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Résumé / Abstract

En recourrant tour à tour à la programmation dynamique et à la
méthode des actifs contigents, nous établissons la valeur de l'option d'effectuer des
investissements irréversibles réels qui sont sensibles aux paramètres économiques
prévalant au moment de la décision. Nous testons ensuite si des investissements en
capacité de production effectués par des mines de cuivre canadiennes sont
conformes aux implications de la théorie. Les résultats sont fortements en faveur de
celle-ci; nos données rejettent le critère de la valeur actuelle nette et le modèle
explique tant la taille que la date des investissements d'une manière statistiquement
et économiquement satisfaisante.

This paper statistically tests the theory of irreversible investment
under uncertainty. Using dynamic programming and contingent claims valuation
alternatively, we derive the value of options to invest in capacity, where the
projects are endogenous to the economic circumstances prevailing at the
investment date. We then test whether capacity investment decisions made by
Canadian copper mines are compatible with the theory. The result speak strongly
in favor of option theory as a theory of real investment; in particular, we provide
a test which rejects the Net Present Value criterion, and our model explains both
investment size and timing satisfactorily from a statistical and from an economic
point of view.

Mots clé : Investissement irréversible; Incertitude; Programmation dynamique; Actifs
contingents; Valeur d'option; modèle *Putty Clay+; Investissement réel.

Keywords : Irreversible investment; Uncertainty; Dynamic programming; Contingent
claims; Option value; Putty Clay; Real investment.



1 Introduction

Much of the economic literature on investment has focused on incremental

investment in a neoclassical framework. With notable exceptions such as

the seminal works of Arrow (1968) and Henri (1974), and the strand of pa-

pers in the environment literature following Arrow and Fisher (1974), this

literature generally ignores irreversibilities. More recently, the theory of op-

tion pricing has been brought to bear in the area of real investment. It was

shown that irreversible investment opportunities may be viewed as options

and valued accordingly, and that similar rules as govern the exercise of op-

tions may be applied to real investment decisions. While this new literature

has been successful and innovative in modeling real investment decisions, and

while many simulations have contributed to illustrate its implications, it has

not been tested in a statistical sense, and it still has to make a dent in the

econometrics of investment. Our paper is a step in that direction. We pro-

vide a test of option theory applied to real investment, and, in the process,

we actually estimate econometrically both the magnitude and the timing of

irreversible investments.

Our work follows, and often relies on, an impressive series of theoretical

papers applied to real investment decisions or real asset valuation. Since ir-

reversibility and uncertainty are basic ingredients of option theory, and since

irreversibilities are nowhere as obvious as in the area of natural resources,

resources and extraction are recurrent topics in that literature. Tourinho

(1979) modeled the value of natural resource reserves under uncertainty as

an option to extract the resource in the future. Using the contingent claim
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approach, Brennan and Schwartz (1985) showed how to value an option to

invest in a mine and established the companion investment rule. Mackie-

Mason (1990) cast the option pricing model into a framework involving the

non linear taxation of mining ¯rms. Paddock, Siegel and Smith (1988) used

option valuation theory to value leases for o®shore petroleum. But, as the

survey by Pindyck (1991) and the book by Dixit and Pindyck (1994) make

clear, even more papers are unrelated to natural resource investments. To

mention some of the most relevant to our purpose, Pindyck (1988) investi-

gated capacity investment as a compounded set of options while Majd and

Pindyck (1987) modeled the `time to build' as a process in which a ¯rm in-

vests continuously until the completion of a project, each expenditure buying

it an option to spend the next dollar.

Besides illustrating the numerous implications of option theory to real

investment, this literature cast a serious doubt on the validity of alternative,

more traditional, theories. It showed that irreversibility a®ects investment

rules in a fundamental way: by undertaking an irreversible investment, a

¯rm gives up the possibility to use new information that might arrive later

on (Bernanke, 1983). As stressed by Ingersoll and Ross (1992) and Mc-

Donald and Siegel (1986), the combination of irreversibility and uncertainty

invalidates the Net Present Value (NPV) rule of investment. Clearly, the old

`Putty Clay' model had addressed the irreversibility issue. However, it had

not followed up its implications under uncertainty, so that, in e®ect, it does

not imply a divergence from the NPV rule.

The strong implications of option theory to the realm of real investment

underline the urgency of empirical tests. Here, however, the literature is still
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in its infancy. According to Dixit and Pindyck (1994, p. 483), `Given the

di±culties (: : :), it is not surprising that there have been few attempts to sta-

tistically test the theory of irreversible investment under uncertainty.' They

go on to survey `the limited work that has been done to date.' There were a

few attempts, by Rust (1987) and Pakes (1986), to estimate the optimality

conditions of the full stochastic dynamic programming problem. Here, gen-

erality implies great conceptual complexity and considerable computational

di±culties, which often obscure the meaning of empirical ¯ndings (see Pakes,

1993). Other papers focus on aggregate qualitative implications of the the-

ory: as veri¯ed by Pindyck and Solimano (1993), aggregate investment should

be a®ected by movements in return volatility. An alternative approach is to

focus on the threshold that triggers investment; we use that approach here,

overcoming the obstacle encountered by Caballero and Pindyck (1992) that

the threshold cannot be observed directly. A disadvantage of studies using

that approach is their partial nature: they focus on one, among several, char-

acteristic of the investment process. This is also true of studies that focus on

the waiting period, such as Hurn and Wright (1994), or on the identi¯cation

of an option premium in (project or investment) prices, such as Quigg (1993).

A related weakness of option models, even in their theoretical formulation,

is the fact that they mostly treat project characteristics as exogenous. Our

paper attempts to overcome this weakness by using a two-equation struc-

tural form, explaining both the threshold price and the magnitude of the

investment simultaneously.

Thus the work presented here uses option theory to derive the value

of capacity investment projects, where the projects are endogenous to the
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economic circumstances prevailing at the investment date. Knowing the value

of the option to invest, ¯rms compute a threshold value for the project, and

decide on investment dates by comparing current project value with the

threshold. Of course, a number of simplifying assumptions are made, which

are described in details when appropriate. Perhaps the major one is that

we focus on a single source of uncertainty: the price of output, copper in

our application. While this is clearly a wild simpli¯cation, we believe that it

preserves the essence of capacity investment decisions in the copper mining

industry: once a deposit has been ascertained, the uncertainty surrounding

output prices exceeds by far uncertainty on factor prices, the technology, or

available ore reserves. Our results speak strongly in favor of option theory as

a theory of real investment; in particular, we provide a test which rejects the

NPV criterion, and our model explains investment behavior satisfactorily,

both from a statistical, and from an economic, point of view.

The paper is organized as follows. In Section 2, we present the capacity

investment model, taking the investment date as given; this model allows us

to compute the project value. The option to invest is based on the underlying

project; its valuation is presented in Section 3. In Section 4, we present the

econometric model, the data set and its construction, and the results of our

estimations and tests. Further discussion follows in the conclusion.
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2 Capacity investment

2.1 A putty clay model of capacity investment

Capacity investments by mines provide a good example of irreversible in-

vestment under uncertainty. In fact, there is evidence that the `Putty Clay'

model of investment performs well in explaining capacity levels at Canadian

mines (Lasserre, 1985; Harchaoui and Lasserre, 1995), although that model

fails to explain the dates at which such investments are undertaken. The op-

tion model, on the other hand, focuses on timing, taking the characteristics

of the project as given. We use a simple version of the `Putty Clay' model in

order to endogenize the characteristics of the investment project which will

be used in the option model presented further below.

Let s be the date at which the capacity investment project is undertaken.

We focus on the long term and neglect the construction period; thus s is also

the start up date for the new capacity. At this stage, we treat s as exogenous

and want to determine the value of the project at s, as a function of economic,

technological, and geological conditions observed at s. In order to focus on

what we consider the key element in the investment decision, uncertainty

about future output price, we assume that, at s, the ¯rm knows its mineral

reserves R (s), as well as the available technology, current and future factor

prices, and the current and future tax systems. More speci¯cally, we assume

that real factor prices are non stochastic and rise at the common, constant,

rate ®w; and we assume that the current tax system is expected to remain

unchanged.
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Once the project is operational, ore reserves are transformed into metal or

concentrate, whose real price at date t, p(t), is assumed to follow a Brownian

geometric motion
dp

p
= ®pdt+ ¾dz (1)

where dz is the increment of a Wiener process (dz = ² (t) (dt)
1

2 where ² (t) is

a serially uncorrelated and normally distributed random variable with zero

expected value and unit variance); ®p, a constant, is the drift component

of the price process; and ¾, also constant, re°ects the variance of the price

process.

The `Putty Clay' assumption implies that ex ante, before s, the ¯rm has

a choice among a wide array of technologies and scales; ex post, once the

investment has been realized, the ¯rm must use the particular technology se-

lected at s: for any t > s, capacity is ¯xed at Q (s) (a scalar), variable factors

are ¯xed at L (s) (a vector), capital is ¯xed at K (s) (a scalar). In that sense,

variable factors are just as ¯xed as capital. The distinction between variable

factors and capital stems from the fact that variable factors are paid for at

their rental rates w, as °ows, over the active life of the mine, while capital is

fully paid as a setup cost at s. Empirically, the distinction is also important

because capital usually receives a di®erent tax treatment than other factors

of production. The technologies available ex ante may experience techno-

logical change over time; in contrast, ex post, any technology is ¯xed for the

active life of the project. We assume that the productive capacity of capital is

maintained throughout the operating life at a cost included in the de¯nition

of variable costs. Thus, Q (t) = f
³
K (s) ; L (s)¡ LM(K (s)); s

´
where the
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ex post production function f is de¯ned over the quantities of inputs used in

production per se, that is, net of the input quantities devoted to maintenance

LM (K). Since LM (K) does not vary over the operating life of the project,

there exists an alternative, equivalent, production function based on gross

inputs F (K;L; s) ´ f
³
K (s) ;L (s)¡ LM(K (s)); s

´
.

Despite the maintenance of productive capacity during operating life,

capital depreciates, ¯rst because of obsolescence (the ex ante technology set

improves over time while the ex post technology is ¯xed at its level of date

s); second because major mining investments are highly mine speci¯c and

costly to transfer and adapt to other sites. We assume that the project has

no residual value at the end of its operating life.

2.2 The value of the investment project

Mining projects are highly capital intensive. As a result, once a particular

capacity investment has been realized, revenues cover variable costs by far;

furthermore, variable costs (as de¯ned above) cannot be entirely suppressed

by temporarily closing down because of maintenance costs, long-term con-

tractual arrangements, etc.; ¯nally, there are substantial costs associated

with starting up again a mine that closed down temporarily. As a result, it

is highly unusual to observe mines shut down temporarily, or even simply re-

duce output substantially, in periods where prices are low. For these reasons,

we assume that mines produce at full capacity during their entire, uninter-

rupted, operating life T . Since the latter is constrained by available reserves,
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it follows (provided reserves are measured in the same units as output) that

T =
R (s)

Q (s)
(2)

If a ¯rm that discounts net real future revenues at rate r undertakes a

capacity investment at s, it selects an ex post technology (input mix and

corresponding capacity) so as to maximize expected net cumulative revenues

over its endogenous operating life. Under the assumptions just enunciated,

quantities (Q; L; K) are ¯xed over T , factor price paths are exponential

functions, and so is the expected output price path implied by (1). As a

result, expected net cumulative revenues may be integrated out, so that the

net present value of the project is (see Harchaoui and Lasserre (1995) for a

detailed derivation)

V = max
Q;T;L;K

fa (T; ±)A2pQ¡ a (T; ½)A2w
0L¡A1qKg (3)

where a (T; i) = 1¡e¡iT

i
is the capitalization function giving the present value

of a constant °ow of $1 over a period of T when the rate of discount is i. All

variables are evaluated at s. q is the asset price of capital. ± = r ¡ ®p is the

discount rate applying to revenues, after correction for the drift in output

price. ½ = r¡®w is the discount rate applying to variable costs, after correc-

tion for their rate of growth. A1 and A2 are tax parameters to be described

shortly. As written, V is decomposed into three terms: expected cumula-

tive discounted revenues over the life of the project; cumulative discounted

variable costs over the life of the project; and the initial capital investment
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cost.

The tax parameters re°ect the tax regime applying at s. A1 is a parameter

that re°ects the extent to which the tax system alters the cost of capital:

if tax rates and the various deductions from taxable income (among them

capital depreciation allowances) combine in such a way that taxation leaves

the cost of capital unchanged, then A1 = 1; if the tax system favors capital,

as is usually the case, then A1 is smaller than 1, possibly negative.
1 Similarly,

A2 represents the after-tax value of one dollar of revenue or variable factor

expenditure. In practice, for several of the observations in our sample, the

taxation regime is also characterized by a tax holiday. This is a period,

usually three years, over which a new mine is subject to a reduced tax load.

The results presented in Harchaoui and Lasserre (1995) are inconclusive as

to the impact of a tax holiday on investment decisions. This, and a quest for

simplicity, is our justi¯cation for assuming it away.

2.3 Further properties and assumptions

Capacity investment projects may involve speci¯c characteristics not taken

into account in the foregoing analysis. We control for them by introducing the

variables X for geological characteristics; G for ore grade G; D for location;

and s for the state of technology at the time or the investment. Furthermore,

it is immediate to show that V is homogeneous of degree one in after-tax

prices (A2p;A2w;A1q), so that it can be rewritten, expanding L and dividing

1For calculations of e®ective marginal tax rates in the Canadian mining industry, see
Boadway et al. (1987).

9



all prices by the after-tax price of materials

V = A2wM max fa (T; ±)PQ¡ a (T; ½)
P

iWiLi ¡WKKg

´ A2wM
~V (P;WL;WE;WK; ±; ½;R;X;G;Dj; s)

(4)

where wM is the price of materials, and A2wM is the after-tax price of mate-

rials; P = p

wM
; Wi =

wi
wM

, for i = L (labor), E (energy); and Wk =
A1q

A2wM
.

We assume that technological change is neutral and takes place at a con-

stant rate °, where neutrality means that V (:; s) = e°[s¡s
0 ]V (:; s0), where all

variables other than s0 are evaluated at s. By (4), this is A2wM (s) ~V (:; s0) or,

substituting wM (s) = e®wswM (0), and choosing s0 = 0, V (:; s) = e[®w+°]sA2wM (0) ~V (:;0).

Consequently, the optimal expected project value at s may be decomposed

into the product of an exponential function of s by a time-autonomous func-

tion of P and Z; v (P;Z) ´ A2wM (0) ~V (P;Z:; 0), where Z = WL;WE;WK; ±; ½;R;X;G;Dj:

V (p;wL;wE; wM ; q;A1; A1; A2; ±; ½;R;X;G;Dj; s) = e[®w+°]sv (P;Z) (5)

The next section is devoted to the evaluation of the option to undertake

such a project for the owner of the site characterized by (R;X;G;Dj).
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3 The option model applied to capacity in-

vestment

3.1 The value of the option to invest

Prior to the date s of a capacity investment, a ¯rm may be viewed as holding

an option to invest into a project whose value V evolves over time as prices

change. If the theory is correct, the ¯rm holds on to the option in the years

prior to s, and the option is actually exercised at s.The value of the underlying

project (5) determines the value of the option. The latter may be determined

by dynamic programming or by contingent claims analysis. Both approaches

are presented in parallel by Dixit and Pindyck (1994, e.g. pp. 140-52). They

yield similar, but not identical, results, and will be distinguishable in the

empirical analysis.

Consider dynamic programming ¯rst. The value at t, t < s, of the option

is the expected present value of the project obtained by optimally choosing

the date of exercise

¦ (P;Z; t) = max
s

Et

n
e¡rse[®w+°]sv (P;Z)

o
(6)

This equals e¡[½¡°]tmaxsEt

n
v (P;Z) e¡[½¡°][s¡t]

o
since r ¡ ®w = ½. Thus

evaluating ¦ (P;Z; t) requires solving

¼ (P;Z) = max
s

Et

n
v (P;Z) e¡[½¡°][s¡t]

o
(7)

In order to distinguish the option ¦ from ¼ and the project V from v, we
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call ¼ and v pseudo option and pseudo project respectively. We note that

Z is constant: relative factor prices are constant because factor prices are

assumed to rise at the same rate; ± and ½ are constant rates; R, X, G,

and Dj are geological and technological data which remain unchanged in the

period preceding the investment. Consequently, for t < s, Bellman's equation

corresponding to (7) is

[½¡ °]¼ =
1

dt
Et

½
¼PdP +

1

2
¼PP dP

2

¾
(8)

From (1), the fact that P = p

wM
, and the fact that wM rises at rate ®w, we

have

dP = ®Pdt+ ¾Pdz (9)

where ® = ®p ¡ ®w so that

Et fdPg = ®P (t) dt (10)

Et

n
dP 2

o
= P 2¾2dt (11)

Substituting into (8), we obtain

[½¡ °]¼ = ®P¼P +
1

2
¾2P 2¼PP (12)

Solving this di®erential equation requires invoking appropriate boundary con-

ditions.

Before studying this aspect of the problem, let us turn to the evaluation

of the option by contingent claims analysis. This approach requires the as-
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sumption that stochastic changes in the value of the project may be spanned

by existing assets, which means that there exists a portfolio whose price x is

perfectly correlated with the value of the project.

The analog to problem (6) is then to evaluate an option ¦ (P;Z; t) giving

right to invest, at a date s to be chosen, into a project whose net current

value at s will be x (s) = v (P;Z) e[®w+°]s. The coe±cient e[®w+°]s plays the

role of a scaling factor for the option so that, for given P and Z, the change

of ¦ over time is, in current value2

¦t = [®w + °] ¦

To evaluate ¦, we construct a portfolio consisting of the option and a short

position consisting of n units of x, where n is selected in such a way that the

portfolio is riskless. By the CAPM, in order to accept holding one unit of x,

the party entering the long side of the transaction will expect a return of ~r.3

A unit of x yields an expected rate of capital gain of

1

dt

dx

x
= ®w + ° +

®PvP + 1
2
¾2P 2vPP

v

Thus the short position will require that the expected rate of capital gain

2The option is worth ¦(P;Z; t) = Et

©
v (P;Z) e[®w+°]se¡r[s¡t]

ª
. If, over an interval dt,

P and Z do not change, then the probability that the option to invest will be exercised in ¿
periods from t is the same over the whole interval dt, for any ¿ . This implies that ds = dt.
Di®erentiating Et

©
v (P;Z) e[®w+° ]se¡r[s¡t]

ª
under that constraint gives the result.

3~r = rf +
h
rm¡rf
¾m

i
½xm¾m, where rm is the market rate of return, ¾m is the standard

deviation of that return, rf is the risk-free rate of return, and ½xm is the coe±cient of
correlation between the return on x and the market return.
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be completed by a rate of dividend payment of

¹ = ~r ¡

"
®w + ° +

®PvP + 1
2
¾2P 2vPP

v

#

implying that the portfolio requires a dividend payment of n¹xdt per interval

of time dt. On the other hand, the portfolio is worth ¦¡nx, so that it yields,

in total, over dt

d¦¡ ndx¡ n¹xdt

Evaluating d¦ by Ito's lemma, and evaluating dx at t = 0 without loss of

generality, this yield becomes

¦P [®Pdt+ ¾Pdz] +
1

2
¦PP¾

2P 2dt+¦tdt

¡n

·
vP [®Pdt+ ¾Pdz] +

1

2
vPP¾

2P 2dt

¸
¡ n

"
~r ¡

®PvP + 1
2
¾2P 2vPP

v

#
vdt

where (9) was used to substitute for dP and dP 2. This may be seen to be

riskless if n = ¦P
vP
; then, non arbitrage requires the yield to equal the riskless

return on the value of the portfolio

½
1

2
¾2P 2¦PP ¡

·
~r
v

vP
¡ ®P

¸
¦P +¦t

¾
dt = rf

·
¦¡

v

vP
¦P

¸
dt

where rf is the riskless rate of return. Dividing by dt and rearranging we

obtain

rf¦ =

"
®¡

v

P

vP
[~r ¡ rf ]

#
P¦P +

1

2
¾2P 2¦PP +¦t (13)

This is a partial di®erential equation. However, consider the corresponding
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pseudo-option de¯ned as

¼ (P;Z) = ¦ (P;Z; t) e¡[®w+°]t

This pseudo-option is time autonomous because ¦t = [®w + °] ¦; also, ¼P =

¦P e
¡[®w+°]t and ¼PP = ¦PP e

¡[®w+°]t. Substituting into (13), and de¯ning

½f ´ rf ¡ °, we obtain

[½f ¡ °]¼ =

"
®¡

v

P

vP
[~r ¡ rf ]

#
P¼P +

1

2
¾2P 2¼PP (14)

a homogeneous, second degree, di®erential equation in ¼ similar to (12) but

with di®erent coe±cients. Since v is not observable, an interesting special

case of (14) is when v is proportional to P

[½f ¡ °]¼ = [® ¡ [~r ¡ rf ]]P¼P +
1

2
¾2P 2¼PP (15)

In that case, comparing (15) with (12), one notes that the contingent

claims analysis solution is identical to what had been found by dynamic

programming if the discount rate had been rf rather than r and if ® had

been reduced by the di®erence between the market rate and the risk free rate.

Thus, in general, dynamic programming and contingent claims analysis give

di®erent evaluations of the option. It should be noted, however, that these

versions become identical under risk neutrality, when the proper discount

rate is rf .

Whatever the evaluation procedure { dynamic programming of contingent

claims { the di®erential equations must satisfy the same boundary conditions.
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First, the value of the pseudo option collapses to zero if P approaches zero

¼ (0; Z) = 0 (16)

Second, the value of the pseudo option, which is normally higher than the

current value of the pseudo project, equals v (P ¤; Z) if the price equals P ¤,

the exercise price

¼ (P ¤; Z) = v (P ¤; Z) (17)

This means that ¼ ¡ v reaches a minimum with respect to P at P ¤. Third,

by the smooth pasting condition, this minimum is interior

¼P (P
¤; Z) = vP (P

¤; Z) (18)

3.2 Solution

The solution to (12) or (15) that satis¯es (16)-(18) is

¼ (P;Z) = cP b

where the parameters b and c di®er depending on whether the option is

evaluated by dynamic programming or by contingent claims analysis. In the

case of dynamic programming

b =
1

2
¡

®

¾2
+

"·
®

¾2
¡

1

2

¸2
+ 2

[½¡ °]

¾2

# 1

2

(19)
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b must be greater than one, which is the case if

½¡ ° > ® i.e. r ¡ ®w ¡ ° > ®p ¡ ®w or r > ®p + °

Indeed, if the discount rate did not more than o®set the combined e®ect

of the growth in output price and technological change, it would always be

preferable to wait, without investing, leaving the project rise in present value

forever. In the case of contingent claims analysis

b =
1

2
¡
® ¡ [~r ¡ rf ]

¾2
+

2
4"® ¡ [~r ¡ rf ]

¾2
¡
1

2

#2
+ 2

½f ¡ °

¾2

3
5

1

2

(20)

b will be greater than one, as required, if

½f ¡ ° > ®¡ [~r ¡ rf ] i.e. rf ¡ ®w ¡ ° > ®p ¡ ®w ¡ [~r ¡ rf ] or ~r > ®p + °

c and P ¤ are obtained from (17) and (18): (17) implies

c =
v (P ¤; Z)

P ¤
b (21)

and, from (18)

cbP ¤
b¡1

= vP (P
¤;Z) (22)

The solution can now be written in an empirically useful form. From (5),

vP = e¡[®w+°]sVp
@p

@P
with P = p

wM
; furthermore, since V in (3) is obtained by
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constrained maximization with respect to Q, the envelope theorem implies

Vp = a (T; ±)A2Q

It follows that

vP (P;Z) = e¡[®w+°]sa (T; ±)A2QwM (23)

Substituting for c and vP in (22)

v (P;Z)

P ¤
b bP ¤

b¡1

= e¡[®w+°]sa (T; ±)A2wMQ

which, using (4) and (5), reduces to

b¡ 1

b
P ¤ =

a (T; ½)
P

iWiLi +WKK

a (T; ±)Q
(24)

Whether in its dynamic programming version, or in its contingent claims

version, (24) will be the basis of our econometric model. It deserves some

comments. First, it is important to remember that (T;Q;L;K) solve the

expected NPV maximization problem (3). T is the endogenous extraction

period R

Q
, re°ecting the constraint imposed by the ¯niteness of reserves, L

and K are factor demands, and Q is a supply (or capacity) function. As such,

they are functions of (P;Z). It is useful to treat L andK as conditional factor

demands, and Q as the supply function. In that case, the right-hand side of
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(24) may be written as

U (Q (P;Z; s) ; Z; s) ´
a
³

R

Q(P;Z;s)
; ½
´P

iWiLi (Q (P;Z; s) ; Z; s) +WKK (Q (P;Z; s) ; Z; s)

a
³

R

Q(P;Z;s)
; ±
´
Q (P;Z; s)

(25)

The numerator gives total cumulative costs as evaluated at s. The denom-

inator is an output aggregator which, considering the de¯nition of a (T; ±),

gives more weight to units produced at the beginning of the operating period

than it gives to units produced toward the end of the operating period.

Consequently, the right-hand side of (24) is a unit-cost function evaluated

at the optimal level of Q. Thus (24) expresses the relationship between price

and average total cost at the price P ¤ which triggers the investment

BP ¤ = U (Q (P;Z; s) ; Z; s) (26)

whereB ´
b¡1
b
is the inverse of a mark-up coe±cient. Since b > 1, 0 < B < 1,

so that the trigger price must exceed average cost, which means that the

option of waiting has a positive value: invest only at some strictly positive

NPV. If B ! 1, as is the case if ¾ ! 0, we have the standard NPV condition:

invest if the NPV of the project is zero or higher, i.e. if price equals or exceeds

average cost.

The assumption of a neutral form of technological change has led to a

system of two equations (21) and (22) which de¯ne c and P ¤ implicitely as

functions of P and Z only; consequently, the right-hand side of (26) must
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also be independent of s. This requires

@U

@Q

@Q

@s
= ¡

@U

@s
(27)

Also, when v is proportional to P , the restriction giving rise to (15) under

contingent claims evaluation, it can be shown that U is linear in P

U (Q (P;Z; s) ; Z; s) = ¡ (Z; s)P

so that (26) reduces to

B = ¡(Z; s) (28)

(27) and (28) correspond to testable restrictions in the econometric work

whose description follows.
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4 The empirical estimation

4.1 Data: output price

Crucial to the theoretical model described earlier is the assumption that the

real output price follows a geometric random walk. Since the model will be

applied to Canadian copper mines this implies that the Canadian price of

copper, relative to materials, should verify (9): dP = ®Pdt + ¾Pdz. This

assumption must be tested; if it is not rejected, we also need to estimate

® and ¾. The random walk hypothesis for U.S. copper prices is known to

be rejected when it is tested over the very long period. Our point of view

is di®erent, as we are interested in testing the hypothesis over periods that

are relevant for capacity investment decisions, i.e. usually less than 20 years,

and as the decisions under investigation were all made during the post-war

period. For these reasons, we limit our investigation to the 1940-1980 period

(see the Appendix for data description and sources).

Visual inspection of the graph of P (not provided) does not suggest that

any decisive change in the slope or the level occurred during the period

1940-1980. Consequently the Dickey-Fuller test is appropriate. Consider the

model

¢P (t) = ´0 + ´tt+ [´P ¡ 1]Pt¡1 +
4X

j=1

´j¢Pt¡j + ³ (t)

where ¢P (t) = P (t) ¡ P (t¡ 1). Testing the random walk hypothesis4

4We also carried out the test on a discrete version of (9): lnP (t) ¡ lnP (t ¡ 1) =
[®¡ ¾] + ³ (t) where ³ (t) » n (0; ¾). The augmented model was

lnP (t) ¡ lnP (t¡ 1) = [®¡ ¾] + ´tt+ [´P ¡ 1] lnP (t¡ 1) +
X

´j¢lnP (t¡ j) + ³ (t)
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involves the joint test that ´t = ´P ¡ 1 = 0. Since we want to test whether

this is a good assumption from the point of view of a ¯rm considering an

investment at s 2 [1955 ¡ 1980], we carry out the test for each of the 26

sub-periods 1940 ¡ s, s 2 [1955¡ 1980]. There is no period over which the

geometric random walk is rejected5.

Having failed to reject the random walk hypothesis, we proceed to esti-

mate parameters ® and ¾ under that assumption. Following Slade (1988),

we use the following discrete approximation

¢P (t) = ®P (t) + » (t) (29)

where » (t) is an heteroscedastic error term such that » (t) = ¾P (t) ². Again,

since we want to consider ¯rms making investment decisions, under the geo-

metric random walk hypothesis, at various dates, we estimate (29) over each

of the 26 possible 1940 ¡ s periods so that, in each case, the estimates of ®

and ¾ re°ect the information available at s and only that information.6

As shown in Table 1, ® is a small, positive, number. From the point

of view of testing the option theory of real investment, the magnitude and

sign of ® are of little interest, with the important proviso, however, that

the resulting value of b be greater than one as mentioned in the theoretical

where ¢ lnP (t) = lnP (t) ¡ lnP (t ¡ 1). Testing the geometric random walk hypothesis
involved the joint test that ´t = ´P ¡ 1 = 0. Results were similar.

5The highest (least favourable to the random walk hypothesis) F statistic is 4:17 (for
the regression 1940-1970); a level of at least 5.61 would be required to reject the hypothesis
at a 90% signi¯cance level.

6Sampson (1995) studies the implications on the option model of assuming that the
drift parameter, rather than being known with certainty, is learnt progressively as new
observations arrive.
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presentation of the model (otherwise P ¤ does not exist); this condition is

satis¯ed at each investment date.

Variable (%) Mean Standard Deviation Minimum Maximum

® 1.93 .072 .066 4.23

¾ 13.70 1.46 11.10 16.40

~r 8.32 1.39 4.37 10.11

rf 5.79 1.39 1.84 7.58

Table 1: the determinants of the inverse mark-up B

(355 capacity investment decisions at 20 di®erent dates)

Since the investment rule of the option model coincides with the NPV crite-

rion when ¾ = 0, it is important that the measured value of ¾ be di®erent

from zero. Its mean value of 13% indicates that the drift in the price, al-

though low on average at less than 2%, is subject to °uctuations whose

standard error exceeds six times its mean.

4.2 Other data

The data set is made of individual observations on Canadian copper mines.

Details and sources are given in the Data Appendix. The sample period

covers the period 1955-1980, corresponding to major capacity investments

which actually occurred between 1961 and 1980. A few other investments

involving copper extraction took place after 1980 but were not included in the

sample because their major purpose was the mining of zinc. 38 di®erent ¯rms,

some of which were observed more than once, made a total of 60 capacity
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investments, of which 20 in British Columbia, 9 in Ontario, 8 in Qu¶ebec,

and 1 in the Yukon. An observation is a vector of variables corresponding to

the occurrence of a major capacity investment (which we de¯ne as either the

creation of a new operation, or any capacity increase exceeding 20 percent of

existing capacity7), or to the failure of any major investment to occur. The

data set is neither a time series, nor a cross section or a panel: there may be

several observations, or only one observation, in any given year. In fact the

data set is organized as a succession of short time series whose dates may

overlap. Each series corresponds to the `history' of a particular investment.

The last observation in each series corresponds to the actual investment, and

the preceding observations correspond to a `waiting period' over which the

¯rm was { this is the hypothesis to be tested { holding on to the option

to invest. The data indicate only a few instances of minor corrections or

validations of reserve ¯gures made in the period immediately preceding the

investment, allowing us to assume that (R;X;G;Dj) was known and constant

at (R (s) ;X (s) ; G (s) ;Dj (s)) during the `waiting period'. The latter is set

at six year, unless a ¯rm made major capacity investments at intervals of

less than six years, in which case we reduce the period in such a way that

the time series for any two investments by the same ¯rm do not overlap. Of

course the time series corresponding to investments by di®erent ¯rms may

have common years. Some of the variables in an observation vector, prices

typically, are common to all ¯rms and vary only according to the date, while

others, such as mineral reserves, are mine speci¯c. Although output and

7In Harchaoui and Lasserre (1995) it was found that the capacity chosen was not
a®ected by whether it was a creation, or an expansion.
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factor prices are common at any given date, after-tax prices are mine speci¯c

because the tax parameters entering their de¯nition may di®er according to

mine location.

Thus we have 355 observations corresponding to the stacking of 60 time

series of 7 or less observations each containing the variables necessary to

estimate the two equation econometric model (30)-(31) presented further

below. These variables, which are either directly observed, or constructed,

are to recap:

B: inverse mark-up coe±cient at s; B = b¡1
b

with b given by (19) or (20)

alternatively;

Dj: dummy variables for location (Ontario, Qu¶ebec, Yukon);

G: ore grade, in percentage, at investment date (constant over the waiting

period);

P; (P ¤): after-tax °ow price of copper relative to materials (unobserved

exercise price) at s; P and P ¤ coincide by de¯nition when an investment

occurs;

Q¤: capacity chosen at s (Q¤ = 0 if the investment did not occur at s);

r: real discount rate for long-term projects at s (includes a risk premium

under the assumption of risk aversion; equals the risk-free rate otherwise);

rf : risk free interest rate at s;

~r: risk adjusted rate of return at s;

R: mineral reserves at investment date (constant over the waiting period);

s: year of a major capacity investment decision (wait, or invest);

WL;WE: after-tax °ow prices of labor and energy relative to materials at

s;
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WK: after-tax asset price of capital equipment relative to materials at s;

X: dummy variable (= 1 for open-pit operations; = 0 for underground

operations);

® and ¾: drift (= ®p ¡ ®w) in the after-tax price of copper relative to

materials, and its variance parameter, as estimated at the investment date;

± (= r ¡ ®p): discount rate applying to revenues at s, after correction for

the drift ®p in real output price;

°: rate of neutral technological change;

½ (= r ¡ ®w): discount rate applying to variable costs at s, after correc-

tion for the real rate of growth ®w common to the four factor of production

prices (in practice ®w = 0);

Except for the parameters of the price process whose estimation was de-

scribed above, most data on that list are derived in a straightforward fashion

from available sources, as described in the Appendix. However, r deserves

some further comments.

Under risk neutrality, the discount rate equals the risk free rate: r =

rf . Otherwise, if its conditions of validity are satis¯ed, the CAPM provides

a way to compute the risk premium. It should be noted that, when the

CAPM applies, the valuation of the investment option by contingent assets

analysis gives the maximized market value of the option, which implies that

an evaluation by dynamic programming, either gives the same result, or

undervalues the option. Thus it appears that contingent asset valuation

should be preferred when the CAPM applies, and dynamic programming is

the alternative otherwise. However, when the CAPM is not valid, we do not

have a clear theory for the choice of a discount rate. Despite this, we use the
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risk premium from the CAPM to compute the discount rate for the dynamic

programming valuation8: r = ~r.

We constructed three alternative 355 observation data sets, di®ering by

the discount rate and by the variables involving the discount rate, B in

particular. Each data set corresponds to one of the following alternative

hypotheses:

² dynamic programming with risk aversion: B is computed according to

(19) ; with the discount rate set at r = ~r;

² contingent claims valuation with risk aversion: B is computed accord-

ing to (20); the discount rate is set at r = ~r;

² risk neutrality: ~r and r are set equal to rf and B is computed according

to (19) or, which is equivalent under risk neutrality, (20).

It can be seen in Graph 1 that B averages between around :5 and :7 de-

pending on the underlying hypothesis and varies within reasonable bounds.

This implies an average mark-up over average total cost of between around

100% and 43%.

PLEASE INSERT GRAPH 1 HERE

8Since risks are likely to be less e±ciently diversi¯ed when the CAPM is not valid, that
evaluation should be viewed as a lower bound.
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4.3 Econometric model and estimation procedure

Assume that lnU is linear in lnQ¤ and in the Zi's.9 Then (26) may be written

as

lnP ¤ = a0 ¡ aB lnB + aQ lnQ
¤ +

X
i

aiZi + ass+ ² (30)

where ² is a (full-sample) error term, the aj's are parameters and, if (26) is

true, aB = 1. The notation Q¤ is a reminder that Q is endogenous.

Assume that the supply function may be represented by the log-linear

form

lnQ¤ = b0 + bPP +
X
i

biZi + bss+ º (31)

where the bi's are parameters and º is a (full-sample) error term. Note that,

in that equation, P is the market price, and not the trigger price, although

these two prices coincide at the dates when investments are observed.

Equations (30) and (31) represent a simultaneous-equation model with

truncation. The structural form may be estimated using the two-stage least

square method suggested by Lee, Maddala and Trost (1980) for such trun-

cated models. Since only (30) includes an endogenous variable lnQ¤ on its

right-hand side, the simultaneity problem is dealt with by ¯rst estimating

(31) and then use its predicted value in (30).

In our initial estimation of (31) by Heckman (1979)'s two-stage method,

the ratio of Mills recovered from the ¯rst-stage probit estimation was not

9We considered alternative speci¯cations for U , ranging from the Cobb Douglas form to
the standard log-linear form. The adopted speci¯cation dominates them in J tests based
on the actual estimating equation (32) presented further below; the contribution of lnB,
which is crucial to our analysis, is not very sensitive to these alternative speci¯cations.
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signi¯cant in the second-stage equation, estimated from the positive trunca-

tion of the sample. If the residuals are normally distributed, this indicates

that the truncation of the sample does not systematically bias the residuals

of equation (31) away from zero. Consequently, (31) was estimated again by

Ordinary Least Squares from the truncated sample without including Mills'

ratio in the explanatory variables. The residuals were submitted to a Bera-

Jarque test which con¯rmed the absence of any signi¯cant departure from

normality.10

Next we substituted ln Q̂¤, the predicted value of lnQ¤ from (31) into (30)

which was in turn estimated by Heckman's method. Let ĥ = Á̂

©̂
be the ratio

of Mills recovered from the ¯rst-stage probit estimation based on (30), where

Á̂ and ©̂ are the density and cumulative functions of the standard normal

distribution evaluated at each predicted value of the probit model. Since

E (² jP ¤ > 0) = ¡¾1;²ĥ, where ¾1;² = Cov (²; ² jP ¤ > 0), the second-stage

equation, estimated from the positive truncation of the sample, is

lnP ¤ = a0 ¡ aB lnB + aQ ln Q̂
¤ +

X
i

aiZi + ass¡ ¾1;²ĥ + ²1 (32)

where ²1 is a normally distributed residual whose expected value is zero.

While the estimation of (32) by ordinary least squares yields unbiased pa-

rameter estimates, Lee, Maddala, and Trost have shown that the associated

asymptotic covariance matrice must be corrected to account for the fact that

10We corrected for heteroscedasticity using White (1980)'s consistent covariance matrix
method.
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ĥ is estimated. The appropriate estimated covariance matrix is

§̂(a; ¾1;²) = ¾̂21(X
0

1X1)
¡1
¡¾̂21;²(X

0

1X1)
¡1X

0

1

h
D1 ¡D1H1(H

0

¤H)¡1H
0

1D1

i
X1(X

0

1X1)
¡1

(33)

where

X1 =
h
1; lnB; ln Q̂¤; Z; s; ĥ

i
;

D1 is a (N1 £N1) diagonal matrix, (N1 being the number of observations

for which P ¤ is observed) whose ith diagonal term is the value at observation

i of ĥ
³
ĥ+ ^́

0

Y
´
where Y and ^́ are, respectively, the vectors of explana-

tory variables and the estimated parameters of the ¯rst-stage probit model

associated with (30));

H =

2
666666664

Y
0

1

:

:

Y
0

N

3
777777775
is partitioned as H =

2
64 H1

H2

3
75 where H1 corresponds to the

N1 instances where P
¤ is observed while H2 corresponds to the zeros;

¤ is a (N £N) diagonal matrix whose ith diagonal term is the value at i

of ĥĝ where ĝ = Á̂

1¡©̂
;

¾̂21 =
1
N1

PN1

i=1

h
²̂21 + ¾̂21;²

³
^́
0

Y
´
ĥi + ¾̂21;²ĥ

2
i

i
;11

(33) takes account of the fact that ĥ is an estimated variable in (32);

however, it overlooks the fact that ln Q̂¤ is used as an instrument for lnQ¤

in that equation. Murphy and Topel (1985) devised a procedure which cor-

rects the resulting bias in the estimated covariance matrix of the second step

11This is actually the formula suggested by by Lee and Trost (1978, 362) to ensure that
¾̂21 be positive.
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estimator. Their corrected covariance matrix is

~§(a; ¾1;²) = §̂(a;¾1;²) + (X
0

1X1)
¡1X

0

1F
¤ª̂F ¤

0

X1(X
0

1X1)
¡1 (34)

where ª̂ is the estimated covariance matrix of the parameters of (31) and F ¤

is a matrix whose elements are of the form f ¤

i;j = âQ [1; P; Zi; s]. (34) is the

covariance matrix used to establish the t statistics for the parameters of the

price equations displayed in Table 2 below.

4.4 Model validation and results

As the econometric version of (26), (32) is the key equation necessary to

test option theory applied to real investment. If aB is not a signi¯cant

parameter, then there is no option value to waiting, and the model may be

interpreted as a standard NPV model of irreversible investment. If aB is

a signi¯cant parameter, then option theory further implies that it should

not be signi¯cantly di®erent from 1. These two tests may be applied to the

various versions of the option model discussed above, which di®er by the data

sets used in the estimation of both (32) and (31). If the theory passes these

two tests, then both (32) and (31) become key components in the option

model of real investment: (32) explains the timing of investment decisions

(invest when P reaches P ¤ from below); (31) explains the magnitude of the

investment.

Of course the results are worth what the estimation procedure and the

data are worth. Heckman's two-stage procedure has been criticized by Nawata

(1993): since the hazard ratio used in that procedure is closely approximated
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by a linear function of ^́
0

Y , he argued that estimators based on that procedure

are likely to perform poorly when there is a high degree of multicollinearity

between ^́
0

Y and the explanatory variables used in the second-stage model.

Such is not the case with our estimations, where correlation coe±cients are

not higher than 10%. Nawata and others also argued that the reliability

of Heckman's procedure is uncertain when the residuals are not normally

distributed. A Bera-Jarque test of normality is reported for all results pre-

sented below. The least favorable value of the statistics is :8, while rejection

of normality at a signi¯cance level of 80% would require a level of at least

3:22. With respect to omitted variables, or errors in variables, we introduced

dummy variables when we suspected a possible problem; the results are re-

ported only when the variable is at least marginally signi¯cant, as in the case

of X. In particular, dummies for location (provinces) and type of reserves

(proven versus probable) did not make any di®erence.

Results are reported in Table 2. For all equations, the vector Z of the

theoretical model was rede¯ned as WL;WE;WK;
±

½
; R;X;G, i.e. ± and ½ were

introduced as a ratio rather than as separate variables, in an attempt to

alleviate colinearity problems and to pick up some explanatory power from

these rates. Also, ±

½
was eliminated from the price equations because it was

not signi¯cant, and the regional dummies were eliminated from all equations

for the same reason. The table presents three (second-stage) estimations

of the trigger price equation (32), one for each hypothesis; there are only

two corresponding estimations of (31) because, B not being one of their

explanatory variables, the capacity equations di®er only by the discount rate

and the same discount rate is used under both the dynamic programming
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and the contingent claims hypotheses. The explanatory variables ln Q̂¤ used

in the price equations are the predicted values from the appropriate capacity

equations.

PLEASE INSERT TABLE 2 AROUND HERE

The coe±cient of the variable lnB, crucial in testing the theory of op-

tions applied to real investment, is signi¯cant at a better than 95% level of

signi¯cance under all three hypotheses. The t-test of the hypothesis that aB

is not di®erent from 1 is passed at a better (i.e. lower) than 90% level of

signi¯cance by the dynamic programming version of the risk aversion model

(t=-1.40) and by the risk neutrality model (t=-1.58); however, the contingent

claims version of the model fails that test (t=-2.85).

The fact that aB is not equal to ¡1 in the contingent claims version of

the option model may mean that the underlying spanning hypothesis does

not hold for capacity investments in Canadian copper mines. However, as

mentioned earlier, our test is based on a special case of the model where

it is assumed that v is proportional to P , implying (28), i.e. that B is

independent of P . This may be tested directly by writing a linear version

of (28), extended to include P as explanatory variable

lnB = c0 + cP lnP +
mX
i=1

ciZi + css¡ ¾1;!ĥB + !1

where, in a two-stage estimation by the same procedure as was applied to

estimate (32), ĥB represents the ratio of Mills recovered from the ¯rst-stage

probit and the rest of the notation is self-explanatory. Restriction (28) im-
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plies that cP is not signi¯cantly di®erent from zero. It is rejected12, making

the earlier test of the contingent claim version of the model inconclusive.

The three versions of the model must also satisfy (27), the assumption

of neutral technological change, which implies the cross-equation restriction

aQ¯s = ¡as. This may be tested from the reduced form of the model obtained

by substituting (31) into (30)

¡aQbPP+lnP ¤ = a0+aQb0¡aB lnB+
mX
i=1

[aQbi + ai]Zi¡[aQ¯s ¡ as] s+²+º

On investment years, linearizing lnP ¤, the left-hand side may be approxi-

mated as [1 ¡ aQbP ]P which gives, after dividing by [1¡ aQbP ]

P = d0 ¡ dB lnB +
mX
i=1

diZi ¡ dss¡ ¾1;»ĥP + »1

where ds =
aQ¯s¡as

1¡aQbP
and the rest of the notation is by now self-explanatory.

Restriction (27) requires ds not to be di®erent from zero; it is rejected for all

three versions of the model. However, with ds estimated at around :04, s has

little impact on the predicted values of P . Furthermore, the estimated value

and signi¯cance of dB is robust to the omission of s from the model. This

suggests that the test based on aB presented earlier is little a®ected by the

assumption that (27) holds.

The three price equations may be compared on other grounds. We note

that they have good explanatory powers, with R2's ranging from :91 for the

dynamic programming model under both risk aversion or risk neutrality to

12Detailed results pertaining to the test of (28) and (27) are available on request.
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:86 for the contingent claims model under risk aversion. In an attempt to

discriminate between the three models, since they do not involve the same

data, we carried out J-tests. These tests (not reported) do not allow the

rejection of any of the three price equations in favor of any of the remaining

ones.

4.5 Economic analysis

To our knowledge, our work provides one of the ¯rst statistical test of option

theory, as a theory of real investment. The tests just presented strongly sup-

port that theory, at least in its dynamic programming version. This result

is most welcome, as alternative investment theories have a relatively poor

record of explaining observed behaviors in many areas of economic activity.

In particular, as documented by Chirinko (1993), alternative models imply

that prices (especially output price and the user cost of capital) should ex-

plain a higher proportion of variations in investment than is actually found

in empirical work. In contrast the option model, while not ruling out such

an in°uence, implies that the in°uence of prices may also be manifest in

the timing of investments. Similarly, empirical neo-classical supply models,

especially in resource sectors, often ¯nd that output price explains supply

poorly, as indeed one must expect in models such as the option model where

supply is constrained by capacity, and capacity is subject to hysteresis.

To examine our results more closely, starting with the capacity choice

equations (columns 2 and 4), we note that capacity is signi¯cantly positively

related to output price, and that the corresponding elasticity (2:44 under
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risk aversion; see Table 3) is fairly high. In a neo-classical supply model this

elasticity would probably have been lower, perhaps not signi¯cant, because

instances where capacity was not adjusted would have been treated the same

way as instances where it was increased. It appears nonetheless that, once the

decision to invest has been taken, geological and physical considerations play

the key role in the choice of the scale of operations. Thus higher reserves, as

well as a geology amenable to open-pit mining, call for a higher production

rate. In contrast, a high ore grade is associated with lower scale, in accor-

dance with the observation that high-grade deposits are often small. Factor

prices do not appear to a®ect capacity in any statistically signi¯cant way, but

the ratio of adjusted discount rates ±

½
a®ects it positively. As explained in

the resource literature, the discount rate has an ambiguous e®ect on the rate

of extraction of an exhaustible resource when capital is used as an input: on

one hand, a low discount rate implies a low user cost of capital, allowing for a

higher capacity; on the other hand, the same low discount rate implies a high

resource rent, calling for slow extraction. In the speci¯cation adopted here,

WK picks up the input price e®ect, while ±

½
picks up the resource rent e®ect.

A low value of ± means that copper prices have a rising trend and (or) that

the discount rate is low so that future revenues are weighted heavily: there

is a gain involved in economizing on the exhaustible resource by adopting a

slow extraction path. Similarly, a high value of ½ means that future costs

are discounted heavily: again one may save on discounted future costs by

choosing to extract slowly.

Turning to the threshold price equations, one should remember that a

good prediction of that price amounts to a good prediction of investment
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timing. With R2's ranging from :86 to :91, our model performs rather well in

that respect. Because of their particular role in the option theory of real in-

vestment, it is natural to devote some attention to the impact of the variables

that determine the mark-up of the trigger price over average cost, in partic-

ular the risk associated with the randomness of copper prices, as measured

by ¾, the drift in the relative price of copper ®, and the risk adjusted rate of

interest ~r. These variables do not enter the econometric model directly, but

determine the value of B, so that they have a statistically signi¯cant impact

on P ¤ (the t statistics associated with B range from ¡3:33 for the dynamic

programming version of the model under risk aversion to ¡6:44 under risk

neutrality). While their qualitative impact has been discussed extensively

in the literature, this is, to our knowledge, the ¯rst instance in which the

magnitude of that impact is measured econometrically. The elasticities13

presented in Table 3 indicate that it is modest, except perhaps in the case of

¾ where the elasticity is :21 under risk aversion for the dynamic programming

13the impact of ¾ on the trigger price,via B, is, in elasticity form, ²P;¾ (¾; ®; ½; °) =
@P ¤

@¾
¾
P ¤

with
@P¤

@¾
= ¡

@ lnP¤

@ lnB

P ¤

B

@B (b)

@b

@b (¾;®; ½; °)

@¾

and

B =
b (¾; ®; ½; °)¡ 1

b (¾; ®; ½; °)

In the dynamic programming version of the model, b is given by (19) so that

@b (¾; ®; ½; °)

@¾
= 2

®

¾3
+

1

2

r³¡
®
¾2
¡

1
2

¢2
+2½¡°

¾2

´
µ
¡4

µ
®

¾2
¡

1

2

¶
®

¾3
¡ 4

½¡ °

¾3

¶

The elasticity of P¤ with respect to ¾ under risk aversion given in Table 3 is computed
according to these formula, where the relevant variables are evaluated at their mean sample
values. Other elasticities with respect to ¾, ~r, and ® are computed in a similar way.
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model. The dimension of the project, as represented by Q¤, is an important

and highly signi¯cant determinant of the trigger price. To some extent, this

has been ignored in the theoretical option-value literature where projects are

typically treated as exogenous. The endogeneity of the investment project

implies that the e®ect of factor prices on the threshold price may be sepa-

rated out into a direct e®ect on P ¤ and an indirect e®ect occurring via Q¤.

It is clear from Table 3 that, once the combined e®ect is taken into account,

factor prices have little measurable e®ect on P ¤.14

PLEASE INSERT TABLE 3 AROUND HERE

14For i = L; E; K, the total e®ect on P¤ of a change in Wi is, in elasticity form

EP;Wi
= ²P;Wi

+ ²P;Q²Q;Wi

where ²P;x (²Q;x) represents the partial elasticity of P ¤ (Q¤) with respect to any variable
x. In the case of WL, for the dynamic programming model under risk aversion, this gives,
according to Table 3, EP;WL

= ¡1:482 + :461 ¤ 2:582 = ¡:2917 which is not signi¯cantly
di®erent from zero since ²Q;WL

is itself not signi¯cantly di®erent from zero.
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5 Discussion and conclusion

Certainly, variants of, or alternatives to, the standard neoclassical theory,

such as the Putty Clay model of investment, have been designed to deal with

irreversibilities and indivisibilities. However, even when they explain capacity

levels, these alternative theories have practically nothing to say about the

timing of investment decisions. The one exception is the NPV criterion,

which, applied in a stochastic context that is foreign to it, calls for a go ahead

whenever the project value is high enough to cover costs. It has been shown

that such a decision rule is suboptimal and may be costly whenever a project's

value is uncertain and new, valuable, information about it arrives over time.

Our results indicate that ¯rms behave in a way compatible with that remark.

Furthermore the option value model of real, irreversible, investment appears

to explain both capacity, and timing, decisions in a satisfactory way, both

from a statistical and from an economic point of view.

This allows us to be hopeful that option theory, as applied to real in-

vestment, may become a useful tool of empirical investigation. Until now,

option theory has been more an illustrative device than a tool of investiga-

tion. In particular, it has been much used in simulations but little as a basis

for statistical inference. Of course, many gaps remain to be ¯lled. Many

features that have been studied in the theoretical literature were left out of

our model. In particular, we did not consider the possibility of further capac-

ity expansions; we did not consider the duration of the investment process;

we ignored, although on good empirical grounds, the option to shut down

during the mine's life; we focused on output price as the single source of
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uncertainty, using a procedure which remains conditional on the validity of

the Brownian-motion assumption. These are serious restrictions which beg

to be eliminated in further work, if the theory is to become applicable in

wider a range of applications. As to the application presented in this pa-

per, the statistical results suggest that its validity was not a®ected by these

restrictions.
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Data Appendix

This appendix lists the major capacity investments investigated in the paper, and describes the

variables. Sources are reported in Roman numbers between brackets and listed at the end of the appendix.

1. Firm name, location, and investment dates [II]

² Copper Rand Mine, Qu¶ebec, 1960, 1968, 1970

² Craigmont Mines, British Columbia, 1961, 1962,

² Vauze Mines, Qu¶ebec, 1961,

² Bethlehem Copper, British Columbia, 1962, 1964, 1966, 1967, 1971, 1976,

² Coast Copper Co. Ltd., British Columbia, 1962,

² Phoenix Copper, British Columbia, 1962, 1963, 1969,

² Solbec Mines, Qu¶ebec, 1962,

² Sunro Mines, British Columbia, 1963,

² Kam Kotia Mines Ltd., Ontario, 1963, 1968,

² Manitouadge Mines, Ontario, 1963,

² Lake Dufault Mines, Qu¶ebec, 1964,

² Copper Corp. Ltd., Ontario, 1965,

² Lorraine Mining Corp., Qu¶ebec, 1965,

² Minoca Mines, British Columbia, 1965,

² Endako Mines, British Columbia, 1965, 1967, 1978,

² Kidd Creek Mines, Ontario, 1966, 1978,

² Westmin Resource Ltd., British Columbia, 1966, 1968

² Kidd Copper Mines, Ontario, 1966,

² Granisle Mines, British Columbia, 1966, 1972,

² Whitehorse Copper Mines, Yukon, 1967,

² Prace Mining Corp., Ontario, 1967,

² Munro Copper, Ontario, 1967,

² Mines Gaspe, Qu¶ebec, 1968, 1973

² Madeleine Mines Ltd., Qu¶ebec,1969,

² Cons. Churchill Copper Corp., British Columbia, 1970,

² Renzy Mines Ltd., Qu¶ebec, 1970,

² Geco Mines, British Columbia, 1970,

² Brenda Mines, British Columbia, 1970,

² Island Copper Mines, British Columbia, 1971,

² Opemiska Mines, Qu¶ebec, 1971,

² Lornex Mining Corp., British Columbia, 1972, 1974, 1979,

² Gilbraltar Mines, British Columbia, 1972,

² Similkameen Mining, British Columbia, 1972, 1975

² Bell Copper Mines, British Columbia, 1972,

² Maybrun Mines Ltd., Ontario, 1973,
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² Sturgeon Lake Mines, Ontario, 1975,

² Thierry Mines, Ontario, 1976,

² Afton Mines, British Columbia, 1978,

² Equity Silver Mining, British Columbia, 1980,

² Highmont Mines, British Columbia, 1980.

2. Variables

Except where stated otherwise, all prices are Canadian prices expressed as index numbers (1971=100).

1. Output price [1940-1980]

The New York Stock Exchange nominal price index of one metric ton of copper, converted

into Canadian dollars [(XII) and (VI), Series B3400].

2. Estimated parameters of the output price process: Drift and variance

The estimation of the drift parameter of the Brownian geometric process is explained in Section

4.1. The variance parameter ¾ (s) was obtained by regressing »̂ (t)2 on P (t)2, for each 1940-s

period, where »̂ (t) is the residual from the OLS estimation of (29) over 1940-s. t statistics

ranged from 1.85 to 4.85.

3. Variable input prices [1940-1980]

1. Nominal wage rate: Index number of average wage rates for mining [(VIII), Series E201

rebased for the period 1940-1975, and (IX) for the period 1976-1980];

2. Nominal energy price: TÄornqvist price index based on natural gas, electricity, and crude

oil for the manufacturing, mining, and electric power industries. Shares are de¯ned as

value shares; prices are de¯ned as value¥quantity. Data come from (VIII, Series Q31and

Q32 for gas, Series Q104 and Q109 for electricity, and Series Q19 and Q20 for oil), and

the corresponding series from (VII);

3. Nominal price of materials: general wholesale price index excluding gold [(VIII) for the pe-

riod 1940-1975, Series K33-43 (rebased) and (I) for the period 1976-1980, Series D500000].

4. Nominal asset price of capital [1940-1980]

Implicit price indexes of Gross National Expenditures: new machinery and equipment [(VIII),

Series K181, for the period 1940-1975, and (I), Series D40639, for the period 1976-1980].

5. Rate of growth of factor prices

The rate of growth in the share-weighted index of factor prices was so close to that of the

general price index that we set ®w = 0.

6. Tax parameters [1960-1980]

All tax parameters correspond to the post tax holiday period [(III) for the formulas and (IV)

for the the computations].

7. Rates of return [1957-1980]

The risk-adjusted rate of return is based on an unconditional CAPM. It is de¯ned as the sum

of i) the Canadian 90-day Treasury Bill real rate, ii) the market risk premium, and iii) an

additional premium accounting for the long term nature of the investment, and measured as

the di®erence between the Long term Canada bond rate [(VIII), Series J475, for the period

1954-1977; (VI), Series B14013, for the period 1971-1980]), and the Canadian 90-day Treasury

bill rate [(VIII), Series J471, for the period 1954-1977; (VI), Series B14001, for the period

1971-1980]. Since data on the metal mining industry rates of return are available only since

1967 in Canada and given the empirical evidence of (at least partial) integration of Canadian

and US stock exchanges (Koutoulas and Kryzanowski, 1994), we used US data to estimate
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Canadian metal mines market beta's (risk-free rate: US 3-Months Treasury Bills [(X), Series

X451, for the period 1957-1970; (XI), for the period 1971-1980)]; rate of return in the metal

mining industry and market rate of return: based on Share prices and dividends from Standard

& Poors [(V), average of high and low yearly values]). Where necessary, nominal rates were

corrected for the Canadian rate of in°ation (growth rate of the Implicit De°ator of GDP [(VI)]

net of a quality change rate ¯xed at 3 percent per annum since 1950 [see Gordon, 1992]).

8. Rate of technical change

We used the rates of regress estimated by Stollery (1985) over the period 1957-1979 for Cana-

dian copper mines: ¡1:40% over 1957-65; ¡3% over 1966-70; and ¡3:6% over 1971-79.

9. Reserves, ore grade, capacity, and extraction mode: [II]

Reserves are proven or probable and expressed in thousands of metric tons; grade is a percent-

age rate by weight; capacity is in metric tons of ore per day; the extraction mode is X = 1 for

open-pit mining and X = 0 for underground extraction.
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Table 2: Capacity and Exercise Price Models  a

Risk Aversion Risk-Neutrality

Ln Q* Ln P* Ln Q* Ln P*

Dynamic
Programming

Contingent 
Claims

Constant -0.426
(-0.217)

0.856
(1.454)

2.727
(6.886)

2.719
(1.854)

1.799
(4.439)

Ln B - -1.731
(-3.325)

-2.246
(-5.128)

- -1.326
(-6.440)

R 0.757×10-8
(8.103)

-0.374×10-8
(-7.260)

-0.244×10-8
(-6.064)

0.759×10-8 

(8.201)
-0.368×10-8

(-7.047)

Ln Q* - 0.460
(7.768)

0.317
(6.216)

- 0.484
(9.017)

h - 0.220
(1.722)

-0.083
(-1.361)

- -0.100
(-1.799)

P 2.749
(1.947)

- - 1.596
(1.332)

-

WL 3.016
(1.409)

-2.384
(-4.242)

-1.503
(-4.447)

3.369
(1.591)

-1.691
(-5.305)

WE 1.157
(1.386)

-0.661
(-3.606)

-0.846
(-7.169)

1.191
(1.366)

-0.968
(-8.516)

WK 0.531
(1.342)

0-.098
(-0.654)

-0.314
(-3.783)

0.519
(1.257)

-0.411
(-5.169)

* / D 4.294
(2.243)

- - 1.353
(2.269)

-

X 0.449
(1.842)

-0.221
(-6.655)

-0.157
(-5.514)

0.457
(1.848)

-0.226
(-8.004)

G -36.9
(-3.688)

15.944
(1.897)

10.896
(4.933)

-36.5
(-3.564)

16.906
(7.870)

s -0.104
(-1.077)

0.119
(5.203)

0.079
(6.077)

-0.109
(-1.105)

0.078
(6.449)

R2 0.81 0.91 0.86 0.81 0.91

R  adj.2 0.77 0.89 0.83 0.77 0.89

B-Jb 0.80 0.14 0.13 0.71 0.22

Notes:  The t-statistics are between parentheses.  The price equations were estimated by the two-a

stage least square method with truncation.  The capacity equations were estimated by the OLS
method (in using the two-stage method, the ratio of Mills was not significant).  Standard errors of
the price equations parameter estimates are based on (34).  Bera-Jarque asymptotic Lagrangeb

multiplier normality test.



Table 3: Capacity Elasticities and Threshold Price Elasticities at Mean Values

Risk Aversion Risk-Neutrality

Variable Capacity
Threshold Price

Capacity Threshold Price
Dynamic 

Programming
Contingent

Claims 

P 2.444 - - 1.419a -

R 0.503 -0.249 -0.162 0.504 -0.245

Q* - 0.461 0.317 - 0.484

WL 2.582  a -1.482 -1.287 2.884a -1.447

WE 1.369  a -0.783 -1.002 1.369a -1.146

WK 0.459a -0.085a -0.272 0.449a -0.356

* / D 3.251 - - 0.862 -

G -0.517 0.223 0.153 -0.511 0.237

F - 0.209 0.090 - 0.168

r - -0.058 -0.018 - -0.034

" - 0.043 0.034 - 0.063

Note:  All elasticities are different from zero at a better than 5% level of significance, excepta

where otherwise indicated by a %a$superscript.
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