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Résumé / Abstract

Cet article présente une synthèse des méthodes numériques récentes
utilisées pour l’évaluation des titres dérivés. Des méthodes qui s’appliquent aux
options américaines standard sur actif sous-jacent unique, aux options avec barrières
(barrier options) et rétroactives (lookback options), ainsi qu’aux options sur actifs
multiples, sont passées en revue. Des critères de comparaison des diverses approches
sont discutés. De nouveaux résultats numériques sont également présentés.

This paper provides a survey of recent numerical methods for pricing
derivative securities.  Methods for standard American options on a single
underlying asset, barrier and lookback options and options on multiple assets
are reviewed.  Criteria for comparison of different approaches are discussed.
New computational results are also presented.
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options rétroactives, critères de comparaison

Keywords : Numerical Methods, American Options, Barrier Options,
Lookback Options, Criteria for Comparison



1

1 Introduction

In the past two decades there has been an explosion in the use of derivative securities by in-

vestors, corporations, mutual funds, and �nancial institutions. Exchange traded derivatives

have experienced unprecedented growth in volume while \exotic" securities (i.e., securities

with nonstandard payo� patterns) have become more common in the over-the-counter mar-

ket. Using the most widely accepted �nancial models, there are many types of securities

which cannot be priced in closed-form. This void has created a great need for e�cient

numerical procedures for security pricing.

Closed-form prices are available in a few special cases. One example is a European

option (i.e., an option which can only be exercised at the maturity date of the contract)

written on a single underlying asset. The European option valuation formula was derived in

the seminal papers of Black and Scholes (1973) and Merton (1973). In the case of American

options (i.e., options which can be exercised at any time at or before the maturity date)

analytical expressions for the price have been derived, but there are no easily computable,

explicit formulas currently available. Researchers and practitioners must then resort to

numerical approximation techniques to compute the prices of these instruments. Further

complications occur when the payo� of the derivative security depends on multiple assets

or multiple sources of uncertainty. Analytical solutions are often not available for options

with path-dependent payo�s and other exotic options.

In this paper we provide a survey of recent numerical methods for pricing derivative

securities. Section 2 focuses on standard American options on a single underlying asset.

Section 3 brie
y treats barrier and lookback options. Options on multiple assets are covered

in Section 4. New computational results are also presented.

2 American Options on a Single Underlying Asset

In the standard model for pricing options, the price of the underlying security is assumed

to follow a lognormal process. To �x notation, suppose that the price of the underlying

asset is St at time t. Then St satis�es

dSt = St[(�� �)dt+ �dWt]; (2.1)

where Wt is a standard Brownian motion process. The parameter � is the expected return

of the asset, � is the dividend rate, and � is the volatility of the asset price, which are

all taken to be constant. In the standard model money can be invested in a riskfree asset

which has a constant interest rate r. For an overview of this model in particular, and

derivatives in general, see the textbooks by Cox and Rubinstein (1985), Hull (1993), Stoll

and Whaley (1993), and Jarrow and Turnbull (1996).

We �rst consider a European call option with maturity T and strike price K. This

means that its payo� at expiration is (ST �K)+.1 The value of the European call option

at time 0 can be written as

CE(S0) = E
�[e�rT (ST �K)+] (2.2)

where E� denotes the expectation relative to the risk-neutral process for St, i.e., where r
replaces � in (2.1). This risk-neutral valuation approach was pioneered by Cox and Ross

(1976); its theoretical foundations are identi�ed and characterized in the seminal papers

of Harrison and Kreps (1979) and Harrison and Pliska (1981). The solution to (2.2) was

�rst derived in Black and Scholes (1973) and Merton (1973) and is given by

CE(S0) = S0N(d1)� e�rTKN(d2) (2.3)

1The operator x+ denotes max(x; 0).
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with

d1 =
ln(S0=K) + (r + 1

2
�2)T

�
p
T

(2.4)

d2 =
ln(S0=K) + (r � 1

2
�2)T

�
p
T

= d1 � �
p
T : (2.5)

where N(�) denotes the standard normal cumulative distribution. This solution is con-

sidered closed-form because the cumulative normal distribution is easily computed. See

Abramowitz and Stegun (1972) or Moro (1995) for methods to approximate the cumulative

normal distribution.2

An American call option with maturity T and strike price K can be exercised at any

time at or prior to maturity. Its payo� is (S� �K)+ if it is exercised at time � � T . The
value of the American call option at time 0 can be written as

C(S0) = max
�

E
�[e�r� (S� �K)+] (2.6)

where the max is over all stopping times � � T . For a rigorous justi�cation of (2.6)

as the appropriate pricing formula, see Bensoussan (1984) and Karatzas (1988). Finding

the optimal stopping policy is equivalent to determining the points (t; St) for which early

exercise is optimal. The boundary which separates the early exercise region from the

continuation region is the optimal exercise boundary. Analytical solutions in the case of

call options with discrete dividends were derived in Roll (1977), Geske (1979), and Whaley

(1981). Early work in the non-dividend American put case is given in Johnson (1983) and

Blomeyer (1986).3

The literature concerning the numerical solution of equation (2.6) is vast. Major ap-

proaches include binomial (or lattice) methods, techniques based on solving partial di�er-

ential equations, integral equations, variational inequalities, Monte Carlo simulation, and

others.4

The binomial method for the valuation of American options was introduced by Cox,

Ross, and Rubinstein (1979). Trinomial methods have been proposed in Parkinson (1977)

and Boyle (1988) and further analyzed in Omberg (1988). Other generalizations and vari-

ations of the binomial approach are given in Rendleman and Bartter (1979), Jarrow and

2Moro (1995) proposes the approximation

N(x) �

8>>>>><
>>>>>:

0:5 + x

P
2

i=0
aix

2iP
3

i=1
bix

2i
when 0 � x � 1:87

1�

�P
2

i=0
cix

iP
3

i=0
dix

i

�16

when 1:87 < x < 6

1 when x � 6

where a0 = 0:398942270991, a1 = 0:020133760596, a2 = 0:002946756074, b1 = 0:217134277847, b2 =

0:018576112465, b3 = 0:000643163695, c0 = 1:398247031184, c1 = �0:360040248231, c2 = 0:022719786588,

d0 = 1:460954518699, d1 = �0:305459640162, d2 = 0:038611796258, and d3 = �0:003787400686. Moro

(1995) shows that this approximation, properly implemented, is faster and more accurate than previous

methods. Proper implementation includes using multiplication rather than exponentiation wherever pos-

sible. For example, rather than computing z = ax4 + bx2 + c using the power function, it is more e�cient

to compute y = x � x and then z = (ay + b)y + c.
3The payo� of a put option is (K � S� )

+ if it is exercised at time � � T . McDonald and Schroder

(1990) and Chesney and Gibson (1995) derive an interesting put-call symmetry result. They show that

in the standard model (geometric Brownian motion setting), the value of an American call option with

parameters S, K, r, �, T is related to the value of an American put option by

C(S;K; r; �; T ) = P (K;S; �; r; T ): (2.7)

Thus, the American put price equals the American call price with the identi�cation of parameters: S ! K,

K ! S, r ! �, and � ! r.
4A comparison of some early methods is given in Geske and Shastri (1985).
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Rudd (1983), Hull and White (1988), Amin (1991), Trigeorgis (1991), Tian (1993), and

Leisen and Reimer (1995).5 Implementation improvements are given in Kim and Byun

(1994) and Curran (1995). Applications to computing price derivatives appear in Pelsser

and Vorst (1994). A convergence proof for these types of lattice methods for pricing Amer-

ican options is provided in Amin and Khanna (1994). The convergence of the optimal

exercise boundary is proved in Lamberton (1993). Convergence rates for European option

pricing are given in Leisen and Reimer (1995). Empirical convergence rate evidence for

American option pricing is provided in Broadie and Detemple (1995b). Analytical con-

vergence rate bounds for American option pricing using binomial methods are derived in

Lamberton (1995).

Black and Scholes (1973) and Merton (1973) showed that the price of any contingent

claim, in particular a call option, must satisfy what is now called the Black-Scholes funda-

mental partial di�erential equation (PDE):

@C(S; t)

@t
+ (r � �)S

@C(S; t)

@S
+
1

2
�2S2

@2C(S; t)

@S2
� rC(S; t) = 0: (2.8)

subject to the appropriate boundary conditions. For an American option some of the

boundary conditions are related to the early exercise event. Finite di�erence methods for

the numerical solution of this PDE and its associated boundary conditions in the American

option case were introduced in Schwartz (1977) and Brennan and Schwartz (1977, 1978).

Convergence of the Brennan and Schwartz method is proved in Jaillet, Lamberton, and

Lapeyre (1990) and Zhang (1995). Related numerical approaches include Courtadon (1982)

and Hull and White (1990). The quadratic method of MacMillan (1986) and Barone-Adesi

and Whaley (1987) and the method of lines of Carr and Faguet (1995) are based on exact

solutions to approximations of the Black-Scholes PDE.

Geske and Johnson (1984) present an exact analytical solution for the American option

pricing problem. They write the continuous option price as the sum of prices of simpler

options which can be exercised only at discrete points in time. However, their formula is an

in�nite series involving multidimensional cumulative normals (that can only be evaluated

approximately by numerical methods) and an unknown exercise boundary (which must

also be determined numerically). In the same paper, Geske and Johnson (1984) intro-

duced the method of Richardson extrapolation to the option pricing problem. Richardson

extrapolation has also been used in Breen (1991), Bunch and Johnson (1992), Ho, Staple-

ton, and Subrahmanyam (1994), Huang, Subrahmanyam, and Yu (1995), and Carr and

Faguet (1995). For an extensive treatment of Richardson extrapolation see Marchuk and

Shaidurov (1983). Other extrapolation techniques (see, e.g., Press et al. 1992) have not

been extensively tested in this context.

Jaillet, Lamberton, and Lapeyre (1990) introduced the variational inequality approach

to American option pricing. A discretization of this formulation leads to a linear comple-

mentarity problem (LCP) which can be solved by linear programming-type methods (see

Cottle, Pang, and Stone 1992 for a complete treatment of LCPs). Numerical results with

this approach are given in Dempster (1994). For an overview of di�erential equations and

variational inequality approaches to option pricing, see the textbook byWilmott, Dewynne,

and Howison (1993).

McKean (1965) �rst derived an integral representation of the option price. Kim (1990),

Jacka (1991), and Carr, Jarrow, and Myneni (1992) derive an alternate integral represen-

tation which expresses the value of the American option as the value of the corresponding

European option plus an integral which represents the present value of the gains from early

5There is also a large literature on lattice methods with alternative speci�cations of the stochastic

process and for pricing interest rate sensitive securities. See, e.g., Nelson and Ramaswamy (1990), Hull

and White (1994a, 1994b), Tian (1992, 1994), Amin (1995), Amin and Bodurtha (1995), and Li et al.

(1995).
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exercise:

C(S0) = CE(S0) +

Z T

s=0

[�S0e
��sN(d3(S0; Bs; s))� rKe�rsN(d4(S0; Bs; s))]ds; (2.9)

where CE(S0) is the corresponding European call option value, Bs is the optimal exercise

boundary, and

d3(S0; Bs; s) =
1

�
p
s
[log(S0=Bs) + (r � � + 1

2
�2)s]

d4(S0; Bs; s) = d3(S0; Bs; s)� �
p
s:

This representation can be used to solve for the optimal exercise boundary (see, e.g.,

Kim 1990). Numerical results using equation (2.9) are given in Kim (1994) and Huang,

Subrahmanyam, and Yu (1995).

2.1 Evaluation Criteria for Numerical Methods

Numerical solution procedures can be compared on many dimensions. Important factors

to consider when evaluating and choosing a solution algorithm include:

� Numerical accuracy

� Computation speed

� Error bounds or error estimates

� Algorithm complexity

� Flexibility

� Availability of price derivatives (the \Greeks")

� Memory/storage requirements

Accuracy and speed are often the most important of these factors. The accuracy of a

method can be measured in many ways, including average or worst-case error measures.

Speed requirements vary depending on the intended application. Are answers required in

real-time? How many securities need to be priced? Do implied parameters (e.g., implied

volatility) need to be computed? For example, algorithms used to generate daily risk

reports may have less stringent speed requirements than those used in a real-time trading

support system.

Many other factors are important in the design and implementation of numerical algo-

rithms for security pricing. Since numerical methods generate only approximate answers,

error estimates or exact error bounds are highly desirable. Although algorithm implemen-

tation seems like a one-time cost, in many real applications the solution procedures are

continually modi�ed and updated, e.g., to incorporate algorithm enhancements or to extend

the algorithm to price new securities. For this reason, simple and straightforward algo-

rithms are highly preferred to more complicated, di�cult to implement methods. Similarly,


exible algorithms, i.e., those which are easily adapted to new securities, are desirable. In

the options context, the \Greeks" are often as important to compute as the prices them-

selves. Hence, those algorithms which generate price derivatives as a by-product of the

pricing calculation are desirable. Finally, computer memory and disk storage requirements

can be important considerations in choosing an algorithm. (One reasonable, though not
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very elegant, approach to American option pricing is to precompute a large table of suit-

ably parameterized option prices. Then the pricing procedure involves only table lookup

and interpolation.)

We begin our analysis by giving a brief description of lattice methods and the ap-

proximation procedures proposed in Broadie and Detemple (1995b). We then present

performance results for several methods which quantify the speed{accuracy tradeo�.

2.2 Lattice Methods

The idea of binomial (and other lattice) methods is to discretize the risk-neutral process

speci�ed in equation (2.1) and then to use dynamic programming to solve for the option

price. A three-step tree is illustrated in Figure 1.

S

t

S

uS

dS

d  S

udS

2

u  dS2

d  uS2

u  S3

d  S3

2u  S

p

1–p

Figure 1: Binomial tree illustration for n = 3

In the Cox, Ross, and Rubinstein (1979) binomial method, the stock price parameters

are set to u = e�
p
�t, d = 1=u, where �t = T=n, and n is the number of time steps

between time 0 and T . The probability of an upmove is set to p = (er�t�d)=(u�d). With

these choices, the binomial process converges to the geometric Brownian motion model

as n ! 1. The choice of ud = 1 is not only convenient, but it reduces the number of

numerical computations required. Other binomial variants use slightly di�erent values for

these parameters.

The dynamic programming routine is initialized by setting the call option price to

CT (ST ) = (ST �K)+ at each of the terminal nodes. For example, at the top-right node

in Figure 1, CT (u
3S) is set to (u3S �K)+. At the previous node corresponding to stock

price u2S at time T ��t, the call option value CT��t(u
2S) is set to

maxf(u2S �K)+; e�r�t(pCT (u
3S) + (1� p)CT (u

2dS))g: (2.10)

That is, the American call value is the maximum of the immediate exercise value and the

present value of continuing. The call values at the remaining nodes are determined in a

similar recursive fashion.
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Figure 2 shows the binomial price as a function of the number of time steps.6 The

well-known \oscillatory convergence" of the binomial method is evident in the �gure. This

has led many practitioners to use a variation of the binomial method where the n- and
(n+ 1)-step binomial prices are averaged. We term this the \binomial average" method.
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Figure 2: Binomial price versus number of time steps

Broadie and Detemple (1995b) suggest two modi�cations to the binomial method. In

the �rst modi�cation, the Black-Scholes formula replaces the usual \continuation value" at

the time step just before option maturity. This method is termed BBS (for binomial with a

Black-Scholes modi�cation). Figure 3 shows the BBS price as a function of the number of

time steps. Notice that the error is substantially reduced for the same number of time steps

and the convergence to the true value is smoother. The smoother convergence suggests

that Richardson extrapolation may be useful. The second modi�cation adds Richardson

extrapolation to the BBS method, and we refer to it as the BBSR method. In particular,

the BBSR method with n steps computes the BBS prices corresponding to m = n=2 steps
(say Cm) and n steps (say Cn) and then sets the BBSR price to C = 2Cn � Cm.

2.3 LBA and LUBA Methods

Broadie and Detemple (1995b) propose two approximation methods based on lower and up-

per bounds for the American option price. The lower bound is based on easily computable

\capped call" option values.7 Then capped call option values are used in a di�erent way

to generate an approximation to the optimal exercise boundary. Unlike other pricing pro-

cedures, this approximate boundary (which is shown to lie uniformly below the optimal

boundary) can be computed without recursion. An upper bound is then derived by sub-

stituting this approximate boundary in the integral equation (2.9).

6The parameters for this American call option are S = 105, K = 100, r = 0:05, � = 0:02, � = 0:30, and

T = 0:2. The true value of this option is 8.679.
7See Broadie and Detemple (1995a) for a discussion of capped call options.
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Figure 3: BBS price versus number of time steps

The payo� of a capped call option with cap L is

�
min(St; L)�K

�+
if it is exercised at time t � T . Under the policy \exercise at the cap," the current value

of the capped option, denoted C0(S0; L), can be written explicitly (in terms of univariate

cumulative normals). Since the \exercise at the cap" policy is a feasible but suboptimal

strategy for the American option, C0(S0; L) provides a simple lower bound on the American
option price C(S0).

8 A good lower bound is given by solving the univariate optimization

problem:

max
L�S0

C0(S0; L):

The lower bound approximation, LBA, is given by multiplying the lower bound by a weight

� � 1.

The optimal exercise boundary can be approximated by the following procedure. De�ne

the derivative of the capped call option value with respect to the constant cap L, evaluated
as St approaches L from below:

D(L; t) � lim
St"L

@Ct(St; L)

@L
:

An explicit formula for D(L; t) is available. De�ne L�t to be the solution to

D(L; t) = 0:

Note that this equation does not have to be solved recursively and it can be solved very

fast for any given t. The function L�t lies below the optimal exercise boundary Bt for

8Similar ideas were independently proposed in Omberg (1987) and Bjerksund and Stensland (1992).

We thank D. Lamberton for pointing out the latter reference to us.
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all t 2 [0; T ]. Using L�t in place of B in equation (2.9) leads to an upper bound for the

American option value. LUBA, the lower and upper bound approximation, is a convex

combination of these lower and upper bounds. Details are given in Broadie and Detemple

(1995b).

2.4 Performance Results

To compare the performance of di�erent methods, we follow the procedure in Broadie

and Detemple (1995b). We �rst choose a large test set of options by randomly selecting

parameters from a pre-determined distribution which is of practical interest.9 Then for each

method we price the test set of options and compute speed and error measures. Speed is

measured by the number of option prices computed per second.10 Two error measures are

computed. First, root-mean-squared (RMS) relative error is de�ned by:

RMS =

vuut 1

m

mX
i=1

e2i

where ei = jĈi � Cij=Ci is the absolute relative error, Ci is the \true" American option

value (estimated by a 15,000-step binomial tree), Ĉi is the estimated option value, and

the index i refers to the ith option in the test set. To make relative error meaningful, the

summation is taken over options in the dataset satisfying Ci � 0:50. Out of a sample of

5,000 options, m = 4,592 satis�ed this criterion. Second, the \maximum" relative error is

de�ned to be observation ei such that 99.5% of the sample observations are below ei. We

do not take the largest observation, because estimating the maximum of a distribution is

very di�cult.11

We test the binomial method with the original Cox, Ross, and Rubinstein (1979) param-

eters (Binom CRR) and with the parameters suggested in Hull and White (1988, footnote

4) modi�ed to account for dividends (Binom HW). We also test the \binomial average"

method, the BBSR method, and the LBA and LUBA methods. The speed versus RMS-

error results are shown in Figure 4.12 The binomial CRR and HW methods perform almost

identically. For 200 time steps, their RMS-error is about 0.1%, or about one cent on a $10

option. This con�rms the result in the folklore that using 200 binomial time steps produces

\penny accuracy." The binomial average method performs insigni�cantly better than the

standard binomial method. Apparently, the gain in accuracy is just about o�set by the

doubling of the work to compute prices at n and n + 1 time steps. The BBSR method

performs signi�cantly better than the other binomial methods in this speed-error tradeo�.

Better still are the LBA and LUBA methods. The LUBA method has an RMS-error of

about 0.02% (less than a 1000-step binomial tree) and a speed of over 1000 options per

second (faster than a 50-step binomial tree).

The computational e�ort (work) with the standard binomial method increases as O(n2).
Figure 4 shows the interesting result that RMS-error decreases approximately linearly with

the number of time steps. Hence, the binomial error decreases as O(1=
p
work).13 Leisen

9The distribution of parameters for the test is: � is distributed uniformly between 0.1 and 0.6; T is,

with probability 0.75, uniform between 0.1 and 1.0 years and, with probability 0.25, uniform between 1.0

and 5.0 years; K = 100, S0 is uniform between 70 and 130; � is uniform between 0.0 and 0.10; r is,

with probability 0.8, uniform between 0.0 and 0.10 and, with probability 0.2, equal to 0.0. Finally, each

parameter is selected independently of the others. Note that relative errors do not change if S0 and K are

scaled by the same factor, i.e., only the ratio S0=K is of interest.
10The computations were done on a PC with a 133-MHz Pentium processor.
11We found that the sample maximum varies so widely within subsamples as to be an unreliable tool

for comparing various methods. Results using the 99.5 percentile of the observations seem to be much less

sensitive to the random test set used.
12Numbers next to each method indicate the number of time steps.
13This is also the convergence rate typically associated with simulation methods!
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Figure 4: Speed versus RMS Relative Error

and Reimer (1995) show analytically that the binomial method has order one (i.e., linear)

convergence for European options.14 They also suggest an interesting modi�cation of the

binomial method which appears to have order two convergence for European options and

order one convergence (with a smaller constant) for American options.

Figure 5 shows the tradeo� between computation speed and the maximum error (re-

call that the \maximum" error is de�ned as the 99.5 percentile of the ordered absolute

relative errors). The ranking of the methods is the same, however, the maximum error is

approximately �ve times larger than the RMS-error for each method.

Comparative results of several other methods are given in Broadie and Detemple (1995b).

Of the other methods tested, only the method of lines of Carr and Faguet (1995) has an

RMS-error of 0.1% or less. AitSahlia (1995) and AitSahlia and Lai (1996) describe a pricing

method for American options which uses a continuity correction technique for estimating

the optimal exercise boundary. Their method also appears to be very promising.15 Re-

cent methods represent orders of magnitude improvement over earlier approaches in terms

of speed and/or accuracy. The BBSR method is a simple modi�cation of the binomial

method which is simple to program and performs very well. The LUBA method is the only

method tested which also provides upper and lower bounds. The binomial method is very

easy to program and the algorithm can easily be adapted to many alternative contract

speci�cations. All of the methods tested can generate prices as well as price derivatives.

Finally, the storage requirements of the tested methods are minimal.

The determination of a closed-form solution for the optimal stopping boundary and

the corresponding American option price remains an open question. However, we conclude

from these recent results that from a numerical viewpoint, the single asset American option

pricing problem in the standard model is essentially solved. Many challenges remain for

the pricing of path-dependent options, multi-asset options, interest-rate sensitive securities,

14They also show that the same order of convergence holds for the parameters used in the Cox, Ross,

and Rubinstein (1979), Jarrow and Rudd (1983), and Tian (1993) binomial variants.
15It was not tested because it has not yet been extended to handle dividends.
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Figure 5: Speed versus Max Relative Error

and options in more general models (e.g., nonconstant volatility). Some of these issues are

explored brie
y in the next two sections.

3 Barrier and Lookback Options

Capped call options are one example of barrier options | options whose payo� depends on

the value of the underlying asset relative to a barrier level. Knock-in options are another

example. These options have a zero payo�, unless the underlying asset price crosses a

pre-determined barrier which makes the option come \alive." Barrier options are treated

in Rubinstein and Reiner (1991) and Rich (1994). For an overview of these and other types

of exotic options, see Jarrow (1995) and Nelken (1995).

Cox and Rubinstein (1985) describe a straightforward modi�cation of the binomial

method for pricing certain barrier options. Broadie and Detemple (1993) and Boyle and

Lau (1994) �rst pointed out the slow convergence of the binomial method for pricing

barrier options. For a comparable number of time steps, the binomial pricing error for

barrier options can be two orders of magnitude larger than for standard options.

Boyle and Lau (1994) identify the cause of the problem and suggest a remarkably simple

and e�ective solution. As the number of time steps in the binomial method changes, the

placement of the barrier relative to the layers of nodes of the tree changes. They recommend

choosing the number of time steps n so that there is a layer of nodes at or just beyond

the barrier. These \good values" of n can easily be determined in advance of the pricing

computation. Their results show that these choices for n restore the original error properties
of the binomial method.

Numerical pricing of barrier options is also studied in Derman, Kani, Ergener, and Bard-

han (1995), and in Ritchken (1995). Derman et al. (1995) suggest an interpolation scheme

for improving the pricing error of lattice methods applied to barrier options. This approach

is especially useful when the volatility of the underlying asset is not constant. Ritchken
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(1995) suggests using a trinomial procedure, where the trinomial \stretch" parameter is

chosen so that the barrier coincides with a layer of nodes.

The payo� of a lookback call option is (ST � min0�t�T St) and a lookback put is

(max0�t�T St � ST ). Analytical solutions have been given for European versions of these

options in the standard model (see, e.g., Goldman, Sosin, and Gatto 1979 and Conze and

Viswanathan 1991). Numerical techniques must be used for American lookbacks, to handle

discrete dividends, when volatility is not constant, or for other variations of the standard

model. The standard binomial approach does not apply to the case of lookbacks because

of the path-dependent payo�.

Babbs (1992) and Cheuk and Vorst (1994) suggest a clever change of numeraire so that a

version of the binomial method is again applicable. Hull and White (1993) resolve the path

dependency by the standard technique of adding an additional state variable. This adds

an extra dimension to the binomial method, which considerably increases its computation

time. The resulting method, however, is very 
exible. Kat (1995) o�ers a summary and

comparison of these approaches.

For many path-dependent option contracts, the payo� does not depend on the continu-

ous price path, but rather it depends on the price of the underlying asset at discrete points

in time. For barrier options, it is often the case that the barrier-crossing event can only

be triggered at speci�c dates or times. For lookback options, the maximum or minimum

price might be determined at daily closings, for example. The implications of ignoring

the di�erence between continuous and discrete monitoring is discussed in Flesaker (1992),

Chance (1994), and Kat and Verdonk (1995). Numerical methods and analytical approx-

imations for discrete path-dependent options are given in Broadie, Glasserman, and Kou

(1995, 1996) and Levy and Mantion (1995).

4 Methods for Multiple State Variables

Options on multiple assets (\rainbow options") are being traded with increasing frequency.

For example, in 1994 the New York Mercantile Exchange began trading options on crack

spreads (e.g., the di�erence between unleaded gasoline and crude oil futures prices, or the

di�erence between heating oil and crude oil futures prices). Other examples include options

on the maximum of two or more asset prices, dual-strike options, and portfolio or basket

options.16

In the multi-asset context, the standard model is a straightforward generalization of

(2.1):

dSit = Sit [(�i � �i)dt+ �idW
i
t ]; (4.1)

where Sit is the price of asset i at time t and where the W i are standard Brownian motion

processes (i = 1; : : : ; n) and the correlation between W i and W j is �ij . With a constant

rate of interest r, the risk-neutral form of (4.1) is given by replacing each �i by r.

Multinomial approaches to pricing options with two or more state variables are given

in Boyle (1988), Boyle, Evnine, and Gibbs (1989), Madan, Milne, and Shefrin (1989),

Cheyette (1990), He (1990), Kamrad and Ritchken (1991), and Rubinstein (1994). The

basic idea of the multinomial approaches is the same as in the single asset case, namely,

to discretize the risk-neutral process speci�ed in equation (4.1) and then to use dynamic

programming to solve for the option price. A tree with four branches per node in the

two-asset case is illustrated in Figure 6.

Boyle, Evnine, and Gibbs (1989), hereafter BEG, proposed a general lattice method

to price contingent claims on k assets. The BEG method has four branches per node in

16Closed-form solutions for some European multi-asset options are given in Boyle (1993). Properties of

American option prices and optimal exercise boundaries are investigated in Broadie and Detemple (1995c)

in the multi-asset context.
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Figure 6: Evolution of a two-dimensional binomial tree (4-branch method)
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where �i = r � �i � 1

2
�2i , for i = 1; 2, and � = �12. For the test results which follow, we

refer to this BEG approach as the \4-Branch" method.

Boyle (1988) proposed a lattice method in the two-asset case which has �ve branches

per node, where the additional branch represents a horizontal move, i.e., a transition from

(S1; S2) to the same node (S1; S2) one time-period later. Kamrad and Ritchken (1991)

proposed a general lattice method for k assets. In the case of two assets, their method

has �ve branches per node. Like the trinomial method in the single asset case, their

method has an additional \stretch" parameter, denoted �. When � = 1, the Kamrad and

Ritchken method reduces to the BEG method. In the two asset case, Kamrad and Ritchken

recommend using � = 1:11803, and for the test results which follow, we refer to this as the

\5-Branch" method.

To compare the performance of the 4-Branch and the 5-Branch methods, we price



13

European max-options on two assets. The payo� of the max-option is (max(S1T ; S
2
T )�K)+.

We test the methods in the European case because the true price can be determined by

the analytical formula given in Johnson (1981, 1987) and Stulz (1982). We chose a test set

of 5,000 options by randomly selecting parameters from a pre-determined distribution.17

Then for each method we price the test set of options and compute the usual speed and

RMS-error measures. The results are shown in Figure 7.18
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Figure 7: Speed versus RMS Relative Error for European Call Options on the Maximum

of Two Assets

For both methods, Figure 7 shows that the RMS-error decreases approximately linearly

with the number of time steps. The RMS-error in the two-asset case is comparable to the

single-asset case with the same number of time steps.19 However, the computational e�ort

with both two-asset methods increases as O(n3). With current computing technology,

these lattice methods are practical for problems of at most three or four dimensions. For

higher dimensions, the computation time and the memory/storage requirements become

prohibitive.

4.1 Simulation Methods

To overcome the \curse of dimensionality" of current lattice methods, recent work has

focused on simulation-based approaches. The convergence rate of Monte Carlo simulation

methods is typically independent of the number of state variables, and so this approach

17The distribution of parameters for the test is: �i is distributed uniformly between 0.1 and 0.6; T is,

with probability 0.75, uniform between 0.1 and 1.0 years and, with probability 0.25, uniform between 1.0

and 5.0 years; K = 100, Si

0
is uniform between 70 and 130; �i is uniform between 0.0 and 0.10; r is,

with probability 0.8, uniform between 0.0 and 0.10 and, with probability 0.2, equal to 0.0, � follows a

triangular distribution between �1 and 1 (i = 1; 2, where applicable). Finally, each parameter is selected

independently of the others.
18Numbers next to each method indicate the number of time steps.
19This two-asset test if for the easier European option case, while the single-asset test was for American

options.
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should be increasingly attractive as the dimension of the problem grows. The simulation

approach was introduced to �nance in Boyle (1997). For a recent survey see Boyle, Broadie,

and Glasserman (1995).

While the simulation approach has been used extensively to price European-style con-

tingent claims, only recently have there been attempts to extend the method to price

American-style claims. The �rst attempt to price American options using simulation is

given in Tilley (1993). This e�ort created considerable interest by demonstrating the po-

tential practicality of using simulation in this context. More recent developments are given

in Barraquand and Martineau (1995) and Broadie and Glasserman (1995).
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