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Résumé / Abstract

On analyse un modèle standard de l'exploitation des ressources
renouvelables par des agents non-coopératifs. Dans le cas où les ressources sont
suffisamment productives, on démontre l'existence d'un continuum d'équilibres
Markov-parfaits de Nasch (EMPN). Quoique ces équilibres entrainent la
surconsommation des ressources, on peut prouver que pour chaque T > 0, il y a des
EMPN ayant la propriété que le stock de ressources demeure dans un voisinage
arbitrairement petit de l'état stationnaire optimal pendant au moins T périodes. De
plus, on obtient une condition nécessaire et suffisante pour que l'exploitation
maximale des ressources soit un EMPN. On démontre que cette condition est
vérifiée dans le cas où soit il y a beaucoup d'agents, soit les agents sont impatients,
soit la capacité de chaque agent est grande.

A standard model of the exploitation of a renewable resource by non-
cooperating agents is considered. Under the assumption that the resource is
sufficiently productive we prove that there exist infinitely many Markov-perfect
Nash equilibria (MPNE). Although these equilibria lead to overexploitation of
the resource (tragedy of the commons) it is shown that for any T > 0 there exist
MPNE with the property that the resource stock stays in an arbitrary small
neighborhood of the efficient steady state for at least T time periods.
Furthermore, we derive a necessary and sufficient condition for maximal
exploitation of the resource to qualify as a MPNE and show that this condition
is satisfied if there are sufficiently many players, or if the players are sufficiently
impatient, or if the capacity of each player is sufficiently high.

Mots Clés : Ressources renouvelables, jeu différentiel, équilibres Markov-
parfaits, équilibres multiples

Keywords : Renewable resources, differential game, Markov-perfect equilibria,
multiple equilibria



1 Introduction

Dynamic games are a very useful analytical tool for the theory of resource

allocation and capital accumulation under imperfect competition. Over the

last two decades a number of authors have studied the fundamental issues

of existence, uniqueness, and e�ciency of non-cooperative equilibria in such

games (see, e.g., [1, 3, 4, 5, 6, 7, 8, 10, 11, 13]). The standard model underly-

ing these papers involves a single resource stock (or capital stock) which can

be used by �nitely many agents. The papers di�er from each other mainly in

the way how time is modelled (as a discrete variable or a continuous one) and

in the assumptions imposed on the utility functions and the growth function

of the resource, respectively.

In the present paper we are concerned with a very general form of this com-
mon property resource game with n identical players and a continuous time

variable. The growth function of the natural resource and the utility func-
tions of the players are assumed to satisfy standard concavity and smooth-
ness assumptions. In addition, we assume that the elasticity of intertemporal

substitution of the utility function is bounded below by n=(n� 1) and that
there exists an upper limit for the resource extraction rate of each agent.

Our model is therefore a generalization of the one in [5] where the elastic-
ity of intertemporal substitution was assumed to be constant and equal to
n=(n� 1).

For the �rst main result we assume that the resource is su�ciently productive

and prove that this implies that there exist in�nitely many symmetric Nash
equilibria of the game. They consist of stationary Markovian strategies which

means that the actions of the players depend only on the present state of
the game (the resource stock) and not on past states, the actions of their
opponents, or time. The proof is based on existence theorems for solutions

to ordinary di�erential equations. More speci�cally, we derive an auxiliary

di�erential equation from the Hamilton-Jacobi-Bellman equation which has
to be satis�ed by the policy functions of the players. This equation is shown

to have a solution from which a solution to the original Hamilton-Jacobi-
Bellman equation can be constructed. The fact that there exist in�nitely

many symmetric Markov-perfect Nash equilibria was already discussed in

the more restricted model of [5] were the Hamilton-Jacobi-Bellman equation
could be solved explicitly. It shows that neither the symmetry assumption
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nor the requirement of subgame perfectness is su�cient to reduce the set of

Nash equilibria to a �nite set.

E�ciency of Markov-perfect Nash equilibria is an issue which has received

considerable attention in the literature. Intuition suggests that the lack of

cooperation (Nash equilibrium) and retaliation (Markovian strategies) would

lead to overexploitation of the resource. This intuition has indeed been con-

�rmed in many studies (e. g., [1, 5, 10, 11]) and the equilibria discussed

above do also have the feature of overexploitation. Dutta and Sundaram,

on the other hand, have shown in [7, 8] that, in general, underexploitation

of the resource cannot be ruled out. In the present paper we demonstrate

a weaker but related result. We show that for all T > 0 and all � > 0 one

can �nd a Markov-perfect Nash equilibrium such that the equilibrium state

trajectory spends at least T time periods in the �-neighborhood of the e�-
cient steady state provided that the initial stock of the resource is su�ciently

high. Because T and � can be chosen arbitrarily this can be regarded as an
approximative e�ciency theorem.

In the second main result of the paper we characterize the conditions under

which driving the resource stock down to zero as fast as possible is a Markov-
perfect equilibrium. We derive a necessary and su�cient condition for such a
scenario to be possible. It is furthermore shown that this condition is satis�ed

provided that at least one of the following three properties holds: there are
su�ciently many players, the players are su�ciently impatient, or the upper
limit for the extraction rates is su�ciently high. It is demonstrated that there

may exist parameter speci�cations under which both most rapid extinction
and a positive steady state resource stock can coexist as the outcomes of

Markov-perfect Nash equilibria.

The model formulation and the assumptions are presented in Section 2 where
we also state the two main theorems of the paper. The proofs of these
theorems can be found in Section 3. Section 4 presents concluding remarks

and open questions. Some more technical results needed in the paper are
derived in an appendix.
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2 Model formulation and results

We consider a continuous time model of a renewable resource which is si-

multaneously exploited by n non-cooperating agents. The stock of the re-

source at time t 2 [0;1) is denoted by x(t) and the harvesting rate of agent

i 2 f1; 2; : : : ; ng at time t is ci(t). The natural growth rate of the resource

depends on the existing stock x(t) and is given by the function F (x(t)). We

shall also refer to x(t) as the state of the system. It follows from the above

assumptions that the state trajectory x(�) is a solution of the initial value

problem

_x(t) = F (x(t))�
nX
i=1

ci(t) ; x(0) = z (1)

where the constant z is the initial stock at time zero.

All n players are identical and maximize the present value of utility derived
from consumption. Denoting by r > 0 the common discount rate of the
agents and by U their common utility function, the objective functional of

player i 2 f1; 2; : : : ; ng can be written as

Z 1
0

e�rtU(ci(t)) dt: (2)

Each player i 2 f1; 2; : : : ; ng maximizes her objective functional subject to
the feasibility constraint

ci(t) 2 C(x(t)) :=

8<
: f0g if x(t) = 0;

[0; k] if x(t) > 0:
(3)

The interpretation of this constraint is that negative harvesting rates are
excluded1, that nothing can be harvested if the stock size is equal to zero,
and that there is a �xed upper bound, k > 0, on the feasible harvesting rates

due to capacity limitations.

This completes the formulation of the model. The fundamentals of the game

are n, F , U , r, k, and z. We are now going to state and discuss the assump-

tions which will be used throughout the paper.

1Examples of negative harvesting are, e.g., breeding �sh in a �shery model or refor-

estation in a tree cutting model.
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A1: The growth function F : [0;1) 7! IR is twice continuously di�eren-

tiable, strictly concave, and satis�es F (0) = F (1) = 0. The initial

stock z lies in the interval [0; 1].

Assumption A1 is often made in renewable resource models (see, e.g., [2])

and it states that positive growth is only possible as long as the stock size

x(t) is smaller than some given constant which, by suitable normalization, is

chosen to be equal to one.2 It follows from this assumption that F is strictly

positive on the interval (0; 1) and strictly negative on (1;1). Because the

initial stock z is in [0; 1] we know that feasible solutions of the state equation

(1) satisfy x(t) 2 [0; 1] for all t 2 [0;1). We shall therefore call [0; 1] the state

space of the model and shall not consider any stock sizes other than those in

this interval. Another consequence of A1 is that there exists a unique level
x0 2 (0; 1) at which the natural growth rate is maximized. Of course, x0 is
determined by the equation F 0(x0) = 0 and it holds that F 0(x) > 0 for all

x 2 [0; x0) and F 0(x) < 0 for all x 2 (x0; 1]. For later reference let us also
de�ne the stock levels x1 and xn by x1 = inffx jF 0(x) � r; x 2 [0; 1]g and

xn = inffx jF 0(x) � nr; x 2 [0; 1]g. Note that A1 implies that xn � x1 < x0.

A2: The utility function U : [0; k] 7! IR is continuous, twice continuously
di�erentiable on (0; k], and strictly concave. It holds that U 0(c) > 0 for
all c 2 (0; k] and limc&0 U

0(c) =1.3

Assumption A2 is a standard assumption and need not be commented on.

It is well known (see, e.g., [2]) that under A1 and A2 there exists a unique
solution to the problem of maximizing the sum of the utility functions of

all agents subject to the constraints (1) and (3). This is called the e�cient
solution. If the initial stock z is strictly positive, then the stock size x(t) in
the e�cient solution converges to the steady state x1 as t approaches in�nity.

We shall therefore call x1 the e�cient steady state.

A3: It holds that k > F (x0)=n.

2The stock size beyond which growth becomes negative can be interpreted as the car-

rying capacity of the environment.
3For any function f we denote by limx&y f(x) the limit of f(x) as x approaches y from

above. Similarly, we will write limx%y f(x) for the limit of f(x) as x approaches y from

below.
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This assumption requires that the harvesting capacity of all agents together,

nk, exceeds the maximal natural growth rate F (x0). Therefore, it is in

principle possible for the n agents to completely exhaust the resource from

any initial stock z 2 [0; 1].

A4: The function � : (0; k] 7! IR de�ned by �(c) = �cU 00(c)=U 0(c) has a
locally Lipschitz continuous extension to the interval [0; k] and �0 :=

limc&0 �(c) > 0.

A5: For all c 2 (0; k] it holds that �(c) � (n� 1)=n.

Note that �(c)�1 is the elasticity of intertemporal substitution at the con-

sumption level c. Assumption A4 requires that this elasticity is a su�ciently
smooth function of c and remains bounded at c = 0. Assumption A5, on the

other hand, relates the elasticity of intertemporal substitution to the number
of players by requiring that the former is su�ciently high at all consumption

levels.

The analysis in [5] makes also use of properties A1 and A3 but it uses stronger
assumptions concerning the utility function U . More speci�cally, instead of
A2, A4, and A5 it is assumed in [5] that �(c) = (n � 1)=n for all c 2 (0; k],

i. e., that the utility function exhibits constant elasticity of intertemporal
substitution.4

A strategy � for player i 2 f1; 2; : : : ; ng is any rule that determines this
player's consumption, ci(t), at each time t 2 [0;1) as a function of t, the

realized states x(�) for � 2 [0; t], and the consumption paths of all players
previous to time t. We call � a stationary Markovian strategy if it determines

ci(t) as a function of the current state x(t) only, that is, if there exists a
function � : [0; 1] 7! [0; k] such that ci(t) = �(x(t)) holds for all t � 0. In
this case, the function � is called the policy function of player i.

It is well known that for a di�erential game to be well de�ned one has to

restrict the set of strategies that are available to the players.5 One possibility
is to allow only stationary Markovian strategies with Lipschitz continuous

4Only the case of two players, n = 2, is explicitly treated in [5] but the results can

easily be generalized to n > 2 if one uses the utility function U(c) = c1=n instead of the

square root function.
5See for example the discussion in [9, Sec. 13.3.4] as well as the references listed there.
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policy functions. Such a restriction, however, is very problematic as there is

hardly any economic justi�cation for it. Here we shall use a more general

approach and to this end we introduce the following de�nition.

De�nition 1 Let G = (n; F; U; r; k; z) be a given game and, for each player

i 2 f1; 2; : : : ; ng, let �i be a strategy. The n-tuple (�1; �2; : : : ; �n) is said

to be admissible for G if the following conditions are satis�ed for all i 2
f1; 2; : : : ; ng:
(a) ci(t) is well de�ned for all t 2 [0;1),

(b) the function t 7! ci(t) is measurable,

(c) ci(t) 2 [0; k] for all t 2 [0;1) and ci(t) = 0 whenever x(t) = 0, and

(d) the initial value problem (1) has a unique absolutely continuous solution.

The conditions in this de�nition are the minimal requirements for the state

trajectory in (1) and the objective functionals in (2) to be well de�ned and
unique. On the other hand, we do not exclude general (history dependent)
strategies like trigger strategies from consideration. We shall only consider

admissible n-tuples of strategies throughout the paper.

De�nition 2 Let G = (n; F; U; r; k; z) be a given game and (�1; �2; : : : ; �n)
an n-tuple of strategies that is admissible for G. Furthermore, denote by

Ji(�1; �2; : : : ; �n) the value of player i's objective functional in (2) when the
players use the strategies �1, �2, . . . , and �n, respectively. We say that
(�1; �2; : : : ; �n) is a Nash equilibrium if for all i 2 f1; 2; : : : ; ng and for any

strategy ~�i such that (�1; �2; : : : ; ~�i; : : : ; �n) is admissible for G it holds that
Ji(�1; �2; : : : ; ~�i; : : : ; �n) � Ji(�1; �2; : : : ; �i; : : : ; �n).

A Nash equilibrium consisting of stationary Markovian strategies will be
called a stationary Markovian Nash equilibrium. If � = (�1; �2; : : : ; �n) is

a Nash equilibrium not only for G = (n; F; U; r; k; z) but also for all games
of the form (n; F; U; r; k; x) where x 2 [0; 1] then we call � subgame-perfect.

A stationary Markovian Nash equilibrium which is subgame-perfect is also

called a Markov-perfect Nash equilibrium. Since subgame-perfect equilibria
are independent of the initial state we may omit the initial state from the

speci�cation of the game and simply say that � is a subgame-perfect Nash
equilibrium of the game G = (n; F; U; r; k). If a Nash equilibrium is such

that all players use the same strategy then we say that the equilibrium is

symmetric. Because in the game under consideration all players are identical
it is natural to focus on symmetric equilibria. We are now ready to state the

�rst result of the paper.
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Theorem 1 Let G = (n; F; U; r; k) be a game satisfying assumptions A1 -

A5 as well as the condition

F (x1) > nrx1 > 0: (4)

(a) There exists a continuum of di�erent Markov-perfect Nash equilibria for

G. These equilibria are symmetric and each player's strategy is de�ned by

a policy function �� : [0; 1] 7! [0; k] where � is a parameter which can be

chosen from a non-empty real interval (�0; �1).

(b) The policy functions ��(x), � 2 (�0; �1), are continuous and strictly

increasing with respect to x on the interval [0; x1] and they satisfy ��(0) = 0.

On the interval (x1; 1] they are constant and equal to the capacity limit, i. e.,

��(x) = k for all x 2 (x1; 1]. At x = x1 the policy functions exhibit a jump

discontinuity.

(c) Let x�(t; z) denote the state at time t generated by the equilibrium with

parameter � 2 (�0; �1) when the initial state is equal to z. For all z 2 (0; 1]

and all � 2 (�0; �1) it holds that limt%1 x�(t; z) = �x� where �x� 2 (0; xn).
(d) For all initial states z � x1, all � > 0, and all T > 0 there exists a

parameter � 2 (�0; �1) such that � (ft 2 [0;1) j jx�(t; z)� x1j < �g) > T .6

Part (a) of the theorem deals with the existence of in�nitely many Markov-

perfect Nash equilibria, part (b) describes the shape of the policy functions,
and part (c) shows that the long-run steady states of these equilibria, �x�, are
strictly smaller than xn and therefore also strictly smaller than the e�cient

steady state x1. In the usual terminology (see, e. g., [7]) the result from
(c) says that the equilibria constructed in the theorem lead to a tragedy of
the commons. Part (d), on the other hand, shows that one can �nd Markov-

perfect Nash equilibria for which the resource stock stays in an arbitrary small
neighborhood of the e�cient steady state for arbitrary long time provided

the initial stock z is su�ciently high. One can therefore approximate the
e�cient steady state by state trajectories generated from Markov-perfect

Nash equilibria.

Condition (4) is su�cient but not necessary for the results (a) - (d) to hold.

It is easy to prove that (4) implies xn > 0 which, according to the de�nition
of xn, is equivalent to the condition F 0(0) > rn.7 Therefore, (4) can be

6By � we denote the Lebesgue measure on the real line.
7As a matter of fact, xn > 0 follows immediately from part (c) of the theorem but it

can also be proved directly using only A1 and (4).
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interpreted by saying that the slope of the function F (x) on the interval

[0; x1) has to be su�ciently high as compared to the discount rate r and

the number of players n. In other words, the resource has to be su�ciently

productive for small stock sizes.

In the case where the resource is not very productive as compared to r and

n intuition suggests that the situation where all players exhaust the resource

at a maximal rate quali�es as an equilibrium. This makes sense because if r

is large then the players are very impatient and they do not care much about

the conservation of the resource, and if n is large then the �erce competition

reinforces the tragedy of the commons. In the following result we con�rm

this intuitive reasoning by deriving a necessary and su�cient condition for

maximal exploitation to be an equilibrium. We also show that a high capacity

limit k implies that maximal exploitation is an equilibrium.

Theorem 2 (a) If G = (n; F; U; r; k) is a game satisfying A1 - A5 then the

following two conditions are equivalent:

1.

U 0(k) � U(k)� U(0)

nk � F (x1)
exp

"
�r

Z x1

0

dy

nk � F (y)

#
(5)

2. The n-tuple (�; �; : : : ; �) is a Markov-perfect Nash equilibrium, where

the strategy � is de�ned by the policy function

�(x) =

8<
: 0 if x = 0;

k if x 2 (0; 1]:
(6)

(b) If G = (n; F; U; r; k) is a game satisfying A1 - A5 and r � F 0(0) then

condition (5) holds.

(c) Assume F , U , r, and k are given such that A1, A2, and A4 are satis�ed

and such that supf�(c) j c 2 (0; k]g < 1. If n is su�ciently large then A3,

A5 and (5) are also satis�ed.

(d) Assume n, F , U , and r are given such that A1, A2, A4, and A5 are

satis�ed and such that limc!1 �(c) < (n � 1)=n. If k is su�ciently large

then A3 and (5) are also satis�ed.

Part (a) of the theorem states a necessary and su�cient condition for maxi-

mal exploitation to be an equilibrium. This condition is quite easy to check
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for any given game (n; F; U; r; k). Parts (b), (c), and (d), on the other hand,

show that any of the following properties is, ceteris paribus, a su�cient con-

dition for maximal exploitation to be an equilibrium: the discount rate r is

high, the number of players n is large, or the capacity limit k is high.

It should be noted that the conditions of Theorems 1 and 2 do not exclude

each other. There may be situations in which both (4) and (5) are satis�ed

so that there exist both the in�nitely many equilibria described in Theorem 1

as well as the most rapid extinction equilibrium of Theorem 2. For example

assume that n, F , U , and r are given such that A1, A2, A4, A5, (4), and

limc!1 �(c) < (n � 1)=n are satis�ed. Since (4) does not depend on the

value of k, Theorem 2(d) tells us that we may increase k without a�ecting

the validity of any of A1, A2, A4, A5, and (4), and at the same time ensure

that A3 and (5) hold as well.

For a more speci�c example consider the case where F (x) = mx(1 � x),
U(c) =

p
c, r = 0:1, and k = 0:5. It is straightforward to check that in

this case assumptions A1 - A5 are satis�ed whenever n and m are such that
n � 2 and 2n > m > 0. If n = 3 and m = 1 then assumptions A1 - A5 as

well as conditions (4) and (5) hold true. Therefore, our theorems imply that
most rapid extinction is a Markov-perfect Nash equilibrium but that there
are also in�nitely many other Markov-perfect Nash equilibria with strictly

positive steady state resource stocks. If, on the other hand, n = 2 and
m = 0:2, then A1 - A5 still hold but neither (4) nor (5) is satis�ed so that
all we can infer from the results of this paper is that most rapid extinction

is not an equilibrium. In this particular case we have �(c) = (n � 1)=n for
all c 2 (0; k] so that a result from [5] guarantees the existence of Markov-

perfect equilibria. However, a slight perturbation of the utility function (for
example U(c) = c51=101 instead of U(c) =

p
c) would lead to a model in which

neither the results of the present paper nor those of [5] ensure the existence

of Markov-perfect Nash equilibria.

3 Proofs

3.1 Proof of Theorem 1: The result will be established in a series of
steps. The general idea is to construct functions �� : [0; 1] 7! [0; k] and to

prove that if all agents except for agent i choose the strategy de�ned by the
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policy function �� then player i's optimal strategy can also be described by

��. So let us assume that n � 1 players have chosen the policy function ��
and consider the utility maximization problem of the remaining agent. The

Hamilton-Jacobi-Bellman equation for this optimal control problem is

rV�(x) = max
n
U(c) + V 0�(x) [F (x)� c� (n� 1)��(x)]

��� c 2 C(x)
o

where V� : [0; 1] 7! IR denotes the optimal value function. The main step

of the proof is to �nd piecewise continuously di�erentiable functions V� :

[0; 1] 7! IR which solve this equation in the sense that for all x 2 [0; 1] where

V 0�(x) is de�ned, the conditions

��(x) = argmax
n
U(c) + V 0�(x) [F (x)� c� (n� 1)��(x)]

��� c 2 C(x)
o
(7)

rV�(x) = U(��(x)) + V 0�(x) [F (x)� n��(x)] (8)

are satis�ed. The remaining steps are then to show that the n-tuple (��; ��; : : : ; ��)

is admissible, that equations (7) and (8) do indeed imply the optimality of
��, and that assertions (c) and (d) of the theorem hold true.

As can be seen from Theorem 1(b), ��(x) is a boundary solution of the

maximization problem in (7) for x 2 (x1; 1]. For x 2 (0; x1], on the other
hand, it is an interior solution and for x = 0 we must have ��(x) = 0 by (3).
We shall �rst deal with the case where the capacity constraint is not binding

and then with the easier case of a boundary solution.

3.2 Construction of ��(x) and V�(x) for x 2 [0; x1]: Because of (3) every
feasible policy function �� must satisfy

��(0) = 0: (9)

Since the growth rate at zero satis�es F (0) = 0 it follows that the only feasible
solution of the state equation (1) with an initial state z = 0 is x(t) = 0 for

all t 2 [0;1). The maximal utility that each player can attain in this case
is therefore given by

V�(0) =
Z 1
0

e�rtU(0) dt = U(0)=r: (10)

Now let us consider the case x 2 (0; x1]. If ��(x) is an interior solution in

(7) then it must satisfy the �rst order condition

U 0(��(x)) = V 0�(x): (11)

10



We can substitute this into (8) to obtain rV�(x) = U(��(x))+U
0(��(x)) [F (x)� n��(x)].

Assuming di�erentiability of �� and V� we can di�erentiate this equation with

respect to x.8 Together with (11) this yields

rU 0(��(x)) = U 0(��(x))�
0
�(x)+U

00(��(x))�
0
�(x) [F (x)� n��(x)]+U

0(��(x)) [F
0(x)� n�0�(x)] :

Dividing by U 0(��(x)) (which is strictly positive by A2) and using the de�-

nition of � from A4 we can rewrite this equation as follows.

�0�(x) = G(x; ��(x)) :=
F 0(x)� r

n� 1� n�(��(x)) + �(��(x))F (x)=��(x)
: (12)

Now consider the domain D = f(x; �) j 0 < x � x1; 0 < � < kg and the curve

� = f(x; �) j 0 < x � x1; � = F (x)=ng.9 First note that because of A3 the

curve � is contained in D, that is, the upper boundary of D lies strictly above
�. Furthermore, assumptions A1 - A5 and the de�nition of x1 imply that

G(x; �) � 0 for all (x; �) 2 D with the strict inequality holding whenever
(x; �) is in the interior of D. This means that the vector �eld de�ned by
equation (12) is pointing upwards everywhere on D. Now consider any point

(x1; �) 2 D with � 2 [F (x1)=n; k), that is, any point on the right boundary
of D which lies above �.10 Our �rst lemma states that for any such point

there exists a unique trajectory of equation (12) which is de�ned over the
interval x 2 (0; x1] and which terminates at that point.

Lemma 1 For all � 2 [F (x1)=n; k) there exists a unique solution �� :

(0; x1] 7! IR of the di�erential equation (12) which satis�es ��(x1) = �.

Any such trajectory satis�es 0 < ��(x) < k for all x 2 (0; x1]. It holds that

��(x) is strictly increasing with respect to both x and �.

Proof. There exist local solutions to (12) by the Cauchy-Peano existence
theorem. Because the function G is locally Lipschitz continuous on D these
solutions have to be unique. Now consider any point P = (x1; �) as de-

scribed in the lemma (see also Figure 1). Since the vector �eld de�ned by

8We shall later verify that �� and V� are indeed di�erentiable for x 2 (0; x1) so that

this heuristic argument can be made rigoros.
9For the following analysis the reader may �nd it useful to look at Figure 1 where D

and � are depicted.
10In Figure 1 one such point is indicated and labelled as P . Note that because of A3 we

have k > F (x1)=n so that a continuum of such points exists.
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G is pointing upwards on D, we know that any solution terminating in P

must be strictly increasing on the interval (0; x1]. Going backwards from

P the trajectory therefore cannot leave the domain D through its upper

boundary. Similarly, it cannot leave D through its lower boundary, because

lim�&0G(x; �) = 0 so that the vector �eld becomes horizontal at the lower

boundary. It follows that any local solution can be continued on the entire

interval (0; x1]. The other assertions of the lemma are obvious. 2

The trajectories �� mentioned in Lemma 1 terminate at points above the

curve � when x = x1. In the following lemma we show that all solution

curves �� with � close to F (x1)=n cross the curve � exactly once. We also

derive an inequality which describes the behavior of these trajectories close

to x = 0. To simplify the notation we de�ne �0 = F (x1)=n.

Lemma 2 Let �� : (0; x1] 7! [0; k] be the trajectories mentioned in Lemma 1.

There exists �� 2 (�0; k) such that for all � 2 [�0; ��) the following is true.

(a) There exists �x� 2 (0; xn) such that ��(x) < F (x)=n if and only if x 2
(0; �x�) and ��(x) > F (x)=n if and only if x 2 (�x�; x1].
(b) There exists M� > 0 such that for all su�ciently small x > 0 it holds

that ��(x) � M�x
 where  = [F 0(0)� r]=[�0F

0(0)].11

Proof. (a) Let us denote by D� the part of D which lies below �. We start

by proving the claim for � = �0. To this end assume by way of contradiction
that ��0 does not enter D� at all. Then we must have ��0(x) � F (x)=n for
all x 2 (0; x1]. Using (12) this yields �0�0(x) � [F 0(x) � r]=(n � 1) for all

x 2 (0; x1]. Together with ��0(x) +
R x1
x �0�0(y) dy = ��0(x1) = �0 = F (x1)=n

and ��0(x) > 0 this implies

F (x1)=n >

Z x1

x

F 0(y)� r

n� 1
dy =

F (x1)� rx1

n� 1
� F (x)� rx

n� 1
:

In the limit as x approaches zero this yields F (x1) � rnx1 which is a con-
tradiction to (4). Thus, we have proved that the trajectory ��0 must cross

�. By continuity of solutions of (12) with respect to the boundary condition

� this implies that also all trajectories �� with � 2 [�0; ��) must cross �

provided that �� is greater than but su�ciently close to �0.

To complete the proof of part (a) we have to show that any trajectory �� with
� 2 [�0; ��) can cross the line � only once and that the crossing point �x� lies

11See A4 for the de�nition of �0.
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in (0; xn). To this end consider the direction of the vector �eld de�ned by (12)

along the curve �. We have G(x; �)j� = G(x; F (x)=n) = [F 0(x)� r]=(n� 1).

Since the slope of � is given by F 0(x)=n it follows that the vector �eld along

� points out of D� if [F 0(x)� r]=(n� 1) > F 0(x)=n and it points into D� if

[F 0(x) � r]=(n � 1) < F 0(x)=n. A simple calculation shows that the former

is the case if and only if F 0(x) > nr and therefore x < xn whereas the latter

inequality is equivalent to F 0(x) < nr, that is, x > xn.
12 Since ��(x) is above

� for x = x1 the last crossing point �x� must satisfy �x� < xn (the trajectory

is leaving D� so that the vector �eld must point outwards!). But then there

cannot be another crossing to the left of �x� so that �x� must be the only

crossing point. This proves part (a) of the lemma.

(b) First note that limx&0 ��(x) = 0 must hold because we have 0 < ��(x) <

F (x)=n for all x 2 (0; �x�) and limx&0 F (x) = 0. Using (12) we obtain that

x�0�(x)

��(x)
=

x[F 0(x)� r]

[n� 1� n�(��(x))]��(x) + �(��(x))F (x)
:

Because of ��(x) > 0 and A5 this implies

x�0�(x)

��(x)
� F 0(x)� r

�(��(x))F (x)=x
: (13)

Now note that limx&0 F
0(x) = limx&0 F (x)=x = F 0(0) and limx&0 �(��(x)) =

�0 so that the limit as x & 0 of the right hand side of (13) is equal to .
Because the right hand side of (13) is a smooth function of x it follows
that that there exists a constant K such that for all su�ciently small x the

condition�x�0�(x)=��(x) � �+Kx holds. From Lemma A in the appendix
we conclude that there exists a constant M� such that ��(x) � M�x

 is
satis�ed for all su�ciently small x. 2

Now that we have de�ned the functions ��(x) for x 2 [0; x1] we proceed to

de�ne V�(x). Because of (10) and (11) we must have

V�(x) = U(0)=r +
Z x

0
U 0(��(y)) dy (14)

for all x 2 [0; x1] and � 2 [�0; k). We have to verify, however, that the integral
on the right hand side is well de�ned because for y & 0 we have ��(y)& 0

and henceforth U 0(��(y))%1. This is the purpose of the following lemma.

12At this point we urge the reader again to consult Figure 1 for the intuition of the

following argument.
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Lemma 3 The integral in (14) is �nite for all x 2 [0; x1] and all � 2 [�0; ��).

Proof. Assumption A4 implies that there exists a constant K such that

�(c) � �0+Kc for all su�ciently small c. Using Lemma A from the appendix

with f = U 0 and � = �0 we obtain the existence of a constant M such that

U 0(c) �Mc��0 (15)

for all su�ciently small c > 0. Since y 7! U 0(��(y)) is a continuous and

strictly positive function of y 2 (0; x1] we only need to rule out the case

limw&0

R x
w U

0(��(y)) dy = +1 for some x > 0. Because of Lemma 2(b) we

know that ��(y) � M�y
 for all y 2 (0; x) provided that x is small enough.

Using this together with (15) we obtain

0 <
Z x

w
U 0(��(y)) dy �

Z x

w
MM��0

� y��0 dy:

By the de�nition of  and because of F 0(0) > r (which follows from (4)) we
have ��0 = [r�F 0(0)]=F 0(0) 2 (�1; 0). This implies that the integral on the

right hand side of the above inequality remains bounded as w approaches zero
and, henceforth, proves that V�(x) is well de�ned by (14) for all x 2 (0; x1].
2

Lemma 4 For all � 2 (�0; ��) the following is true:

(a) The functions �� and V� de�ned above are continuous on [0; x1] and

continuously di�erentiable on (0; x1).
(b) Conditions (7) and (8) hold for all x 2 (0; x1).

Proof. Part (a) follows immediately from the construction of the functions
and from the properties we have shown before. To prove part (b) �rst note

that the maximand in (7) is a strictly concave function with respect to c.
To prove that c = ��(x) is the unique maximizer it is therefore su�cient to

verify the �rst order condition U 0(��(x)) = V 0�(x). Since V�(x) was de�ned

by (14) this condition is automatically satis�ed. To verify (8) we have to

show that

U(0) + r

Z x

0
U 0(��(y)) dy = U(��(x)) + U 0(��(x))[F (x)� n��(x)]: (16)

As in the proof of Lemma 3 one can show that U 0(��(x)) � MM��0
� x��0

holds for all su�ciently small x > 0. Furthermore, we have F (x) � F 0(0)x for
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all x 2 [0; 1] because of concavity of F . Putting these inequalities together

and using the fact that 0 � ��(x) � F (x)=n holds for all x 2 [0; �x�] we

obtain

0 � U 0(��(x))[F (x)� n��(x)] � U 0(��(x))F (x) � F 0(0)MM��0
� x1��0

for all su�ciently small x > 0. Since �0 2 (0; 1) this implies that limx&0 U
0(��(x))[F (x)�

n��(x)] = 0. It follows that (16) holds for x = 0. To show that (16) also

holds true for all x 2 (0; x1) it su�ces therefore to prove that the derivative

with respect to x of the left hand side of (16) equals the derivative with

respect to x of the right hand side of (16) for all x 2 (0; x1). Using (12) it is

straightforward to show that this is indeed the case. 2

3.3 Construction of ��(x) and V�(x) for x 2 (x1; 1]: The construction
of ��(x) and V�(x) for x 2 (x1; 1] is much easier than the construction for

x 2 [0; x1]. As has already been mentioned we construct an equilibrium in
which the optimal harvesting rate is as high as possible if the stock of the
resource exceeds the value x1. Formally, we have

��(x) = k (17)

for all � 2 [�0; k) and all x 2 (x1; 1]. Substituting this into (8) and rearrang-

ing we obtain
V 0�(x) = [rV�(x)� U(k)]=[F (x)� nk]: (18)

Since V� has to be continuous we can use the value V�(x1) from the preceding
subsection as an initial value for the above ordinary di�erential equation. The

unique solution of the resulting initial value problem is given by

V�(x) =
U(k)

r
�
"
U(k)

r
� V�(x1)

#
exp

"
�r

Z x

x1

dy

nk � F (y)

#
: (19)

By assumption A3 the integral in this de�nition is �nite so that V�(x) is well
de�ned. This completes the construction of ��(x) and V�(x). It remains to

verify conditions (7) and (8).

Lemma 5 There exists �1 2 (�0; ��) such that for all � 2 (�0; �1) the fol-

lowing is true:

(a) The functions �� and V� de�ned above are continuously di�erentiable on

(x1; 1].

(b) Conditions (7) and (8) hold for all x 2 (x1; 1].
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Proof. Part (a) is obvious. To prove part (b) note that the maximand in

(7) is a strictly concave function with respect to c. It is therefore su�cient

to verify the �rst order condition. In the present case we have a boundary

solution ��(x) = k so that the �rst order condition reads U 0(k) � V 0�(x).

Because of (19) this is equivalent to

U 0(k) � U(k)� rV�(x1)

nk � F (x)
exp

"
�r

Z x

x1

dy

nk � F (y)

#
:

It is straightforward to show that the right hand side of this inequality is a

strictly decreasing function with respect to x on the interval (x1; 1]. There-

fore, the �rst order condition is satis�ed for all x 2 (x1; 1] if and only if it is

satis�ed for x = x1. For x = x1, however, the above inequality is given by

U 0(k) � U(k)� rV�(x1)

nk � F (x1)
: (20)

We shall �rst assume that � = �0 and show that the strict inequality holds
in (20). By continuity it follows then that (20) holds for all � 2 [�0; �1) with
�1 su�ciently close to �0.

Because of ��0(x1) = �0 = F (x1)=n we obtain from Lemma 4 that rV�0(x1) =

U(�0) + V 0�0(x1)[F (x1) � n�0] = U(�0). Condition (20) can therefore be
rewritten as

U 0(k) >
U(k)� U(�0)

n(k � �0)
:

Since 0 < �0 < k it follows from Lemma B in the appendix that the above

inequality holds. This completes the proof of (7) for x 2 (x1; 1]. Condition
(8) holds by construction of V�. 2

3.4 Admissibility, optimality, and dynamics: The following result shows
that the n-tuple (�; �; : : : ; �) is admissible for G when � is the stationary
Markovian strategy de�ned by the policy function ��.

Lemma 6 Let � 2 (�0; �1) be a given parameter and denote by � the sta-

tionary Markovian strategy de�ned by the policy function ��. The n-tuple

(�; �; : : : ; �) is admissible.

Proof. We have seen before that the functions �� satisfy ��(0) = 0 and 0 �
��(x) � k for all x 2 [0; 1]. Moreover, they are continuously di�erentiable
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on the intervals [0; x1) and (x1; 1]. At x = x1 they have a jump discontinuity.

To prove admissibility of (�; �; : : : ; �) it is therefore su�cient to show that

the state equation (1) has a well de�ned and absolutely continuous solution

whenever ci(t) = ��(x(t)) holds for all t 2 [0;1) and all i 2 f1; 2; : : : ; ng.
Because of the continuous di�erentiability of F the only problem can occur

when x(t) = x1. Now note that for all x 2 (x1; 1] it holds that ��(x) = k >

F (x)=n (see (17) and A3). This implies that the right hand side of (1) is

strictly negative whenever x(t) > x1. If x is smaller than x1 but close to

x1 then we also have ��(x) > F (x)=n because the trajectory �� constructed

in Lemma 1 lies strictly above the curve � for � > �0 and x 2 (�x�; x1].

Consequently, the right hand side of (1) is strictly negative whenever x(t)

is close to x1 so that existence of absolutely continuous solutions to (1) is

guaranteed. 2

Lemma 7 Let � be the strategy de�ned by the policy function �� for some

� 2 (�0; �1). Then it follows that (�; �; : : : ; �) is a symmetric Markov-perfect

Nash equilibrium.

Proof. One has to show that �� is an optimal policy function for the

optimal control problem of player i 2 f1; 2; : : : ; ng when all the other players
use the policy function ��. This can be done by a standard argument using
the boundedness of the optimal value function V� and the Hamilton-Jacobi-

Bellman equation which was veri�ed in the previous subsections. The fact
that the optimal value function V� is not di�erentiable at x = x1 does not

cause any problem because the state trajectory x�(t; z) satis�es x�(t; z) = x1
at most at a single point in time. 2

Parts (a) and (b) of Theorem 1 are therefore established. Part (c) follows
easily from ��(x) < F (x)=n for all x 2 (0; �x�) and ��(x) > F (x)=n for

all x 2 (�x�; 1]. To see that part (d) holds just note that by choosing �

su�ciently close to �0 we can make ��(x1) arbitrary close to �0 = F (x1)=n.
Therefore we get _x�(t; z)jx�(t;z)=x1 = F (x1) � n��(x1) � 0 so that x�(t; z)

will spend an arbitrary long time in the vicinity of x1. This completes the
proof of Theorem 1.

3.5 Proof of Theorem 2: The proof that (5) is su�cient is very similar to

the content of subsection 3.3 and we shall omit many details. As in 3.3 one

obtains the di�erential equation (18). This time, however, we choose (10) as
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the initial condition. This yields

V (x) =
U(k)

r
� U(k)� U(0)

r
exp

"
�r

Z x

0

dy

nk � F (y)

#
:

Because of this construction, (8) is automatically satis�ed. Condition (7)

can again be veri�ed by using the �rst order condition U 0(k) � V 0(x) which

is equivalent to

U 0(k) � U(k)� U(0)

nk � F (x)
exp

"
�r

Z x

0

dy

nk � F (y)

#
:

Since the right hand side attains its unique maximum at x = x1 it follows

that (5) is su�cient for the �rst order condition to hold and, hence, for the

fact that maximal exploitation is a Markov-perfect Nash equilibrium.

It will be shown below (part (b) of Theorem 2) that condition (5) holds
automatically if x1 = 0. To prove the necessity of (5) we may therefore

restrict ourselves to the case x1 > 0. The basic idea is to use a variational
argument. Assume that the second condition of Theorem 2(a) is true. This
means that the policy function de�ned in (6) is an optimal feedback solution

to the optimal control problem

Maximize
Z 1
0

e�rtU(c(t)) dt

subject to _x(t) = F (x(t))� (n� 1)k � c(t);

c(t) 2 C(x(t)) ; x(0) = z

where z can be any initial state in [0; 1]. Let us choose the particular initial

state z = x1. Now consider the alternative policy function ~�(x) = �(x) �
�h(x) where � > 0 and h : [0; 1] 7! [0;1) is any non-negative smooth function
satisfying h(0) = 0. It is obvious that ~�(x) 2 C(x) holds for all x 2 [0; 1]

provided that � is chosen su�ciently small. Let us �x the function h and

denote by x�(t) the state trajectory generated by the policy function ~� from

the initial state z = x1. In other words, as long as x�(t) is positive it satis�es
the initial value problem

_x�(t) = F (x�(t))� nk + �h(x�(t)) ; x�(0) = x1:
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Because of assumption A3 it is clear that x�(t) will become zero within �-

nite time T (�) provided � is small. Furthermore, from the above di�erential

equation it follows that T (�) is given by

T (�) =
Z x1

0

dy

nk � F (y)� �h(y)
: (21)

The value of the path generated by the policy function ~� and the initial con-

dition z = x1 is therefore V (�) =
R T (�)
0 e�rtU(k��h(x�(t))) dt+e�rT (�)U(0)=r.

Since, by assumption, � = 0 corresponds to an optimal path, we must have

V 0(0) � 0. It is straightforward to verify that

V 0(0) = T 0(0)e�rT (0)[U(k)� U(0)]�
Z T (0)

0
e�rtU 0(k)h(x0(t)) dt

and

T 0(0) =
Z x1

0

h(y)

[nk � F (y)]2
dy =

Z T (0)

0

h(x0(t))

nk � F (x0(t))
dt:

Combining these two equations we obtain

V 0(0) =
Z T (0)

0
h(x0(t))

"
e�rT (0)

U(k)� U(0)

nk � F (x0(t))
� e�rtU 0(k)

#
dt:

Now recall that h was an arbitrary non-negative smooth function and that
T (0) > 0 because x1 > 0. The necessary condition V 0(0) � 0 can therefore

only hold if the term inside the brackets on the right hand side of the above
equation is non-positive for all t 2 [0; T (0)]. In particular, for t = 0 we obtain
because of x0(0) = x1 that U

0(k) � e�rT (0)[U(k) � U(0)]=[nk � F (x1)] must

hold. Substituting for T (0) from (21) one gets condition (5). This completes
the proof of Theorem 2(a).

To prove (b) we �rst note that r � F 0(0) is equivalent to x1 = 0. Therefore,

(5) is equivalent to U 0(k) � [U(k)�U(0)]=(nk). The validity of this inequality
follows from Lemma B in the appendix by letting � approach 0.

The proof of assertion (c) is straightforward and uses the fact that the right

hand side of (5) converges to 0 as n approaches in�nity.

Finally, to prove (d) rewrite (5) as 1 � f(k)g(k) with f(k) = [U(k) �
U(0)]=[nkU 0(k)] and

g(k) =
nk

nk � F (x1)
exp

"
�r

Z x1

0

dy

nk � F (y)

#
:
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Using de rule of de l'Hopital one can show that limk%1 f(k) = [n(1 �
limc%1 �(c))]�1. Furthermore, limk%1 g(k) = 1. Taking all these proper-

ties together it follows immediately that (5) is satis�ed for all su�ciently

large k. This completes the proof of Theorem 2. 2

4 Concluding remarks

In this paper we have considered a very general model of the joint exploitation

of a renewable resource by a �nite number of non-cooperating agents. We

have focussed on the existence, (non-)e�ciency, and multiplicity of Markov-

perfect Nash equilibria. Our main results are

� that there exist in�nitely many equilibria which lead to a tragedy of

the commons provided the resource is su�ciently productive,

� that one can approximate with arbitrary high precision the e�cient

steady state by state trajectories generated by these equilibria provided
that the initial stock of the resource is su�ciently high,

� and that the situation where all agents exploit the resource at maximal
rate quali�es as an equilibrium provided that there are either very many

agents, very impatient agents, or very e�ective agents.

Although these results seem to be very comprehensive they probably raise
more questions than they answer. Which equilibrium will be selected out of

the in�nite set of equilibria? How can agents coordinate on those equilibria
that are more e�cient? How can agents prevent getting trapped in the

most rapid extinction equilibrium? Are there even more Markov-perfect
equilibria in this model, perhaps equilibria resulting in underconsumption

(as in [7, 8])? We believe that answering these questions is essential for a

better understanding of renewable resource markets. At the present moment,
however, we are still unable to say anything substantial about these issues.

Apart from these fundamental questions there are also some other (more

technical) open problems which we propose as topics for future research. First

of all, our analysis is not complete in the sense that the existence conditions

(4) and (5) do not cover all possible cases. This has been demonstrated

by the example at the end of Section 2. Other open problems concern the
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major structural assumptions of the present paper, A1 and A5. Although

assumption A1 is frequently imposed in models of common property resource

extraction it is not undisputed. As a matter of fact, depending on the type

of resource under consideration it may be more realistic to consider non-

concave growth functions F . The cases of depensation (F (x) is convex for

small x, concave for large x, and strictly positive for all x 2 (0; 1)) and

critical depensation (F (x) is convex for small x, concave for large x, negative

for small x, and positive for large x) are of particular interest (see [2, p. 17]).

In these cases the results of Theorem 1 will most likely fail. Markov-perfect

Nash equilibria, if they exist at all, can be conjectured to have a structure

which is quite di�erent from the equilibria in Theorem 1. In particular,

one would conjecture that already in the case of depensation there exists a

positive stock level x̂ such that extinction is ineviatable for all initial stocks

smaller than x̂. This conjecture is motivated by the results for the one-player
version of model (1) - (3) with depensation which is analyzed in [12].13 As for

assumption A5 we do not know how its relaxation would e�ect the results of
the present paper. It is used at two di�erent places in the analysis: to ensure
that the vector �eld de�ned by (12) is pointing upwards and in Lemma B in

the appendix. We believe, however, that the structure of equilibria would be
a�ected quite dramatically if one were to relax A5. Finally, we think that the
analysis of the game with asymmetric players would be a worthwhile project.

Appendix

First we prove a simple result which is used at two di�erent points in the
paper.

Lemma A Let f : (0; �x] 7! IR be a continuously di�erentiable and strictly

positive function and assume that there exist real constants � and K such

that the inequality

�xf 0(x)=f(x) � � +Kx (22)

holds for all x 2 (0; �x]. Then there exists a real constant L such that f(x) �
Lx�� holds for all x 2 (0; �x]. If the inequality in (22) is reversed then it

follows that f(x) � Lx�� for all x 2 (0; �x].

13In the case of critical depensation the existence of a stock size below which extinction

is inevitable is obvious.
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Proof. Inequality (22) can be written as

d

dx
[ln f(x)] � d

dx

h
lnx�� �Kx

i
:

Integration over the interval [x; �x] and exponentiation yields f(�x)=f(x) �
(x=�x)�eK(x��x). De�ning the constant L by L = f(�x)�x� maxfeK�x; 1g it is

easily seen that this inequality implies f(x) � Lx��. This proves the �rst

assertion of the lemma. The second one can be shown analogously. 2

The following result is used in the proof of Lemma 5.

Lemma B Let U : [0; k] 7! IR be a utility function satisfying assumptions

A2 and A4. For all � 2 (0; k) it holds that

U 0(k) >
U(k)� U(�)

n(k � �)
: (23)

Proof. From A4 it follows that U 00(c)=U 0(c) = (d=dc) lnU 0(c) = ��(c)=c
for all c 2 (0; k]. Integration over the interval [�; x] yields

U 0(x) = U 0(�) exp

"
�
Z x

�

�(c)

c
dc

#
(24)

for all x 2 [�; k]. Integrating this equation once more over the interval [�; k]
yields

U(k)� U(�) = U 0(�)
Z k

�
exp

"
�
Z x

�

�(c)

c
dc

#
dx:

Using (24) with x = k we see that this equation can also be written as

U(k)� U(�) = U 0(k)
Z k

�
exp

"Z k

x

�(c)

c
dc

#
dx:

By substituting this on the right hand side of (23) we see that (23) is equiv-
alent to

n(k � �) >
Z k

�
exp

"Z k

x

�(c)

c
dc

#
dx: (25)

Because �(c) � (n� 1)=n holds by assumption A4 a su�cient condition for

(25) is given by

n(k � �) >
Z k

�
exp

"Z k

x

n� 1

nc
dc

#
dx:
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The integrals on the right hand side can be computed which shows that

the inequality is equivalent to n(k � �) > nk(n�1)=n
�
k1=n � �1=n

�
. Simple

rearrangments show that this inequality is indeed true for all � < k. 2
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