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Nous présentons une procédure générique pour l'estimation et
l'évaluation de modèles d'options avec volatilité stochastique où le sousjacent et un
ensemble de contrats d'options sont utilisés simultanément. Nos résultats
démontrent qu'un modèle univarié avec seulement des données d'options domine
en terme d'erreurs de prix hors-échantillon et en terme de couverture. Nous
trouvons également un filtre d'extraction pour la volatilité latente qui est basé sur
un polynome de retards de volatilités implicites. Ayant simultanément la probabilité
de risque neutre et la probabilité objective, nous pouvons vérifier, dans le contexte
du modèle de Heston, si la transformation usuelle est empiriquement plausible.
Nous rejetons le changement de mesure supposé dans ce modèle.

In this paper we propose a generic procedure for estimating and pricing
options in the context of stochastic volatility models using simultaneously the
fundamental price and a set of option contracts. We appraise univariate and
multivariate estimation of the model in terms of pricing and hedging performance.
Our results, based on the S&P 500 index contract, show that the univariate approach
only involving options by and large dominates. A by-product of this finding is that we
uncover a remarkably simple volatility extraction filter based on a polygonal lag
structure of implied volatilities. The bivariate approach involving both the
fundamental and an option appears useful when the information from the cash market
provides support via the conditional kurtosis to price options. This is the case for
some long-term options. Moreover, having estimated separately the risk-neutral and
objective mesures allows us to appraise the typical risk-neutral representations used
in the literature. Using Heston’s (1993) model as example we show that the usual
transformation from objective to risk neutral density is not supported by the data.

Mots Clés : Titres dérivés, méthode de moments efficaces, prix d'états,
filtrage, volatilité stochastique

Keywords : Derivative securities, efficient method of moments, state price
densities, stochastic volatility models, filtering
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Introduction

Numerous techniques have been proposed for estimating continuous time
processes and the pricing of derivative securities. They involve the esti-
mation of di�usions with or without stochastic volatility and/or jumps.
The literature is summarized in a number of surveys and textbooks, in-
cluding Bates (1996), Campbell et al. (1996), Ghysels et al. (1996),
Melino (1994), Renault (1997) and Tauchen (1997). Option pricing for-
mula are subsequently used to price the derivative contracts written on
the underlying fundamental. Hence the time series of the fundamental
is used to estimate the di�usion in a �rst stage and a pricing model
associated with the di�usion is used in a second to compute the option
price. This can involve rather straightforward computations, as in the
Black-Scholes options pricing model, or can require sophisticated esti-
mation procedures when for instance di�usions with stochastic volatility
are involved. Another approach tends to by-pass the �rst stage and com-
putes the price of a new contract by extrapolating from a cross-section of
listed options. Therefore, using only the cross-section of options results
in ignoring any information in the fundamental that may not be present
in the option prices.

Financial theory suggests that for stochastic volatility models with
two state variables (such as the models of Hull and White (1987), Scott
(1987), Heston (1993) and many others) one should consider the fun-
damental and its derivative contracts jointly to estimate di�usion pa-
rameters and price options simultaneously. There are indeed appealing
theoretical reasons to pursue this approach, as in a stochastic volatility
economy we need to add for instance options to be able to complete
the market.1 The complete market setup guarantees the existence and
uniqueness of the risk neutral probability density used to price the op-
tion contracts. If done judiciously this challenging task should dominate
the use of a single source, whether it is options or fundamental. The
task is indeed challenging and besides knowing how to proceed with
it we don't know a priori what gains can be made in terms of better
parameter estimates for di�usions and in terms of pricing options and
hedging performances. Although to the best of our knowledge no at-
tempts were made to estimate and appraise stochastic volatility models
using the joint distribution of fundamentals and options, it is clear that
much of the evidence in the literature suggests that we should gain from

1See for instance, Romano and Touzi (1993) who show that the combination of
the fundamental and a European-type option contract complete the market in a
stochastic volatility type economy.
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addressing this issue.2 In this paper we propose a generic procedure
for estimating and pricing options using simultaneously the fundamen-
tal price St and a set of option contracts [(�Iit)i=1;K ] where K � 1 and
�Iit is the Black-Scholes implied volatility. Please note that we can in
principle deal with a panel of options, i.e. a time series of cross-sections.
The procedure we propose consists of two steps, �rst we �t the density
(using so called SNP methods) of [St; (�

I
it)i=1;K ] conditional on its own

past [S� ; (�
I
i� )i=1;K ] for � < t using market data. Next we simulate the

fundamental price and option prices and calibrate the parameters of the
di�usion and its associated option pricing model to �t the conditional
density of the market data dynamics. The procedure coined by Gal-
lant and Tauchen (1996) as E�cient Method of Moments (EMM), has
been used primarily to estimate di�usions using only St:We extend it to
handle option prices and fundamentals simultaneously. We estimate the
stochastic volatility model due to Heston (1993). The EMM procedure,
which is a simulation-based estimation technique, allows estimating the
model parameters under both objective and risk-neutral probability mea-
sures if we use implied volatilities and the underlying asset data jointly.
Indeed, times series of the underlying asset provide estimators under the
objective probability measure while from the options we can retrieve risk
neutral parameters. Since the model we adopt has a closed-form option
pricing formula, we can obtain the BS implied volatilities from the simu-
lated data and contrast them with their counterparts from the real data
via the EMM framework. This leads to the parameter estimates under
the risk-neutral measure.

We compare univariate and multivariate models in terms of pric-
ing and hedging performance. The univariate speci�cations consist of
models only using the fundamental (i.e. the usual setup) and models
using only options data. It should be noted, however, that the knowl-
edge of the estimated model parameters is not enough to compute an
option price or a hedge ratio. We have to know the present day spot
volatility. Previous studies treated the spot volatility as a parameter and
estimated it from the previous day cross-section of options prices. This
approach introduces inconsistencies with the model. Recent extension
of the SNP/EMM methodology in Gallant and Tauchen (1998) allows
us to address the problem. We �nd the spot volatilities via reprojection,
i.e. we compute the expected value of the latent volatility process using
the SNP density conditioned on the observable processes such as returns
and/or options data.

2A recent paper by Gallant et al. (1998) adopts a strategy similar to ours though
not involving options. They consider the bivariate process of the fundamental and the
daily high/low spread, which provides extra information about the course of volatility.
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Our results show that the univariate approach only involving options
by and large dominates. A by-product of this �nding is that we uncover
a remarkably simple volatility extraction �lter based on a polynomial lag
structure of implied volatilities. The bivariate approach appears useful
when the information from the cash market provides support via the
conditional kurtosis to price options. This is the case for some long
term options. Moreover, having estimated separately the risk-neutral
and objective measures allows us to appraise the typical risk-neutral
representations used in the literature. In particular, in order to obtain
the closed-form solutions, the standard approach assumes that the lin-
earity of the volatility drift is preserved. We are able to determine if this
assumption is consistent with the data. We introduce a test which is
based on the Radon-Nikodym derivative of the objective measure with
respect to the risk neutral one and uses the Novikov condition.

The remainder of the paper is organized as follows. Section 1 sets the
stage for the analysis of the joint density function of fundamentals and
options. We discuss �rst the issues addressed so far in the literature and
present the model we will estimate. Section 2 provides a brief review
of the EMM estimation and reprojection method. Section 3 reports the
estimation results. Section 4 evaluates the performance of the estimated
models. The last section concludes. Technical material is covered in
several Appendices to the paper.

1 Options and Fundamentals

It has long been recognized that there is no reason to focus only on ei-
ther the cash or the options market prices separately. Numerous papers
have confronted empirical evidence obtained from option markets with
that of the cash market and vice versa. Questions about the informa-
tional content of the options prices, for instance, have often been raised
in the literature (see Bates (1996), Canina and Figlewski (1993), Day
and Lewis (1992), Fleming (1994), Lamoureux and Lastrapes (1993),
among others). A��t-Sahalia et al. (1997) address essentially the same
issue comparing state-price densities (SPD) implied by times series of
the S&P 500 index and the SPD implied by a cross-section of SPX index
options. They reject the hypothesis of the equality of the two SPD's.
As they examine models with a deterministic volatility function of the
stock price, one can view their evidence as a rejection of models with
volatility as a deterministic function of the stock price. They attempt to
reconcile the conicting state-price densities by introducing jumps into
the underlying asset model. Along the same lines, Dumas et al. (1997)
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examine the predictive power and hedging performance of the determin-
istic volatility function model on the example of the S&P 500 options
and �nd that "simpler is better", i.e. the model performs no better
than ordinary implied volatility. Furthermore, Bakshi et al. (1997b),
using the same index, show that any one-dimensional Markov model
of underlying asset prices may lead to severe options mispricing. It is
also common to argue that if stochastic volatility models better explain
the behavior of underlying assets, they should also be able to reproduce
the main stylized facts of implied volatility such as the volatility smile
(the dependence of implied volatilities on an option moneyness) and the
volatility term structure (the dependence on time and time to maturity).

The practice of estimating di�usions using the underlying asset and
then relying on option pricing formula has a number of drawbacks. Stan-
dard complete market asset pricing theory determines that one has to
change measure, from the objective to the risk neutral.3 This transfor-
mation is often somewhat ad hoc. Although continuous time general
equilibrium preference-based asset pricing models readily yield the map-
ping from the objective to risk neutral measure, they often result in
rather complex di�usion models for the underlying asset. This is be-
cause the equilibrium asset price process is derived endogenously, based
on the discounted ow of dividends using an endogenously determined
risk-free rate.4 It is therefore common to use a simple di�usion for the
asset return and for the volatility dynamics and assume that the change
of drift (which by Girsanov's Theorem amounts to changing the measure)
maintains the same type of processes. In the case of the Heston (1993)
model, which will be examined in greater detail later in the section, this
means that the drift change for the volatility process is an a�ne function
of volatility.5 Moreover, arguments about completeness of markets are
typically imposed as an auxiliary assumption to guarantee the existence
of a unique risk-free measure.

Our attempt to model the fundamental and derivative securities
jointly is motivated by the very same issues that have been raised in
the literature so far. We want to learn about the informational content
of options prices, like Canina and Figlewski (1993) and many others did.
We want to know how we can improve the statistical precision of di�u-
sion parameters by incorporating options. In a similar vein, Pastorello

3See Harrison and Kreps (1979) and Harrison and Pliska (1981) for further
discussion.

4See for instance, Broadie et al. (1997) for such a derivation.
5Namely, both under the objective and risk-neutral measures the drift in volatility

is linear. Any nonlinear functional drift transformation would yield a risk-neutral
process not within the same class as the objective measure process.
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et al. (1994) used time series of at-the-money (henceforth ATM) implied
volatilities to estimate the Hull and White (1987) model.6 We also want
to assess the advantages of multivariate schemes using �nancial criteria
such as the out-of-sample pricing and hedging performance of models,
like Bakshi et al. (1997a), Dumas et al. (1997) and Jacquier and Jarrow
(1998), among others. We attempt to investigate these questions in a
unifying framework. We use the SV model due to Heston (1993) for that
purpose, though it should be stressed at the outset that our analysis is
not limited to this particular model. The choice of Heston's model was
motivated by two important factors: (i) it has closed-form option pric-
ing formula (Bakshi et al. (1997a) provide results more general than
those provided by Heston), and (ii) because of the existence of analytic
solutions it has received considerable attention in the literature (again
see Bakshi et al. (1997a) and references therein). The latter makes our
analysis directly comparable with results previously reported in the lit-
erature. Following Heston (1993) and Bakshi et al. (1997a) we can write
the model as:

dS(t)

S(t)
= Rdt+

p
V (t)dW �

S(t) (1.1)

dV (t) = (�����V (t))dt+�V
p
1� �2

p
V (t)dW �

V (t)+�V �
p
V (t)dW �

S(t);
(1.2)

where the model is stated under the risk-free probability measure. Equa-
tion (1.1) implies that the stock-price process S(t) follows a geomet-
ric Brownian motion with stochastic variance V (t). The second equa-
tion (1.2) states that V (t) follows a square-root mean-reverting pro-
cess with the long-run mean ��=��, speed of adjustment �� and vari-
ation coe�cient �V . The Brownian motions W �

S(t) and W
�

V (t) are as-
sumed independent. Equations (1.1) and (1.2) imply, however, that
Corrt(dS(t)=S(t); dV (t)) = �dt. Parameters with asterisks are those
which change when we make a transition to the objective probability
measure. With such a change the risk-free rate R would have to be sub-
stituted by �S and all asterisks removed. This model yields the following
formula for a price of a call at time t, time to maturity � and strike K:

C(t; �;K) = S(t)�1(t; �; S; V )�Ke�R��2(t; �; S; V ); (1.3)

where the expressions for �j ; j = 1; 2 are provided in the appendix A.

6Pastorello et al. (1994) did not estimate the joint process as we propose to do in
this paper. In addition, besides joint estimation we also cover �ltering of the latent
volatility process from options data.
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Several methods have been proposed to estimate the parameters of
stochastic volatility processes. These methods range from GMM, Quasi-
Maximum likelihood and various simulation based procedures including
Bayesian methods and E�cient Method of Moments (see Ghysels et al.
(1996) for a literature review). The EMM method proposed by Gallant
and Tauchen (1996) involves the simulation of discretization of (1.1) and
(1.2). The usual way one proceeds is to take a time series sample of
the underlying asset. This sample is summarized via a set of judiciously
chosen sample moments. These moments are matched by moments ob-
tained from simulating discretization of (1.1) and (1.2) under the ob-
jective probability measure (hence all the asterisks from parameters are
removed). In the next section we will be more precise about the de-
tails of the procedure. The innovation in applying this procedure is the
simulation of asset returns and option prices, or Black-Scholes implied
volatilities, and match not only the moments of sample asset returns but
also those of derivative securities data.

To conclude, it should be noted that we impose certain restrictions
on the model parameters. These restrictions follow from the theory and
previous empirical work. The �rst restriction follows from the require-
ment that the volatility can never take negative values. Since we have
a square-root model, we can use the results of Cox et al. (1985), i.e. if
�2V � 2�; then V (t) in (1.2) does not reach 0 with probability 1. Ob-
viously, �V � 0: Finally, the empirical literature, starting with Black
(1976), �nds negative correlation between volatility and the underlying
asset (leverage e�ect). Hence we also imposed the restriction: � � 0:

2 EMM Estimation of the Joint Fundamen-

tal and Option Pricing Process

The E�cient Method of Moment procedure of Gallant and Tauchen
(1996) has found many applications in the estimation of both contin-
uous time and discrete time stochastic volatility models. Examples in-
clude Andersen and Lund (1997), Andersen et al. (1997), Gallant et al.
(1997, 1998), Gallant and Tauchen (1998), Ghysels and Jasiak (1996)
and Tauchen (1997). So far these applications only involve a single data
series, either a short rate process or a stock price (index).7 Since the
EMM procedure is widely used and described elsewhere, notably in Gal-

7There are exceptions, notably Ghysels and Jasiak (1996) who consider the joint
process of stock returns and trading volume and Gallant et al. (1998), who as noted
before, consider the bivariate process of the fundamental and the daily high/low
spread.
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lant and Tauchen (1998), we will only summarize the major steps here.
EMM can be divided into two main parts. The �rst one is the estimation
of the so called score generator. The second part yields the parameter
estimates using simulations and GMM approach involving the score gen-
erator. A �rst subsection is devoted to the score generator. A second
discusses the second stage, which is the moment matching principle. The
third subsection deals with reprojection methods, an extension of EMM
to extract latent volatility processes. A fourth and �nal subsection pro-
vides the data description.

2.1 The Score Generator

Suppose the process of interest is denoted �t. In our application this pro-
cess can be univariate, only involving asset returns or BS implied volatil-
ities, it can be bivariate involving both returns and implied volatilities,
or in general a panel data series of returns and K option contracts with
di�erent moneyness and/or maturities represented by their BS implied
volatilities, namely of [(�Iit)i=1;K ]: In a generic context we assume that �t
is a vector with L elements. It has a conditional distribution p(�t j It;�),
where It is the information set and � are the parameters in the stochastic
volatility model of �t. The asymptotically e�cient method to estimate
� is the maximum likelihood, which maximizes the function:

1

T

TX
t=1

log p(�t j It;�) (2.1)

Maximization of (2.1) is equivalent to solving

1

T

TX
t=1

@

@�
log p(�t j It; �̂) = 0 (2.2)

which is the sample equivalent of:

E

�
@

@�
log p(�t j It; �̂)

�
= 0; (2.3)

Unfortunately, it is very di�cult to obtain the likelihood function for
stochastic volatility models and hence it is impossible to compute the
score generator p(� j �). Gallant and Tauchen suggest to compute instead
a SNP density fk(�t j Xt;�), where Xt is the vector of M lags of �t and
� is the vector of parameters of the SNP model. The index k relates
to the dimension of � and should expand at the appropriate rate as the
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sample size grows to accomplish MLE asymptotic e�ciency, see Gallant
and Long (1997) for further discussion. We provide some speci�c details
regarding the SNP density in Appendix B.

2.2 Matching the Moments

The estimated SNP density provides the underpinnings for constructing
a set of moment conditions, which in turn set the stage for a GMM-type
estimation procedure for the parameter vector �. In particular, � can
be estimated through the moment conditions (score function) similar to
(2.3), which in this case will be:

m(�; �̂) = E

�
@

@�
log fk(�t j Xt; �̂)

�
=

Z
@

@�
log fk(�t j Xt; �̂)dP (�;X;�):

(2.4)
We compute sample moments by simulating N observations of �t from
the SV model. In particular, in the previous section we noted that in
a generic context we assume that �t is a vector with L elements. It has
a distribution p(�t j It;�), where It is the information set and � are
the parameters in the stochastic volatility model of �t. We will focus
primarily on the case where �t represents a bivariate process of a stock
return and a BS implied volatility.8 The distribution p(�t j It;�) in this
context is implicitly de�ned by equations (1.1), (1.2) and (1.3). Suppose
now that the parameter vector � can be written as (�S ;�c;�o;�n),
where �S is the rate of return on the underlying asset under the ob-
jective probability measure, �c contains all the parameters common to
the objective and risk neutral measure, whereas �o represents the ob-
jective probability measure volatility drift parameters and �n the risk
neutral ones. Hence, in equations (1.1) and (1.2) these correspond to
�c = (�V ; �), �o = (�; �) and �n = (��; ��): The �rst step consists of
simulating the underlying processes (1.1) and (1.2) under the objective
probability measure for a given set of parameters values for (�S ;�c;�o):
Please note that we simulate the latent volatility process V (t), though
it is not part of �t. Obviously we need to use V (t) to compute S(t) and
therefore we simulate it. Then, using the risk neutral measure parame-
ters (�c;�n) where the values of �c remain the same, we compute the
options price according to (1.3) and calculate the BS implied volatilities
from these prices. It is important to note here that we do not impose any
particular mapping between (�o and �n). This will allow us to test cer-
tain hypothesis about the transformation from objective to risk neutral

8We collected BS implied volatilities, as discussed in greater detail in the next
section, and therefore will simulate those rather than call prices.
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measures. We use the explicit order 2.0 weak SDE discretization scheme
to simulate the processes (1.1) and (1.2) (Kloeden and Platen (1995)
pp. 486-487). This scheme has a faster convergence than the Euler dis-
cretization and was also used in Gallant and Tauchen (1997). To obtain
the BS volatilities, we need to apply the option pricing formula to the
simulated data. This requires not only the parameters, but also choosing
time to maturity and strike features of the contract. Obviously, time to
maturity is not available in the simulated data. To make the simulated
option prices comparable with the observed ones in the actual data, we
replicate the maturities from the observed data. Since the sample size
of the simulated data is much larger (in order to decrease the simula-
tion error), we cycle through the sequence of observed maturities in the
actual data to cover the entire simulated dataset. In particular, for the
simulated ith observation we use the maturity from the mod(i; T ) where
T is the sample size of the observed data. If the length of the simu-
lated sample is N and a multiple of T , say N = lT , then this scheme
amounts to replicating l times each maturity appearing in the observed
data. Moreover, we simulate moneyness rather then with strikes, be-
cause the simulated sample path of S(t) can be quite di�erent from the
observed one. Matching the moneyness with the real data implies strikes
not always observed in the real data sample. This strategy preserves,
however, the crucial properties of options. Since we can rewrite the op-
tion pricing formula in terms of moneyness, the dependence on strike will
be eliminated. We rotate moneyness from the observed data in exactly
the same way as maturities to simulate BS implied volatilities.

Suppose we have simulated time series of length N for �t with can-
didate parameters �.9 Hence, the left hand side of (2.2) translates into

mN (�; �̂) =
1

N

NX
t=1

@

@�
log fk(�t(�) j Xt(�); �̂): (2.5)

Then we can formulate the EMM estimator for � using the following
quadratic minimization criterion:

�̂ = arg min
�

mN (�; �̂)
0

WTmN (�; �̂): (2.6)

Because of the properties of the SNP model,

WT =
1

T

TX
t=1

@ log fk(�t j Xt; �̂)

@�

@ log fk(�t j Xt; �̂)

@�0

: (2.7)

9The empirical results reported in the next section are based on N = 10; 000:
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Asymptotically, the EMM estimator is consistent and normal and has,
under suitable regularity conditions, the same e�ciency as MLE. See
Gallant and Tauchen (1997a) and Gallant and Long (1997) for further
discussion.

Finally, it should be noted that the simulation approach described
in this section also applies to situations only involving options data in
which case the parameter vector consists of (�c;�o;�n), or the more tra-
ditional case where stock returns are used in �t to estimate (�S ;�c;�o).
Hence, only cases with both fundamentals and derivatives will involve
the full parameter vector (�S ;�c;�o;�n).

2.3 Reprojection

Having obtained the EMM estimates of the model parameters �̂ we
would like to extract the unobserved spot volatility V (t) in order to
price options according to (1.3). Several �lters have been proposed in
the literature, all involving exclusively the return process. Harvey et al.

(1994) suggested to make use of the approximate Kalman �lter based
on a discrete time SV model. The exact �lter was derived by Jacquier
et al. (1994) in the context of a Bayesian analysis of the same model.
Nelson and Foster (1994) showed how di�usion limit arguments applied
to the class of EGARCH models provided a justi�cation of EGARCH
models as �lters of the instantaneous volatility. Some attempts were
made to extend these �lters to a multivariate context, see in particular
Harvey et al. (1994), Jacquier et al. (1995) and Nelson (1996). These
multivariate extension all involve exclusively multivariate return series
and cannot accommodate derivative security market information. Via a
combination of the reprojection method and the joint density of returns
and BS implied volatilities we rely on Gallant and Tauchen (1998) and
propose a �ltering method which in its generic form can be multivariate,
(i) only involving a vector of returns (multiple series, something not
considered in this paper but feasible), (ii) only involving a vector of
options (more on this later), (iii) a mixture of the previous two. It is
the latter strategy which will be adopted in this paper. Please note
that one can also consider univariate schemes which involve either the
return series or the BS implied volatilities. The former univariate scheme
would be comparable to the aforementioned �ltering methods of Harvey
et al. (1994), Jacquier et al. (1994) and Nelson and Foster (1994).
Univariate schemes only involving options have been proposed mostly
informally and often, though not exclusively, rely on the Black-Scholes
model. The key usually is that the options cross-section is used and
today's volatility is treated as a parameter. The volatility is then backed
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out from the cross-section via the minimization of the pricing error. Such
a method appears in Bakshi et al. (1997a) for instance. It should be
noted, however, that the reprojection approach applied to a vector of
options, i.e. the aforementioned reprojection scheme (ii) is more general
as it truly takes advantage of the panel structure (i.e. cross-section of
time series). Even the univariate reprojection method only involving, say
an ATM option, will result in a time series �lter of implied volatilities,
which to the best of our knowledge is a �ltering scheme for instantaneous
volatility not much exploited so far (and as we will see in the next section,
remarkably good).

In the remainder of this section we will focus exclusively on the spe-
ci�c applications of �ltering via reprojection which will be used in the
empirical analysis of the paper. The speci�c applications can readily
be extended, however, to the aforementioned generic speci�cations. The
two most novel applications are the focus of our analysis here, one deals
with a bivariate model of returns and an ATM option and the other
deals with a univariate �lter based on options only.10 The reprojection
scheme relies on a one-step ahead forecast, which is an expectation with
respect to the distribution of volatility conditional on the contempora-
neous and lagged returns, denoted rt; and lagged implied volatilities
p(V (t)jrt; �

I
t�1; rt�1; :::; �

I
t�M ; rt�M ; �̂): The computation of the SNP

density of V (t) proceeds in several steps. First, using the estimates
�̂ one simulates the processes (1.1) and (1.2) which produces the se-
ries f�̂It�1; r̂t; V̂tg

N
t=1 in case of bivariate data and f�̂It�1; V̂tg

N
t=1 in the

univariate case.11 Since k grows with the sample size N we select a sim-
ulation size of 10,000 observations. Denote the vector
(r̂t; �̂

I
t�1; r̂t�1; :::; �̂

I
t�M ; r̂t�M )

0

(or (�̂It�1; :::; �̂
I
t�M )

0

in the univariate case)

by X̂t, using the notation from the previous section. Second, since the
SNP density has a Gaussian lead term we need to transform volatility, a
process which only takes positive values. While we need to �lter volatil-
ity to plug in the SV call pricing formula we need to take a functional
transformation to �t the Gaussian lead term SNP expansion. We con-
sider a �rst order Taylor expansion of the logarithm of volatility denoted
L(V (t)) and �nd the SNP density fk(L(V̂t)jX̂t).

12 The �rst order Taylor

10In a companion paper we discuss in greater detail �ltering procedures comparable
to the existing methods and based exclusively on return series. See Chernov and
Ghysels (1998) for further details.

11To streamline the notation we use V̂t for the simulated V (t).
12Fitting SNP densities in a reprojection exercise requires a slightly di�erent setup

since the explanatory variables are exogenous to the dependent variable, hence we set
MR equal to 0 (see Appendix B). The SNP code also requires other slight modi�ca-
tions, so that the lags of dependent variable would not be included in the conditioning
set as in the standard SNP density estimation.
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expansion of the logarithm of volatility facilitates recovery of V̂t. Indeed,
Jensen's inequality yields that E(C(V (t))) � C(E(V (t))), for any con-
cave function C. This inequality becomes an equality only if C is linear,
hence the use of L(�). The SNP density �tted to the simulated data there-
fore produces a mean of V̂t conditional on the observable vector X̂t�1,
which yields the desired �ltered values. The �rst order Taylor expansion
can be taken around the mean of simulated V̂t's. This approximation
may be quite inaccurate in the tails, however. This is particularly im-
portant as the inverse transform may easily result in negative volatilities.
This happens because the linear transformation imposes lower and upper
limits on the range of a volatility. We therefore implement a procedure
similar to a spline transformation.13

2.4 The data

The data we use consists of daily prices of options written on the S&P
500 index.14 The sample covers the time period from November 1985
until October 1994. We set aside the last year of data (i.e. 11:93 to 10:94)
for the out-of-sample tests, and use the rest for estimation purpose. We
concentrate our attention on the at-the-money calls. European ATM
options with short maturities are the most liquid instruments. Hence,
their implied volatilities should convey the most precise information.
We de�ne at-the-money as S=K 2 [0:97; 1:03]. Several other data �lters
were applied to the data. For instance, observations with a call price
missing or equal to zero were obviously dropped. In order to be able to
easily compare the observed and simulated data, we adjusted the S&P
500 index for dividends. The continuously compounded rate of 2% was
used for simplicity (this is consistent with Broadie et al. (1997)). We
used the monthly 3-month T-bill yield from CITIBASE as a proxy for
the short-term interest rate. Since stochastic volatility models assume a
constant interest rate, we take the mean from these yields series, which
is equal to 5.81396%.

The BS implied volatilities were computed using the Newton-Raphson
method. Since in some situations (such as near to maturity out-of-the-
money calls), implied volatilities can take very small, even negative,

13In particular, we take the following breakpoints 16th, 32nd, 68th and 84th per-
centiles and perform the �rst order Taylor expansions around the 8th, 24th, 50th,
76th and 92nd percentiles correspondingly. Our experiments showed that having no
breakpoints resulted in 32% of negative volatilities, 2 breakpoints in 3.6% and 4 in
just 1.6%. The remaining few negative values were substituted by 0.0001.

14Speci�cally, the dataset contains date, maturity month, option price, call/put
ag, strike, open interest, volume and, �nally, the underlying index.
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values, we introduce a cut-o� equal to .001. This �lter removes only
4.84% of the data and, hence, seems to be reasonable.

As noted before we will estimate SV models, using the three types
of data: (i) time series data on the S&P 500 index, (ii) BS volatilities
implied by the closest to maturity and at the money calls on the index,
(iii) both. To obtain the series of type (ii) we select the calls with the
shortest maturities and, in addition to being ATM, we require the option
to have the strike as close to the index level as possible:

K� = arg min
K
j
S

K
� 1 j :

This last �lter leaves us with 1978 observations, which roughly corre-
sponds to 247 observations per year, i.e. we have a week per year of
missing observations.

Finally, the estimation of SNP density requires the use of stationary
data. Therefore, the data entries to the SNP estimation routine are
the log-returns on the index. Likewise, rather than using the implied
volatilities which are nonnegative, we will work with the log-volatilities.15

However, we will refer to these data series as S&P500 and BS volatilities
for convenience.

3 Empirical results

Following the setup of the EMM procedure we discuss �rst the estima-
tion results of the SNP densities, which appear in a �rst subsection.
Then the next subsection provides details of the model parameter esti-
mates. The �nal subsection is devoted to testing the risk neutral measure
transformation used in Heston's model.

3.1 The Empirical Score Generators

The SNP density estimation results are reported in Panel A of Table 1.
Rather than report the parameter estimates we focus instead on the den-
sity structures as characterized by the tuning parameters Kz, KX , M ,
M� andMR. To facilitate the interpretation of the results we supplement
Panel A of Table 1 with a second Panel B which describes the generic
features of SNP densities for di�erent combinations of the tuning param-
eters. Comparing Panel A with the panel B, we note that all series are

15Contrary to the discussion of the previous section we do not need to worry here
about the inverse transformation as we do not plug these volatilities in option pricing
formula. Hence there is no need here to engage in the Taylor expansion approxima-
tions which make the inverse logarithmic operation simpler.
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non-Gaussian ARCH-type with homogeneous innovations. It is worth-
while to examine the estimated density plots. Figure 1 reports plots
of both raw data and estimated SNP densities for the univariate cases.
Figure 2 does the same for the bivariate case involving returns and BS
implied volatilities. Plot (a) in Figure 1 displays the S&P 500 series and
shows the familiar pattern, including the negative return corresponding
to the crash of October 1987. Plot (c) displays the corresponding BS
implied volatilities. The highest volatility is also, not surprisingly, ob-
served at the time of the crash. Plots (b) and (d) show the corresponding
SNP densities with a standard normal p.d.f. superimposed (represented
by the dashed line). The estimated densities show the familiar patterns,
namely they are peaked, leptokurtic and slightly skewed.

Figure 2 reports the joint density in (a) and the contour plot in (b).
The marginal densities appear in (c) and (d). The contour plot suggests
the presence of slight negative correlation between returns and volatility,
which supports the presence of a leverage e�ect and the restriction � � 0
we imposed.

3.2 The SV model estimation

We turn now to parameter estimates of Heston's SV model. Tradition-
ally this model is estimated with returns only, so we report this con-
�guration as a benchmark. Then we proceed to the estimation results
exclusively relying on options, in the spirit of Pastorello et al. (1994).
Next, we consider the structural parameters obtained from matching the
moments dictated by the bivariate SNP score. Table 2 reports all the
estimation results. The �rst observation is that Heston's SV model is
mostly rejected no matter what the data con�rmation is (all z-statistics
reported in the brackets are large). The rejections vary dramatically
though across the di�erent types of data. The returns data allow to
approximate the process reasonably well, however the precision of the
estimates is very poor (for example the standard error for � is 0.29). This
result is consistent with previous �ndings (see, for example, Gallant et
al. (1997)). Of course our major interest is not to appraise the model
exclusively on the grounds of its statistical properties. Its pricing and
hedging features, discussed in the next section, will be of prime interest.

Using the BS volatilities data improves the precision of the estimated
parameters (the standard errors are of order 10�2 or less). The returns
data do not allow us to identify the values of ��; �� of the drift in (1.2)
under the risk-neutral measure. Hence, there are only two parameters in
common between the �rst and second panel of rows in Table 2. They are
the leverage e�ect � and the variance of the volatility equation �V : In
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both cases we obtain roughly the same point estimates using returns and
BS implied volatilities, yet the precision of the estimates are dramatically
improved with the second data set. This is not so surprising as all esti-
mated parameters are related to the volatility process (1.2). Therefore,
looking at the process through the observed implied volatilities should
give us more precision, an observation also made by Pastorello et al.

(1994). The z-statistic is huge (247.447), however, indicating serious in-
consistencies between the model and the data. In particular, it means
that our model does not explain very well the information extracted from
the options prices.

Last but not least in Table 2 is the model estimated with the joint
data. Here, we can �t both the objective and risk-neutral density pa-
rameters and therefore make direct comparisons with the previous two
univariate setups. The bivariate model shows a great improvement in
�t compared to the options-based approach, the z-statistic is greatly re-
duced although the model is still strongly rejected. The precision of the
estimates is the best of all across the di�erent con�gurations, while the
point estimates roughly remain the same.

Since we are interested what type of data we should use to price and
hedge options, we can conclude from Table 2, that the returns series only
should not be used as we cannot directly infer the parameters under the
risk-neutral probability measure, unless auxiliary assumptions are made.
The two competing data sets which allow us to identify directly the nec-
essary parameters are: (i) BS implied volatilities, and (ii) joint returns
and implied volatilities series. We will therefore focus exclusively on
these two to appraise how options are priced and how well they perform
for the purpose of hedging.

3.3 Examining the A�nity Restriction

Heston (1993) states his model under the objective probability measure.
Assuming that the price of risk is proportional to the volatility, he makes
a transition to the risk-neutral measure. Hence, under the Heston's setup
� = ��. Bakshi et al. (1997a) start out immediately in the risk-neutral
world and, therefore, their results are slightly more general as they do not
impose � = ��. However, as mentioned earlier, both setups make a very
strong assumption that the probability measure transformation preserves
the linearity of the volatility drift. The bivariate setup yielded estimates
of the entire parameter vector � = (�S ; �V ; �; �; �; �

�; ��), which allows
us to examine whether the change of measure restrictions imposed in
Heston's model are supported by the data. We propose two tests, one
relatively easy to implement and a second which is computationally de-
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manding. The former is based on the Novikov condition and is presented
�rst.

The Radon-Nikodym derivative of the objective probability measure
with respect to the risk-neutral one is computed as follows:

�t;� = exp

�
�
1

2

Z t+�

t

(�21(u) + �22(u))du

�

Z t+�

t

�1(u)dWS(u)�

Z t+�

t

�2(u)dWV (u)

�
; (3.1)

where �(t) = (�1(t); �2(t))
0

is the market price of risk. Since we know the
parameter values under both measures we can infer �(t). By Girsanov's
theorem we have:

�SS(t)� �1(t)
p
V (t)S(t) = RS(t); (3.2)

� � �V (t)� �1(t)�V
p
1� �2

p
V (t)� �2(t)�V �

p
V (t) = �� � ��V (t):

(3:3)

Therefore,

�1(t) =
�S �Rp
V (t)

; (3.4)

�2(t) =
C1p
V (t)

� C2
p
V (t); (3.5)

where

C1 =
� � �� � (�S �R)�V

p
1� �2

�V �
; (3.6)

C2 =
�� ��

�V �
: (3.7)

The aforementioned computations of the Radon-Nikodym derivative are
legitimate provided that the Novikov condition is satis�ed. This condi-
tion amounts to:

EN (0; T ) = E

 
exp

 
1

2

Z T

0

(�21(u) + �22(u))du

!!
<1 (3.8)

One can derive a lower bound for EN (see Appendix C), namely:

EN (t; t+ �) � exp

�
1

2

�
�

�
((�S �R)2 + C2

1 ) +
�

�
C2
2 � 2C1C2

�
�
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+
1

2

�
(�S �R)2 + C2

1

�
� C2

2

�

�2

�
log
���1 + �

t

���� (3.9)

� exp
�
44:76� + 317:22 log

���1 + �

t

���� ;
where the estimated values of � and the formulas appearing in (3.6) and
(3.7) were used to obtain the last expression. It then follows that as
t approaches 0; EN diverges to in�nity. Hence the Novikov condition
is violated and the Radon-Nikodym derivative does not exist for the
mapping assumed in the Heston model. This implies that the data does
not support the transformation from the objective to the risk neutral
measure, which preserves the a�ne volatility drift in Heston's model.
Of course, one could interpret the failure of the Novikov condition to
hold as another indication that the entire model is rejected which is
something we already reported in Table 2. However, the use of this test
may not be redundant whenever a model is not rejected via z-statistics
and one wants to examine the presumed change of measure.

The Novikov condition test shows that the Radon-Nikodym deriva-
tive does not exist. However, if it exists we may still not �nd the volatility
drift assumption acceptable. Therefore the use of another test may be
warranted. Unfortunately, such a test involves rather tedious computa-
tions and hence should be used only if the above approach is not feasible.
In the remaining of this section we briey elaborate on the construction
of such a test, which like the Novikov condition evaluation, is to the best
of our knowledge novel to the literature.

Breeden and Litzenberger (1978) show that the underlying asset
state-price density (SPD) is a second derivative of a call option price
with respect to strike evaluated at the assets price and normalized to
integrate to one. This approach yields a formula for the fundamental
SPD at time t and time to maturity � as a function of the risk-neutral
parameters only SPDS1 (S(t+ �); t; �). A��t-Sahalia and Lo (1998) derive
an expression for the SPD of rt+� , namely:

SPDr1(rt+� ; t; �) = S(t)ert+�SPDS1 (S(t+ �)ert+� ; t; �) (3.10)

Since, we have the parameters estimated under both measures, we can
derive the SPD from the pairs �S { R, � { ��, and � { ��. In particular,
one can compute the SPD in the following way:

SPDr2(rt+� ; t; �) = �t;� � p(rt+� ); (3.11)

where p(�) is the unconditional density of the log-returns under the ob-
jective measure and �t;� is given in (3.1).
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To implement the test one has to examine whether two SPD's are
identical. Appraising the similarity of two probability densities is rather
non-trivial, however. A simple strategy, for instance would consist of
comparing moments and consider GMM overidentifying restrictions tests
built on moment conditions derived from the alternative characteriza-
tions of the SPD's.16

4 Assessing Pricing and Hedging Performance

Statistical criteria for model selection are one thing, �nancial criteria
such as pricing and hedging performance out-of-sample are obviously
the ultimate scope of model selection for practitioners. Indeed, the ap-
plication of complicated econometric techniques is warranted only if they
do better than the models currently in use. Therefore, we investigate
the performance of the alternative model speci�cations obtained from
the previous section and make comparisons with the traditional Black-
Scholes model estimated from daily options data. All the evaluations re-
ported in this section are out-of-sample. Namely the estimation sample
used in the preceding section covered November 1985 to October 1993,
whereas the sample used to appraise all the models runs from November
1993 to October 1994.17 Hence, since we use out-of-sample data, our
results will not be contaminated by in-sample data mining. A �rst sub-
section is devoted to pricing of options. A second looks at hedging and
last but not least we devote a separate section to a remarkable simple
volatility �lter for option pricing which emerges from our analysis. The
examination of this �lter is indeed important as all the model con�gu-
rations yield roughly the same parameter estimates (recall the results in
Table 2). Hence, whenever the same option pricing formula is used, the
di�erences in hedging and pricing are mostly due to the �ltering.

4.1 Pricing reliability

The model parameter estimates, the reprojection �lters to extract the
latent volatility process and Heston's European call pricing formula give
us all the ingredients to price any SPX contract with a particular time to
maturity, strike and given cash price for the underlying index. Equipped
with these tools we can compare the call prices predicted by the models

16This would be similar to forecast evaluation techniques based on moment com-
parisons, see e.g. Diebold and Mariano (1995).

17One could call this a genuine out-of-sample approach, as in Dumas et al. (1997)
or Jacquier and Jarrow (1998), in comparison to some performance evaluations which
use in-sample one step ahead forecasts (see for instance Bakshi et al. (1997a)).
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with observed prices. In our appraisal we do not consider in-the-money
calls with moneyness greater than 1.03, since there is a very thin market
for such options. Furthermore, we separate the calls into twelve groups
by moneyness and time to maturity. Since the number of contracts varies
through time we assume that each group contains nt options at time t.

Two measures of pricing errors are considered. The �rst is an abso-
lute measure, denoted Dp

a, and has a dollar scale value. The second is
a relative measure, denoted Dp

r , and reects percentage deviations. The
two measures are de�ned as follows:

Dp
a =

vuut 1PT

t=1 nt

TX
t=1

ntX
i=1

(Cobservedit � Cmodelit )2; (4.1)

Dp
r =

vuut 1PT

t=1 nt

TX
t=1

ntX
i=1

�
Cobservedit � Cmodelit

Cobservedit

�2
: (4.2)

The results, are divided in four di�erent categories of moneyness, namely
deep out-of-the-money (OTM with S=K less than 0:94), OTM (with
:94 < S=K < :97), slightly OTM (with :97 < S=K < 1) and slightly in-
the-money (with 1 < S=K < 1:03). The last two categories are usually
viewed as ATM options. Three maturity horizons are considered for all
the moneyness categories, short (less than 60 days), medium (between
60 and 180 days) and long (more than 180 days). The respective sample
sizes for each of the twelve out-of-sample cells are reported in Table 3.
For deep out-of-the-money options we have roughly between 313 and
448 contracts to compute pricing errors and slightly less for computing
hedging errors.18 For the remaining three moneyness categories, there
is a pronounced downward trend in the number of contracts as time-
to-maturity increases. The maximum number of observations is 1377
and smallest is 90: Table 4 contains the pricing errors Dp

a and D
p
r com-

puted for three di�erent model speci�cations. The �rst is \BS", which
involves pricing options with the Black-Scholes model and a volatility
estimate based on the previous day ATM option contract (see for in-
stance Bates (1996) for further discussion on this approach). Next is
the speci�cation denoted \V ol" in the table, which involves Heston's
call price model estimated using a univariate speci�cation involving op-
tions. The speci�cation denoted \Joint" corresponds to the bivariate
model. Table 4 reports besides the absolute and relative pricing errors

18The computation of hedging errors will be discussed in the next subsection. Suf-
�ce here to say that they involve less observations as contracts are required to be
traded at least two consecutive days.
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for each of the twelve moneyness/maturity groups also statistics which
test whether there are any statistically signi�cant di�erences between
the pricing errors computed from BS, V ol and Joint: We observe that
in general pricing errors can be large with dollar values (i.e. Dp

a) ranging
from 5:23 dollars to 42 cents. Not surprisingly, large errors occur for long
maturities. The relative errors (i.e. Dp

r ) range from 20:71 to 0:14 with
the same pattern.

For our purpose, a comparison across di�erent model speci�cations is
more important. As noted before, to appraise the di�erences we compute
formal tests based on the following set of moment conditions, namely:

�
(

P
T

t=1
nt)

�1
P

T

t=1

P
nt

i=1

�
(Cobserved

it
� Cvol:model

it
)=(Cobserved

it
)

�2
�m

(

P
T

t=1
nt)

�1
P

T

t=1

P
nt

i=1

�
(Cobserved

it
� C

joint:model

it
)=(Cobserved

it
)

�2
�m

�
=

�
0

0

�
;

(4:3)

where m is the common mean relative error under the null.19 The errors
form a panel data set, because we have a time series of cross-sectional
observations since within each cell a total of nt contracts are traded. The
sample data are therefore correlated which precludes us from taking a
simple t-statistic. Instead, we use a GMM-based procedure involving a
Newey and West estimator for the covariance matrix. The overidenti-
fying restrictions test statistic based on the moment conditions in (4.3)
is distributed �2 with one degree of freedom under the null hypothesis
(see Hansen (1982)). The test statistics are reported in the left panel of
Table 4.

The most striking result which emerges from the table is dominance
of the V ol approach. Hence, the estimation of SV models only involving
ATM options outperforms BS and the bivariate approach denoted Joint:
Besides yielding statistically signi�cant superior pricing performance, we
observe from the results reported in Table 4 that the improvements over
BS range from a 1:21 dollar reduction (the relative error dropping from
0:45 with BS to 0:33) for OTM long maturity, to a small eight cents re-
duction with relative error dropping from 5:78 to 4:46 for slightly OTM
short maturity. The V ol speci�cation outperforms the Joint with the
largest improvement for the deep OTM long maturity category, though
this time the improvement is only 48 cents. The smallest one is also
in the same moneyness category but has short maturity and is equal to

19Computations with the absolute errors could be performed as well but are not
reported here.

20



only 2 cents. It is worth re-emphasizing here that the comparisons be-
tween Joint and V ol involved the same call price formula of Heston and
basically the same parameters (see Table 2). Hence the di�erence are
very much due to the �ltering procedures, i.e. the procedure to extract
the latent volatility process from the data. Since the outperformance
of the Joint by the V ol model speci�cation is somewhat surprising we
conducted some further tests which are not reported in the table. These
additional tests required a departure from the reprojection procedure
described in section 2.3. It is not clear from the �tted SNP density in
the reprojection routine whether certain individual moments of returns
may provide information that is enhancing the pricing of options. To
separate the potential contribution of individual moments we computed
reprojection �lters only involving a particular moment of returns in addi-
tion to implied volatilities. For instance, to determine whether the mean
return has any pricing information, we consider a bivariate �lter with im-
plied volatilities and past and concurrent returns.20 This speci�c �lter,
therefore investigates how much of the leverage e�ect in the stock index
which is not already incorporated in the implied volatilities improves the
pricing of European-type contracts. The same strategy can be applied to
isolate the informational content of the second, third and fourth power
of returns. These computations reinforced our �ndings with the SNP
reprojection �lter, with one potentially important exception. Indeed, we
found that the conditional kurtosis, i.e. a �lter using a lag operator in
the fourth power of returns in addition to implied volatilities, helps to
improve the pricing of long maturity slightly in-the-money option con-
tracts. The statistically signi�cant improvement decreased the pricing
error from 3:85 to 3:03 dollars.

The general conclusion we can draw so far is that using Heston's
call price model with a relatively simple volatility �ltering scheme using
past options data yields the most desirable outcome across all the three
model speci�cations considered. By and large, all the models perform
relatively well at short maturities, of course. The discrepancies really
play out in the cells involving long maturities and OTM contracts. It
should be noted that the estimation of the SV models was con�ned to
ATM options. Therefore, one would expect that incorporating in the
estimation sample contracts similar in nature to the ones priced out-
of-sample would certainly improve the record across the V ol and Joint
speci�cations. We will further elaborate on this in the concluding section
and delegate this to future research.

20Hence, we ignore the Hermite polynomial expansion terms in the SNP density
and isolate the Gaussian kernel.
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4.2 Hedging performance

It is common to hedge the market risk via a combination of stocks and
options. There are numerous hedging techniques available in theory,
some are quite sophisticated and involve several instruments simultane-
ously. However, since options are in zero net supply (i.e. there always
has to be a party holding an opposite position in an option contract),
many of the sophisticated hedging strategies are hard to implement in
practice (see Figlewski (1998) for further discussion). We will therefore
concentrate on a simple minimum variance hedging which uses just one
option. In particular, if we want to hedge our position in one call with
XS(t) shares of stock, we choose the number of shares in such a way,
that the remaining cash position

X0(t) = C(t; �;K)�XS(t)S(t) (4.4)

has minimum variance. This is achieved by taking

XS(t) = �S(t; �;K) +
��V

S(t)
�V (t; �;K); (4.5)

where

�S(t; �;K) =
@C(t; �;K)

@S
= �1 + S(t)

@�1

@S
�Ke�R�

@�2

@S
(4.6)

and

�V (t; �;K) =
@C(t; �;K)

@V
= S(t)

@�1

@V
�Ke�R�

@�2

@V
; (4.7)

Since the SV model does not account for all sources of risk (for ex-
ample, the interest rate is assumed to be constant), we will not end up
with zero, if we try to unwind our position the next day. The hedging
error will therefore be:

H(t+�t) = XS(t)S(t+�t)+X0(t)e
R�t

�C(t+�t; � ��t;K); (4.8)

where �t is equal to one day.
We use summary statistics similar to those in the previous subsection

to report the model hedging performance. In particular, we construct
absolute (Dh

a ) de�ned as:

Dh
a =

vuut 1PT

t=1 nt

TX
t=1

ntX
i=1

H2
i (t): (4.9)
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and comparable relative (Dh
r ) measures. To obtain the latter, let us

rewrite (4.8) as:

H(t+�t) = X0(t)e
R�t

� ~X0(t+�t) = Cashmodelt+�t �Cashobservedt+�t ;(4.10)

where ~X0 is di�erent from X0 because the number of shares was com-
puted in the previous period, not as de�ned in (4.4). This yields the
relative measure of the hedging error which is de�ned as:

Dh
r =

vuut 1PT

t=1 nt

TX
t=1

ntX
i=1

 
Cashobservedit �Cashmodelit

Cashobservedit

!2

=

vuut 1PT

t=1 nt

TX
t=1

ntX
i=1

�
Hi(t)

~Xi0(t)

�2
(4.11)

The hedging performance comparisons for the BS, V ol and Joint are
reported in Table 5, again using the classi�cation of twelve moneyness/time-
to-maturity cells. The absolute and relative errors are complemented
with statistical tests built on moment conditions similar to (4.3) which
yield an overidentifying restrictions test. We observe that the V ol spec-
i�cation is again the dominant one, yet not signi�cantly di�erent from
both alternatives. In fact all three speci�cations perform rather well.
Therefore the hedging strategies, unlike the pricing errors, appear to be
rather insensitive to model speci�cation.

4.3 Filtering latent spot volatility with options data

Since the univariate V ol speci�cation involving options is the most suc-
cessful and novel, some further digression on its practical implementation
is warranted. The most innovative aspect of the pricing procedure is the
construction of the volatility extraction �lter. The �lter is remarkably
simple. Constructing a reprojection �lter involves a model selection pro-
cedure for the tuning parameters Kz, KX , M , M� and MR of the SNP
density (see in particular Panel B of Table 1 for their interpretation).
These tuning parameters are selected via the BIC criterion. The opti-
mal model speci�cation which minimizes the BIC criterion is a simple
twenty two lags linear operator. Hence the ATM implied volatilities are
combined in a weighted historical moving average with a 22 day window.
Table 6 lists the �lter weights which extract spot volatility from BS im-
plieds.21 The weights range from 0:24514 to 0:03277: The intercept is

21The reprojection software we used does not produce standard errors for the co-
e�cients, hence only point estimates are reported.
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negative and equal to �0:16320: The largest weights in the �lter appear
at the longer lags and the increase in weights is roughly linear in the lags.
Hence, the extraction scheme puts more weight on observations from the
options markets which date back about one month or 22 trading days.

The simplicity of this scheme is rather surprising if one thinks of the
complexity of the task. Indeed, alternative �lters, such as those pro-
posed by Harvey et al. (1994), Jacquier et al. (1994) and Nelson and
Foster (1994), involve highly nonlinear functions of returns. Hence, the
virtue of using volatility data to predict future spot volatility is that one
can limit the �lter to a linear structure. It should be noted, however,
that the construction of the �lter is unfortunately not as simple as run-
ning a linear regression model. Since spot volatility is a latent process
one can only recover the �lter weights via the reprojection procedure.
To clarify this, suppose we would consider the much simpler task of
regressing implied rather than spot volatilities on the same window of
past implieds. Such a linear regression model is also reported in Table
6, with its lag coe�cients appearing side-by-side with the reprojection
�lter. The OLS parameter estimates show absolutely no resemblance,
neither numerically nor statistically, to extraction �lter weights. The dif-
ference between the two lag polynomials is rather easy to explain when
one realizes that implied volatility is not like spot volatility but rather
relates to the expected volatility over the remaining time to maturity
of a contract (see for instance Hull and White (1987)). Therefore, the
calculation of the �lter weights remains a nontrivial task which cannot
be performed by simple regression methods. However, once di�usion
parameters are available the task is relatively straightforward.
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Conclusion

The basic idea that both the derivatives and cash markets should contain
information to price and hedge option contracts was implemented. Its
execution involved the use of multivariate simulation-based estimation
procedures for stochastic volatility processes. We considered a generic
procedure for estimating and pricing options in the context of stochastic
volatility models using simultaneously the fundamental price St and a
set of option contracts [(�Iit)i=1;K ] where K � 1 and �Iit is the Black-
Scholes implied volatility. The econometric methods involved are due to
Gallant and Tauchen (1996, 1998). We focused primarily on two cases:
(i) using an ATM option contract, hence a univariate setup without cash
market information and (ii) a bivariate speci�cation with the underlying
fundamental and an ATM European contract. The bivariate approach
involving both the fundamental and an option appears useful when the
information from the cash market provides support via the conditional
kurtosis to price options. This is the case for some long term options
but the e�ect is only marginal. Our results, based on the S&P 500 index
contract, showed that the univariate approach only involving options by
and large dominated. A by-product of this �nding is that we uncover a
remarkably simple volatility extraction �lter based on a polynomial lag
structure of implied volatilities. Since the competing model speci�ca-
tions yielded roughly the same di�usion parameter estimates, we found
that the �ltering of spot volatility is the key ingredient in our procedure.
The univariate �lter with options appears to excel at this task. Perhaps
one could label this the \simple is better" result for SV models, to para-
phrase the �ndings of Dumas et al. (1997). An important quali�cation
has nevertheless to be made regarding simplicity. The analysis in this
paper rests on a class of option pricing models which is far more sophis-
ticated than the Black-Scholes model. Within this class of SV models
we showed that a simple approach works best and outperforms the com-
monly used strategy which exploits a cross-section of the previous day
options plugged into the Black-Scholes formula. Furthermore, since our
analysis relied on out-of-sample pricing performance we can deduce from
the results of Dumas et al. (1997), who used the same SPX contract and
examined in detail models with deterministic volatility functions, that
SV models like Heston's combined with option price �lters should out-
perform the binomial tree type models as well.

While the point estimates of the di�usion parameters were roughly
the same we also found that the use of options in estimation greatly im-
proves the precision of di�usion parameter estimates. This �nding con-
�rms the insights of Pastorello et al. (1994) and Renault (1997). More-
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over, having estimated separately the risk-neutral and objective mea-
sures allows us to appraise the typical risk-neutral representations used
in the literature. Using Heston's (1993) model as example we showed
that the usual trasnformation from objective to risk neutral density is
not supported by the data. To examine this we introduced a test which
is based on the Radon-Nikodym derivative of the objective measure with
respect to the risk neutral and uses the Novikov condition. We also found
that the hedging performance is rather insensitive to model speci�cation.
In contrast, pricing options is the most prone to model error.

We know that the methods proposed in this paper can be improved
upon in several ways. First, we estimated the continuous time processes
using only ATM contracts. It would be worth investigating a setup
where more than one option is used, namely a set of option contracts
[(�Iit)i=1;K ] where some are ATM and others are OTM. This setup will
surely improve the pricing of long term OTM options. It would also
be intriguing to �nd out how multivariate �lters involving exclusively
options do in comparison to the univariate option-based �lter. Last
but not least, it would be worth exploring the result suggesting that
conditional kurtosis information in the cash market improves pricing.
One could consider using LEAPS and other exotic option contracts for
such an exploration. Finally, throughout the paper we used Heston's
model since it yields closed form pricing formula. Alternative SV model
speci�cations should also be entertained such as the models due to Hull
and White (1987) and Scott (1987). The techniques proposed in this
paper would also allow us to consider option pricing models with jumps.
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Technical Appendices

A The call options pricing using SV model

Here we provide the details of the call options pricing formula under the
SV model from Bakshi et al. (1997a). The call price in (1.3) is expressed
through �j ; j = 1; 2, which are equal to:

�j =
1

2
+

1

�

Z
1

0

Re
e�i�lnKfj(t; �; S(t); V (t);�)

i�
d� (A.1)

and

f1(t; �; S(t); V (t);�) =

exp

�
i�R� �

��

�2V

�
2 ln

�
1�

[� � �� + (i�+ 1)��V ](1� e��� )

2�

��
�

��

�2V
[� � �� + (i�+ 1)��V ]� + i� lnS(t)+

i�(i�+ 1)(1� e��� )V (t)

2� � [� � �� + (1 + i�)��V ](1� e��� )

�
(A.2)

where:

� =
q
[�� � (1 + i�)��V ]2 � i�(i�+ 1)�2V

f2(t; �; S(t); V (t);�) =

exp

�
i�R� �

��

�2V

�
2 ln

�
1�

[ � �� + i���V ](1� e� � )

2 

��
�

��

�2V
[ � �� + i���V ]�+

i� lnS(t) +
i�(i�� 1)(1� e� � )

2 � [ � �� + i���V ](1� e� � )
V (t)

�
(A.3)

where:

 =
q
[�� � i���V ]2 � i�(i�� 1)�2V
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B SNP density estimation

SNP is a method of nonparametric time series analysis. The code can
be downloaded from George Tauchen's website
http://www.econ.duke.edu/~get/snp.html. The method employs a
Hermite polynomial series expansion to approximate the conditional den-
sity of a multivariate process. An appealing feature of this expansion is
that it is a nonlinear nonparametric model that directly nests the Gaus-
sian VAR model, the semiparametric VAR model, the Gaussian ARCH
model, and the semiparametric ARCH model. The SNP model is �tted
using conventional maximum likelihood together with a model selection
strategy that determines the appropriate degree of the polynomial.

The SNP method is based on the notion that a Hermite expansion
can be used as a general purpose approximation to a density function.
Here it is employed in the form fk(zt j Xt;�) / [PK(zt; Xt)

2]�(zt),
where PK(�) denotes a multivariate polynomial of degree Kz and �(z)
denotes the standard normal (possibly multivariate) p.d.f. The process
Xt is the vector of M lags of the process of interest and the index k

denotes the dimension of � which expands as the sample size increases
(see discussion in sections 2.2 and 2.3). Since fk(z), as the distribution
proxy, has to integrate to 1, the constant of proportionality is the inverse
of NK(Xt) =

R
[PK(s;Xt)

2]�(s)ds. To achieve a unique representation,
the constant term of the polynomial part is put equal to one.

First of all, let us note that if the process of interest � � N(�;� =
RR

0

), where R is an upper triangular matrix. Then � = Rz + � and

fk(�t j Xt;�) =
1

NK(Xt)

[PK(zt; Xt)
2]�(zt)

j det(R) j
; (B.4)

where � = (aij ; �; R) and is estimated by QML.
The mean � at time t depends onM� lags of �t: �

X
t = b0+BXt. R

X
t

also depends onMR lags of the process of interest in case of ARCH lead-
ing term. The Hermite polynomial used to expand the density around
the leading Gaussian density, namely:

PK(zt; Xt) =

KzX
i=0

ai(Xt)z
i =

KzX
i=0

0
@KXX
j=0

aijX
j
t

1
A zi; (B.5)

and, as discussed above, we set a00 equal to 1 for the uniqueness of
the representation. The subscript K denotes the vector (KX ;Kz;M).
According to Andersen and Lund (1996), if the leading term is speci�ed
carefully, M = 1 generally su�ces in the univariate SNP setting.
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When Kz is put to zero, one gets normal distribution. When Kz is
positive and KX = 0, one gets a density that can approximate over a
large class whose shape is constant with respect to variation in x, i.e.
conditionally homogeneous class. Finally, when both Kz and KX are
positive, we approximate over conditionally heterogeneous class.

The optimal values of K (as well as M�;MR) are chosen based on
standard criterions and tests, such as AIC, BIC, Wald and LR tests.
Gallant, Tauchen (1993) provide a table which matches value of the
parameters K;M�;MR and popular time series models. We reproduce
this table here (table 1B).
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C The Lower Bound for the Novikov Con-

dition

In this appendix we provide the derivation of the lower bound on EN
which we used in (3.9) to test whether the data supports the assumption
that the linearity of the volatility drift is preserved under the probability
measure transformation.

First, we consider an expected value of the spot volatility from (1.2):

�V � E(V (t)) =

Z t

0

E(� � �V (u))du =

Z t

0

(� � � �V )du

= �t� � �V t) �V =
�t

1 + �t
(C.1)

Then for the Novikov condition (3.8), we have:
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The inequality 1 follows from Jensen's inequality for convex functions.
The inequality 2 is obtained by substituting in the values of �1(t); �2(t)
provided in (3.4), (3.5) �rst and by applying Jensen's inequality to the
function 1=x second. The equality 3 is obtained from (C.1) and equality
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4 by making a substitution w = 1 + �u in the middle integral. If we
have � 2 [0; 1], then substituting 1=� in the last line by 1 we obtain an
inequality which leads us to the desired result in (3.9).
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Figures and Tables

Figure 1: The univariate series and SNP densities

We estimate the SNP density for the two univariate types of data: (i) the

log-returns on the S&P500; (ii) the log of the BS implied volatilities of the

closest to maturity and the money call options. The data are daily and span

the period from November 1985 to October 1993. The plots to the left are the

time series of the data, the plots to the right are the estimated densities of the

series. The solid line is a plot of an SNP �t, the dashed line is normal density

with the same mean and variance.
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Figure 2: The bivariate SNP density

We estimate the joint SNP density for the following series: (i) the log-returns

on the S&P500; (ii) the log of the BS implied volatilities of the closest to

maturity and the money call options. The data are daily and span the pe-

riod from November 1985 to October 1993. (a) is the perspective plot of the

estimated bivariate density; (b) is the contour plot at quantiles 10%, 25%,

50%, 75%, 90%, and 95%; (c) and (d) are the marginal densities of (i) and

(ii) correspondingly, the solid line is a plot of an SNP �t, the dashed line is

normal density with the same mean and variance.
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Table 1

The SNP density estimation

We estimate the SNP density for the three types of data: (i) the log-

returns on the S&P500; (ii) the log of the BS implied volatilities of the closest

to maturity and the money call options; (iii) both series. Panel A reports the

structure of the estimated densitie. Panel B reports possible densities struc-

tures, as described in Gallant and Tauchen (1993).

Panel A

Data type Kz KX M M� MR

S&P 500 9 0 1 3 8

BS vol's 6 0 1 9 5

Joint 4 0 1 4 4

Panel B

Parameter K;M�;MR setting Characterization of �t
Kz = 0;KX = 0;M � 0;M� = 0;MR = 0 iid Gaussian

Kz = 0;KX = 0;M � 0;M� > 0;MR = 0 Gaussian VAR

Kz > 0;KX = 0;M � 0;M� > 0;MR = 0 non-Gaussian VAR, homog. innov.

Kz = 0;KX = 0;M � 0;M� � 0;MR > 0 Gaussian ARCH

Kz > 0;KX = 0;M � 0;M� � 0;MR > 0 non-Gaussian ARCH, homog. innov.

Kz > 0;KX > 0;M > 0;M� � 0;MR � 0 gen. non-lin. process, heterog. innov.
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Table 3

The number of observations in the options groups used for

pricing/hedging performance evaluations

To assess pricing and hedging performance of alternative model speci�cations we

separate the calls into twelve groups by moneyness and time to maturity. The table

reports number of observations in each group. The total number of observations is

reported in the headers.

Pricing (7424) Hedging (7132)

Moneyness Days to expiration Days to expiration

<60 60-180 �180 <60 60-180 �180

<0.94 337 448 313 299 437 279

0.94-0.97 1080 828 168 1037 818 159

0.97-1.00 1377 938 195 1324 930 187

1.00-1.03 1038 612 90 975 604 83
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Table 6

Reprojection Model with Implied Volatilities

The coe�cients of the reprojection model used to �lter the latent volatily process

from the observed past implied volatilities and concurrent returns are listed in the

table. The model selected by the BIC criterion involves 22 lags of implied Black-

Scholes volatilties and no lags of returns. We also report parameters and standard

errors of AR(22) model for the implied volatilities.

Lags Coe�cients from Std. err.

reprojection AR(22) model for AR (22)

0 -0.16320 0.02365 0.00431

1 0.03280 0.53407 0.06307

2 0.03277 0.17519 0.07077

3 0.03976 -0.04310 0.07160

4 0.03987 0.13626 0.07155

5 0.04386 -0.02329 0.07190

6 0.04882 0.06550 0.07203

7 0.04179 -0.01373 0.07195

8 0.04298 -0.05188 0.07112

9 0.04715 -0.02546 0.07133

10 0.04506 0.01824 0.07088

11 0.05069 0.05437 0.07101

12 0.05675 -0.08946 0.07137

13 0.06675 0.14030 0.07175

14 0.07836 -0.01184 0.07261

15 0.08792 -0.17026 0.07262

16 0.09978 0.11176 0.07349

17 0.11489 0.01261 0.07401

18 0.14055 -0.08485 0.07479

19 0.16293 0.07815 0.07461

20 0.18804 0.06746 0.07499

21 0.20591 -0.17115 0.07446

22 0.24514 0.00677 0.06807
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