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Les méthodes simulées d'estimation sont de plus en plus utilisées pour
l'estimation et l'évaluation de modèles structurels. Dans cette étude, nous
introduisons un ensemble de tests de stabilité pour les modèles estimés à l'aide de
la méthode des moments simulés (voir Duffie et Singleton (1993)). Ces tests sont
basés sur les travaux récents, dans le cadre de la méthode des moments généralisés,
de Andrews (1993) et Sowell (1996a, b). Nous obtenons la loi asymptotique de ces
tests et nous montrons que cette loi ainsi que la puissance locale asymptotique ne
dépendent pas du nombre de simulations. Une étude de Monte-Carlo révèle qu'en
petit échantillon le nombre de simulations influence le niveau et la puissance des
tests. Cependant, un nombre restreint de simulations semble suffisant pour obtenir
des bonnes propriétés de petit échantillon.

Simulation-based estimation methods have become more widely used
in recent years. We propose a set of tests for structural change in models estimates
via Simulated Method of Moments (see Duffie and Singleton (1993)). These tests
extend the recent work of Andrews (1993) and Sowell (1996a, b) which covered
Generalized Method of Moments estimators not involving simulation. We derive
the asymptotic distribution of various tests. We show that the number of
simulations does not affect the asymptotic distribution nor the asymptotic local
power of tests for structural change. A Monte Carlo investigation of the finite
sample size and power reveals, however, that simulation uncertainty does affect
the properties of tests. Nevertheless, even a relatively small number of simulations
suffices to obtain tests with desirable small sample size and power properties.

Mots Clés : Méthode des moments simulés, tests de stabilité structurelle, tests
optimaux

Keywords : Simulated method of moments, structural stability testing, optimal



tests

JEL : C1, C12, C22



1 Introduction

The steady increase in computational speed of computers has enhanced
the practical use of simulation-based estimators in econometrics. There
is now a well established asymptotic distribution theory for a large va-
riety of procedures, including the simulated method of moments esti-
mator (henceforth SMM) which is the focus of our paper. Du�e and
Singleton (1993) developped the asymptotic properties of the SMM es-
timation procedure in the context of dynamic econometric time series
models. In such applications one often wants to test whether the para-
metric econometric model is invariant through time. Several tests for
structural change with presumed breakpoint unknown already exist for
the Generalized Method of Moments (henceforth GMM) estimation pro-
cedure which pre-dates SMM and does not involve simulations. Such
tests were proposed by Andrews (1993), Andrews and Ploberger (1994),
Sowell (1996a, b), Guay (1996), Hall and Sen (1996) and Ghysels, Guay
and Hall (1997).

The purpose of our paper is to extend the tests proposed for the
GMM estimator to cases involving estimation by simulation and rely
on the SMM procedure. We introduce several Wald, LR-type, LM and
Predictive tests for structural change with unknown breakpoint. The de-
sign of the tests is based on the optimality principles of local asymptotic
power discussed by Andrews and Ploberger (1994), Sowell (1996a), Guay
(1996) and Hall and Sen (1996). While the asymptotic distributions of
the partial sample SMM estimators depend on a nuissance parameter,
namely the number of simulations, we show that the asymptotic distri-
butions of tests for structural change, which are functions of the partial
sample SMM estimators, are nuissance parameter free. Hence, all the
tests we propose in the paper have the same asymptotic distributions
as their GMM counterpart with critical values tabulated in Andrews
(1993), Andrews and Ploberger (1994), Sowell (1996a), Guay (1996) and
Ghysels, Guay and Hall (1997). We also show that the number of simu-
lations does not a�ect the asymptotic local power of tests for structural
change. A Monte Carlo investigation of the �nite sample size and power
reveals, however, that simulation uncertainty does a�ect the properties of
tests. Nevertheless, a relatively small number of simulations is su�cient
to obtain tests with desirable small sample size and power properties.

In section 2 we �x notation and discuss the regularity conditions re-
quired to establish several large sample properties of SMM estimators
which are used in the derivations of the asymptotic distribution of the
tests. Section 3 is devoted to testing for structural change. The null hy-
pothesis and the test statistics are formally de�ned and the main results
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of the paper, namely the asymptotic distributions of the tests, are pre-
sented. The next section 4 covers optimal tests. In section 5 we report
the results of a Monte Carlo study of the �nite sample properties of the
tests. Section 6 concludes the paper.

2 Notation and regularity conditions

To establish the asymptotic distribution theory of tests for structural
change we need to de�ne �rst the class of data generating processes we
can simulate, how to simulate them and how to de�ne SMM estimators
on (sub)samples of data. In a �rst subsection we present the class of
data generating processes. The next subsection covers assumptions and
de�nitions and a �nal subsections establishes asymptotic properties of
partial sample SMM estimators. Before dealing with these issues we
need to elaborate brie
y on the speci�cation of the parameter vector in
our generic setup. We will consider parametric models indexed by pa-
rameters (�; �) where � 2 B, where B � Rr and � 2 � � Rs. Following
Andrews (1993) we make a distinction between pure structural change
when no subvector � appears and the entire parameter vector is subject
to structural change under the alternative. Partial structural change
corresponds to cases where only a subvector � is subject to structural
change under the alternative. The generic null can be written as follows:

H0 : �t = �0 8t = 1; : : : ; T (2.1)

The majority of tests we will consider assume as alternative that at some
point in the sample there is a single structural break, like for instance:

�t =

�
�1 t = 1; :::; [�T ]
�2 t = [�T ] + 1; :::; T

where � determines the fraction of the sample before and after the as-
sumed break point and [:] denotes the greatest integer function. Hence,
we will consider a setup with a parameter vector which encompasses any
kind of partial or pure structural change involving a single breakpoint. In
particular, we consider a p dimensional parameter vector � = (�01; �

0
2; �

0)0

where �1 and �2 2 B � Rr and � 2 � = B � B � � � Rp where
p = 2r + s. The parameters �1 and �2 apply to the samples before
and after the presumed breakpoint. Therefore, we will formulate all our
models in terms of �. Special cases could be considered whenever re-
strictions are imposed in the general parametric formulation. One such
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restriction would be that � = (�0; �0)0, which would correspond to the
null of a pure structural change hypothesis.

2.1 The Data Generating Process

Since we consider simulation-based inference we have a process of endoge-
nous variables yt which is generated by the following dynamic structural
model:

g(yt; yt�1; xt; �0) = "t (2.2)

where � is a p� 1 parameter vector, xt is an observable exogenous pro-
cess and "t is a process of disturbances with a known distribution. The
processes yt, xt and "t can either be univariate or multivariate. For the
moment we will not be very speci�c about the conditions we need to
impose on yt; xt and "t. We assume however that we have a sample of
observations t = 1; : : : ; T for yt and xt. Furthermore, we also assume
that the model in (2.2) has the following well de�ned reduced form:

yt = H(yt�1; xt; "t; �0): (2.3)

Under (2.3), one can simulate values of yt: (1) given initial values for
y0 and "0, (2) given value of the parameter vector �, and (3) condi-
tionnal on a path of the exogenous process xt. Throughout the paper
we will assume that the simulations of yst are also conditional on the
observed value of yt�1.1 Hence we will denote the simulated values as
yst (xt; �; y0; yt�1; "0). For simplicity, however, we will use the less cum-
bersome notation yst as a shorthand for the entire expression. To make
the presentation of the regularity conditions easier we will sometimes also
pool the process fxtg1t=�1 and the unobserved disturbances f"tg1t=�1
into a single process fVtg1t=�1. The SMM estimator involves moment

conditions which are function of fytg+mt=�l, fxtg+m
0

t=�l0 and of the simulated

variables fystg+mt=�l. If we combine the processes fytg+mt=�l, fxtg+m
0

t=�l0 into
a single process zt and the simulated counterpart into z

s
t
2 then the SMM

estimator is based on the argument that:

1For a more elaborate discussion of di�erent types of simulations in dynamic mod-

els see e.g. Gouri�eroux and Monfort (1996) and Bilio and Monfort (1996).
2In fact, we consider that the observed and the simulated processes are given by

two triangular arrays of random vectors zTt and zs
Tt

(see Assumption A.2 in the

Appendix A and Section 2.2). For notational simplicity zt and zst denote zTt and

zs
Tt

respectively.
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E[m(zt)�m(zst ; �0)] = 0 (2.4)

where m is a Rq-valued function of moment conditions and �0 is an ele-
ment of the parameter space � � Rp where q � p. A sample equivalent
can be written as follows:

fST (�0) =
1

T

TX
t=1

 
m(zt)�

1

S

SX
s=1

m(zst ; �0)

!
(2.5)

where S is the number of simulations. We can also replace the S sim-
ulations of size T samples by a single sample simulation of size TS and
de�ne:

fST (�0) =
1

T

TX
t=1

m(zt)�
1

TS

TSX
t=1

m(zst ; �0)

2.2 Assumptions and De�nitions

We need to impose restrictions on the admissible class of functions and
processes involved in estimation to guarantee well-behaved asymptotic
properties of SMM estimators either involving the entire data sample or
subsamples of observations. We �rst de�ne the standard SMM estimator
introduced by Du�e and Singleton (1993) using all the data.

De�nition 2.1 The full sample Simulated Method of Moments estima-
tor f~�ST g is a sequence of random vectors such that:

~�ST = Argmin�f
S
T (�)

0ŴT f
S
T (�)

where ŴT is a random positive de�nite symmetric q � q matrix.

The optimal weighting matrix W is de�ned to be the inverse of 
�,
where 
� = (1 + 1

S
)
 and


 = lim
T!1

V ar

 
1p
T

TX
t=1

[m(zTt)�Em(zTt)]

!
:
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An estimator of 
 can also be obtained with simulated moments (see
Du�e and Singleton (1993) and Gouri�eroux and Monfort (1996) for a
discussion).3

Several tests for structural change also involve partial sample SMM
estimators similar to the partial sample GMM estimators de�ned by
Andrews (1993). We consider two subsamples, the �rst is based on
observations t = 1; : : : ; [T�] while the second subsample covers t =
[T�] + 1; : : : ; T where � 2 � � (0; 1). The separation [T�] represents a
possible breakpoint which is governed by an unknown parameter �. We
now formally de�ne partial-sample SMM estimators for � 2 � based on
the �rst and the second subsamples.

De�nition 2.2 A partial-sample Simulated Method of Moments estima-
tor f�̂ST (�)g is a sequence of random vectors such that:

�̂ST (�) = Argmin� �f
S
T (�; �)

0ŴT (�) �f
S
T (�; �)

for all � 2 �, where

�fST (�; �) =
1

T

" P[T�]
t=1

�
m(zt)� 1

S

PS
s=1m(zst ; �1; �)

�
0

#
+

1

T

"
0PT

t=[T�]+1

�
m(zt)� 1

S

PS
s=1m(zst ; �2; �)

� #

where ŴT (�) is a random positive de�nite symmetric 2q � 2q matrix.

The partial-sample optimal weighting matrix is de�ned as the inverse
of 
�, where 
� = (1 + 1

S
)
 and


(�) = lim
T!1

V ar

�
1p
T

� P[T�]
t=1 (m(zt)� Em(zt))

0

�

+
1p
T

�
0PT

t=[T�]+1 (m(zt)�Em(zt))

��
:

Before turning our attention to the regularity conditions we need to
elaborate brie
y on how we perform simulations with a structural break
at [T�]. We have two choices. The �rst consists of simulating S draws of

3The optimal weighting can be estimated consistently using methods developed

by Gallant (1987), Andrews and Monahan (1992), Newey and West (1994), among

several others.
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data generated for t = 1; : : : ; T� and t = [T�] + 1; : : : ; T conditional on
particular values of �1, �2 and �. Alternatively, instead of generating S
data sets of size T with a breakpoint at � it is also possible to consider TS
draws with a single breakpoint at [TS�]. In remainder of this section
we discuss a set of regularity conditions we need to impose to obtain
weak convergence of partial sample SMM estimators to a function of
Brownian motions. To streamline the presentation we only summarize
the assumptions and provide a detailed description of them in Appendix
A.

Du�e and Singleton (1993) mention two reasons why the GMM reg-
ularity conditions cannot be used to show the convergence of SMM es-
timators. First, the initial conditions of the time series processes are in
general not drawn from their stationary distribution which results in a
local nonstationarity of the simulated process. Second, the �rst moment
continuity assumption used by Hansen (1982) and Andrews (1987) is
not su�cient to establish the uniform convergence of the sample crite-
rion function to its population equivalent. Indeed, this continuity is not
valid for data generated by simulations which depend on the unknown
parameter vector. It will be assumed instead that observed and simu-
lated series are near epoch dependent, a condition also used by Andrews
(1993) in the context of tests for structural change which can accomodate
local nonstationarity. This is covered by Assumption A.2. Yet, we also
need to impose a number of regularity conditions which do not appear
in Andrews (1993) or the more recent work on structural change tests
for GMM estimators. In particular we need to impose a global Lipschitz
condition on moment conditions and their total derivatives w.r.t. the pa-
rameter vector in order to obtain uniform convergence. The global Lips-
chitz condition was also used by Du�e and Singleton (1993), and results
in modi�cations of Andrews (1993) to establish the asymptotic distribu-
tion of structural change tests. This condition appears in Assumption
A.3 and A.5 and is a su�cient condition for stochastic equicontinuity of
a triangular array of a random vector. Stochastic equicontinuity (strong
or in probability) is a necessary and su�cient condition to go from point-
wise to uniform convergence (strong or in probability).4 Finally, we also
impose standard identi�cation assumptions and restrict the parameter
space to be closed and bounded.

4See Andrews (1992).
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2.3 Asymptotic Properties of Partial Sample SMM

Estimators

We present two theorems in this section which establish the large sam-
ple properties of the partial sample SMM estimators under the null hy-
pothesis. The �rst theorem establishes consistency whereas the second
characterizes the asymptotic distribution.

Theorem 1 Under Assumptions A.1 to A.3, for a �xed S, the partial

sample SMM estimators �̂ST (�) satis�es sup�2�k�̂ST (�) � �0k p! 0 for
some �0 in the interior of �.

Proof: See Appendix B.

For the case of one simulation of TS values, we de�ne the following
matrices:5

F = lim
T!1

1

TS

TSX
t=1

E@m(zst ; �0)=@�
0 2 Rq�p;

F � = lim
T!1

1

TS

TSX
t=1

E@m(zst ; �0; �0)=@�
0 2 Rq�r;

F � = lim
T!1

1

TS

TSX
t=1

E@m(zst ; �0; �0)=@�
0 2 Rq�s;

F (�) =

�
�F � 0 �F �

0 (1� �)F � (1� �)F �

�
2 R2q�(2r+s):

We denote fB1(�) : � 2 [0; 1]g and fB2(�) : � 2 [0; 1]g as two q-
dimensional vectors of mutually independent Brownian motion on [0; 1]
and de�ne

G(S; �) =

0
@ 
1=2

h
B1(�)� 1p

S
B2(�)

i

1=2

h
(B1(1)�B1(�))� 1p

S
(B2(1)�B2(�))

i
1
A

5In a similar manner, we can de�ne the same matrices for the case of S simulations

of T values.
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Theorem 2 Under Assumptions A.1 to A.5, for a �xed S, every se-
quence of partial sample SMM estimators f�̂ST (�) : T � 1g satis�es

p
T (�̂ST (�)� �0)) (F (�)0W (�)F (�))�1 F (�)0W (�)G(S; �)

as a process indexed by � 2 �, provided � has a closure in (0; 1).

Proof: See Appendix B.

It should be noted that the asymptotic distribution of the partial
sample SMM estimators depends on a nuisance parameter, namely the
number of simulations S. As S ! 1, the asymptotic distribution co-
incides with the GMM case discussed in Andrews (1993). However, in
practice, the number of simulations S is �xed and usually low. Fortu-
nately, although the asymptotic distribution of the partial sample SMM
estimators depends on S, we will see that the asymptotic distribution of
the test statistics for structural change is independent of S, and hence
is nuisance parameter free, regardless whether the breakpoint is known
or unknown.

3 Tests for parameter constancy

In this section we introduce several tests for structural change and estab-
lish their asymptotic distribution. We present Wald, Lagrange multiplier
and likelihood ratio-type tests for parameter constancy. Predictive tests
will be discussed in the next section. The null hypothesis of our tests
appeared in (2.1). In this section, we consider only the test statistics
based on the optimal weighting matrix.6 The �rst test statistic is the
Wald statistic which is given by:

WaldST (�) = T
�
�̂S1T (�)� �̂S2T (�)

�0
(V̂
(�))

�1
�
�̂S1T (�) � �̂S2T (�)

�
;

where (V̂
(�)) =
�
V̂1(�)=� + V̂2(�)=(1� �)

�
and

V̂j(�) =
�
F̂ �
j (�)

0
̂��1j (�)F̂ �
j (�)

��1
for j = 1; 2. When j = 1, the es-

timators of F � and 
� are obtained with data from the �rst part of
the sample t = 1; � � � ; [T�] while for j = 2, the estimators are obtained
with data from the remainder of the sample t = T� + 1; � � � ; T . The
Lagrange Multiplier statistic does not involve estimators obtained from

6The result that the asymptotic distribution of the tests does not depend on S

critically depends on the use of the optimal weighting matrix.
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subsamples, rather it involves parameter estimates over the entire sam-
ple. More precisely, the LMS

T (�) statistic is based on the �rst order
conditions for the partial sample SMM estimators evaluated at the full
sample estimator:

LMS
T (�) = cST (�)

0
�
V̂1(�)=� + V̂2(�)=(1� �)

��1
cST (�)

where

cST (�) = L

"
1
�
Ĝ1(�) 0

0 1
(1��)Ĝ2(�)

#
p
T �fST (

~�ST ; �)

L = [Ip; �Ip], and Ĝj(�) =
�
(F̂ �

j (�))
0
̂��1j (�)F̂ �

j (�)
��1

(F̂ �
j (�))

0
��1j (�):

F̂ �
j (�) and 
̂��1j (�) are respectively matrices evaluated at the restricted

SMM estimator over the �rst and the second part of the sample. An-
drews (1993) shows that the LMS

T (�) simpli�es to:

T

�(1� �)
fST�(

~�ST )
0
̂��1F̂ �

h
(F̂ �)0
̂��1F̂ �

i�1
(F̂ �)0
̂��1fST�(~�

S
T )

where

fST�(
~�ST ) =

1

T

[T�]X
t=1

m(zTt)�
1

TS

[TS�]X
t=1

m(zsT t;
~�; ~�)

or

fST�(
~�ST ) =

1

T

[T�]X
t=1

 
m(zTt)�

1

S

SX
s=1

m(zsT t;
~�; ~�)

!
:

The LR-type statistic is de�ned as the di�erence between the objec-
tive function for the partial sample SMM evaluated at the full sample
estimator and at the partial sample estimators:

LRS
T (�) = T

�
�fST (

~�ST ; �)
0
̂��1T (�) �fST (

~�ST ; �)

� �fST (�̂
S
T (�); �)

0
̂��1T (�) �fST (�̂
S
T (�); �)

�
:

We state now the main theorem which establishes the asymptotic distri-
bution of the Wald, LM and LR-type test statistics.
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Theorem 3 Under the null hypothesis H0 in (2.1) and Assumptions
A.1 to A.5, the following processes indexed by � for a given set � whose
closure lies in (0,1) satisfy:

WaldST (�)) Qr(�); LM
S
T (�)) Qr(�); LR

S
T (�)) Qr(�);

with

Qr(�) =
BBr(�)

0BBr(�)

�(1� �)
;

where BBr(�) = Br(�)��Br(1) is a Brownian bridge and Br is r-vector
of independent Brownian motions.

Proof: See Appendix B.
The result in Theorem 3 tells us that the asymptotic distributions

of the Wald, LR-type and LM statistics are the same as those obtained
by Andrews (1993) for the GMM estimator. This implies that we can
rely on the critical values computed by Andrews for instance for the
socalled Supremum statistics which de�ned by the supremum over all
breakpoints � 2 � of WaldST (�), LM

S
T (�) or LR

S
T (�):

4 Optimal Tests

Several papers have explored socalled optimal tests since the original
work of Andrews (1993) on testing for structural change with unknown
breakpoint in the context of GMM estimators. See in particular, An-
drews and Ploberger (1994), Sowell (1996a, b), Guay (1996) and Hall
and Sen (1996). In this section we explore such optimal tests for SMM
estimators. Following Sowell (1996b) we consider a sequence of local of
alternatives based on the moment conditions:

Assumption 4.1 Sequence of Local Alternatives:

Eft(�0) = h(�; s;
t

T
)=
p
T (4.1)

where h(�; s; �), for � 2 [0; 1], is a q-dimensional function that can be
expressed as uniform limit of step functions, � 2 Ri, s 2 Rj such that
0 < s1 < s2 < : : : < sj < 1 and �0 is in the interior of �.

The sequence of local alternatives in (4.1) is expressed in terms of
violations of moment conditions instead of parameters as in (2.1). This
brings us to the subject of predictive tests for structural cange considered
by Ghysels, Guay and Hall (1997) for the case of GMM estimators. They
consider a single breakpoint, which amounts to the following null:

H0 : E[m(zt)�m(zst ; �0)] = 0 8t = 1; : : : ; T

10



and alternative:

E[m(zt)�m(zst ; �0)] =

�
0 8t = 1; : : : ; [�T ]

T�
1

2�2 8t = [�T ] + 1; :::; T

with �2 6= 0: The predictive test is based on evaluating the sample
moment conditions for the subsample t = [�T ] + 1; :::; T using �̂S1T (�),
i.e. the parameter estimates from the �rst subsample. The test statistic
is de�ned as:

PredST (�) = fST (1��)(�̂
S
1T (�))

0V̂ �1PR(�)f
S
T (1��)(�̂

S
1T (�))

where V̂PR(�) is a covariance matrix de�ned in Ghysels, Guay and Hall
(1997) and:

fST (1��)(�̂
S
1T (�)) =

1

T

TX
t=[T�]+1

m(zt)�
1

TS

TSX
t=[TS�]+1

m(zst ; �̂
S
1T (�); �̂

S
1T (�))

or its equivalent using S simulations of samples of size T: To proceed
with the discussion we �rst extend Theorem 1 of Sowell (1996b) to the
class of SMM estimators, namely:

Theorem 4 Under Assumptions A.1 to A.5 and Assumption 4.1, then

p
Tf

S
T�(~�

S
T ) ) 
1=2

B1(�)� 1p
S

1=2

B2(�) +H(�)�

�F (F 0WF )�1F 0W

�

1=2

B1(1)� 1p
S

1=2

B2(1) +H(1)

�
:

where H(�) =
R �
0
h(�; s; u)du and B1(�) and B2(�) are two q-dimensional

vectors of mutually independent Brownian motion and fST�(�) is de�ned
in Section 3.

Proof: See Appendix B.

Sowell's asymptotic optimal tests are a generalization of the Neyman-
Pearson approach to the case of two measures. The most powerful test
is given by the Radon-Nikodym derivative of the probability measure
implied by the local alternative with respect to the probability measure
implied by the null hypothesis. These two probability measures are im-
plied by the stochastic di�erential equation of the limiting stochastic
processes derived in the next Corollary under the null and the alterna-
tive. In the remaining of the section, WT will be an estimator of the
inverse of the optimal weigthing matrix 
�: The next Corollary is the
equivalent of Sowell's Corollary 1.

11



Corollary 4.1 Under Assumptions A.1 to A.5 and the null hypothesis,
there exists an orthonormal matrix C such that

C
p
TW

1=2
T fST�(

~�ST ))
�
BBp(�)
Bq�p(�)

�
:

and under the alternative in equation 4.1:

C
p
TW

1=2
T fST�(

~�ST ))
�
BBp(�) + C1


��1=2 (H(�)� �H(1))
Bq�p(�) + C2


��1=2H(�)

�
:

where BBp(�) is a p-vector of standard Brownian bridge and Bq�p(�)
is a (q � p)-vector of standard Brownian motion and
C 0�C[= 
��1=2F (F 0
��1F )�1F 0
��1=2 where

� =

�
Ip 0p�(q�p)

0(q�p)�p 0(q�p)�(q�p)

�
:

and C1 is the matrix of the �rst p rows of C and C2 the last q � p rows
of C.

Proof: See Appendix B.

The limiting stochastic processes in Corollary 4.1 are equivalent to
the limiting stochastic processes for the GMM estimator. Corollary 4.1
shows that under the null hypothesis the limiting continuous stochastic
processes are linear combinations of p Brownian bridges, one for each
parameter estimated and spanning the space of identifying restrictions,
and q � p Brownian motions, spanning the space of overidentifying re-
strictions. The results in Theorem 4 and Corollary 4.1 imply that all
the issues regarding the design of optimal tests raised in the context of
GMM estimators readily apply to simulation-based SMM procedures.
Following Hall (1997) we can consider the generic null and alternatives
for the case of a single breakpoint:

H
I
0
(�) =

�
P 0F


��1=2E[m(zt)�m(zst ; �0)] = 0 8t = 1; : : : ; [�T ]

PF

��1=2E[m(zt)�m(zst ; �0)] = 0 8t = [�T ] + 1; : : : ; T

which seperates the identifying restrictions across the two subsamples
where PF = 
��1=2F (F 0
��1F )�1F 0
��1=2 . Whereas the overidenti-
fying restrictions are stable if they hold before and after the breakpoint.
This is formally stated as HO

0 (�) = HO1
0 (�) \HO2

0 (�) with:

H
O1

0
(�) : (Iq � PF1(�))


��1=2
1

(�)E[m(zt)�m(zst ; �0)] = 0 8t = 1; : : : ; [�T ]

H
O2

0
(�) : (Iq � PF2(�))


��1=2
2

(�)E[m(zt)�m(zst ; �0)] = 0 8t = [�T ] + 1; : : : ; T

12



where PFi(�) and 
�i (�) are the subsample equivalents of PF and 
�

respectively for i= 1,2. By projection decomposition appearing in Corol-
lary 4.1 it is clear that instability must be re
ected in a violation of at
least one of the three hypotheses: HI

0 (�); H
O
01(�) or HO

02(�): Various
tests can be constructed with local power properties against any partic-
ular one of these three null hypotheses (and typically no power against
the others). The Wald, LM and LR-type tests discussed in the previous
section are based on the nullHI

0 (�), but have no power against violations
of HO

01(�) or H
O
02(�): Likewise, the predicitive tests have power against

HI
0 (�) and H

O
02(�). Obviously, one can construct tests for stability of the

identifying and overidentifying restrictions seperately (see Guay (1996),
Hall and Sen (1996) and Sowell (1996b)). Moreover, following Andrews
and Ploberger (1994) one can re�ne such tests for socalled distant and
close alternatives. In addition one can further �ne tune their setup with
a priori information about breakpoints using a Bayesian interpretation
to weighting densities de�ned on the set � of possible breakpoints (see
Andrews (1994) and Andrews and Ploberger (1994) for further discus-
sion). So far we have not formally shown that the predictive test for
SMM has the same distribution as that established for GMM nor any
of the other tests suggested by Andrews and Ploberger (1994), Sowell
(1996 a,b), Guay (1996), Hall and Sen (1996), or any others. However
Corollary 4.1 combined with the continuous mapping theorem allows us
from now on to establish the asymptotic distribution of any statistic for
SMM based on the GMM results.

5 Finite Sample Properties

The results in sections 3 and 4 imply that the asymptotic distribution
of simulation-based tests for structural change under the null as well as
under a sequence of local alternatives is independent of S, the number of
simulations. Theorem 3 covers the distribution under the null whereas
the result in Corollary 4.1 shows that the local asymptotic power of the
large class of Wald, LM, LR and Predictive type and optimal tests for
structural change is independent of the number of simulations. Yet, one
might expect that in �nite samples both the size and power are a�ected
by the number of simulations. We conduct a Monte Carlo study to
appraise the extend to which the �nite sample size and power depend
on S: The setup we consider is the following:

yt = �1(t��T ) + "t (5.2)

where "t is i.i.d. N(0; 1) and 1(t��T ) is one for t � �T and zero otherwise.
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Hence, we examine a shift in the mean with unknown breakpoint. Two
sample sizes T = 50 and T = 100 are investigated with breaks at � =
:25; :50 and :75 and values of � = 0; 0:5 and 1: Obviously, with � = 0
there is no break, which yields the �nite sample size properties of the
tests. The SupLM statistic is taken as a representative case with S =
1; 2; 5 and 10: The Monte Carlo study is based on 1000 replications.
The smallest of the two sample sizes, T = 50 is reported in Table 1,
while T = 100 appears in Table 2. The top panel in both tables cover
size with � = 0: A common pattern emerges from both Tables 1 and
2, namely with S = 1 and 2 there are clearly serious size distortions
whereas with S = 5 and 10 they become less important and the di�erence
between S = 5 and S = 10 are only minor. The power properties
reveal a fairly similar pattern. This implies that chosing at least S = 5
appears adequate to avoid serious size properties and to have desirable
power properties. We notice in fact that in this rather simple setup,
even in modest sample sizes of T = 50 we have power of up to 77%:
Another result of interest emerging, one not particularly surprising, is
the symmetry of the results for � = :25 and � = :75: Finally, the maximal
power is attained with � = :50 as would be expected.

6 Conclusion

In this paper we examined tests for structural change in the context of
simulated method of moments estimators. We found that the asymp-
totic distribution for such tests coincide with their GMM counterpart
regardless of the number of simulations and therefore the regardless of
the simulation bias. Obviously, there are limitations to our results as
well as unresolved challenges. Regarding the limitations we should men-
tion the �nite sample performance of the tests as noted in section 5.
There is a fair amount of Monte Carlo evidence regarding GMM tests
for structural change. In �nite samples the simulation uncertainty is one
more factor that may deteriorate the �nite sample performance. Yet, in
general the tests which we discussed have good size and power proper-
ties for structural change in the \middle" of the sample while the power
properties deteriorate against structural change at the very beginning
or the very end of a sample. Dufour, Ghysels and Hall (1994) proposed
tests, with null and alternative similar to predictive tests, designed to
handle such situations. Unfortunately, the SMM tests we discussed in
this paper do not extend to situations considered by Dufour, Ghysels
and Hall where one sample is large (the estimation sample) and a sec-
ond sample is small (the prediction sample) even containing only one

14



observation. These tests depend on the nuissance parameter S, though
one could let S !1, and obtain the same results as in Dufour, Ghysels
and Hall. Since the second sample is small generating a large number of
simulations would be practically feasible.

The next generation of estimators are simulation-based procedure
involving two models, an auxiliary model and a model of interest. Such
procedures, discussed by Gouri�eroux, Monfort and Renault (1993) and
Gallant and Tauchen (1996) add some nontrivial complications regarding
testing since they involve parameters of two models. We leave testing
for structural change in such settings for further research.
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Appendices

A Detailed Description of Regularity Con-

ditions

Assumption A.1 The parameter space � is a closed and bounded sub-
set of Rp.

Assumption A.2 The observed and simulated processes satisfy:

� fzTt : t � T; T � 1g is a triangular array of Z-values random
vectors that is L0-near epoch dependent on a strong mixing base
fVTt : t = :::; 0; 1; :::;T � 1g, where Z is a Borel subset of Rk.7

� For all � 2 �, fzsT t : t � T; T � 1g is a triangular array of Z-
values random vectors that is L0-near epoch dependent on a strong
mixing base fVTt : t = :::; 0; 1; :::;T � 1g, where Z is a Borel subset
of Rk.

Assumption A.3 The set of moment conditions satis�es:

� For some r > 2, fm(zTt) : t � T; T � 1g is a triangular array of
Rq-valued random vector that is L2-near epoch dependent of size
-1/2 on a strong mixing base fVTt : t = :::; 0; 1; :::;T � 1g of size
-r/(r-2), supt�T;T�1 Ekm(zTt)kr <1.

� For some r > 2, fm(zsT t; �) : t � T; T � 1g is a triangular array of
Rq-valued random vector that is L2-near epoch dependent of size
-1/2 on a strong mixing base fVTt : t = :::; 0; 1; :::;T � 1g of size
-r/(r-2), supt�T;T�1 Ekm(zsT t; �)kr <1.

� limT!1(1=T )
PT

t=1E sup�2� jm(zsT t; �)j1+" <1 for some " > 0.

� For all �,�0 2 � and t � T , there is a sequence fBTtg not de-

pending on � with 1
T

PT
t=1EBTt = Op(1) such that km(zsT t; �) �

m(zsTt; �
0)k � BTtk� � �0k

� sup�2� kŴT (�)�W (�)k p! 0 for some 2q� 2q matrices W (�) for
which sup�2�kW (�)k <1.

7For a de�nition of Lp-near epoch dependence see Andrews (1993, p.830), David-

son (1994) or Gallant and White (1988).
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� limT!1(1=T )
P[T�]

t=1

�
(1=S)

PS
s=1Em(zsT t; �; �)

�
exists uniformly

over (�; �; �) 2 B���� and equals � limT!1(1=TS)
PTS

t=1Em(zsT t; �)

and limT!1(1=T )
P[T�]

t=1 Em(zTt) exists uniformly over � 2 � and

equals � limT!1(1=T )
PT

t=1Em(zTt).

� Var
�

1p
T

PT�
t=1[m(zTt)�Em(zTt)]

�
! �
 and

Var
�

1p
T

PT�
t=1[

�
1p
S

PS
s=1m(zsT t; �)�Em(zsT t; �)

�
]
�
! �
, 8� 2

[0; 1] for some positive q � q matrix 
.

� ~m(zTt) = ~m(zsTt; �0), where ~m(zTt) = limT!1(1=T )
PT

t=1Em(zTt)
and
~m(zsTt; �) = limT!1 1

TS

PTS
t=1Em(zsT t; �), and for every neighbor-

hood �0(� �) of �0,
inf�2� inf�2�=�0

f(�; �)0W (�)f(�; �) > 0, where f(�; �) = (�( ~m(zTt)�
~m(zsTt; �1; �))

0; (1� �)( ~m(zTt)� ~m(zsT t; �2; �))
0)0.

Assumption A.4 F (�)0W (�)F (�) is nonsingular 8� 2 � and has eigen-
values bounded away from zero.

We de�ne the total derivative as:

D�0m(zsT t; �) =
d

d�0
m(zsT t; �) (A.1)

Assumption A.5 The total derivative satis�es:

� For some r > 2, fD�0m(zsT t; �) : t � T; T � 1g is a triangular
array of Rq-valued random vector that is L2-near epoch dependent
of size -1/2 on a strong mixing base fVTt : t = :::; 0; 1; :::;T � 1g
of size -r/(r-2) and supt�T;T�1EkD�0m(zsT t; �)kr <1.

� m(zsTt; �) is di�erentiable in (�; �) 2 B0 � �0 8z 2 Z, where B0

and �0 are some neighborhood of �0 and �0 ,

� For all �,�0 2 � and t � T , there is a sequence fCTtg not depending
on � with 1

T

PT
t=1 ECTt = Op(1) such that

kD�0m(zsTt; �)�D�0m(zsT t; �
0)k � CTtk� � �0k and

supt�T;T�1E sup�2�0
kD�0m(zsT t; �)k1+" <1 for some " > 0.

� limT!1 1
TS

P[TS�]
t=1 ED�0m(zsT t; �) exists uniformly over � 2 �

equals �F , 8� 2 �.
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B Proofs of Theorems

We need to use the following lemma for Theorem 1 and 2:

Lemma 1 Suppose (a) Assumptions A.1 holds, (b) Assumptions A.2
holds, (c) for some r > 2, h(zsT t; �) is a triangular array of Rq-valued
random vectors that is L2-near epoch dependent of size -1/2 on a strong
mixing base fVTt : t = :::; 0; 1; :::;T � 1g of size -r/(r-2) and
supt�T;T�1 Ekh(zsTt; �)kr <1, (d) the q-vector h(zsT t; �) follows a global
Lipschitz condition in � and
(e) lim supT!1(1=T )

PT
t=1E sup�2� jh(zsT t; �)j1+" <1 for some " > 0.

Then

sup
�2�

sup
R�T

����� 1T
RX
t=1

[h(zsT t; �)�Eh(zsT t; �)]

����� p! 0

Proof of Lemma 1:

We de�ne GTt(�) = supR�T j 1T
PR

t=1 (h(z
s
T t; �)�Eh(zsT t; �)) j. By

Theorem 21.9 of Davidson (1994),8

sup
�2�

GTt(�)
p! 0

if and only if i) the pointwise convergence of GTt(�) for � 2 �0, where
�0 is a dense subset of � and ii) fGTtg is stochastically equicontinuous.
For i), by Assumption (a), �0 is a dense subset of �. By Assumption (c),
h(zstT ; �) is L2-near epoch dependent, which implies that this process is
L2-approximable.9 A L2-approximable process is L0-approximable. By
Assumption (e), the approximators can be taken to be conditional means
fEh(zsTt; �)jVTt�r ; � � � ; VTt+r : t � T; T � 1; r � 1g. Thus h(zsT t; �) is L0-
near epoch dependent. Using Lemma A2 of Andrews (1993) with XTt

equal to an element of the q-dimensional vector h(zsT t; �) � Eh(zsT t; �),
we obtain i). For ii), by theorem 21.11 from Davidson (1994), global
Lipschitz condition (Assumption (d)) is su�cient to obtain that fGTtg
is stochastically equicontinuous.

Proof of Theorem 1:

First, we need to show that

sup
�2�;�2�

j �fST (�; �)0ŴT (�) �f
S
T (�; �) � f(�; �)0W (�)f(�; �)j p! 0

8The presentation of Davidson is drawn mainly from Andrews (1992). Newey

(1991) provides also conditions for uniform convergence based on stochastic equiconti-

nuity. However, Newey considers the more restrictive assumption that the parameter
space is compact instead the weaker condition that the parameter is bounded.

9The concept of Lp-approximable process is due to P�otscher and Prucha (1991).

See also Davidson (1994) for a presentation of Lp-approximable process.
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Using Assumption A.3, the expression above holds if

sup
�2�

sup
�2�

j �fST (�; �) � f(�; �)j p! 0

Using
PT

[T�]+1 =
PT

t=1�
P[T�]

t=1 , the expression above holds if

sup
�2�

sup
[T�1]�R�T

��� 1T PR
t=1

h�
m(zTt)� 1

S

PS
s=1m(zsT t; �)

�
(B.1)

� (Em(zTt)�Em(zsT t; �))]j
p! 0

where �1 = inff� : � 2 �g > 0 and

sup
�2�

sup
�2�

��� 1T P[T�]
t=1 [(Em(zTt)�Em(zsT t; �)) (B.2)

� ( ~m(zTt)� ~m(zsT t; �))]j
p! 0:

For B.1, by the triangle inequality,

sup
R�T

����� 1T
RX
t=1

" 
m(zTt)�

1

S

SX
s=1

m(zsTt; �)

!
� (Em(zTt)� Em(zsTt; �))

#�����
� sup

R�T

����� 1T
RX
t=1

(m(zTt)�Em(zTt))

�����+
����� 1T

RX
t=1

 
1

S

SX
s=1

m(zsTt; �)�Em(zsTt; �)

!����� :
By Assumption A.2, the �rst term on the right-hand side of the ex-
pression above converges to zero in probability. By using Lemma 1 for
m(zsTt; �) with Assumptions A.1 through A.3, we establish the uniform
WLLN for m(zsTt; �). Thus, the second term of the expression above also
converges to zero in probability. Then, equation B.1 holds. Equation
B.2 holds by Assumption A.3 and the triangle inequality.

We now apply Lemma A1 of Andrews (1993) with
QT (�; �) = �fST (�; �)

0ŴT (�) �f
S
T (�; �), Q(�; �) =

�f(�; �)0W (�) �f (�; �), we

then obtain that sup�2� k�̂(�)� �0k p! 0.
Proof of Theorem 2:

We have�
@

@�0
�fST (�̂

S
T (�); �)

�0
ŴT (�)

p
T �fST (�̂

S
T (�); �) = op(1) (B.3)

By Taylor's Theorem, in vector notation,

p
T �fST (�̂

S
T (�); �) =

p
T �fST (�0; �) (B.4)

+
�

@
@�0

�fST (�̂
S
T (�); �)

�p
T (�̂ST (�)� �0):
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where ��ST (�)
0 = [��

S;(1)
T (�) : : : ��

S;(p)
T (�)] and ��

S;(k)
T (�) = �(k)�

(k)
0 + (1 �

�(k))�̂
S;(k)
T (�) for some 0 � �(k) � 1 and k = 1; : : : ; p. Since �̂ST (�) is

consistent for �0 (see Theorem 1 and by the consistency of the full sample

estimator), ��ST (�)
p! �0.

We have to show that

sup
�2�





 @

@�0
�fST (

��ST (�); �) � F (�)





 p! 0 (B.5)

whenever ��ST (�) satis�es sup�2� k��ST (�)� �0k p! 0. To establish this, we
can write

sup
�2�





 @

@�0
�fST (xt;

��ST (�)) � F (�)





 �
sup
�2�





 @

@�0
�fST (

��ST (�); �) �E
@

@�0
�fST (�; �)

����=��S
T
(�)






+ sup

�2�





E @

@�0
�fST (�; �)

����=��S
T
(�) �E

@

@�0
�fST (�0; �)






+ sup

�2�





E @

@�0
�fST (�0; �)� F (�)





 : (B.6)

For the �rst term of equation (B.6), we need to show a WLLN for
@ �fST (�; �)=@�

0. Using Lemma 1 for D�0m(zsT t; �) combined with Assump-
tions A.1, A.2, A.5, we obtain a uniformWLLN forD�0m(zsT t; �). Hence,
the �rst term of the expression above converges to zero in probability.

For the second term of equation (B.6), we have

sup
�2�





E @

@�0
�fST (�; �)

����=��S
T
(�) �E

@

@�0
�fST (�0; �)





 �
E sup

�2�





 @

@�0
�fST (�; �)

����=��S
T
(�) �

@

@�0
�fST (�0; �)






By Taylor's Theorem, in vector notation,



 @

@�0
�fST (�; �)

����=��S
T
(�) �

@

@�0
�fST (�0; �)





 �




 @

@�0
�fST (

��ST ; �)





 

��ST (�)� �0




where ��ST (�)
0 = [��

S;(1)
T (�) : : : ��

S;(p)
T (�)] and ��

S;(k)
T (�) = �(k)�

(k)
0 + (1 �

�(k))��
S;(k)
T (�) for some 0 � �(k) � 1 and k = 1; : : : ; p. Now, using the

global Lipschitz condition with

CTt =



D�0m(zsT t;

��ST (�))
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by Assumption A.5 we have that 1
T

PT
t=1ECTt = Op(1) for a neighbor-

hood of �0. Since sup�2� k��ST (�) � �0k p! 0, we obtain that the second
term converges to zero in probability. The third term of equation (B.6)
converges to zero in probability by Assumption A.5. Now, we show that

p
T �fST (�0; �)) G(S; �) (B.7)

We de�ne

fS[T�](�; �) =
1

T

[T�]X
t=1

 
m(zt)�

1

S

SX
s=1

m(zst ; �)

!

which is equal, under the null hypothesis, to

fS[T�](�; �) =
1

T

[T�]X
t=1

[m(zt)�Em(zt)]�
1

TS

[TS�]X
t=1

[m(zst ; �)�Em(zst ; �)]

Both terms above have asymptotically independent increments and are

mutually independent. Now, we de�ne v1;T (�) = (1=
p
T )
P[T�]

t=1 [m(zt)�
Em(zt)] and vS2;T (�) = (1=

p
TS)

P[TS�]
t=1 [m(zst ; �) � Em(zst ; �)]. By the

fact that fv1;T (�) : T � 1g and fvS2;T (�) : T � 1g have asymptotically in-
dependent increments and under Assumptions A.2 and A.3, we can apply
Lemma A4 of Andrews (1993) to the sequences v1;T (�) and vS2;T (�). Then
v1;T (�) ) 
1=2B1(�) and vS2;T (�) ) 
1=2B2(�): Since

p
TfS[T�](�0; �) =

((v1;T (�)� 1p
S
vS2;T (�))

0; ((v1;T (1)� v1;T (�))� 1p
S
(vS2;T (1)� vS2;T (�)))

0)0,
moreover, by equations (B.3), (B.4), (B.5) and (B.7), Assumptions A.4
and A.5 and the continuous mapping theorem (see Pollard (1984)), we
obtain the desired result.

Proof of Theorem 3:

The proof is a modi�cation of Andrews' proof for the Wald test which
takes into account the presence of simulated moments. We de�ne � =
[Ir ; �Ir; 0s] 2 Rr�(2r+s) and have:

p
T
�
�̂S1T (�) � �̂S2T (�)

�
= �

p
T
�
�̂ST (�) � �0

�
) � (F (�)0W (�)F (�))

�1
F (�)0W (�)G(S; �)

For an optimal choice of the weighting matrix, we can write:

F (�)0W (�)F (�) =

"
�(F�)0
��1F� 0 �(F�)0
��1F �

0 (1� �)(F�)0
��1F� (1� �)(F�)0
��1F �

�(F �)0
��1F� (1 � �)(F �)0
��1F� (F �)0
��1F �

#
:
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Therefore, by the lemma A5 of Andrews (1993):

� (F (�)0W (�)F (�))
�1

F (�)0W (�)G(S;�) = [Ir : �Ir]

�
�
�(F �)0
��1F � 0

0 (1� �)(F �)0
��1F �

��1

�

2
4 (F �)0
��1=2

�
(1 + 1

s
)�1=2

� h
B1(�)� 1p

S
B2(�)

i
(F �)0
��1=2

�
(1 + 1

s
)�1=2

� h
(B1(1)�B1(�))� 1p

S
(B2(1)�B2(�))

i
3
5

= C
�
1 + 1

S

��1=2��B1(�)� 1p
S
B2(�)

�
�

�
�
(B1(1)�B1(�))� 1p

S
(B2(1)�B2(�))

�
(1��)

�

where C =
�
(F �)0
��1F �

��1
(F �)0
��1=2 and�

(1 + 1
S
)�1=2

� h
B1(�) � 1p

S
B2(�)

i
is a q-dimensional vector of standard

Brownian motions which will be denoted B�(�).
We have also

V̂1(�)

�
+

V̂2(�)

(1� �)
) V

�(1� �)
=

CC 0

�(1� �)
:

where V =
�
(F �)0
��1F �

��1
. The Wald statistic then converges to

�
[B�(�)� �B�(1)]

�(1� �)

�0
C 0
�

CC 0

�(1� �)

��1
C

�
[B�(�) � �B�(1)]

�(1� �)

�
:

We can decompose C 0 (CC 0)�1 C as C 0 (CC 0)�1=2 (CC 0)�1=2 C. When

we de�ne the Brownian motions C 0 (CC 0)�1=2B�(�), the asymptotic
distribution result follows. In particular, the asymptotic distribution
does not depend on the number of simulations S, and hence is nuisance
parameter free. For the LMT (S; �) statistic and LRT (S; �), we can show
that

LMS
T (�) =WaldST (�) + op(1)

and

LRS
T (�) =WaldST (�) + op(1)
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using the same arguments as in Andrews for the GMM case. For brevity
the proof is omitted.

Proof of Theorem 4:

We can show that

p
TfST�(�0)) 
1=2B1(�)�

1p
S

1=2B2(�) +H(�) (B.8)

where H(�) =
R �
0
h(r)dr. Let us consider an expansion of the moment

conditions for the full sample evaluated with the restricted estimator

fST (
~�ST ) = fST (�0) +

@

@�0
fST (

��)
�
~�ST � �0

�
:

where ��ST
0 = [��

S;(1)
T : : : ��

S;(p)
T ] and ��

S;(k)
T = �(k)�

(k)
0 + (1 � �(k))�̂

S;(k)
T

for some 0 � �(k) � 1 and k = 1; : : : ; p. Multiplying both sides by:
@fST (

~�S)0WT =@�
0 we obtain

�
~�ST � �0

�
= �

�
@

@�0
fST (

~�ST )
0WT

@

@�0
fST (

��)

��1
@

@�0
fST (

~�ST )
0WT f

S
T (�0)(B.9)

since (@fST (
~�ST )=@�

0)0WT f
S
T (

~�ST ) = op(1):
Now we expand the moment conditions for the �rst subsample eval-

uated at the restricted full sample estimator

fST�(
~�ST ) = fST�(�0) +

@

@�0
fST�(

��)
�
~�ST � �0

�
: (B.10)

where ��ST
0 = [��

S;(1)
T : : : ��

S;(p)
T ] and ��

S;(k)
T = �(k)�

(k)
0 + (1 � �(k))��

S;(k)
T for

some 0 � �(k) � 1 and k = 1; : : : ; p. We substitue (B.9) into (B.10)

fST�(
~�ST ) = fST�(�0)�

@

@�0
fST�(

��)

�
@

@�0
fST (

~�ST )
0WT

@

@�0
fST (

��)

��1

� @

@�0
fST (

~�ST )
0WT f

S
T (�0)

By (B.8) and Assumption (A.3) and eq(B.5)

p
TfST�(

~�ST ) ) 
1=2B1(�)�
1p
S

1=2B2(�) +H(�)�

�F (F 0WF )�1F 0W
�

1=2B1(1)�

1p
S

1=2B2(1) +H(1)

�
:
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Proof of Corollary 4:

The result follows from Theorem 4 and the fact that�
1 +

1

S

��1=2
C

�
B1(�) �

1p
S
B2(�)

�
(B.11)

is a q-dimensional vector of standard Brownian motion.
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Table 1

Size and power. T = 50

� � S 1 % 5 % 10 %

0 1 0.0 0.0 0.1
2 0.4 2.8 4.8
5 0.4 3.4 5.4
10 1.0 3.4 5.8

.25 .5 1 0.0 0.0 0.1
2 2.2 9.0 13.0
5 3.3 12.1 17.6
10 3.9 13.8 20.4

.5 .5 1 0.0 0.5 1.1
2 2.7 12.9 19.0
5 4.4 15.3 21.9
10 4.8 17.5 26.4

.75 .5 1 0.0 0.2 0.6
2 2.9 10.3 14.9
5 2.9 11.9 17.4
10 3.3 12.9 18.2

.25 1 1 0.0 6.0 13.2
2 12.5 35.7 43.6
5 21.6 50.0 60.3
10 23.2 49.8 60.5

.5 1 1 0.2 11.6 21.4
2 19.3 45.0 56.4
5 33.2 61.8 71.0
10 38.1 69.0 77.4

.75 1 1 0.1 5.4 11.2
2 12.2 32.1 41.6
5 17.5 45.4 56.0
10 22.5 50.3 60.1
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Table 2

Size and power. T = 100

� � S 1 % 5 % 10 %

0 1 0.0 0.0 0.1
2 0.5 3.1 5.7
5 0.7 3.5 5.3
10 0.9 3.6 6.2

.25 .5 1 0.3 2.9 5.7
2 9.3 24.8 30.9
5 10.8 27.5 35.2
10 10.5 28.7 37.5

.5 .5 1 1.0 5.8 10.2
2 10.9 29.7 39.5
5 15.0 35.1 45.0
10 20.5 41.4 49.5

.75 .5 1 0.1 2.1 5.4
2 7.3 21.1 29.8
5 9.0 26.2 34.2
10 12.7 30.1 36.7

.25 1 1 15.3 51.4 63.7
2 48.6 77.1 85.2
5 70.0 88.0 92.4
10 73.3 89.1 93.1

.5 1 1 23.7 49.8 60.1
2 67.2 84.6 90.0
5 82.4 95.3 96.7
10 86.9 94.8 97.2

.75 1 1 7.8 16.5 20.6
2 50.9 77.5 84.0
5 66.7 86.3 91.3
10 73.2 90.4 93.5
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