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Stochastic Volatility and Time Deformation: An
Application to Trading Volume and Leverage Effects

FEric Ghyselsf, Joanna Jasiak’

Abstract / Résumé

In this paper, we study stochastic volatility models with time deformation. Such processes
relate to early work by Mandelbrot and Taylor (1967), Clark (1973), Tauchen and Pitts (1983),
among others. In our setup, the latent process of stochastic volatility evolves in a operational
time which differs from calendar time. The time deformation can be determined by past volume
of trade, past price changes, possibly with an asymmetric leverage effect, and other variables
setting the pace of information arrival.

The econometric specification exploits the state-space approach for stochastic volatility
models proposed by Harvey, Ruiz and Shephard (1994} as well as matching moment estimation
procedures using SNP densities of stock returns and trading volume estimated by Gallant, Rossi
and Tauchen (1992). Daily data on the price changes and volume of trade of the S&P 500 over
a 1950-1987 sample are investigated. Supporting evidence for a time deformation
representation is found and its impact on the behaviour of price series and volume is analyzed.
We find that increases in volume accelerate operational time, resulting in volatility being less
persistent and subject to shocks with a higher innovation variance. Downward price movements
have similar effects while upward price movements increase persistence in volatility and
decrease the dispersion of shocks by slowing down the operational time clock. We present the
basic model as well as several extensions, in particular, we formulate and estimate a bivariate
return-volume stochastic volatility model with time deformation. The latter is examined through
bivariate impulse response profiles following the example of Gallant, Rossi and Tauchen (1993).

Nous proposons un modéle de volatilité stochastique avec déformation du temps suite aux
travaux par Mandelbrot et Taylor (1967), Clark (1973), Tauchen et Pitts (1983) et autres. La
volatilité est supposée étre un processus qui évolue dans un temps déformé déterminé par Parrivée
de 'information sur le marché d’actifs financiers. Des séries telles que le volume de transaction et
le rendement passé sont utilisées pour identifier la correspondance entre le temps calendrier et
opérationnel.

Le modele est estimé soit par la procédure de pseudo maximum de vraisemblance comme
proposé par Harvey ef al. (1994), soit par des méthodes d’inférence indirecte utilisant la densité
SNP de Gallant, Rossi et Tauchen (1992). Dans la partie empirique, nous utilisons des données
journaliéres de la bourse de New York. Un modéle univari¢ de volatilité stochastique ainsi qu’un
modéle bivarié de volume et rendements avec déformation du temps sont analysés.

Key words : stochastic volatility, trading volume.
Mots clés : volatilité stochastique, volume de transaction.
JEL: C13,C22, G12,Cl12
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1. INTRODUCTION

Asset prices respond to the arrival of information. Some days, even some parts of a
trading day, very little news, good or bad, is released. Trading is typically slow and
prices barely fluctuate. In contrast, when new information changes expectations,
trading is brisk and the price process evolves much faster. This observation motivated
Mandelbrot and Taylor (1967) and particularly Clark (1973) to suggest modelling asset
price processes as subordinated stochastic processes. Instead of studying asset prices as
a function of (equally spaced calendar) time, via monthly, weekly, daily or intraday
series, they suggested to let asset price movements be a function of information arrival
which itself evolves randomly through time. To be slightly more formal, instead of
studying say daily returns as x(At) = log(p(t) / p(t - 1)), it was suggested to view
log(p(t) / p(t - 1) = x(T(t)) where T(t) is a positive stochastic process, sometimes called
directing process though Clark, for instance, deliberately chose the notation T(t) to
indicate he meant the trading volume on day t. This setup, which is sometimes also
called time deformation since the relevant time scale is no longer calendar time t but
operational time T(t), has scveral attractive features. For instance, it easily
accommodates leptokurtic distributions for asset returns as emphasized by Mandelbrot
and Taylor; it is also a convenient framework to study trading volume and asset return
comovements as stressed by Clark; and, last but surely not least, it yields a random
variance or what nowadays would be called a stochastic volatility model. These ideas
have been refined and extended in several ways.  Particularly, the restrictive
assumption made in the early work that T(t) was an i.i.d. process was relaxed by
Tauchen and Pitts (1973). Other contributions include Harris (1987), Lamoureux and
Lastrapes (1990), Gallant, Hsieh and Tauchen (1991), Andersen (1993).1 Moreover,
the microstructure foundations for time deformation and the process of price
adjustments can be found most explicitly in Easley and O'Hara (1992). It is interesting
and at the same time important to note that none of these developments exploited
explicitly the continuous time financial modelling approach which has become so
widely used since the seminal work of Merton (1973) and many others. Indeed, when
one refers to stochastic volatility, one typically thinks of models originally constructed
for the valuation of options where changes in the volatility were governed by a
stochastic differential equation which at least is not explicitly related to the arrival of
information through trading volume or other variables. Such models were developed

1 There is, of course, also an extensive literature on trading volume, including both theoretical and
empirical papers.  See, for instance, Foster and Viswanathan (1993a,b), Gallant, Rossi and
Tauchen (1992), Iausman and Lo (1991), Huffman (1987), Karpoff (1987), Lamourcux and
Lastrapes (1993), Wang (1993), among others.



by Hull and White (1987), Johnson and Shamro (1987), Scott (1987), Wiggins (1987),
Chesney and Scott (1989), Stein and Stein (1991) and Heston (1993), among others.

In this paper, we study continuous time stochastic volatility models with time
deformation. The setup combines insights borrowed from the earlier literature on
subordinated stochastic processes and from the more recently developed diffusion
equation stochastic volatility models. Let us briefly return to a more formal discussion
and note that the latter class of models typically takes the form :

(I.1a)  dy() = py(t) dt + o(QY(OIW (1)
(L.1b)  dlogo(t) = a(b - logo(t))dt + dez(t)

where W 1(t) and Wz(t) are two standard Wiener processes usually assumed as
independent. We will not assume that the volatility process moves continuously and
smoothly through calendar time, as is usually assumed and described by (1.1b). The
initial moltivation for the work of Mandelbrot and Taylor, as well as Clark, was that key
variables affecting volatility, like the arrival of information to the market, tend not to
evolve continuously and smoothly through time. Therefore, we shall make the
volatility process a subordinated stochastic process evolving in a time dimension set by
market activity. To make this more explicit, let us assume an operational time scale s
for the volatility process, with s = g(1), a mapping between operational and calendar

time t, such that :2

(L.2a)  dy() = py(t) dt + o(g(t)) y(t) deo ()
(1.2b)  dlogot(s) = a(b - logots)) ds + cda)z(s) .

We use the notation g(t) for the directing process because we prefer to think of
some generic time deformation, which may include trading volume besides many other
serics that help determine the pace of the market. Before discussing what might
determine g(t), we would like to make some observations regarding equations (1.2).
Indeed, it should first be noted that the equations collapse to the usual stochastic
volatility model if g(t) = t. This was done on purpose to accommodate econometric
hypothesis testing. Obviously, we could have adopted another specification for o(g(t)).

2 The mapping s = g(1) must satisfy certain regularity conditions which will be discussed later.
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Moreover, one could correctly argue that, making changes in volatility a subordinated
process amounts to suggesting a more complex law of motion for volatility in
comparison to the Ornstein-Uhlenbeck (henceforth O-U) specification appearing
in (1.1b). This interpretation is valid, yet it should be noted that, through g(t), one can
associate many series other than the security price y(t) to explain volatility; hence, one
implicitly deals with a multivariate framework.

What should determine g(t)? The perennial problem, of course, is that the flow of
information is a latent process. The task of modelling is considerably simplificd when
we specily the mapping s = g(t) in terms of observable processes. We propose to use
past volume of trade and other variables such as past returns allowing possibly for an
asymmetric response to create a leverage effect. Therefore, our sctup provides a way
of introducing data on trading volume in the specification of stochastic volatility
models.  Furthermore, it is possible to introduce leverage effects through the
specification of asymmetric responses of s to past price changes, i.e., operational time
evolves differently in bull and bear markets. It also appears from the empirical results
which were obtained that our specification provides an alternative to a class of
processes put forward by Merton (1976a,b) for option pricing, where jumps in the
underlying security returns are permitted. Merton suggested to include a Poisson jump
process to distinguish between the arrival of normal information, modeled as a standard
log normal diffusion, and the arrival of abnormal information, modeled as a Poisson
process. We find that operational time typically moves slowly, but every so often one
finds dramatic increases in market speed. In Merton's setup, the information arrival
spells are purely exogenous, whereas our approach has the sources of these changes
modeled both in a multivariate sense, via the introduction of volume series, and in an
endogenous fashion through past price changes. Using daily S&P 500 data and NYSE
volume from 1950-1987, we find that increascs in volume accelerate operational time,
resulting in volatility being higher and less persistent and subject to shocks with a
higher innovation variance. Downward price movements have similar effects, while
upward price movements increase persistence in volatility and decrease the dispersion
of shocks by slowing down the operational time clock.3

In order to estimate the subordinated diffusions, we rely on two alternative
estimation procedures. The first method involves the Kalman filter and draws upon

3 Obviously other series could figure in the specification of g(t). Indeed in many instances one can
find time deformation arguments in financial modelling. In scction 2, we will provide a brief
review of examples which appeared in the literature.



results from Harvey, Ruiz and Shephard (1994) on estimating stochastic volatility
models in state space form and results from Stock (1988) on estimation of linear
processes with time deformation.  The second method is based on a "matching
moment” principle as presented by Gallant and Tauchen (1994) using SNP densities for
stock returns and volume series fitted by Gallant, Rossi and Tauchen (1992).

In section 2, we present the basic model. Estimation and hypothesis testing are
discussed in section 3. Empirical results appear in section 4.

2. A TIME DEFORMATION APPROACH TO STOCHASTIC VOLATILITY

Stochastic processes used in finance are most often assumed to be generated by a
first-order stochastic differential equation of the form :

2.1 dX(s) = a(s, X(s), ®) ds + b(s, X(s), ®) dM(s)

where X(s) is a n-dimensional process adapted to a filtered probability space (Q, F, P)

evolving in some operational time. The process is parameterized by e € R® with dM(s)
a m-dimensional semi-martingale process, while a(s, X(s), ©) and b(s, X(s), &) are both
bounded predictable processes of dimensions n and n x m, respectively. Equations
like (2.1) have been adopted to describe security, bond and derivative prices as well as
information flows, mortgage values, inventories and other state variables such as
technology. Whenever the assumed operational time scale s differs from t, there is
so-called time deformation or, alternatively with s = g(t), the process X(g(t)) is a
subordinated stochastic process. Both expressions will be used throughout the paper.

The idea of time deformation appears in quite a number of finance papers, though
not always explicitly. Probably the simplest examples of time deformation are related
to the widely documented nontrading day, holiday and weekend effects in asset prices.
Bessembinder and Hertzel (1993) are the most recent example of several papers on
these so-called stock market anomalies.4 In foreign exchange markets, there is also a
tendency to rely on activity scales determined by the number of active markets around
the world at any particular moment. Dacorogna et al. (1993) describe explicitly a

4 For instance, Lakonishok and Smidt (1988) and Schwert (1990) argue that returns on Monday
are systematically lower than any other day of the week, while French and Roll (1986), French,
Schwert and Stambaugh (1987) and Nelson (1991) demonstrate that daily return volatility on the
NYSE is higher following nontrading days closures.



model of time deformation along these lines for intraday movements of foreign
exchange rates. Besides these relatively simple examples, there are a number of more
complex ones. The most prominent being the work of Mandelbrot and Taylor as well
as Clark and extensions which were mentioned in the introduction. Before elaborating
on this further, it is worth mentioning a few other examples as well. For instance,
Madan and Seneta (1990) and Madan and Milne (1991) introduced a Brownian motion
evaluated at random (exogenous) time changes governed by independent gamma
increments as an alternative martingale process for the uncertainty driving stock market
returns. Geman and Yor (1993) also used time-changed Bessel processes to compute
path-dependent option prices such as is the case with Asian options.>

As explained in the introduction, we study a continuous time stochastic volatility
model with time deformation. We combine the insights from Mandelbrot and
Taylor (1967) and Clark (1973) on subordinated stochastic processes and from the
option pricing stochastic volatility models associated with the work of Hull and
White (1987) and others mentioned before. Volatility is modeled as a subordinated
process driven by a generic directing process s = g(t), s being an operational time scale,
associated with the arrival of information. In particular, we consider the set of

equations (1.2) repeated here for convenience :
220 dy() = py(V) dt+ o(g(V) y(O dW, (O
(22b)  diogats) = a(b - o(s)) ds + cdW,(5) .

To enhance our understandingvof the mechanics of the process, let us momentarily
isolate the volatility equation (2.2b) and discuss its properties as well as its
discretization. To simplify this task even further, let us sct b = 0 and work with a
continuous time AR(1). To describe an investbr’s information, let us consider the

probability space (@, F,P) and the nondecreasing family F={% [}T:O of
sub-o-algebras in calendar time. Furthermore, let Zt be a m-dimensional vector
process adapted to the filtration F, ie., Zt is & t—measurable. The increments of the
time deformation mapping g will be assumed to be & 1 measurable via the logistic
transformation :

5 Time deformation is also used for a variety technical reasons in, for instance, Detemple and
Murthy (1993) to characterize intertemporal assct pricing equilibria with heterogeneous beliefs.
Nelson and Foster (1993, 1994) use changes in time scales to study ARCII models as filters for
diffusion models.



dg(;Z, )

(2.3) —dr = g(T, Z T

- - 1 ,
L) =expCZ )/ T2 _exp(Z )
fort - 1 <7< .6 Equation (2.3), setting the speed of change of operational time as a

measurable function of calendar time process Z ., is complemented with additional

-1
identification assumptions :

(242) 0<g(BZ )<e
(2.4b)  g(0)=0

240)  7I_ ds=1.

These three technical conditions, which will not be discussed at length here as
they are covered in detail in Stock (1988), guarantee that the operational time clock
progresses in the same direction as calendar time without stops or jumps.? Given that

g is constant between successive calendar time observations via (2.3), its discrete time
analogue Ag(t) = g(t) - g(t - 1) takes the same logistic form appearing in (2.3). At this
point, we have not yet discussed what series should enter the vector Z[-l' A detailed
discussion will be delayed until later in the section, but it may be worth pointing out at
those variables like past trading volume or any other processes linked to information
arrival will be candidate series to enter equation (2.3). Proceeding with the discussion
of equation (2.2b), we note that the solution in operational time of a first-order linear
process can be expressed as :

. S
(2.5) logo(s) = 25 logot(s') + f

ea(s_r) sz(r)
S

¥

6 The fact that the denominator in (2.3) contains a sample average may suggest that o(g()) is not
measurable with respect to the filtration i in calendar time. However, the denominator

in (2.3) is there for reasons of numerical stability of the algorithms described in the next section.
Since it is only a scaling factor, its presence is of no conceptual importance.

7 Excluding jumps for the time deformation process must not be confused with the presence of
jumps in the stock return process, as proposed by Merton (1976a, b). The time deformation will
govern the (stochastic) volatility of the return process. Arbitrarily large (yet finite) changes in
operational time will make the stock return process extremely volatile through the conditional
variance.



where s' < 8. To recover the solution in calendar time, we let s = g(t) and s' = g(t - 1)
and obtain :

262) h=eE0n 4y (=1 ..,T

(2.6b) v, ~ N, -L(I - exp2A Ag() / 2A)

T )
(=1 exp(c ZH)}

(2.6c)  Ag(t) = exp(cZ )/ 1 {T

Hence, the process where ht = logo(g(t)) while linear in operational time becomes
a random coefficient model, also called doubly stochastic process, in calendar time also
featuring conditional heteroskedasticity governed by Ag(1).8

The brief digression on time deformation facilitates the presentation of the process
of main interest, which is a SV model with time deformation. Suppose now that {yt}
represents a discrete time sample of the process in (2.2). A standard Euler
approximation to (2.2a) yields :

2.7 log y, = A+ log Yoy +O,€ € ~ iid. N(O, 1).

t

Let us combine this expression with the volatility equation. If we assume again
that  # 0 in (2.2b) and furthermore observe that the stock returns used in our empirical
application exhibit small yet significant autocorrelation at lag 1, we obtain the
following discrete time representation :

(2.8a) Alogyt - a, Alog Yoq = A= o, €,

(2.80)  h =[(1 - exp(AAg()] B +exp(AAgW) h | +V,

8 Doubly stochastic processes have been discussed in detail by Tjgstheim (1986).  Stability
conditions and existence of moments have been studied for cases where Ag(t) is Markovian.
It may be worth noting at this point that the Zt-l process need not be exogenous. Indeed,

Stock (1988) showed that by sctling Zt— equal to the square of the process appearing in the

1
mcean equation, one obtains an ARCH -like process having the additional feature of a random
coefficient model.



where the variance of v is given by (2.6b). Equations (2.8a) and (2.8b) are the basic
set ol equations of tl‘le discrete time representations of the SV model with a
subordinated volatility process which evolves at a speed set by Ag(t). The set of
equations (2.8) will be used for a simulated method of moments estimation procedure
which will be discussed in the next section. We will also use a quasi-maximum
likelihood estimation algorithm, however, based on a Kalman filter state space
representation.  For this, we rely on Harvey, Ruiz and Shephard (1994) and write
equations (2.8a) as :

(2.9) log[Alog Y, ~ 4 Alog Voi - /l]2 =h +log 8%

where E log e%=-1.27 and Var logsfzn'z/z. We can rewrite equation (2.9)
adding (2.8b), as follows :

(2.102) log[Alog y - a Alogy - A®=-127+h +{
(2.10b) hl =[(1 - exp(AAg(t)] B + exp(AAg(D)) h[_1 + v,

Apart from the parameter A, whose treatment is discussed, for instance, by
Gouriéroux, Monfort and Renault (1993), we obtain a state-space model with
ime~varying coelficients similar to that obtained by Stock (1988), except for the
properties of the Ct process which is no longer Gaussian.9 Consequently, the
estimation procedure based on the Kalman filter will result here in a quasi-maximum
likelihood estimator, similar to Harvey, Ruiz and Shephard (1994).

Obviously, the SV model with time deformation can be viewed simply as a model
with a doubly stochastic process for ht which replaces the wusuval linear or
Ornstein-Uhlenbeck process.  Yet, the stochastic variation in the autoregressive
coefficient has a very specific interpretation through the specification of the mapping
g(t). Let us, therefore, turn our attention now to a description of the functional form
that will be adopted. The work by Clark (1973), Tauchen and Pitts (1983) and Gallant,
Rossi and Tauchen (1992) suggests that Zl_1 should include both past volume and price
movements. With respect to price movements, we will adopt a functional form which

9 The innovations Vt and Ct are assumed i.id. Correlation between the two processes would

creale asymmelries in the conditional variance {see Iarvey and Shephard (1993)]. We do not
need to assume such a correlation since the asymmetry will come through the time deformation
(as will be discussed later in the text).



9

can allow for asymmetries in the time deformation when prices move upward or
downward. Such asymmetry allows us to investigate so-called leverage effects in the
conditional variance [cfr. Black (1976) and Christie (1982)]. Several recent empirical
studies, including Gallant, Rossi and Tauchen (1992), Nelson (1989, 1991), and Pagan
and Schwert (1990) indeed suggest asymmetries in the conditional variance function.
Finally, we could also include a set of predetermined processes denoted dt to account
for nontrading day effects and possibly other periodic patterns discussed, for instance,
by Bollerslev and Ghysels (1994). The logistic function emerging from the above
discussion would be :10

(2.11)  exp(c ZH) = exp(c(’l dt +C log Volt_1 + cp Alog Yo+ y I Alog yt_ll) .

where log Voll represents a trading volume series and A log Y, the return series.
The specification of the time deformation function is chosen in light of certain existing
stylized facts we would like the model to fit. Other specifications can be chosen,
however. The general model we develop holds for any process ZH, which is assumed
to capture the flow of information. The specification in (2.11) is just one of possibly
many, yet is directly related to the existing literature on conditional variance models.
Further research may find other series appropriate as well.

It might be uselul to describe the stochastic behavior of the process obtained so
far. Referring to some of the empirical results, discussed later, we must first observe
that coellicient A in (2.8b) is found to be negative. Therefore, when c, > 0, the model
predicts that increases in volume make Ag(t) increase. This acceleration in operational

time results in a decline in a, = exp AAg(t) and an increase in 0”; defined in (2.6b).
These two effects imply that the ho. process becomes more erratic since its persistence
declines and it is subject to larger shocks. Thus, trading volume increases are paired
with volatility increases, an empirical fact documented via SNP fitting by Gallant,
Rossi and Tauchen. If we find cp < 0 combined with Cy > 0, while Ic QI > lcpl to ensure
Ag(t) > 0, then a change in price of the same magnitude but of the opposite sign will
result in Ag(t) to be smaller with upward price movements and larger with falling
prices. Consequently, declining stock prices have an effect of making the volatility

10 Note that the timing of d, differs from the other processes. Since the variables entering d, are
predetermined, they are measurable with respect to & 1 and, therefore, legitimate for setting
the pace of operational time changes Ag(t). Morcover, it should be observed that ¢, is a vector

d
of parameters since d[ may be multivariate.



10

process more erratic (i.e., a declines and o’;t increases), while a positive price move of

. . . ) 2
the same size has an opposite effect, namely, a[ increases and G;t decreases.

When the subordinated stochastic volatility model involves trading volume
through Ag(t) it would be natural to consider a bivariate model of stock returns and
trading volume since both series are jointly determined by the arrival of information. It
is indeed a mojor point stressed by Clark (1973), Tauchen and Pitts (1983) and many
others. The framework developed so far lends itself easily to extensions which take
into account the laws of motion of trading volume. Such model would be as follows :

[c[ 8[}
+
v

t

h B,
(2.12b) ‘] = [I - exp(AAg())] [ﬁIJ + exp(AAg(t)
\Y

((Alog Y, -4 Alog y Hp

H

t-l)

(2.12a)

\log Volt v, v

h 1%
Vt-l + vlt

t-1 2t
where :

a a
Y Y2
(2.13) A= . 2 }

21 22

(2.14)  Ev v =Z[( - exp(AAg(D)] A2

(2.15) 1=

Equation (2.14) is the bivariate extension of (2.6b) now involving the matrix A defined
in (2.13) and the covariance matrix X. Note also that the time deformation Ag(t) is
common to both processes. While the specification of Ag(t) remains the same, it is
clear that the arrival of information which drives jointly h[ and v, will be identified
differently in comparison to the univariate model only involving ht. It should also be
noted the past volume affects hl directly through the term A, Ag(t) Vi as well as
through Ag(t). The dynamics of the joint process (2.12) will be more difficult to
analyze via description. Instead, our discussion will revolve around the analysis of
impulse response functions for the nonlinear bivariate system along the lines suggested
by Gallant, Rossi and Tauchen (1993) and Potter (1991).



3. ECONOMETRIC ANALYSIS

Estimating SV models represents some stiff challenges for econometricians.
In recent years, several estimation principles were proposed involving the use of
simulated method of moments, Kalman filter and Bayesian procedures. Recent
contributions include Duffie and Singieton (1993), Gallant and Tauchen (1994),
Gouriéroux, Monfort and Renault (1993), for the method of moments estimators while
Harvey, Ruiz and Shephard (1994) and Jacquier, Polson and Rossi (1994) discuss,
respectively, the Kalman filter and Bayesian methods. To estimate the SV models with
time deformation, we shall adopt two methods : one using the Kalman filter and one
relying on the "matching moments" approach described by Gallant and Tauchen (1994).
A subsection will be devoted to each method. Before turning to the specifics, it is
worth making several observations. Both estimation procedures should be viewed as
complementary especially with regard to estimating subordinated processes. The
Kalman filter estimator is a quasi-maximum likelihood procedure, henceforth QMLE,
and therefore has the disadvantage of being asymptotically inefficient. Simulation
evidence reported in Andersen and Sorensen (1994) and Jacquier, Polson and
Rossi (1994) suggests that the state space QMLE may be quite inefficient, depending
on the circumstances. This setup has certain advantages, however, in comparison to the
simulated methods of moments procedure. Indeed, there is a greater flexibility with the
Kalman filter in formulating Ag(t) without having to match the moments of all the
series involved in the time scale transformation. Hence, there are certain trade-offs
between the two estimation procedures which we will discuss. Therefore, we turn our
altention now to the specific details to clarify these observations.

3.1 Quasi-Maximum Likelihood Estimation of SV Models with Time Deformation

This method consists of maximizing the quasi-likelihood function of a nonlinear
SV model written in a form of linear discrete-time state space system as specified in
equations (2.10a and b). The Gaussian quasi-likelihood function is evaluated in the
(calendar) time domain using a Kalman filter with time varying filter parameters that
depend on Ag(t). This algorithm is described in Stock (1988) and summarized in this
section. We cast the presentation in a general multivariate context since we also want
to cover the bivariate model involving volume described by equation (2.12).
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The evolution of the state is described by the transition equation. In operational

: th . . . . . . .
time s, the r -order linear differential equation representing a n-dimentional O-U

process can be written in a stacked form as :

(3.1.1)  dy*(s) = A[RB - yw*(s)] ds + Rdn(s) ,

where

E(s) ] [0 ]

0 .

DE(s) :

W¥(s) = . ,R=1.1,A=1|" I
: ’ 0
r-1 |

D &(s)d -Ar Ar-l A1‘

Here &(s) may represent any subordinated process of interest while the vector
w*(s) is of dimension nr X 1 and the matrix R is nr x n. The matrix of coefficients A is
of dimension nr x nr, its elements being n X n, while the mean vector Bisnx 1. We
denote the mean-square differential operator by D. The innovation process 1(s) is
Gaussian with zero-mean increments and covariance matrix E[dn(s) dn(s")'] = ¥ ds for
s=s"and O otherwise. The real parts of the roots of matrix A are required to be
negalive for stability. We will also assume that they are distinct in order to adopt a

useful eigenvalue decomposition A:GAG‘I, where A is a diagonal matrix of
eigenvalues of A, which are, in general, complex numbers, while G is a matrix of

eigenvectors of A. Following Stock (1988), we set y(s) = G'I\;/*(s) and observe that in
operational time the transformed variable satisfies the following equation :
(3.12)  y(s) =1 - M GIRE + A s

S
s [ A GRan),
r=s'

where s > s'. Let the calendar time state vector be denoted S(7) = y(g(7)). Evaluating
the previous equation at s = g(7) and s' = g(t - 1), we find that S(1) satisfies :
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3.13) S =1l - CA(gm-g(t-l))J GIRB + N2 gy D

g(D
+ eAME(D-D G 'Rdn(@) .
r=g(t-1)

Developing the first term on the r.h.s of (3.1.3), we obtain :

(3.1.4)  S(1) = G'RB - D) G-l

2(7)
+ eA(g(D‘g(t‘l)) S(t . 1) + f

r=g(t-1)

MDD G lRan) |
and hence,

(3.15) S - G''RB = EDECD) g _ 1y _ g lRrp

2(7)
MDD G IR gnery |

S

r=g(t-1)

Now, set 8(1) = S(1) - G'lRﬁ. It is easy (o note that equation (3.1.5) can be
wrillen as :

g(7)
(3.1.6) (1) = NEDBCD gy, f MDD G lRanay .
r=g(t-1)

Equation (3.1.6) evaluated at T =t yields the final representation of the transition
equation :

3.1.7) S[: Tt St—l + v,

g(1) q
where T( = exp(A Ag(t)) and v, = f exp[A(g(t) - 1] G Rdn(r).

r=g(t-1)

The mullivariate measurement equation can be wrilten, in terms of the state

veclor §[, as :
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3.1.8) Y =-1271+ G§[‘+ RB+E,

)
where Y‘ and Ct arc nx1 vectors with elements yitzlog[A log yit“’ﬂﬁ’

Cit = log 812l +1.27,i=1,..,n,and 1 is a n x 1 vector of ones. The equations (3.1.7)
and (3.1.8) form a linear state space system. We suppose that the disturbances in both
equations are uncorrelated since in our setup any eventual impact of prices on volatility
is channelled through the time deformation term Ag(t).

The next step of the procedure consists of applying the Kalman filter algorithm.
Note, however, that Cit in (3.1.8) are not normally distributed and, hence the linear
filtering method can only be approximate while estimation will be asymptotically
inefficient (see Andersen and Sorensen (1994) and Jacquier et al. (1994) for further

discussion of this issue as well as simulation evidence).

Following Stock (1988), we initialize the Kalman filter by taking unconditional
expectations and assuming that prior to the sample Ag(t) = 1. The one-step ahead

forecast of the state, a is equal to zero and its covariance matrix PIIO = 2?_0 TQT!

0

can be easily obtained by computing T = Tt, and Q= Qt = E(vt V't) evaluated at

Ag(t) = 1. Moreover, the (i - j) the element of the matrix Qt is known to be equal to
Ag(Y)

a; exp[(/l.1 +Ij)(Ag(l) - p)]dr = —qij(l - Ti[Tjt) / (ki + Xj), where gy is the

r=0
(i - j) element of the matrix G'R T RG! .

3.2 Simulated Method of Moments Estimation of Subordinated Stochastic Processes

Gallant, Rossi and Tauchen (1992) have analyzed stock returns and volume of
transactions data and estimated semi-nonparametric densities, henceforth SNP, of the
joint process. These SNP densities will be the setting for the simulated method of
moments procedure described in this section. The moment matching procedure
involving SNP densities, dubbed by Gallant and Tauchen (1994) as efficient GMM
(henceforth EMM), allows one to avoid problems related to the appropriate choice of
moments in a standard GMM setup. The choice of moments is indeed particularly
cumbersome in cases of highly nonlinear models, such as SV models. The EMM
procedure relies on moment conditions which are generated in a first step using the
score function of the auxiliary SNP model. To facilitate the presentation, let us denote
the parameter vector describing the SNP density as 6 while the vector o describes the
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parameters of the SV model. For the EMM method, we are interested in generating the
vector of moment conditions using expectations under the SV model of the score from
an auxiliary SNP model. The task of computing this expectations vector is facilitated
since it is obtained easily by simulating the realizations, for a given value of the
parameter vector ¢, of the SV model with deformation of time. To be more formal,
consider the mapping obtained through simulation :

A A N
B2 o= (y ), x (@) ;
T=

A A
where y - and x T denote respectively the set of simulated endogeneous variables and the
sct of lagged endogeneous variables both generated by the time deformation SV model.
It is worth pointing out that we no longer rely on the normal approximation, as

appearing in (2.10a), but instead use directly (2.8a). In our case, g\/r(a) would typically

A - -
contain stock returns and trading volume while x r(oc) consists of their past realisations.
The estimation is performed in two steps. First, the estimation of the auxiliary model
(called the score generator) yields :

y, 11X, .,e),
1 { t t-1

where {§t, it 1}n denotes the set of observed data from a sample of size n (the
o=l
simulated data set is of size N). In the second step, the following moment criterion is

computed :

11
nNT

™MZ

(32‘3) mn(a, én) = . g@ in [[ (91_((1) | QT—I(a)’ ’éll).

Finally, the estimation of the time deformation SV model is given as :

A - v =y T 8-l ~
(3.2.4) o = Argmin m (ar, en) (In) mn((x, en),

o
=]
04

where Tn is a weighting matrix. [For a discussion of the appropriate choice of the Tn
estimator, sce Gallant and Tauchen (1994)]. The efficiency of EMM depends,

of course, on the choice of the auxiliary model. A score generator nesting the time



16

deformation SV model would allow to attain the maximum likelihood efficiency.
However, even a score generator that only closely approximates the actual distribution
of the data is nearly fully efficient. As noted before, the score function selected for the
ime deformation SV model is the derivative of the log density estimated by a
semi-nonparametric method (SNP) proposed by Gallant, Rossi and Tauchen (1992).
The SNP density function is based on a hermite expansion of the form :

(3.2.5) h@ = [P@1* ¢(z),

where z denoted a M-dimensional vector, P(z) is a multivariate polynomial of degree
KZ and ¢(z) denotes the density function of the multivariate Gaussian distribution with
mean zero and an identity covariance matrix. The constant of proportionality

1/ f [P(s)]2 ¢(s) ds makes h(z) integrate to one. A more complex specification can
easily be handled by means of a change of variables y = Rz + g1, where R is defined as
an upper triangular matrix and g is a vector of dimension M. In consequence, we
obtain the following expression :

(32.6) fyle)= (PR (y - wI)* ($IR(y - 1/ 1 dew(®) 1}

where the leading term is now proportional to the multivariate Gaussian density
function with mean i and covariance matrix £ = RR’. Hence, by setting KZ equal to
zero, a multivariate normal density can be estimated. Nonzero values of KZ result in
shape modifications that can accommodate fat tails and skewness. Other modifications
can be done by adjusting values of the remaining turning parameters Lli’ Lp, Lr, Kx, IZ
and Ix. The turning parameter L determines the number of lags in the location shift u
considered as a linear function of L past values of y for accommodating a Gaussian
VAR specification. To approximate a conditionally heterogeneous process, each
coefficient of the polynomial P(z) can be defined as a polynomial of degree Kx in past
values of y. The new polynomial P(z, x), where x is the vector of lagged values of y is
hence of degree KZ + KX. The conditional heteroskedasticity can also be captured by
letting R be a linear function of past values of y. The number of lags in the scale shift
Rx is determined by the parameter Lr. The number of lags in the x part of the
polynomial P(z, x) is controlled by Lp. Finally, the parameters IZ and Ix allow to
suppress an excessive number of cross product terms in case of multivariate series.
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The optimal score selection strategy is summarized in Table 3.1. The data used
consist of the daily closing value of the S&P composite stock index and the daily
volume of shares traded on the NYSE. The data set is identical to that used by Gallant,
Rossi and Tauchen (1992), who described its sources in detail.ll To determine the best
fit, we computed three criteria : AIC, BIC and HQ. AIC is the Akaike criterion defined
as :

AIC = sn(S) +P, /1,

A
where Sn(e") is the mean of the log likelihood and Pe denotes the number of
parameters. The more conservative criterion of Schwartz (BIC), which penalizes
specifications involving too many parameters is computed as :

A 1.
BIC = SN(G) + ~2—(Pe/ N) log(N) .

Finally, the Hannan-Quinn criterion lies in between the last two and is given by
the following expression :

HQ =S (8) + (P, / n) log[log(n)] .

We retained the one of the two best performing specifications under the Schwartz
criterion. Our preferred SNP model is described by the following set of the turning
parameter values : {L =2, L =16,L =2, K =4, K =1,1 =1 =0} with total

H r p zZ X z X
number of 35 parameters.

Before turning to the empirical results, it may be worth pointing out that the fitted
SNP densitics reported in Table 3.1 only involve stock returns. A consequence of this
is that the matching moment SV estimates will be limited to a time deformation based
on past returns, since trading volume does not figure in the SNP density. We have to
formulate a bivariate SNP involving both returns and volume to fit a SV model with
Ag(v) including both series. This is, of course, different from the QMLE setup
described in the previous section. A bivariate SNP involving both returns and volume
has been estimated by Gallant, Rossi and Tauchen (1992). We relied on an optimal
score defined by the following values of the tuning parameters : {Lliz 2, Lr= 18,

11 Besides the description of data sources, they also describe several transformations.
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Table 3.1
Univariate Price Changes 1950-1987 Optimized Likelihood

Lﬂ Lr L K , IZ K Ix SN Pe BIC HQ AIC

1 16 2 4 0 0 0 1.2866 24 1.2975  1.2919  1.2890
2 16 2 4 0 0 0 1.2849 25 1.2963  1.2904 1.2874
1 16 2 4 0 1 0 1.2792 34 1.2949 1.2868 1.2826
2 16 2 4 0 1 0 1.2793 35 1.2955 1.2871  1.2828
1 16 4 4 0 0 0 1.2866 24 1.2975 1.2919  1.2890
2 6 4 4 0 0 0 1.2849 25 1.2963 1.2904 1.2874
1 16 4 4 0 1 0 1.2750 44 1.2964 1.2859  1.2804
2 16 4 4 0 1 0 1.2759 45 1.2969 1.2861  1.2805
1 16 6 4 0 1 0 1.2748 54 1.3000 1.2870  1.2803
2 16 6 4 0 1 0 1.2746 55 1.3003  1.2871  1.2802
1 16 8 4 0 1 0 1.2736 64 1.3036  1.2881  1.2802
2 16 8 4 0 1 0 1.2735 65 1.3040 1.2882  1.2802
Notes : L« number of logs in VAR part fL,; L, : number of lags in the ARCHL part R ; 1. ' number

of lags in the polynomial part P(z, x); P(z, x) is of degree KZ in z with cross product terms

exceeding K7 - IZ sct to zero, same for Kx and Ix; S.. : negative of the log likelihood

N
divided by sample size (9636); P o' total number of parameters; BIC, HQ, AIC : respectively :

Schwartz, Hannan-Quinn and Akaike criterions.



Lp = 2. K] =4, 17 =1, K‘{ =2, iK = 1}.12 Since the bivariate SNP involves a very large

number of parameters (368), we extended the sample period and considered data on
prices and trading volume from a 1928-1987 sample.

4. EMPIRICAL RESULTS

In this section, we turn our attention to an empirical study of SV models subject to
time deformation. As noted in the previous section, the data used consist of the daily
closing value of the S&P composite stock index and the daily volume of shares traded
on the NYSE. The data are plotted in Figure 4.1 which consists of two parts : namely,
4.1a displays the return series, while 4.1b contains volume. The empirical results
reported here are based exclusively on the series appearing in Figure 4.1. A first
subsection will be devoted to SV models not involving the laws of motion of trading
volume log Vt. The second subsection will be based on the joint volatility-volume

specilication.
4.1 Empirical Subordinated SV Models

We fitted two continuous time SV models : the first one contains a simplified
volatility equation and is based on the assumption that in a long run of operational
time, the Ornstein-Uhlenbeck process is pulled towards zero. The second model
corresponds exactly to the setup presented in section 2, where the stochastic volatility is
allowed to tend towards any finite level. Two estimation methods, namely the QMLE
and EMM presented in the previous section, were applied. The Kalman filter
parameter estimates of the zero drift model appear in Table 4.1, while the second
volatility process specification is covered in Table 4.2. The EMM estimates appear in
Table 4.3.

A total of six variants of each model were evaluated, with the sixth being a SV
model without time deformation, i.e., imposing ) =cvch=0. The other five

specifications involve time deformation, yet with different functional forms. The most
general specification is the unconstrained model with Ag(t) as a function of past
volume and returns with a leverage effect. The second model involves only volume;
the third, only prices with leverage effect; the fourth, prices and volume without
leverage; and, finally, the fifth model has Ag(t) determined by past price changes.

12 For further details see Gallant, Rossi and Tauchen (1992).



Table 4.1
Stochastic Volatility with Time Deformation Determined by Past Trading Volume
and Prices with Leverage Effects

Sample : 1950-1987, QMLE, nonzero drift

ey @) €))

Est SE P Est SE P Est SE p
¢, 0.5164 09152 05726 12475 03793  0.0010 - - -
Cp -0.2043 01734 0.2386 - - - -0.1874  0.0906  0.0386
°p 02461 03011 0.4138 - - - 03333 0.1118  0.0028
L 0.0108  0.0034  0.0014 0.0143  0.0037 0.0000 0.0129 0.0045 0.0038
A -0.0098  0.0040  0.0146 -0.0146 0.0034 0.0000 -0.0105 0.0036 0.0036
B -0.2163  0.1133  0.0562 -0.2742  0.0853  0.0014 0.1007 0.0752  0.1808
A 0.0281  0.0109 0.0100 0.0281 0.0109 0.0100 0.0281 0.0109 0.0100
a 0.1768  0.0100  0.0000 0.1768 0.0100  0.0000 0.1768  0.0100  0.0000

4 &) (6)

Est SE P Est SE P Est SE p
<, 13210 0.6898  0.0554 - - - - - -
cp -0.3724  0.0816  0.0000 -0.2252  0.0830  0.0066 - - -
C‘el - - - - - - - - -
X 00150 0.0054 0.0052 00114 00039 00032 0.0126 0.0037 0.0008
A -0.0133  0.0048  0.0052 -0.0117 0.0044 00074 -0.0133 0.0037 0.0004
B -0.1591  0.1168  0.1730  -0.247%1  0.0980 0.0118 -0.2379  0.0772  0.0020
A 0.0281  0.0109 0.0100 0.0281  0.0109 0.0100 0.0281 0.0109 0.0100
a 0.1768  0.0100  0.0000 0.1768  0.0100 0.0000 0.1768  0.0100  0.0000

Juu—y

Note : The standard errors reported are based on corrected QMLL asymptotic covariance matrix.
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Table 4.2
Stochastic Volatility with Time Deformation Determined by Past Trading Volume
and Prices with Leverage Effects

Sample : 1950-1987, QMLE, zero drift

§)) 2) 3)
Est SE p Est SE p Est SE P
<, 1.0098  0.6236  0.1054 09790 0.7012  0.1626 - - -
cp -0.1674  0.0959  0.0810 - - - -0.1565  0.0979  0.1098
CK 0.2562  0.1356  0.0588 - - - 03542 0.1152  0.0022
) 0.0149  0.0051  0.0038 00123 00035 00002 00125 0.0034 0.0002
A -0.0121  0.0040  0.0024 -0.0115 0.0035 0.0008 -0.0107 0.0031 0.0006
A 0.0281  0.0109 0.0100 0.0281 0.0109 0.0100 0.0281 0.0109 0.0100
a 0.1768  0.0100  0.0000 0.1768 0.0100  0.0000 0.1768  0.0100  0.0000
4) &} 6)
Est SE p st SE P st SE P
<, 1.2559  0.5759  0.0292 - - - - - -
cp -0.3742  0.0767  0.0000  -0.5101  0.0472  0.0000 - - -
Cfl - it - - - - - - -
)y 0.0138  0.0037 0.0002 0.0155 0.0058 0.003¢ 0.0117 0.0033  0.0004
A -0.0117  0.0032  0.0002 -0.0132 0.0047 0.0026 -0.0113  0.0030  0.0002
A 0.0281  0.0109 00100 0.0281 0.0109 0.0100 0.0281 0.0109 0.0100
a 0.1768  0.0100 0.0000 0.1768  0.0100 0.0000 0.1768 0.0100  0.0000

—

Note : The standard errors reported are based on corrected QMLE asymptotic covariance matrix.



Table 4.3
Stochastic Volatility with time Deformation Determined by Past Prices
with Leverage Effects

Sample 1950-1987, EFFGMM, nonzero drift

3) ) (6)
EFFGMM NOISE EFFGMM NOISE EFFGMM
ADDED ADDED
Cp -0.8875 0.5562 -2.2543 0.4292 -
Cy 3.2260 1.5634 - - -
c, - 0.0101 - -0.1524 -
X 0.0002 0.0001 0.0022 0.0005 0.0159
A -0.0003 -0.0002 -0.0025 -0.0003 -0.0221
B 0.2173 0.0491 -0.0447 -0.5198 -0.5543
A 0.0445 0.0447 0.0447 0.0448 0.0529
a, 0.2125 0.2117 0.2125 0.2127 0.2143
xz 113.846 127.082 123.726 129.985 126.563

Note :  QMLE results are from Table 4.2 repeated here for comparison. The "noise added” column
corresponds (o the model of volatility specified in equation (4.1).



A total of seven coefficients in the zero drift O-U and eight in the other case were

estimated. The parameter A was obtained as a sample average of Alogy followine the
& <& (_ o

suggestion of Gouri€éroux, Monfort and Renauit (1993). Moreover, as there appears to
be some minor autocorrelation left in Alogyt, we first fitted first-order autoregressive

models to Alogyt and replaced Alo.gyt by the residuals to estimate the SV models.

The autoregressive coefficients appear as a in both tables. The standard errors

reported in Tables 4.1 and 4.2 are based on a QMLE covariance matrix estimator. The
EMM method based on simulations allows to estimate only three out of six variants,
namely, the model without the deformation of time and with time deformation either
determined by past returns only or returns with leverage effects. The eight parameters
(we  considered only the nonzero drift volatility specification) were estimated
simultaneously, as opposed (o the two-step procedure adopted in the QML approach
involving the estimation of A separately. The parameter estimates are presented in
Table 4.3, where we compare them to the results of the Kalman filter.

The parameler values all appear to agree with the stochastic process behavior
described in section 2. To evaluate the significance of individual coefficients, we rely
on the QML t ratios. In particular, the basic continuous time parameters A and X are
significantly different from zero throughout all specifications and A takes only negative
values. The mean coefficient 8 yields mixed results since it is significant in four out of
six specifications. This would mean that we should have a preference for the nonzero
drift model if we were to choose between the two volatility specifications. Moreover 3
~ always takes negative values, except for the model (3) estimated by EMM, where the
long run mean of the volatility process in operational time is much higher than
elsewhere. The parameters appearing in the return equation, A and a, are significant,

though their values vary depending on the estimation method. In general, the QML

estimates of A and a are larger than the EMM estimates in a one-step procedure,

while the continuous time parameters A and X resulting from the simulation-based

method are much lower.

Let us now discuss briefly the estimates of the time deformation parameters C, cp
and ¢ 1 beginning with the QMLE results. Past volume has a positive impact on Ag(t)
since <, takes always positive values. This implies, as noted in section 2, that the

marginal effect of increases in trading volume is a volatility process being less
persistent in calendar time and more erratic. The leverage coefficient is also positive,



while past price change always enter with a negative coefficient in the Ag(t)
specification.  However, since [c, | > |cp| with ¢, >0 and cp<0 it follows that

whenever A log Py is negative, we find a greater positive effect of past returns on
Ag(t) than when A log Py is positive. Hence, bull markets tend to make volatility

larger, less persistent and more erratic, while bear markets are associated with a lower
volatility with smaller variance. Note that the EMM procedure yields larger values of
the Ag(t) parameter estimates then QMLE. This is partly due to a different treatment of
the time deformation function in the EMM framework, where we did not require Ag(t)
to average to onc in long term as we did in the Kalman filter, but we imposed instead
an upper bond of 1.394 x 10%. Joint tests, based on the QML results, have also been
examined. Hence, we complement the Wald tests presented in Tables 4.1 and 4.2 with
LR -type tests that appear in Tables 4.4 and 4.5. Tests regarding the time deformation
hypothesis appear in the [irst table. The results indicate that when Ag(t) is determined
by either one of the individual series, volume or prices the Wald and LR tests are not
in agreement and there is also a difference depending on the process specification.
However, prices combined with either a leverage effect or trading volume yield robust
and strong results supporting significant time deformation. Finally, the three series
combined again yield mixed results with the joint LR test favoring time deformation,
though none of the coefficients are individually significant for the zero-drift model. In
Table 4.5, we turn our attention to a number of LR tests regarding the functional
speciflications of time deformation. We test whether Ag(t) is determined by :
(1) volume only against the alternative of volume and prices with leverage; (2) prices
with leverage only against the same alternative; (3) prices only without leverage; and
volume once again against all three series. In each case, the restricted model is
rejected. We also test whether leverage should be introduced once prices and volume
determine time deformation and find mixed results. In the zero-drift model, we
observe a significant leverage effect, while the O-U process appears to have a very flat
likelihood surface, rhaking the marginal contribution of leverage to Ag(t) negligible.

We turn our attention now to the sample path of the time deformation process
Ag(t) for a number of specifications. As we could not plot all possible combinations,
since it would be quite repetitive, we selected a few representation cases. We first
examine the path of time deformation for the AR(1) model with two alternative
specifications of Ag(t) : one involving prices and volume, the other adding leverage
effects. Four plots appear in Figure 4.2. Each Ag(t) specification yields a pair of plots,
one for Ag(t), the other for the innovation variance which also depends on Ag(t).
Figures 4.2a and 4.2b display the patterns of time deformation, both involving prices
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Table 4.4

Time Deformation Hypothesis Tests (LR)

Series in Ag(t) AR(1) Ornstein-Uhlenbeck
Volume only® 2.794 5.492
Prices only® 10.599 1.445
Prices with leverage” | 6.455 8.961
Prices and volume” 9.635 11.947
Prices with leverage and volume® 15.994 5.299

Note : The likelihood ratio statistic is asymptotically distributed as )f with respectively a=1, b =2

and ¢ = 3 degrees of {reedom.

Table 4.5

Hypotheses Tests of the Time Deformation Function (LR) -

The Continuous Time AR(1) Model

Hypotheses AR(D)

Ornstein-Uhlenbeck

HO: cvv&O cpz() cﬂ-:O

13.200

HA: cv;é() cp;é()

H:c=0c¢ 20 ¢, #0
v p L

9.538

H, :c #0 ¢ #0 ¢, #0
v P £

H:c=0c¢ #0 ¢, =0
v p

5.396

H :c 20 ¢ #0 ¢, #0
v P L

H:c #0 ¢ #0 ¢, =0
v p £

6.359

H,:c #0 ¢ #0 ¢, 0
v p L

12.911

10.502

5.877

0.001
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and volume with leverage effects included in the latter. They appear to be quite
similar, though Ag(t) with leverage seems to be slightly less erratic. One key feature
emerging from both figures, as well as the adjacent plots containing the innovation
variance to the volatility process, is the infrequent appearance of sharp peaks in
operational time acceleration. Since A is found to negative, this means that the
conditional variance function becomes locally extremely erratic, unattached to the
previous period and subject to a large variance innovation shock. As noted in the
introduction, this finding complements a competing specification of laws of motion via
diffusion processes involving jumps. Such processes, proposed by Merton (1967a,b)
were built on the premise that one would occasionally observe abnormal information
leading to the incidence of a jump in asset prices. Through the time deformation
specification, one can view such information arrival as extremely rapid acceleration of
market time through the increased trading and price movement per unit of calendar
time. The advantage of SV models with time deformation over jump-diffusion
processes is that the former might be relatively easier to estimate, at least if one is
satisfied with the asymptotically inefficient QMLE algorithm. Indeed, the ML
estimation of jump-diffusion processes can be quite involved [see, for instance,
Lo (1988) for details].13

[Insert Figure 4.2 here]

We turn our attention now to the volatility process itself, i.e., the ht process as

extracted via the Kalman filter procedure. A first caveat to note is that the filtering
algorithm we use, like the estimation procedure, is only an approximation of the truc
latent volatility process.  Indeed, the Kalman filtering algorithm ignores all
non-Gaussian features of the DGP, as noted in section 3. Jacquier, Polson and
Rossi (1992) proposed a procedure that yields an exact extraction algorithm for the
volatility process as a by-product of their Bayesian inference procedure for SV models.
Their algorithm is numerically quite more involved in comparison to that described in
section 3 and is probably not so easy to modify so that a time deformation SV model
can be handled [see Ghysels and Jasiak (1993) for further discussion]. Figure 4.3a
displays the approximate filter extraction of the volatility process ht. The figure

consists of two parts, namely, 4.3a displays stochastic volatility as extracted under the
assumption of no time deformation. Hence, Figure 4.3a corresponds to a volatility
process that one would obtain from the approach proposed by Nelson (1988)

13 There is, of course, a substantial difference between the stochastic process behavior of a jump
process and a process with SV having occasionally very large volatility,



and Harvey, Ruiz and Shephard (1994). Figure 4.3b pots ht extracted from a model

with time deformation. In sharp contrast to the standard SV specification, we uncover
a very smooth volatility process. This may not be as surprising, given the plots in
Figure 4.2 where Ag(t) and the innovation variance appeared. Indeed, most of the
erratic behavior of hx obtained through a specification without time deformation is

absorbed through the doubly stochastic random coefficient stochastic volatility
specilication.  Once time deformation is taken into account, it appears that the
underlying volatility process evolves smoothly in operational time. This yields an
alternative interpretation. Indeed, the smooth evolution of ht in operational time

implies that the process is easier to predict over long horizons. This smooth and
predictable component appears to be separated from the more erratic behavior of
market time through Ag(t). This separation into two components is interesting as it
decomposes a volatility process that is itself latent.

[Insert Figure 4.3 here]

Let us now examine further the empirical results obtained from the EMM
framework. A goodness of fit test can be performed by computing, a chi-square
. R P | - = . e
statistic N my (aN, eN) (IN) my (o, ©), which under a correct specification of the

SV model is asymptotically distributed as xz with degrees of freedom equal to the
length of the SNP parameter vector © minus the number of parameters of the
SV model, collected in the vector o All the three models under study failed the
chi-square test (see Table 4.3). The value of the test statistic obtained for the
nondeformation SV model falls far beyond the critical value. However, the objective
function can be significantly improved upon, once we incorporate the time deformation
determined by past price changes with leverage effects. A similar but weaker reduction
in the value of the statistics can be observed when Ag(t) is defined as function of past
returns only.

Figure 4.4 shows the improvement in terms of the t-statistics on the scores of the
SNP model obtained by fitting a time deformation SV model. The parameters "psi”
correspond to the AR coefficients of the SNP model, the "a's" indicate the quadratic
and quartic terms, and finally the "tau's" are the coefﬁciéms on the ARCH components
of the score generator. The time deformation model with leverage effects improves
28 among 34 t ratios, while the model without the leverage performs equally well,

reducing 29 out of 34. It is interesting to note here that most of the improved moment



fits appear in the "tau" group representing ARCH components. This is ol course a key

issue, as time deformation should affect the volatility component first and foremost.

In Tables 4.4 and 4.5, we reported joint tests to examine the fit of the SV model
with time deformatin.  In the context of the EMM estimation procedure, we can
perform some model diagnostics more directly aimed at the restrictions imposed by the
time deformation specficica[ion‘ of the wvolatility equation. Returning to
equation (2.10b), we notice that Ag(t) controls the intercept AR coefficient as well as
the innovation variance. In a simulation context, we can ask ourselves whether we can
improve the fit by breaking this link beetween the correlations and variance of the
volatility. We do so by adding an extra term to the equation, namely :

(4.1.D) h =[(1 - exp(Adg(D)] B + [exp(AAg() + ch/&] h  +V,

where T/t is an i.i.d. N(0,1) sequence and c, is an additional parameter. The results in

Table 4.3 indicate that the fit deteriorates with the "noise added" specification. We
also find larger t statistics on the score vector, is illustrated in Figure 4.5. Out of 34 t
ratios, 17 went up in the case of model (3) and 13 out of 34 for model (5). These
results suggest that breaking the restrictions obtained in equation (2.10b) do not
improve the fit. Also, the "tau" group of moment conditions is the onc where the
deteriation proclaims itself as one would expect. We simply perturbed the specification
by adding a noise term to the AR coefficient. Perturbations in other "directions” may
perhaps yield other results. So, far however, we find the time deformation specification
the best fit focused so far.

4.2 Empirical Volatility-Volume Models

In this section, we rely exclusively on EMM estimation guided by the bivariate
return and volume SNP density described at the end of section 3. The parameter
estimates of the bivariate model with time deformation are reported in Table 4.6.
A total of 14 parameters are estimated with the empirical score of the bivariate SNP as
a guidance of matching moments. In our specification of the time deformation, we did
not include the absolute value of returns. We experimented with such a specification
as well, but found the model reported in 4.6 a better fit. This does not mean the model
does not produce leverage effects. Indeed, the bivariate structure is far more complex
than the uvnivariate one and asymmetric responses can arisc without it appearing in
Ag(t). We shall in fact return to this issue shortly.
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Table 4.6
EMM Parameter Estimates of Bivariate Stochastic
Volatility - Volume Model with Time Deformation

™ ~0.1762 a,, ~0.4550
iy 0.9511 a, ~0.4267
a, 0.4570 2y, 0.8026
By ~1.1440 2, ~4.6646
B, 0.9301 I, 1.9558
¢ -1.1204 3, =1, -0.1298
¢y 0.3412 L, 1.0171

Note : Moment matching using score function of bivariate SNP
described by the following tumning parameters: L, =2,

1L
Ly=18Lp=2K,=41,=1LK =21 =1
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Judging the adequacy of the bivariate model is no longer as straightforward as
judging that of the univariate of course. We mentioned in section 2 that we would
therefore analyze the model via impulse response functions. We will follow a strategy
proposed by Gallant, Rossi and Tauchen (1993) which consists of computing response
profiles for the conditional mean and conditional volatility, where the profiles are
defined by :

42.1) §j(x) =E(y, | x,=% j=01,.

i+
for the conditional mean profile and :

(4.2.2) \A/j ) = E[Var(y yx =x]  j=0,1, ...

] x )X =
4] t+j-17 "t

In both cases, y[ﬂ, represents a component of the bivariate return-volume process.

The conditioning vector x is the one which is perturbed to produce different response
profiles. Gallant, Rossi and Tauchen consider three scenarios to compute the response
profiles, namely :

(423) X" =y Y v, ) (5;, 0,0, ..
424) x°= (y('), yil, )'12, o)
(425) X =gy )+ (8,0,0, .

where 5; and 5;, are shocks to the nonlinear dynamic system. The vector x° is called

the baseline shock while x™ and x™ are respectively positive and negative shocks.
Hence, the conditional profiles are predictions of Y14 for the three different initial

conditions listed in (4.2.3) through (4.2.5). The combination of equations (4.2.1)
A A
through (4.2.5) yield the conditional mean and volatility profiles (yj(x), Vj(x)) for

x =x",x° and x". These response profiles were computed for both stock returns and
trading volume. Of course, so far we did not discuss how the conditional means and
variances appearing in (4.2.1) and (4.2.2) are obtained. In Gallant, Rossi and
Tauchen (1993), the empirical SNP, which yields an estimate of the conditional density
was used to compute (+.2.1) and (4.2.2). This empirical density will serve as a

benchmark against which we want to measure the success of the bivariate stochastic



volatility mode! with time deformation described in (2.12). In order to compare the
impulse response profiles of the empirical SNP with those of the bivariate SV model
with time deformation, we produced a simulated sample of data containing 20,000
observations (approximately the size of the empirical data using the estimated model).
The simulated data generated by the model were than used to fit an SNP density from
which the impulse profiles were computed. To assess the usefulness of the time
deformation specification, we also estimated the bivariate stochastic volatility model
defined in (2.12) through (2.14) restricting Ag(t) = 1 Vt. We followed exactly the same
procedure as above and obtained impulse response profiles under a bivariate model
specification without time deformation. We have therefore three impulse response
profiles to compare, a first from the empirical fit of the SNP from the data, a second
from a SNP density fitted to data simulated from a bivariate model with time
deformation using the EMM parameter estimates and finally a third which, like the
second, is obtained from simulated data, yet without a time deformation specification.

Gallant, Rossi and Tauchen (1993) point out that impulse response profiles for a
bivariate volatility-volume process need to take into account the widely documented
contemporeneous relationship between price and volume movements [see, e.g.,
Karpoff (1987) or Tauchen and Pitts (1983)]. From a scatterplot of historical
return-volume data, they define three types of impulses which described different
scenarios of contemporeneous return-volume shocks. These shocks, called of type A,
B and C were constructed to be consistent with the historical range of the data. We do
not want to repeat all the details of the computations and findings based on the three
types of shocks as they are reported in Gallant, Rossi and Tauchen. Instead, we will
single out one particular case which the authors identified as one of the most interesting
and novel findings emerging from the impulse response analysis. Namely, Gallant,
Rossi and Tauchen found that the leverage effect is essentially a transient effect when
analyzed in a bivariate system in sharp contrast to the univariate price shock models
which shows a much more persistent wedge between effects of positive 5;’ and negative

5)'/ price shocks. We reexamine this issue using both type A and B shocks, the former

being a combined price-volume shock while the latter being a pure price shock.14

[Insert Figure 4.6a and b here]

14 Shocks of type C relate to volume only, see Gallant, Rossi and Tauchen (1993) for more details,
in particular regarding the interpretation given to the three types of shocks.



The impulse response profiles are summarized in Figures 4.6a and 4.6b.  The
former covers shocks of type A while the latter of type B. Each figure has six panels,
the top three panels display conditional mean profiles of returns while the lower three
panels exhibil conditional variance profiles. Each time, one has (1) impulse responses
from the empirical SNP, (2) from the SNP gencrated by a time deformation bivariate
model and (3) one without time deformation. We consider the empirical SNP as being
the benchmark case where the data features are summarized. A first observation to
make is that the response profiles for the model without time deformation appear to
overstate the volatility responses considerably, both for shocks of type A and B.
Besides being off track, we also notice that the baseline shock without time
deformation shows a slight kink in both cases which does not appear in the deformation
model nor the empirical SNP. While both models appear to confirm the transient
nature of the leverage effect, we note the model without time deformation tends to
slightly overstate, in relative terms, the initial response of a negative shock. The
differences are minor, but the time deformation specification does show an edge, at
least on the basis of these impulse response profiles. Other criteria may be found to
better discriminate between models, but this we would rather leave for future research.

5. CONCLUSIONS

In this paper, we proposed an empirical class ol time deformation stochastic
volatility models that were fitted to daily return and volume data for the NYSE. Two
estimation procedures were discussed, one involving a Kalman filter QMLE algorithm,
the other involving a moment matching principle. A univariate as well as bivariate

return-volume model specification were considered.

The framework can easily be extended to deal with high frequency data.
For instance, Ghysels and Jasiak (1995) suggest a specification of a time deformed SV
models involving arrivals of quotas and bid-ask spreads at 5 and 20 minutes intervals
for foreign exchange markets.  Last but not least, Ghysels, Gouriéroux and
Jasiak(1995)' provide a detailed discussion of the stochastic process theory for
subordinated processes. They, as well as Conley, Hansen, Luttmer and
Scheinkman (1994) discuss various estimation procedures not covered here.



33

Cae—
s

4 001

S0t

L861

(paisnipy) 3ISAN 2wnjop gy 'y 8t

QL6

14

QT—

(po1snipy) 00G 47%S PL°y OW

awnjoa

aon1d



34

gure 4.2 1 AR(1) SV Model with Time Deformation
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