HM estimators are larger for
greater values of )\1. Furthermore, when )\1 is larger, these biases do not vanish as

rapidly, when the sample size grows.

7) When the independent variables are highly collinear, the bias of the OLS
estimator of the parameter affecting a variable measured with error may be larger
than it would be in the simple regression case. The OLS estimators of the

coefficients of the correlated variables may also be strongly biased.

8) The size of the small- sample biases of our HM estimators do not seem to be

much affected by the collinearity among the explanatory variables.
Root mean- squared error
1) For small values of N, the RMSE's of the elements of the OLS estimator

decrease as R? or N increase. For larger values of N, these RMSE's remain almost

constant. This is easly explained by the fact that MSE equals squared bias plus
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variance and that the variance is O(N'l) while the biasis O(1). When N gets large,
the MSE is essentially equal to the squared bias; hence, the factors affecting the

variance no longer have an impact on the MSE.

2) For a given sample size, the RMSE's of the elements of the OLS and HM

estimators increase with A 1

3) The RMSE's of the elements of the HM estimators are aso strongly influenced
by the value of R? and N. The RMSE's decrease as R or N increase. These results
are clearly explained by the fact that the HM estimators have relatively small biases
and, hence, the MSE's are merely influenced by the variances. Therefore, the

MSE's decrease as the variances decrease.

4) For small values of )\1, R? or N, the OLS estimator may outperform the HM

estimators.

5) The HM estimators may outperform the OLS estimator for much smaller sample

sizes when collinearity is high.

6) The smpler estimator 6 may perform better than the E estimator when the
marginal contribution of the additional instruments used for g to the multiple

correlation of the true regressors with the set of instruments is negligible.17

17

In practical applications, the multiple correlation coefficients obtained by regressing each
variable contained in Z on ; could be computed and also those obtained by regressing each

observed X on Z. If the former coefficients are low and the latter are high, one could anticipate

that Emight outperform 6. Otherwise, 6% should probably be used.
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Sze of type | error

1) The relative performance of our HM estimators is always superior to that of the

OLS estimator, when there are errors in the variables.

2) In all cases examined, the importance of the type | error of the Student t- tests
associated with our HM estimators was aways relatively close to the desired 5 %
level.

3) The performance of the OLS estimator deteriorates as A " R? or N increase. It is
very disappointing even, for example, for values of /\l aslow as 5 %. Asdiscussed
earlier, this is explained by the fact that OLS estimators are biased but have

relatively small variances.

4) For given values of )\1, R? and N, the sizes of the typel errors of the OLS

estimators increase when the data are more collinear.
EV tests
1) The power of the tests increases with )\1, R? and N.
2) The tests have little power for small samples, unless R? and )\1 are large.
3) When R? is low, the tests do not have much power for )\1 smaller than 10 %,
even in very large samples. Even for larger values of )\1, the power remains fairly

low in large samples, when R? is small.

4) The performance of the tests improves significantly when R? increases.
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5) The EV tests are more powerful when the other explanatory variables are

strongly correlated with the variables affected by measurement errors.

As mentionned in Section 2, our suggested approach applies when the joint
distribution of Q Is non- normal.18 Experiments similar to experiment 1 made with a
single regressor suggest that if its distribution is relatively close to the normal, such as
[Johnson and Kotz (1970a) and (1970b)] the Student t- distribution, the XZ with more
than 100 degrees of freedom or the lognormal (where Q Is defined as % = e“la, uis
N(0,1) and 0 > 0) with 0 > 10, the OLS estimator will outperform the HM estimators,
in terms of RMSE's. The size of the Type 1 errors associated with the standard Student

tests remains, however, considerably underestimated for the OL S estimators.
6. AN ILLUSTRATIVE APPLICATION

As illustrated above, our suggested HM estimators are likely to perform better
than the OLS estimator in microeconomic analyses based on survey data where the
sample comprises several hundred observations, even if the measurement errors are
relatively small. Where analyses are based on smaller samples, only in situations
involving more important measurement errors will our HM estimators exhibit a superior
performance, in terms of root mean- squared errors. This is likely to be the case,
however, in macroeconomic applications, since errors of measurement are known to be
important in aggregate data [Morgenstern (1961); Dagenais (1992)]. This is illustrated
below by applying our EV tests to the data used by Mankiw, Romer and Weil (1992) to

analyze economic growth. Mankiw, Romer and Weill (MRW) estimated a human

18 The measures of skewness and kurtosis [Theil (1971)] for the three Q variables in the
experiments reported in Section 5, B were (-0.1920, 1.9704), (-0.1235, 2.1833) and (-0.6250,

3.0027) respectively, instead of (0, 3) for the normal distribution.
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capital augmented Solow model and tested it with macroeconomic data of 98 countries,
using OLS estimators. With the data shown in the appendix of the MRW paper, we
have accurately reproduced in our Table 6, the results appearing in the upper part of
Table 2 of MRW. Table 6, section A, also gives the p- values of our joint F- tests of
errors in the variables. Both versions of the test yield very low p- values. Given that
these tests do not appear to be very powerful in small samples unless the errors of
measurement are very large, there is a very strong presumption that the data used by
MRW contain errors of measurement. Student t- tests applied separately to the
coefficients associated with each of the three variables suggest that the variable
In(n+ g+ ) may be particularly error- ridden. MRW note aso that the Student
t- statistics based on their OLS estimates strongly support the prediction of the
augmented model to the effect that the coefficients of the three variables sum to zero.
In the case of our more robust 6% estimator, the sum of the coefficient is negative and
fairly large in absolute value. The associated t- statistic is also notably larger in
absolute value and rather indicates that the null hypothesis should be rejected. When
the results associated with 8 are considered, one notes that the estimate of the sum of
the coefficients is also negative and larger in absolute value than that based on the OLS
estimator. However, the standard error of the 8 estimate is large and the t- statistic is

notably smaller than that associated with 6*.19

19 Note that, in this example, the computed asymptotic standard errors of all the 6% estimators are
smaller than those of their E counterparts, even if the latter are based on a larger set of
instruments.  When usual IV estimators are used, adding instruments reduces necessarily the
computed asymptotic standard errors, as it was the case in the previous version of the paper
already mentionned in footnote 15 [Dagenais and Dagenais (1994)]. When Fuller's estimators

are used, however, this systematic result no larger holds.
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The fact that our EV tests indicate that errors in the variables appear to plague
mainly the second variable In(n + g + d) suggests that more reliable results might be
obtained by "instrumenting" only the second variable. The corresponding results are
shown in Table 6, section B. To be more precise, in the case of 6, In(I/GDP) and
In(school) were retained as instruments for themselves, and the instruments selected for
In(n + g + ) corresponded to 2. Z, and the second columns of 2,25 2, 2 and Zg. In
the case of 6*, the instruments for In(n + g + d) corresponded to the second columns of
z, and z " The results of Table 6, section B, show high absolute values of the

1
t- statistics for both the 6 and 6* estimates of the sum of the coefficients.

In final analysis, the very clear indications of the presence of errors in the
variables supplied by our EV tests, together with the results obtained concerning the
sum of the coefficients using the suggested HM estimators, specially with the restricted
set of instruments, cast very strong doubts on MRW's claim that their data strongly

support the human capital augmented Solow model.
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APPENDIX A
THE ORTHOGONALITY CONDITIONS OF EQUATION (5)

To prove that E (Zn/VN)=0, we have to demonsrate that

500

E (yn/VN)=0andthat E (z'n/vN)=0form=1,..7.
[o4]

— — 00

Giventhat E(n) =0, E (yn/ VN) is clearly equal to zero.
N
1) E (Zir)/\/N)ZO.
N

A typical dement of E(zjn/vN) is E(zijn/\/N):E(inZjni/\/N) where

=1 ..., K, z1j Is the j'th column of z,, xij is the ij'th element of x and, to simplify

N
notation, j stands for j .

Now,

EY xizj n VN = (1/N) E[z(iizj n + vizj M+ 2% v )l (A.])

where iij is the ij'th element of X and X corresponds to X in mean deviation form.
Similarly, vij is the ij'th element of v and v corresponds to V in mean deviation form.

Then,

E 3 X5, 1y = EG X)) E(1) =0, (A2)

EY (Vizj n)=3 E[vizj u - Vi2j V., (A.3)
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where \Z is the i'th row of V. Since u isindependent of V and E(u) = 0, E(vizj ui) =0.
Similarly, E vi2j Vi B = 0 since the elements of Vi are normally distributed and hence,

al third order moments are equal to zero.

Finally,
EY iij v; ;= EQ SZ”.) E(v,; 1) =0 (A.4)

since )?ij is independent of v, and n; and E(} 32”.) = 0.
2 E (Zér)/\/N)ZO.
N - o

A typical element of E(z,n/VN) is E(zéjn / VN) = (1/VN) E[Z(xij y. )], for

i=1, .. K.

Now,

E Z Xij yi ’7i =E Z(;(-” yi ’Ti + Vij yi ’7|) (A5)
and

E 2 ilj yi r’i =E Z[ilj(;(-l B + ui - U) rll] ) (A6)

whereu =73 u. / N.

BT X, ¥, m) = SIEIX, X, B E)] + 3 E(y, n,) E)

since E(n,) = 0 and E(iij) = 0.
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Similarly,

E(Vij yi ’7,) = E(Vij ’7|) E(il B) + E[Vij(ui - U) (ui - Vi B)]

= E(vij) E[(u - u)u - E(v. V. B E(u - u)=0.

ij i

3 E (zn/VN)=o.
[\

Again, E(zy n / vN) = 0 since

E(zy 0/ VR) = (L/VN) EI3(] n))]

=E3[(x B+ (u - W7+ 2X Bu - U], .
ESKX B’ n =3 Elx B EMN)=0,
EYX B - Wn =3E@u- )n]EXP=0.
Finally,

E(u - W70 = Eu - 17y - Eu - 1)°V, B=0.

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

Indeed, E(ui - U)2 u = 0 because the ui's are normally distributed, and therefore,

all their third order moments are equal to zero. Similarly,
=2\, _ =2 _
E(ui - u) V.= E(ui - u) E(Vi) =0.

4 E (ZAI‘)/\/N)ZO.
[\

(A.15)
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A typical element of E(z, n/ VN) is:

E(z, n/N) = E[Z(X?j n/VN) - 33(c;x VN (=1 ..K), (A1)
where

_ 2 _ =2
CJ.J.—E(inj/N)—E(inj/N)+o\2/j- 02Vle
= E(y iizj IN)+ 02 + O(N?) (A.17)
j

where 03 is the variance of the elements of Vj, the j'th column of V.
j

Now,
E(Y x?j n- 3¢ m)/ VN

= (1/VN) E(zif'j ni+3z§i2j v n +31%, vizj ni+zvf’j n

-3 S Y Xii 1y - 3 G Zvij ) (A.18)

=(1/VN) E(3 % Szizj v m+ 3 vf’j M- 3¢, 3v, ), (A.19)

since the other terms are equal to zero and,
(1/VN) E@3 Y >“<'i2j v+ vf’j m- 336 vy m)
— K _ K 3
=-3E(F X)) mgl BV Vi B/ VN - VN mzl BV Vi By

K
S et 32
+3VNEQ X/ N) mzl E(V,; Vi B

K
+3VN o Y E(V.V. B)+ONY3. (A.20)
vj m=1 ij im™m
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The first and third terms on the right- hand side of (A.20) cancel out.
Since the Vij's(j =1,..,K) have a joint norma distribution, VN E(v?’j V.=
3VN o E(V,; Vi) * ON'Y?) (m=1, .., K) [Kendall and Stuart (1963), p. 91] and,

j
hence, the second and fourth terms on the right- hand side of (A.18) cancel out as
N - o, and so does the last term. Thus:
E(zyn/ VN) = 0.
5 E (zén/\/N):O.
N

A typical element of E(z; n / VN) is

E(zg 0/ VN) = (L1 VN) E{3 xizj i - 2[E 3%, ¥, /N3,

- E(Y Xizj INTy n} (=1 ..K). (A.21)
Now,
~ ~ —_ N ~ ~
Einj yi/N :EZ(xij +Vij) (xi B+ui - u)/N= Eizlxij X, B/N. (A.22)
Then,

E(zg 0/ VN) = E{z(izizj + Vi2j +2%,v,) (% B+u - W n /N
- [EQ X3N] 3G B+u - 0]/ VR

- &2 5[ B+u - U)n]/VN} +ONA (A.23)
j
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=E[y iizj] E[(u - W) n]/VN+VN E[(vizj(ui - ) n]

+2E(Y iij x. fl E(v; n)/ VN

- 2VN[E(Y >"<'ij x. B1N)] E(v; ]

- VN (EY iizj /'N) E[(u - 1) n]

- VN & E[(u - 0) n]+ON"?. (A.24)

j

The first and fifth terms on the right- hand side of equation (A.24) as well as the

third and fourth terms cancel out. Finally, as N - o, the last term vanishes and the

second and sixth terms cancel out since u Is independent of v, and, hence, for the

second term, we have
EVE (U - O ] = ELV;, (U - U) (u -V, B) (A.25)

= E[vizj(ui - Wu] =0 E[(u - U)u] +ON? (A.26)
j

and similarly, for the sixth term, we have :

o El(y - U n) =0, El(u - W) - VB =0 El(u- Bu]. (A.27)
j j j
6) E (zzn/VN)=0.
N
A typical element of E(z; n / VN) is

E(zg 0/ VN) = E{3 X, yZn VN - E(yy/N) 3 X, m/ VN

- 2[EY X; Y, IN] 3y, n. IVN} (=1, ..,K). (A.28)
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Now,
Eyy/N=pB EXX/N)B+0d +ON?

and therefore

Bz, 1/ YN) = E[H{(X; +v) (K B+ (u -

+2% B(u - W] n / VN

- 1B EGX I N) B+ of) 31, + v, 1,/ VN]

- 2E( X X BIN) 3K B+u - W ] VN ] + o(N'Y? (A.29)
=2[E3 X, X A El(u - O 0]/ VN + [E@ XX B B, )/ VN)

+ VN E[(v; (u; - W’ nl- VN EXX/N) B E(v, 1)

- oC VN E(v; ) - 2 VRE(R X, X, B/ N) El(u; - T) ] + oNYy .  (a30)

The first and sixth terms on the right- hand side of (A.30), as well as the second

and fourth terms cancel out. Now, for the third term,
VN E[v,(y, - W’ n]=VNE[u - ) v, (U -V, B

=-VN &2 E(v, V, B + oNY? (A.31)

and for the fifth term,

VN &% Elv, ) = 0 Elv,(u - V; B

ij i

=- W o E(v, V; B, (A.32)
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and hence, the third and fifth terms also cancel out, asN ! «», and so does the last term.

7 N_E>oo(z% n/vN) = 0.
We have
Bz, 0/ VR) = EL3/ 1 VR) - 3(Eyy / N) 3, m, / VNI, (A:33)
E(z, ) = E(IIK B + 36 B° (u - O)
+3(% B (u- W2+ (- 0% n /N
- 3[BEXX/N) B+ 0] 3[(X B+u - 0 n]/VN} + O(N™?) (A.34)
= 3E(B XX B El(y, - O n] /N + VN E[(y - 0° 1]
- 3VN BIEKK / N)] BEL(Y, - B ]
- 302 VNE[(u - W) n]+ON"?) . (A.35)
The first and third terms of the right- hand side of eguation (A.35) cancel out.
AsN - @, the last term vanishes and the second and fourth terms also cancel out since,
VNE[u - 1°n] =vN Eu® + 0N,

VN o E[u - U) n. = VN o + oN"?)
and, given that u is normally distributed,

4 _ o 4
E(ui)—30u.
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APPENDIX B
THE ASYMPTOTIC COVARIANCE MATRIX OF 8

The asymptotic covariance matrix of 8 can be derived as follows. Replacing %
in equation (12) that defines 8, by its value in equation (13), and then replacing Y in
equations (13) and (15) and by its value in equation (4), one obtains :

Y=0,% 6+2z2 ), (B.1)

S, =S, 0+ [0 X) - (1, X)Z2Z2*Z1n/(N- q) (B.2)
and

B=0+{[0 X) (1, %) - (V- NS /IN* B3)

[, X) 2@ Z nIN+ Op(N'l)
Hence,

VN (6 - ) has the same asymptotic distribution [Theil (1971)] as
A= [PIm{[(1, XY (1, X) - (V- Y S0 /N (B.4)
{Plim[(1, )Q)' Z/N] [Pim(Z'Z/ N)'l]} Z'nl/vN.
N is asymptotically normally distributed [White (1984)] with mean O and covariance
matrix :

V = E(AA) = [(Plim A)™L Plim B] E[Z'n n'Z / N] Plim B'(Plim A)™

where A and B are defined in equations (17) and (18).
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Since the random variables included in Z and n are not correlated between

N
observations, E[Z'n n'Z / N] can be estimated by Y Zi'Zi ﬁiZ/ N [White (1984)] as
i=1

indicated in equation (16).
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Table 1
Root Mean- Squared Errors - Experiment 1

(N = 2,000; R* = 04; A, = 0.3)

A) Root Mean- Squared Errors

N ~
6 0 0 6~ 0
d p
a 1.811 0.422 0.859 0.328 0.325

Bl 0.319 0.139 0.238 0.084 0.084
BZ 1.566 0.307 0.130 0.215 0.220
BS 0.414 1.563 0.134 0.164 0.169

Average
RMSE 1.028 0.608 0.340 0.198 0.200

B) Multiple R? with Set of Insiruments

(1) @) ©) (4) )
Variable 6, 6, o 9 g - o)t
X, 0.075 0.181 0.253 0.289 0.181
X, 0.097 0.300 0.318 0.365 0.066
X 0.297 0.007 0.385 0.399 0.088

3

T This column shows the multiple RZ of each Qi (i =1, 2, 3) with (IN, E) where Z

corresponds to the subset of instruments included in Z but not in 9 Z is defined as :

Z = (22, 23, 25, 26’ 27).
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Table 2
Biases, Type | Errorsand EV Tests- Experiment 1

(N =2,000; R*=04; A, = 0.3)

A) Biases

AN ~

0 6* 0
o 0.844 0.011 - 0.031
/31 - 0.236 - 0.004 0.010
/32 - 0.047 - 0.004 0.009
/33 0.103 0.006 - 0.005
Average of
absolute values 0.308 0.007 0.014

B) Size of Type | Errors, in %

AN ~

0 6* 0
a 100.00 4.80 6.50
/31 100.00 5.20 6.60
/32 7.40 4.90 5.50
/33 24.40 5.10 5.90

C) Power of EV Tests

Test based on Z : 85.10 %
Test based on Z : 90.10 %



Table 3
Results of Experiment 2

(N =2,000; R*=04; A, = 0.1)

A) Biases

® o ?
a 0.334 0.007 -0.008
B, - 0.093 - 0.001 0.005
B, -0.019 0.004 0.011
B, 0.042 0.001 - 0.003
Average of
absolute values  0.122 0.003 0.007

B) Root Mean- Squared Errors

8 o ?
a 0.370 0.257 0.261
B, 0.098 0.055 0.057
B, 0.117 0.202 0.208
B, 0.093 0.143 0.148
Average 0.169 0.164 0.168

C) Sizeof Typel Errors, in %

9 o 8
a 58.00 6.30 6.30
B, 84.70 4.80 5.60
B, 5.20 4.30 4.30
B, 7.90 3.90 4.30

D) Power of EV Tests

Test based on Z : 45.30 %
Test based on Z : 50.30 %
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Table 4
Results of Experiment 3

(N =700; R =04; A, =0.30)

A) Biases

® o ?
a 0.853 0.026 -0.093
B, -0.237 - 0.009 0.036
BZ - 0412 - 0.006 0.047
B, 0.103 0.008 0.027
Average of
absolute values  0.309 0.012 0.051

B) Root Mean- Squared Errors

8 o B
a 0.891 0.540 0.614
Bl 0.242 0.133 0.169
B, 0.200 0.374 0.402
B, 0.174 0.263 0.309
Average 0.377 0.328 0.374

C) Sizeof Typel Error, in %

9 o ?
a 90.10 4.00 6.30
B, 99.80 4.00 7.00
B, 6.20 4.70 4.70
B, 9.20 3.90 5.50

D) Power of EV Tests

Test based on Z : 36.70 %
Test based on Z : 51.60 %
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Table5
Results of Experiment 5

_ B2 —nar -0 R —
(N =2,000; R? = 0.4; A= 030; 1., = 0.5; 8, = 0)

A) Biases

® o ?
a 1.926 0.060 -0.104
B, -0.287 - 0.006 0.019
B, - 0.065 0.011 0.016
B, 0.358 0.010 - 0.026
Average of
absolute values  0.659 0.022 0.045

B) Root Mean- Squared Errors

8 o ?
a 1.944 0.698 0.719
B, 0.289 0.095 0.100
B, 0.124 0.179 0.179
B, 0.367 0.182 0.195
Average 0.681 0.288 0.298

C) Sizeof Typel Error, in %

9 o ?
a 100.00 3.90 7.30
B, 100.00 4.80 7.10
B, 10.00 4.70 5.40
B, 99.30 4.10 5.70

D) Power of EV Tests

Test based on Z : 84.00 %
Test based on Z : 89.40 %
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Table 6
Human Capital Augmented Solow Model
[Mankiw, Romer and Weil (1992)]
Dependent Variable : In GDP Per Capita in 1985.
Observations : Cross Section of 98 Countries

A) Complete Set of Instruments

EV Tests EV Tedsts
N ~
Estimator 6 6" 6 Using Z.  Using Z.
(Standard error) (Standard error) (Standard error) t-Statistics  t-Statistics
Constant 6.848 2.884 3.856
(2.277) (1.799) (2.737)
In(I/GDP) 0.697 0.786 1.279 -0.534 -1.679
Investment/GDP (0.133) (0.269) (0.666)
In(n+g+ 0 -1.744 -3.205 -3.033 3.278 2.506
Growth rates of labor (0.416) (0.628) (0.912)
and capital plus
depreciation rate
In(school) 0.655 0.570 0.448 0.950 -1.406
Percentage of (0.073) (0.1149) (0.285)
working age population
in secondary school
Zero sum hypothesis
sum -0.393 -1.849 -1.306
(0.457) (0.715) (1.195)
t-tatistic -0.860 -2.586 -1.092
p-value p-value
Joint EV tests on all variables 0.009 0.002
B) Restricted Set of Instruments
Constant 6.848 3.692 1219
(1.177) (1.755) (2.046)
In(I/GDP) 0.697 0.630 0.577 0.955 -1.900
(0.133) (0.154) (0.165)
In(n+g+ 0 -1.744 -2.877 -3.765 2411 2.908
(0.416) (0.617) (0.718)
In(school) 0.655 0.642 0.631 0.956 -0.053
(0.073) (0.072) (0.076)
Zero sum hypothesis
sum -0.393 -1.606 -2.556
(0.457) (0.682) (0.797)
t-statistic -0.860 -2.355 -3.206
p-value p-value
Joint EV tests on all variables 0.129 0.043
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