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Résumé / Abstract

On analyse un modèle néoclassique où la population se compose de

deux classes (les capitalistes et les ouvriers). Les capitalistes consomment une

portion de leur revenu et éprgnent le reste. Les ouvriers consomment tout leur

revenu et n�épargnent rien. Le gouvernement peut redistribuer le revenu entre les

deux classes au moyen des taxes et des transferts forfaitaires. D�abord on formule

un résultat de Kaitala et Pohjola (1990) qui caractérise l�ensemble des solutions

optimales de premier rang. Ensuite on démontre que dans le jeu différentiel entre la

classe capitaliste et le gouvernement, il existe un équilibre Markov-parfait de Nash

qui coïncide avec une solution optimale de premier rang. Cet équilibre implique des

transferts à long terme du revenu de la classe ouvrière à la classe capitaliste.

We consider a neoclassical growth model in which the society consists

of two classes (capitalists and workers). The capitalists consume part of their

income and save the rest, whereas the workers are assumed to consume their

entire income immediately without saving anything. The governement can

redistribute income between the two classes by lump-sum transfers and taxation.

We first state the result due to Kaital and Pohjola (1990), which characterizes the

set of all first best solutions. We then show that the differential game between the

capitalistic class and the government has a Markov-perfect Nash equilibrium

which coincides with one of the first best solutions. This equilibrium features a

long-run transfer of all wage income from the workers to the capitalists.

Mots Clés : Redistribution du revenu, modèle néoclassique de la croissance, jeu

différentiel, équilibre Markov-parfait de Nash

Keywords : Income redistribution, Neoclassical growth model, Differential

game, Markov-perfect Nash equilibrium

JEL : H23, H24



1 Introduction

The study of growth in an economy in which di�erent classes of the so-
ciety determine their saving rates in di�erent ways goes at least back
to Pasinetti (1962). In the simplest setting there are 2 classes which
are conveniently referred to as \the capitalists" and \the workers," re-
spectively. Hamada (1967) assumes that the average saving rate of the
capitalists is higher than that of the workers (both are assumed to be
constant) and shows that, along a balanced optimal growth path, the
workers cannot be made better o� by any (positive or negative) income
transfer between the two classes. He also proves that in the case where
the economy starts o� the balanced path and workers are impatient, an
eventual income transfer from the capitalists to the workers is optimal
from the point of view of the working class. The latter result is derived
under the assumption that workers do not save at all and that the saving
rate of the capitalists is a �xed positive constant. Kaitala and Pohjola
(1990) relax the assumption of a �xed saving rate by considering the
case where the capitalists make their saving decision in an optimal way.
This leads to a di�erential game model in which player 1 is the class
of capitalists and player 2 is the government. The capitalists control
the overall saving rate of the economy and the government determines
the income redistribution between the two classes. Kaitala and Pohjola
(1990) prove that in the case where the players can only use stationary
Markovian strategies the equilibrium saving rate is equal to 0 and the
capital/labor ratio converges to 0. Needless to say that this equilibrium
has very poor welfare properties. Therefore, Kaitala and Pohjola (1990)
allow for non-Markovian (trigger) strategies and demonstrate that under
this assumption there exist e�cient Nash equilibria, in which the long-
run capital/labor ratio is determined by the modi�ed golden-rule. The
application of trigger strategies implies that the players condition their
decisions at any time t on the entire history of the game up to time t.

A crucial assumption in the paper by Kaitala and Pohjola (1990) is that
the \workers run the government" (p. 425) so that the government's
objective is to maximize the present value of consumption by a repre-
sentative worker. In the present note we modify the model by assuming
that the government maximizes the present value of aggregate consump-
tion (by both workers and capitalists). We show that in this case a �rst
best solution is also a Markov-perfect Nash equilibrium of the di�erential
game. In contrast to the situation considered by Kaitala and Pohjola
(1990), an e�cient outcome of the game exists even if the players use
stationary Markovian strategies. These strategies are much simpler than
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trigger strategies because they depend only on the current state of the
system (the capital labor/ratio) and not on the entire history of the
game.

We present the model and the results in the Section 2 and conclude the
paper with some �nal remarks in Section 3.

2 Model formulation and results

Assume that there are N c capitalists and Nw workers and that the pop-
ulation grows at a constant rate  > 0, i. e., _Nc=Nc = _Nw=Nw = .1

By choosing appropriate units of measurement we may assume that
Nc(0) + Nw(0) = 1. The (constant) percentage of capitalists in the
overall population is denoted by � = Nc=(Nc + Nw). Each worker is
endowed with 1 unit of labor per unit of time which he provides inelas-
tically to the production sector. The total labor supply is therefore Nw

units per time. Workers do not save and, thus, do not hold any capital.
The aggregate capital stock of the economy will be denoted by K and
each capitalist holds K=Nc units of it. Aggregate output is given by
F (K;Nw) where F is a neoclassical production function with constant
returns to scale. We de�ne f(k) = F (k; 1), where k = K=Nw denotes the
capital/labor ratio, and assume that f is continuous on [0;1), and twice
continuously di�erentiable, increasing, and strictly concave on (0;1).
Moreover, limk!0 f

0(k) = 1 and limk!1 f 0(k) = 0. Perfect competi-
tion implies that the interest rate and the wage rate are given by f 0(k)
and f(k)� kf 0(k), respectively.

A single worker's income is given by f(k)� kf 0(k) + x, where x denotes
the transfer payment (if it is positive) or lump-sum tax (if it is nega-
tive) per worker. Since workers do not save, their income equals their
consumption. As in Hamada (1967) and Kaitala and Pohjola (1990) we
postulate linear utility functions for all agents so that f(k)� kf 0(k) + x

can also be interpreted as the instantaneous utility derived by a single
worker at any given point in time. The present value of utility derived
by all members of the working class is therefore given by

Jw = (1� �)

Z
1

0

e�rt[f(k)� kf 0(k) + x] dt

where r denotes the di�erence between the workers' time preference rate
and the population growth rate . It is assumed that r > 0.

1
For simplicity of exposition time arguments are omitted whenever possible. For

example, N
c
is shorthand of N

c
(t).
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Denoting the saving rate of the capitalists by s and the lump-sum trans-
fer (or tax) per capitalist by y it follows that the consumption (instanta-
neous utility) of a single capitalist is given by (1� s)[(K=Nc)f 0(k) + y].
We assume that the government's budget balances at each point in time
which means that Nwx + Ncy = 0 or, equivalently, y = �(Nw=Nc)x.
Therefore, the instantaneous utility of a single capitalist can be written
as [(1 � �)=�](1 � s)[kf 0(k) � x]. If we assume (as in Kaitala and Po-
hjola, 1990) that the capitalists have the same time preference rate as
the workers, then it follows that the present value of utility derived by
all capitalists is given by

Jc = (1� �)

Z
1

0

e�rt(1� s)[kf 0(k)� x] dt:

Aggregate investment is equal to aggregate saving so that _K = s[Kf 0(k)�
Nwx]. Because of the constant population growth this implies that

_k = s[kf 0(k)� x]� k ; k(0) = k0: (1)

The capitalists can choose the saving rate within its feasible limits

0 � s � 1 (2)

and the government can choose taxes and transfer payments x such that

kf 0(k)� f(k) � x � kf 0(k): (3)

Constraint (3) is necessary for the feasibility of the tax/transfer policy
because it ensures that both capitalists and workers have nonnegative
consumption at all points in time.

So far, our model is identical to the one studied by Kaitala and Po-
hjola (1990). We now depart from their setting by assuming that the
government's objective is to maximize the present value of aggregate
consumption (utility) given by Jg = Jw + Jc. Note that Jw and Jc

are the utility derived by the working class and the capitalistic class,
respectively, so that adding Jw and Jc gives aggregate utility. Using the
de�nition of Jw and Jc it follows that

Jg = (1� �)

Z
1

0

e�rtff(k)� s[kf 0(k)� x]g dt:

Before we discuss Markov-perfect Nash equilibria for the di�erential
game between the capitalists and the government we state a result which
characterizes the �rst best solution of the government's optimization
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problem. By this we mean an optimal solution to the control problem
with objective functional Jg , controls x and s, and constraints (1) - (3).
We denote by �k the golden-rule capital/labor ratio, which is the unique
number �k > 0 satisfying the equation f 0(�k) = r + .

Theorem 1 (i) If the government can control both the transfer rate x

and the saving rate s then the objective functional Jg is maximized sub-

ject to (1) - (3) if and only if

s[kf 0(k)� x] =

8>><
>>:

f(k) if k < �k;

�k if k = �k;

0 if k > �k:

(4)

If (4) holds at each point in time then, after some �nite time (depending

on the initial capital stock), the capital/labor ratio will be constant and

equal to �k.
(ii) Condition (4) can be satis�ed, for example, by choosing the station-

ary Markovian strategies s = �(k) and x = �(k) where

�(k) =

(
1 if k < �k;

�k=f(�k) if k � �k;
and �(k) =

(
kf 0(k)� f(k) if k � �k;

kf 0(k) if k > �k:

Proof. The �rst assertion is proved in Kaitala and Pohjola (1990,
p. 426) by the same method that will be used in the proof of Theorem 2
below. The second assertion follows immediately by substituting s =
�(k) and x = �(k) into (4). 2

Note that the strategy pair (�(�); �(�)) is not the only one that satis�es
(4) because s and x are uniquely de�ned by (2) - (4) only for k 2 [0; �k).
In particular, (4) allows positive, negative, or zero transfers between the
two classes if the capital/labor ratio is equal to its long-run steady state
�k. The strategy pair (�(�); �(�)) de�ned in the theorem entails a complete
income transfer from the workers to the capitalists in the long-run and
is therefore, from the workers' point of view, a very bad choice among
the �rst best solutions.

Kaitala and Pohjola (1990) consider the di�erential game in which the
government maximizes Jw and the capitalists maximize Jc. Assuming
that the players use stationary Markovian strategies, they prove that
in equilibrium the capitalists do not save (s = 0) and the government
transfers all income from the capitalists to the workers (x = kf 0(k)). It
can be shown that this outcome is the same as if each player would actu-
ally minimize his opponent's objective functional instead of maximizing

4



his own. Thus, the lack of coordination in the model used by Kaitala
and Pohjola (1990) leads to the worst outcome for both players. In or-
der to generate a more reasonable prediction from their model, Kaitala
and Pohjola (1990) allow for trigger strategies which are information-
ally more demanding than stationary Markovian strategies because the
computation of the controls at time t involves the entire history of the
game up to time t.2 They show that, if the players use these more com-
plicated strategies, �rst best solutions of the model can be supported
as Nash equilibria. In the rest of this section we shall show that in our
modi�cation of the game, �rst best solutions can be supported as Nash
equilibria even if one restricts the players to use stationary Markovian
strategies.

Before we state the main result it is worth mentioning that the stationary
Markovian strategies s = 0 and x = kf 0(k), which constitute the unique
Markov-perfect Nash equilibrium in the model of Kaitala and Pohjola
(1990), do also form an equilibrium in the present model in which the
government is assumed to maximize Jg instead of Jw. This follows from
the following observations:
(i) if the capitalists choose the saving rate identically equal to 0, the
government's control x does not have any inuence on the government's
optimization problem anymore,
(ii) if the government chooses x = kf 0(k), the capitalists' problem be-
comes independent of their control variable s.
Thus, in this equilibrium, both players are indi�erent between all possi-
ble strategies and might as well choose the equilibrium strategies. How-
ever, contrary to the case considered by Kaitala and Pohjola (1990), this
trivial equilibrium is not the only Markov-perfect Nash equilibrium. As
a matter of fact, the following theorem shows that the �rst best solution
(�(�); �(�)) de�ned in Theorem 1 quali�es as a Markov-perfect Nash equi-
librium of the di�erential game in which the government maximizes Jg .
It follows that history-dependent trigger strategies are not necessary for
obtaining a �rst best solution if one assumes that the government prop-
erly takes into account the utility of all agents.

Theorem 2 Consider the di�erential game in which the government

chooses the transfers rate x in order to maximize Jg and the capitalists

choose the saving rate s so as to maximize Jc. The pair (�(�); �(�))
de�ned in Theorem 1 is a Markov-perfect Nash equilibrium.

Proof. We have to show that �(�) is a best response to �(�) and vice

2
In the case of a stationary Markovian strategy like s = �(k) the control value

depends only on the current state of the system.
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versa. Assume that the capitalists use the strategy s = �(k). Using
Equation (1) and partial integration we see that

Jg = (1� �)

Z
1

0

e�rt[f(k)� _k � k] dt

= (1� �)

�Z
1

0

e�rt[f(k)� (r + )k] dt+ k0

�
:

The integrand on the right hand side of this equation is a unimodal
function of k which attains its unique maximum at k = �k (see Figure 1a).
Therefore, the government will try to steer the capital/labor ratio as
close to the value �k as possible. This means that it will try to satisfy
(4) with s replaced by �(k). Because the feedback law x = �(k) achieves
this goal it is a best response to �(�).

Now assume that the government plays x = �(k). We obtain

Jc = (1� �)

Z
1

0

e�rt[kf 0(k)� �(k)� _k � k] dt

= (1� �)

�Z
1

0

e�rt[kf 0(k)� �(k)� (r + )k] dt+ k0

�
:

The integrand of this objective functional can be written as

kf 0(k)� �(k)� (r + )k =

(
f(k)� (r + )k if k � �k;

�(r + )k if k > �k:

and is depicted in Figure 1b. It is also a unimodal function of k which
attains its unique maximum at the value k = �k. Therefore, the capital-
ists, too, will try to steer the capital/labor ratio as fast as possible to �k,
that is, they will try to satisfy (4) with x replaced by �(k). Because the
feedback law s = �(k) achieves this goal it quali�es as a best response
to �(�). This completes the proof of the theorem. 2

A similar remark as the one made after Theorem 1 applies also to
Theorem 2. There are other pairs of stationary Markovian strategies
(~�(�); ~�(�)) which constitute both a �rst best solution and a Markov-
perfect Nash equilibrium. For the proof of Theorem 2 to remain vaild,
however, it is necessary that they coincide with (�(�); �(�)) on the inter-
val [0; �k]. In particular, the speci�cations ~�(�k) = �k=f(�k) and ~�(�k) =
�kf 0(�k)� f(�k) are crucial since without them the integrand of Jc would
not attain its maximum at k = �k. This implies that the complete trans-
fer of income from the workers to the capitalists is an essential feature of
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the Markov-perfect Nash equilibria derived in that way. This conclusion,
which is opposite to the one derived by Hamada (1967), should not come
as a surprise because we consider a game in which the workers are not
even among the players whereas Hamada (1967) studies what is optimal
for the workers.

3 Concluding remarks

We have reconsidered a model by Kaitala and Pohjola (1990) which
describes the strategic interaction between the government and the cap-
italistic class in a neoclassical growth framework. We have modi�ed
that model by assuming that the government maximizes the aggregate
utility of all agents (workers and capitalists). Whereas the only Markov-
perfect Nash equilibrium of the original model (in which the government
is assumed to maximize only the utility of the workers) has extremely
poor welfare properties, our model admits Markov-perfect Nash equi-
libria which coincide with �rst best solutions. These equilibria result
in a complete income transfer from the working class to the capitalists
once the e�cient golden-rule capital/labor ratio is reached. This feature
is probably a consequence of the assumption that the workers in this
model do not have any strategic power. A worthwhile project for future
research would therefore be to extend the model by introducing a con-
trol variable for the working class and deriving equilibria in this 3-player
setting. For example, one might think of a model in which the workers
(i. e., the union) decides on the labor supply or a model in which each
class can force the government out of power if its after tax income is too
low as compared to the income of the other class.
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