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Markovian Processes, Two-Sided Autoregressions
and Finite-Sample Inference for Stationary and

Nonstationary Autoregressive Processes*

Jean-Marie Dufour†, Olivier Torrès‡

Résumé / Abstract

Dans cet article, nous proposons des procédures d’inférence valides à
distance finie pour des modèles autorégressifs (AR) stationnaires et non-
stationnaires. La méthode suggérée est fondée sur des propriétés particulières des
processus markoviens combinées à une technique de subdivision d’échantillon.
Les résultats sur les processus de Markov (indépendance intercalaire, troncature)
ne requièrent que l’existence de densités conditionnelles. Nous démontrons les
propriétés requises pour des processus markoviens multivariés possiblement non-
stationnaires et non-gaussiens. Pour le cas des modèles de régression linéaires
avec erreurs autorégressives d’ordre un, nous montrons comment utiliser ces
résultats afin de simplifier les propriétés distributionnelles du modèle en
considérant la distribution conditionnelle d’une partie des observations étant
donné le reste. Cette transformation conduit à un nouveau modèle qui a la forme
d’une autorégression bilatérale à laquelle on peut appliquer les techniques usuelles
d’analyse des modèles de régression linéaires. Nous montrons comment obtenir
des tests et régions de confiance pour la moyenne et les paramètres autorégressifs
du modèle. Nous proposons aussi un test pour l’ordre d’une autorégression. Nous
montrons qu’une technique de combinaison de tests obtenus à partir de plusieurs
sous-échantillons peut améliorer la performance de la procédure. Enfin la méthode
est appliquée à un modèle de l’investissement aux États-Unis.

In this paper, we develop finite-sample inference procedures for stationary
and nonstationary autoregressive (AR) models. The method is based on special
properties of Markov processes and a split-sample technique. The results on
Markovian processes (intercalary independence and truncation) only require the
existence of conditional densities. They are proved for possibly nonstationary
and/or non-Gaussian multivariate Markov processes. In the context of a linear
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regression model with AR(1) errors, we show how these results can be used to
simplify the distributional properties of the model by conditioning a subset of the
data on the remaining observations. This transformation leads to a new model
which has the form of a two-sided autoregression to which standard classical
linear regression inference techniques can be applied. We show how to derive
tests and confidence sets for the mean and/or autoregressive parameters of the
model. We also develop a test on the order of an autoregression. We show that a
combination of subsample-based inferences can improve the performance of the
procedure. An application to U.S. domestic investment data illustrates the method.

Mots Clés : Séries chronologiques, processus de Markov, processus autorégressif,
autocorrélation, modèle dynamique, modèle à retards échelonnés, autorégression
bilatérale, indépendance intercalaire, test exact, Ogawara-Hannan, investissement

Keywords: Time series, Markov process, autoregressive process, autocorrelation, dynamic
model, distributed-lag model, two-sided autoregression, intercalary independence,
exact test, finite-sample test, Ogawara-Hannan, investment
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1. Introduction

The presence of nuisance parameters is a crucial problem when making inference on the parameters
of a dynamic model. Typically test statistics have distributions which depend on those nuisance pa-
rameters so that they are difficult to interpret. A first approach to solve this difficulty consists in find-
ing consistent estimates of the nuisance parameters which are then substituted for these parameters
in the distribution of the statistic considered. However it is well known that such approximations
can be arbitrarily bad; see Park and Mitchell (1980), Miyazaki and Griffiths (1984) and DeJong,
Nankervis, Savin, and Whiteman (1992) for examples in the context of AR processes, Burnside and
Eichenbaum (1994, 1996) about Wald-type tests based on GMM estimators, Dufour (1997) for a
more general treatment of asymptotic approximation failures in the case of Wald statistics, Savin
and Würtz (1996) for a similar discussion in the case of logit models, and Maasoumi (1992) for
some general criticisms. Consequently, when hypothesis testing is the main objective, such a pro-
cedure offers no guarantee that the level constraint in the sense of Neyman-Pearson [see Lehmann
(1986, p. 69) and Gouri´eroux and Monfort (1989, p. 14)] be satisfied. This also makes comparisons
between testing procedures difficult.

A second approach consists in using bounds which typically lead to conservative tests. Suppose
the true critical value for our test statistic is unknown, but that it is possible to find bounds on
this value, most importantly a bound yielding a critical region whose probability under the null
hypothesis is not larger (but could be smaller) than the stated level of the test. For some examples of
such methods in time series models, see Vinod (1976), Kiviet (1980) and Hillier and King (1987).
In these cases, the bounds appear to increase without limit when the nuisance parameters approach
some boundary (e.g., the stationarity frontier in the case of ARMA processes) and/or with the sample
size so they become useless [see Dufour and Torr`es (1998)]. For regression models with AR(1)
disturbances, procedures which do not display this unattractive feature were proposed in Dufour
(1990); for further examples of such techniques, see also Dufour (1989), Dufour and Kiviet (1996,
1998), Campbell and Dufour (1997), Dufour, Hallin, and Mizera (1998), and Kiviet and Dufour
(1997). However, these methods appear difficult to extend to more complex dynamic models such
as AR(p) processes,p ≥ 2.

In this paper, we propose an exact inference procedure for the parameters of Markov processes.
It is based on extending old but little known results stated by Ogawara (1951) for univariate station-
ary Gaussian AR(p) process. Note Ogawara’s article does not contain the proof of the result, and
such a demonstration does not appear to be available elsewhere. The procedure has been extended
by Hannan (1956) to multivariate, stationary, Gaussian processes admitting a VAR(1) representa-
tion. In the two latter references, procedures are developed for making inference on the autocorre-
lation parameters of pure AR processes. Hannan (1955a, 1955b) also showed this method can be
applied to test a hypothesis on the coefficients of a linear regression model with stationary AR(1)
errors.

In this paper, we generalize and improve these results in several directions. First, the initial
results of Ogawara (1951) are extended to a larger class of processes, which includes multivariate,
possibly non-normal, integrated or explosive processes. In particular, for general Markov processes
of orderp, it is shown that the variables separated by lags ofp periods are mutually independent
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conditional on the intercalary observations (intercalary independence), a rather surprising property
which is certainly of interest by itself. Second, we consider a more general class of models and
hypotheses which includes as special cases all the models previously treated in the earlier literature
[Ogawara (1951), Hannan (1955a, 1955b, 1956) and Krishnaiah and Murthy (1966)]. In particu-
lar, although this procedure was originally designed to make inference on the mean of a dynamic
model, we show it is also suitable for inference on the nuisance parameters, such as autoregres-
sive coefficients. Furthermore, we develop a procedure for constructing confidence regions. Third,
we propose a way of resolving the information loss due to the application of the Ogawara-Hannan
procedure. Fourth, we provide simulations results to evaluate the performance of our method.

Our procedure involves several steps. First, the sample is split into several subsets of observa-
tions. Next, on conditioning the original model on one of these subsamples, a transformed model
having the form of a two-sided autoregression is obtained,i.e., the dependent variable is regressed
on its own leads and lags. This transformed model has simpler distributional properties and allows
one to apply standard fixed regressor techniques. This is repeated for each subsample. Then a pool-
ing method described in Dufour and Torr`es (1998) is used to combine the results of subsample-based
inferences and obtain a single answer based on the whole sample.

The procedures are quite easy to implement, for they only require applying standard test proce-
dures (Student, Fisher,χ2) to a transformed model. This means that there is no need to establish
special critical points. The method is flexible enough to be easily adaptable to a wide variety of
dynamic and econometric models. In particular, we show it can easily be adapted to various setups,
such as: (1) integrated and explosive processes; (2) multidimensional processes (VAR models); (3)
various models with more general dynamic structures

The paper is organized as follows. In Section 2, we motivate and expose the procedures devel-
oped in this paper in the context a simple AR(1) model with a deterministic trend. In particular,
we demonstrate how to use a number of general results on Markov processes which are exposed in
Section 3. In Section 4, we discuss in detail how these results can be applied to obtain finite sample
inference procedures in the context of an AR(1) process. In Section 5, we consider a more general
model by introducing a drift function in the AR(1) model. In particular, we explicitly show how one
can obtain an exact test on the mean parametersand the autoregressive coefficients. We also derive
an exact test for the order of an autoregression. In Section 6, we propose a method for improving
the performance of Ogawara’s procedure and we present simulation results. We conclude in Section
7. The proofs appear in the Appendix.

2. An introductory example

As an example of the procedures presented in this paper, consider the following AR(1) model

Yt = mt + λYt−1 + ut , with mt = b0 + b1t , t = 1, 2, . . . , T, (2.1)

whereu1, ... , uT are independent and identically distributed(i.i.d.) according to aN(0, σ2) distri-

bution [henceforth denotedut
i.i.d.∼ N(0, σ2), t = 1, . . . , T ].

Because such a model is recognized for describing well the dynamic behavior of many economic
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time series, a large part of the econometrics literature has been devoted to estimating it and making
inferences on its parameters. One of the most investigated issue consists in testing the unit root
hypothesisH0 : λ = 1. Most of the (now) standard test procedures proposed in the literature use
an OLS estimatêλT of λ to form a statistic which is usually a normalized version ofλ̂T − 1. The
non-standard asymptotic distribution of this statistic is used to define a critical region forH0. As
mentioned in Section 1, the lack of reliability of such procedures is well documented. We propose
here a simple approach which avoids the use of asymptotic approximations and provides tests and
confidence regions having the stated level. Although the procedure presented in this paper goes
much beyond this single issue, we illustrate it in the context of the simple AR(1) model (2.1) where
we wish to testH0 : λ = 1. For the sake of simplicity, we assume the sample size is odd, so thatT
may be writtenT = 2n+ 1, for some strictly positive integern.

The method may then be described as follows. The results of this paper entail the follow-
ing properties: (1) conditionally onΦodd = (Y1, Y3, . . . , Y2n+1)′, the remaining observations
Y2, Y4, . . . , Y2n are mutually independent [see Theorem3.1]; (2) the conditional distribution of
Y2t givenΦodd is identical to the conditional distribution ofY2t conditional on(Y2t−1, Y2t+1) [see
Theorem3.2]. In particular, for anyt = 1, 2, . . . , n, the mean of this conditional distribution is
E(Y2t|Y2t−1, Y2t+1) = β1m2t + β2m2t+1 + β(Y2t−1 + Y2t+1), so that we may write

Yt = β1mt + β2mt+1 + β(Yt−1 + Yt+1) + ηt

or, using the expression ofmt,

Yt = a0 + a1t+ β(Yt−1 + Yt+1) + ηt (2.2)

for t = 2, 4, . . . , 2n. The coefficientsa0, a1 andβ can be shown to be the following transformations
of the initial parameters:

a0 = b0

(
1− λ

1 + λ2

)
− b1

(
λ

1 + λ2

)
, a1 = b1

(
1− λ

1 + λ2

)
, β =

λ

1 + λ2 . (2.3)

Further, the error termsη2, η4, . . . , η2n, arei.i.d. N(0, σ2
1), conditionally onΦodd. Now, it is inter-

esting to note that (2.2) enjoys all the properties of a standard linear regression model with Gaus-
sian i.i.d. errors. Therefore, any linear hypothesis on its coefficients may be tested with usual
procedures. In particular,H0 : λ = 1 in (2.1) may be reformulated as a linear restriction on the
parameters of (2.2), namelyH(a)

0 : (a1 = 0 and β = 1/2). A simple Fisher procedure gives a

critical region with any required levelα for H(a)
0 .

To illustrate the procedure, we propose the following numerical example. Following Dufour
and Kiviet (1998), a model similar to (2.1) describes the dynamics of the (logarithm of) US gross
private domestic investment in non-residential structures over the period 1952:I to 1969:IV [see
Berndt (1991, p. 278) for a detailed description of the data]. The model is

Yt = b0 + b1t/100 + λYt−1 +mt + ut . (2.4)
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When the latter is estimated by OLS, we obtain:λ̂ = 0.92143, b̂0 = 0.87197, b̂1 = 0.06986 with
unbiased error variance estimators2 = 4.92300 × 10−4. λ̂ being close to 1, one may wish to test
for the presence of a unit root in the AR polynomial. According to the discussion above, one would
estimate the transformed model similar to (2.2)

Yt = a0 + a1t/100 + β(Yt+1 + Yt−1) + ηt , t = 2, 4, . . . , 70 , (2.5)

wherea0, a1 andβ are given by (2.3), and testH(a)
0 : (a1 = 0 andβ = 1/2). Rewriting the null

hypothesis under the formH(a)
0 : Rδ − r = 0 where

R =

(
0 1 0

0 0 1

)
, δ = (a0, a1, β)′, r = (0, 1/2)′,

the unit root hypothesis may then be tested at any levelα by forming the statisticF1 = (Rδ̂1 −
r)′[RV̂ (δ̂1)R′]−1(Rδ̂1 − r) and using the critical regionF1 ≥ F (2, 31; 1 − α). Here δ̂ denote
the vector of the OLS estimates of the components of(a0, a1, β)′ in (2.5), V̂ (δ̂1) is the usual
(“unbiased”) estimator of the variance-covariance matrix ofδ̂1, andF (2, 31; 1 − α) is the (1 −
α) quantile of the Fisher distribution with(2, 31) degrees of freedom. Computations yield the
following results:

δ̂1 =

 0.17965
0.00883
0.49191

 , V̂ (δ̂1) =

 0.21226 0.01775 −0.00968
· 0.00163 −0.00081
· · 0.00044

 , F1 = 0.211179 .

The p-value associated withF1 is 0.8107842 so thatH(a)
0 is accepted at any level less than

81.07842%.
In our example, the transformed model (2.2) [or (2.5)] usesY2, Y4, . . . , Y2n, as dependent vari-

ables andY1, Y3, . . . , Y2n+1, as the conditioning variables. Obviously, the results we used for
writing (2.2) may also be applied whenΦeven = (Y2, Y4, . . . , Y2n)′ are the conditioning variables.
Another transformed model is then

Yt = a0 + a1t+ β(Yt−1 + Yt+1) + νt , t = 3, 5, . . . , 2n − 1 . (2.6)

The error termsν3, ν5, , . . . , ν2n−1 are independentN(0, σ2
1) conditionally onΦevenand (2.6) pro-

duces another critical region with levelα forH(a)
0 .Back to the US gross private domestic investment

in non-residential structures example, OLS estimation of

Yt = a0 + a1t/100 + β(Yt+1 + Yt−1) + νt , t = 3, 5, . . . , 71 , (2.7)
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yields

δ̂2 =

 −0.49970
−0.03342

0.52265

 , V̂ (δ̂2) =

 0.31227 0.02587 −0.01423
· 0.00234 −0.00118
· · 0.00065

 , F2 = 0.563799

with ap-value of 0.5747689 forF2.

The tests based onF1 andF2 both agree on acceptingH(a)
0 at level 5% so that we would be

tempted to accept the null at the same level of 5%. However, the decision rule which consists of
accepting the null hypothesis whenm ≥ 2 tests accept it each at levelα has a level which is larger
to α. Such a method is the well knowninduced testprocedure [see Savin (1984)] which combines
several results from separate (although not necessarily independent) inferences. A sufficient con-
dition ensuring it has levelα is that each one of them tests which are combined has levelα/m
[see Savin (1984) and Dufour and Torr`es (1998) for further details]. In model (2.1), we accept
H0 : λ = 1 at levelα whenever the tests based on (2.2) and (2.6) both accept (at levelα/2) the

hypothesisH(a)
0 : a1 = 0 andβ = 1/2. In terms ofp-values, this criterion can be reformulated as

follows: we rejectH0 : λ = 1 at levelα when the minimum of thep-values obtained from (2.2)
and (2.6) is smaller thanα/2. When applied to the US investment data, it is easy to see that the null
hypothesis of a unit root is accepted at level 5% for instance.

The procedure just described is very simple as it only requires standard tabulated distribution.
Its steps can be summarized as follows. The initial model expresses the conditional mean of a
Markov process, typicallyYt = E(Yt|Yt−1) + ut. By using properties of such processes, we are
able to transform the initial model by first splitting the sample into two subsets of variables, and
then writing the conditional mean of the variables in the first subset given some of the variables in
the second subset. This leads to several transformed models such asYt = E(Yt|Yt−1, Yt+1) + uit,
t ∈ Ji, i = 1, 2, for instance, whereJ1 andJ2 are collections of indices defining the two subsets of
variables. The testing procedure exploits the fact that, due to some properties of Markov processes,
these transformed models are standard linear regressions for which usual inference techniques apply.

In the next section, we present extensions of the theoretical results of Ogawara (1951) and
Hannan (1956). These results establish the properties of Markov processes on which the inference
procedures proposed rely.

3. Results on Markov processes

3.1. Notation

Let {Xt : t ∈ T} be a stochastic process on a probability space(Ω, F , P) with trajectories in
R

m, i.e. X(ω, t) ≡ (X1(ω, t),X2(ω, t), . . . ,Xm(ω, t)
)′
, m ≥ 1, t ∈ T, whereT is an interval

of the integersZ. The symbol “≡” means “equal by definition”. We assume that for allt ∈ T, the
probability law ofXt has densityfXt with respect to the Lebesgue measure onRm (the Borelσ-
algebra of subsets ofR

m). For any random vectorΦ of conditioning variables, we denotefXt|Φ(x|φ)
the conditional density ofXt givenΦ = φ, evaluated atx ∈ R

m.
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It will be useful to introduce the following notations. Letp andn be two positive integers
(p ≥ 1, n ≥ 1). We consider the stochastic process{Xt : t ∈ T} and define:

Bt,p ≡ (Xt−1,Xt−2, . . . ,Xt−p) =
(
Xt−τ : 1 ≤ τ ≤ p

)
, bt,p ≡

(
xt−τ : 1 ≤ τ ≤ p

)
,

for p+ 1 ≤ t ≤ (n+ 1)(p + 1), and

At,p ≡
(
Bs(p+1),p : t ≤ s ≤ n+ 1

)
, at,p ≡

(
bs(p+1),p : t ≤ s ≤ n+ 1

)
, for 1 ≤ t ≤ n+ 1 ,

where we assume the setT contains 1 and(n + 1)(p + 1) − 1. In other words,Bt,p denotes the
set ofp variables immediately precedingXt, andAt,p is a collection ofBs,p sets. We can give the
following illustration of the way we split the variables in{Xt : t ∈ T} :

Xt(p+1)−p,Xt(p+1)−p+1, . . . ,Xt(p+1)−1︸ ︷︷ ︸
Bt(p+1),p

, Xt(p+1) , X(t+1)(p+1)−p,X(t+1)(p+1)−p+1, . . . ,X(t+1)(p+1)−1︸ ︷︷ ︸
B(t+1)(p+1),p

The following notation will provide a convenient shortcut: for anyt ∈ T, we set

Xt, . . .(r) . . . ,Xt+kr ≡ (Xt,Xt+r,Xt+2r , . . . ,Xt+kr)

for any positive integersr andk such thatt + kr ∈ T. With this notation, we may now give the
main definition.

Let {Xt : t ∈ T} be a stochastic process andp a positive integer. We say that{Xt : t ∈ T}
is a Markov process of orderp on T (or {Xt : t ∈ T} is Markovian of orderp on T) if it satisfies
conditionM(p) defined as follows:

M(p) : fXt|Xt−k,...(1)... ,Xt−1
= fXt|Xt−p,...(1)... ,Xt−1

, ∀k ∈ N, ∀t ∈ T, with t− k ∈ T andk ≥ p.

(3.1)

Note that, forT = Z andp = 1, we have the standard definition of a Markov process.
LetX andY be two random vectors of dimensionq andr, respectively. Whenever the relevant

moments exist, the affine regression ofX onY is the random vector of sizeq, denotedEL(X|Y ),
whosei-th component is the orthogonal projection ofXi on the space spanned by the affine func-
tions ofY (an affine function ofY is a linear combination of the elements ofY plus possibly a
constant). IfW is another random vector,X⊥Y |W means that the residuals from the affine regres-
sions ofX andY onW are uncorrelated,i.e. E

[
X − EL(X|W )][Y − EL(Y |W )]′

]
= 0 .

3.2. Intercalary independence and truncation properties

The procedures presented in Ogawara (1951) and Hannan (1955a, 1955b, 1956) exploit special
properties of Markov processes (intercalary independence, truncation), which we now study in de-
tail and generalize. The propositions below will be used to build a transformed model that satisfies
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the assumptions of the classical linear model on which standard inference techniques can be ap-
plied. Further they provide interesting insights on the structure of Markovian processes, and thus
have interest by themselves. The intercalary independence property was apparently first given with-
out proof by Ogawara (1951) for univariate Markov processes, while the truncation property was
used implicitly by him (again without proof) in the context of univariate autoregressive stationary
Gaussian processes. Ogawara (1951) notes that these results have been stated without proof in Lin-
nik (1949). However no proof is given by Ogawara (1951) nor (apparently) by any other author. In
this section, we demonstrate and extend these results to multivariate Markov processes of orderp,
allowing for non-stationarity and non-normality. In order to keep things as simple as possible, we
shall assume that the time index setT contains the positive integersN : T ⊇ N = {1, 2, . . . }.

The first result we state (intercalary independencefor Markov processes of orderp) is an exten-
sion of Theorems 1 and 2 of Ogawara (1951). The proofs are given in the Appendix.

Theorem 3.1 INTERCALARY INDEPENDENCE. Let {Xt : t ∈ T} be a stochastic process satis-
fying conditionM(p), with T ⊇ N. Then for any positive integern, Xp+1,X2(p+1), . . . ,Xn(p+1)

are mutually independent, conditionally onA1,p.

Consider a dynamic model of the form

Xt = g1,t(Zt,Xν , . . .(1) . . . ,Xτ ) + εt , t = 1, 2, . . . , T ≡ n(p+ 1) + p (3.2)

where{Xt : t ∈ T} is anm-dimensional Markov process of orderp onT ≡ {1, 2, ..., n(p+1)+p},
and1 ≤ ν ≤ τ ≤ t− 1. If {Xt : t ∈ T} is Markovian of orderp, we havet− 1 ≥ τ ≥ ν ≥ t− p.

Zt is a vector of fixed exogenous variables,εi,t
i.i.d.∼ N(0, σ2

i ), i = 1, 2, . . . ,m, and g1,t is a
deterministic function inRm. If we condition (3.2) onA1,p, we obtain a conditional model

Xt(p+1) = g2,t(Zt(p+1), A1,p) + ηt(p+1) , t = 1, 2, . . . , n , (3.3)

in which, according to Theorem3.1, the endogenous variables are independent and

E(ηt(p+1)|A1,p) = 0 , t = 1, 2, . . . , n .

We achieve the independence at the expense of a larger number of variables in the conditional mean
of Xt(p+1) (A1,p instead ofXν , . . .(1) . . . ,Xτ ). However, by the following theorem, we can restrict
ourselves to consider a more parsimonious model which is distributionally equivalent to (3.3).

Theorem 3.2 TRUNCATION PROPERTY. Let {Xt : t ∈ T} be a stochastic process satisfying
conditionM(p) with T ⊇ N. Then

fXt(p+1)|A1,p
= fXt(p+1)|B(t+1)(p+1),p,Bt(p+1),p

for anyt = 1, 2, . . . , n, ∀n ∈ N.

Note only the Markov property of the process is needed to establish these results. In particular,
stationarity and/or normality are not required. The above theorem extends a result stated without
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proof by Ogawara (1951) in the context of a univariate, stationary, Gaussian Markov process of
orderp. For completeness, we state the latter as a corollary.

Corollary 3.3 INTERCALARY INDEPENDENCE FORGAUSSIAN PROCESSES. Let{Xt : t ∈ Z}
be a(multidimensional) Gaussian Markov process of orderp (p ≥ 1). Then Theorems3.1and3.2
hold for{Xt : t ∈ Z} .

To see the latter corollary, we simply note that for anyt, fXt|X−∞,...(1)... ,Xt−1
=

fXt|Xt−p,...(1)... ,Xt−1
⇒ fXt|Xt−s,...(1)... ,Xt−1

= fXt|Xt−p,...(1)... ,Xt−1
, for any s ≥ p. Theorems3.1

and3.2extend the results used by Ogawara to a larger class of processes. Theorem3.2shows that,
if {Xt : t ∈ T} is Markovian of orderp, variables other than those inBt(p+1),p andB(t+1)(p+1),p

do not appear in the conditional density ofXt(p+1) givenA1,p. For example in (3.3), this suggests
we can limit ourselves to consider a simpler equivalent model whereXt(p+1) only depends on the
adjacent variablesB(t+1)(p+1),p andBt(p+1),p , instead of the complete setA1,p :

Xt(p+1) = gt(Zt(p+1), B(t+1)(p+1),p, Bt(p+1),p) + ηt(p+1) , t = 1, 2, . . . , n, (3.4)

where theXt(p+1)’s are (conditionally) independent. The functiongt( · ) in (3.4) may be interpreted
as the “best approximation” (projection) ofXt(p+1) on the space spanned by (possibly nonlinear)
functions of the variables inBt(p+1),p andB(t+1)(p+1),p. Corollary 3.5 below gives a sufficient
condition for such “projections” to be invariant with respect tot, e.g., to havegt( · ) = g( · ), for all
t = 1, 2, . . . , n. We first need to introduce the following definition.

Definition 3.4 CONDITIONAL STRICT STATIONARITY OF ORDERp. Let {Xt : t ∈ T} be a
stochastic process onT ⊇ N. We say that{Xt : t ∈ T} is conditionally strictly stationary of order
p [denoted CSS(p)] if there exists a strictly positive integerp such that

fXt|Xt−p,...(1)... ,Xt−1
( · | · ) = fXs|Xs−p,...(1)... ,Xs−1

( · | · )

for all s ∈ T andt ∈ T such thats− p ∈ T andt− p ∈ T.

Corollary 3.5 TRUNCATION PROPERTY FORCSS MARKOV PROCESSES. Let{Xt : t ∈ T} be a
CSS(p) process satisfying conditionM(p) with T ⊇ N. Then

fXt(p+1)|B(t+1)(p+1),p,Bt(p+1),p
( · | · ) = fXs(p+1)|B(s+1)(p+1),p,Bs(p+1),p

( · | · ) , ∀t ≥ 1, ∀s ≥ 1 .

To see the latter property, we note thatBτ ,p = Xτ−p, . . .(1) . . . ,Xτ−1. Then writing the condi-
tional density as

fXt(p+1)|B(t+1)(p+1),p,Bt(p+1),p
=

∏t(p+1)+p
τ=t(p+1) fXτ |Bτ,p∫ ∏t(p+1)+p

τ=t(p+1) fXτ |Bτ,p
dxt(p+1)

[see the proof of Theorem3.2, equation (A.4) in the Appendix], the CSS(p) property of{Xt : t ∈
T} yields the result. The CSS(p) condition is entailed by strict stationarity. Furthermore, any
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random process that admits an AR(p) representation withi.i.d. errors is Markovian of orderp and
CSS(p). This will be important for our purpose, since (3.4) can be rewritten as

Xt(p+1) = g(Zt(p+1), B(t+1)(p+1),p, Bt(p+1),p) + ηt(p+1) , t = 1, 2, . . . , n, (3.5)

whereg no longer depends ont, which makes statistical inference much easier. Furthermore, forg
affine, (3.5) is the classical linear regression model.

We now give two other propositions that will be especially useful when the process{Xt : t ∈
T} has an AR representation.

Theorem 3.6 TRUNCATION PROPERTY FORAR PROCESSES. Let{Xt : t ∈ T} be a Markov pro-
cess of orderp onT ⊇ N. Then for any integerq ≥ p, we havefXt|Bt+1+q,q,Bt,q

= fXt|Bt+1+p,p,Bt,p
,

∀t ≥ q + 1.

Corollary 3.7 PROJECTION TRUNCATION FORAR PROCESSES. Let{Xt : t ∈ T} be a Markov
process of orderp on T, whose elements have finite second moments. Then, for anyq such that
q ≥ p, we haveEL(Xt|Bt+1+q,q, Bt,q) = EL(Xt|Bt+1+p,p, Bt,p).

In the context of random processes which satisfy only second order properties analogous to
those of Markov processes, results similar to intercalary independence and truncation hold. These
are given in Theorems3.8and3.9.

Theorem 3.8 INTERCALARY ORTHOGONALITY. Let {Xt : t ∈ T} be a random process with
finite second moments such that

Xt⊥(X1, . . .(1) . . . ,Xt−p−1)|Bt,p .

Then

Xt(p+1)⊥Xs(p+1)|A1,p , ∀t ≥ 1 , ∀s ≥ 1 , t 6= s .

Theorem 3.9 INTERCALARY ORTHOGONAL TRUNCATION. Let {Xt : t ∈ N} be a random
process with finite second moments such that

Xt⊥(X1, . . .(1) . . . ,Xt−p−1)|Bt,p .

Then for allt ≥ 1, we have

Xt(p+1)⊥Bs(p+1),p|
[
B(t+1)(p+1),p , Bt(p+1),p

]
, ∀t ≥ 1 , ∀s ≥ 1 , s 6= t ands 6= t+ 1 .

In the next section, we apply the above results to derive exact inference procedures for the
parameters of the original model (3.4). We start with AR(1) processes. We then consider a Markov
process of order 1 admitting a more general dynamic representation, which includes the classical
linear regression model with AR(1) errors as a special case. In a subsequent section, we shall derive
an exact inference procedure in the context of Markov processes of orderp.
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4. Exact inference for AR(1) models

In the previous section, we showed how to use Theorems3.1 and 3.2 to derive a time invariant
transformed model (3.5) from the initial model (3.2). If we wish to make inference on the parameters
of (3.2) via those of (3.5), we must establish in a more explicit way the relationship between the two
models. We can transform (3.2) into (3.5) by using two sorts of projections. Let{Yt : t ∈ T} be a
Markov process of orderp onT ≡ {1, 2, ..., n(p+ 1)+ p}. The first kind of projection is suggested
by the results of Section 3. It is the projection ofYt(p+1) on the space generated by the functions
of the variables inBt(p+1),p andB(t+1)(p+1),p (or the conditioning ofYt(p+1) uponBt(p+1),p and
B(t+1)(p+1),p). Unless normality is assumed, this projection is likely to be nonlinear and difficult to
establish. Moreover, if{Yt : t ∈ T} is not CSS(p), we have no guarantee that this projection will
be identical for allt.

The second type of projection is the affine regression ofYt(p+1) onBt(p+1),p andB(t+1)(p+1),p.
The resulting model is linear by construction and the relation between the initial and transformed
parameters is likely be simple enough for inference. A sufficient condition (although not necessary,
as we will see in the case of AR(1) processes) for this relation to be time invariant is weak station-
arity of the process{Yt : t ∈ T}. However, our objective is to make exact inference and we will
need to specify the probability distribution of{Yt : t ∈ T}. We will then assume that{Yt : t ∈ T}
is a Gaussian process. In that case, the two projections coincide.

In this section, we show how the results of the previous section can be applied to obtain exact
tests and confidence regions on the parameters of an AR(1) model.

4.1. Model transformation

Suppose the scalar process{Yt : t ∈ T}, whereT ≡ {1, 2, ... , T} andT = 2n+1 for some integer
n, admits the following representation:

Yt = φYt−1 + εt , εt
i.i.d.∼ N(0, σ2

ε) , t ∈ T , (4.1)

with Y0 given andφ ∈ R. If we assume theεt’s are normally distributed, then{Yt : t ∈ T} is a
CSS(1) Markov process of order 1 onT. We are now ready to apply the results of Section 3. The
conditional distribution ofY2t given (Y2t+1, Y2t−1) is normal, for allt = 1, 2, . . . , n. Its mean is
given by the affine regression ofY2t on (Y2t+1, Y2t−1) and takes the form

EL(Y2t|Y2t+1, Y2t−1) = a+ β1Y2t+1 + β2Y2t−1 , t = 1, 2, . . . , n .

The following theorem shows that if|φ| < 1, thenβ1 = β2 ≡ β.

Theorem 4.1 REGRESSION SYMMETRY FOR WEAKLY STATIONARY PROCESSES. Let {Xt : t
∈ T} be a weakly stationary univariate stochastic process. For all strictly positive integersp,
the coefficients ofXt+k andXt−k in the affine regression ofXt on (Bt+p+1,p, Bt,p) are equal,
1 ≤ k ≤ p, for all t ≥ p+ 1.
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Expressions forβ anda are derived in the Appendix where it is shown thatβ = φ/(1 + φ2)
anda = 0. The variance of the residuals from the regression isσ2

ε/(1 + φ2). These expressions are
valid for anyφ ∈ R. Starting from (4.1), the equivalent of the transformed model (3.5) is

Y2t = βY ∗
2t + η2t , t = 1, 2, . . . , n , η|(Y ∗

2t , t = 1, 2, . . . , n) ∼ N

[
0,

σ2
ε

1 + φ2 In

]
, (4.2)

whereY ∗
2t ≡ Y2t+1 + Y2t−1 , t = 1, 2, . . . , n, η = (η2, η4, . . . η2n)′ andIn is then × n identity

matrix. (4.2) is a Gaussian linear regression model from which we can easily estimateβ and make
exact inference on it. In particular, using the usual critical regionW (α) ≡ {|t(β0)| > t1−α/2(n −
1)}, with t(β0) ≡ (β̂ − β0)/V̂ (β̂)1/2 whereβ̂ andV (β̂) are the usual OLS estimators ofβ and
V̂ (β̂), we can test any hypothesis of the formH0 : β = β0 againstH1 : β 6= β0. This test has exact
levelα.

4.2. Exact tests onφ

Since(1+φ2)β = φ, the relation between the “initial” parameterφ and the “transformed” parameter
β is given byβφ2 − φ + β = 0. In order to make inference onφ using model (4.2), we need to
examine the roots of the polynomialq(x) = βx2 − x + β = 0. Sinceφ is assumed to lie inR,
we discard complex roots, obtained with|β| > 1/2. If we also exclude the trivial caseβ = 0
which yieldsφ = 0, the roots ofq(x) arex1 =

(
1 + ∆1/2

q

)
/2β, x2 =

(
1−∆1/2

q

)
/2β, where

∆q = 1 − 4β2. Sincex1x2 = 1, we havesign(x1) = sign(x2) andxi > 1 ⇐⇒ xj < 1, i, j =
1, 2, i 6= j. Hence, withβ 6= 0 and|β| ≤ 1/2, two values ofφ only are identified in (4.2). These
values are 1 and−1 which are respectively equivalent toβ = 1/2 andβ = −1/2. In other words,
given ana priori value forβ, we can decide whether the process is integrated(|φ| = 1), but, if
not, we cannot distinguish a stationary process(|φ| < 1) from an explosive process(|φ| > 1).
However this identification problem can be avoided by excluding explosive processes. This should
not be a too restrictive practice if we admit that macroeconomic time series are usually integrated
or stationary. The case whereβ = 0 corresponds to a white noise process,i.e. φ = 0.

From the point of view of hypothesis testing, we have established the equivalence of each one
of the null hypothesesH01 : φ = 0, H02 : φ = 1, andH03 : φ = −1, with H∗

01 : β = 0, H∗
02 :

β = 1/2, andH∗
03 : β = −1/2, respectively. For thesea priori values ofφ, we have derived

an exact test procedure. For other values ofφ, we can still consider the test ofH∗
0 : β − β0 = 0

which corresponds to the test ofH0 : φ ∈ {x0, x
−1
0 }, wherex0 is the first root ofq(x), evaluated at

β = β0.

4.3. Exact confidence sets forφ

It is easy to build an exact confidence interval at level1−α for the parameterβ in (4.2). Suppose the
random variablesc1 andc2 satisfyc1 ≤ c2 with probability one andP ({c1 ≤ β} ∩ {β ≤ c2}) =
1−α. Since the events{c1φ2− φ+ c1 ≤ 0} ∩ {c2φ2− φ+ c2 ≥ 0} and{c1 ≤ β} ∩ {β ≤ c2} are
identical, the set{φ : c1φ2 − φ+ c1 ≤ 0 andc2φ

2 − φ+ c2 ≥ 0} is a confidence region forφ with
level1− α. To characterize this region in the space of the parameterφ, we need to find the roots of
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Table 1: Confidence regions for the autocorrelation parameter of an AR(1) process

c1

c2 (−∞,−1/2) −1/2 (−1/2, 0) 0 (0, 1/2) 1/2 (1/2,∞)

(−∞,−1/2) ∅ {1} [z1,z2] (−∞,0] (−∞,z1]∪[z2,∞) R R

−1/2 {1} [z1,z2] (−∞,0] (−∞,z1]∪[z2,∞) R R(
(−∞,x1]∪[x2,∞)

) (
(−∞,x1]∪[x2,∞)

) (
(−∞,x1]∪[x2,∞)

)
(−∞,x1] (−∞,x1]

(−1/2,0) ∩ ∩ ∩ ∪ ∪
[z1,z2] (−∞,0]

(
(−∞,z1]∪[z2,∞)

)
[x2,∞) [x2,∞)

[0,∞)

0 {0} ∩ [0,∞) [0,∞)(
(−∞,z1]∪[z2,∞)

)
[x1,x2]

(0,1/2) ∩ [x1,x2] [x1,x2](
(−∞,z1]∪[z2,∞)

)
1/2 {−1} {−1}

(1/2,∞) ∅

Note 1 xi, i = 1, 2, are the roots ofq1(x), andzi, i = 1, 2, the roots ofq2(x).
Note 2 Empty cells come from the inequalityc1 ≤ c2.

the polynomialsqi(x) = cix
2 − x+ ci , i = 1, 2, whenc1 andc2 are treated as constants. We can

then distinguish the following cases.

1. If |c1| < 1/2, the polynomialq1(x) has two distinct real roots denotedx1 andx2, and we
can assume thatx1 < x2. If −1/2 < c1 < 0, thenq1(x) ≤ 0 if and only if x ∈ (−∞, x1] ∪
[x2,∞). If 0 < c1 < 1/2, q1(x) ≤ 0 if and only if x ∈ [x1, x2]. If c1 = 0, q1(x) ≤ 0 if and
only if x ∈ [0,∞).

2. If |c1| = 1/2, q1(x) has only one root. In this case, whenc1 = 1/2, q1(x) ≤ 0 if and only if
x = 1, and whenc1 = −1/2, q1(x) ≤ 0 if and only if x = −1.

3. If |c1| > 1/2, q1(x) always takes the same sign onR. If c1 < −1/2, q1(x) ≤ 0 for all x ∈ R;
if c1 > 1/2, no real value ofx satisfiesq1(x) ≤ 0.

Similarly, we determine the regions ofR on whichq2(x) ≥ 0. The different possibilities are sum-
marized in Table 1.

5. Extension of the AR(1) model

In this section, we extend the procedures described in the previous section by considering more
general processes. Let{Yt : t ∈ T}, whereT ≡ {1, 2, . . . , T = n(p + 1) + p}, be a random

12



process with the following representation:

Λ(B)Yt = mt + εt , εt
ind∼ (0, σ2

ε) , t = 1, 2, . . . , T ,

Λ(B) ≡ 1−∑p
i=1 λiB

i , with Y0, Y−1, . . . , Y−p+1 fixed,
(5.1)

whereB is the backward shift operator,mt is an exogenous component,ε = (ε1, ε2, . . . , εT )′, and

εt
ind∼ (0, σ2

ε) , t = 1, 2, . . . , T , means theεt’s are independent with common mean0 and variance
σ2

ε . Taking expectations on both sides, we obtainΛ(B)Mt = mt , whereMt ≡ E(Yt). Define the
process{Xt ≡ Yt −Mt : t ∈ T}. Clearly,{Xt : t ∈ T} satisfies

Λ(B)Xt = εt , εt
ind∼ (0, σ2

ε) , t = 1, 2, . . . , T , (5.2)

i.e. {Xt : t ∈ T} is a zero mean process which admits an AR(p) representation, where the dis-
turbancesεt , t ∈ T , are independent with common mean zero and varianceσ2

ε. Consider now the
case wherep = 1. We have

Yt = mt + λYt−1 + εt , εt
ind∼ (0, σ2

ε) , t = 1, 2, . . . , T .

This representation includes as particular cases a wide range of models frequently used in econo-
metrics. In particular: (1) ifmt = 0, ∀t ∈ T , andλ = 1, we have the random walk model; (2) if
mt = b0, ∀t ∈ T , andλ = 1,we have a random walk with drift; (3) ifmt = b(t) ≡∑r

i=1 bit
i, ∀t ∈

T , the process contains a deterministic polynomial trend. In what follows, we assumemt has the
formmt =

∑K
k=0 bkZk,t, whereZ0, Z1, . . . , ZK are exogenous variables.

Since{Xt : t ∈ T} has an AR(1) representation, application of the procedure described in
Section 4 is straightforward. The projection isEL[X2t|(X2t+1,X2t−1)] = β(X2t+1 +X2t−1) with
β = λ/

(
1 + λ2

)
and we consider the following transformed model:

X2t = βX∗
2t + η2t , t = 1, 2, . . . , n , η ∼ (0, σ2

ηIn) (5.3)

whereX∗
2t ≡ X2t+1 +X2t−1, σ

2
η ≡ σ2

ε/
(
1 + λ2

)
andη = (η2, η4, . . . , η2n)′. (5.3) can be written

Y2t = M2t − β(M2t+1 +M2t−1) + βY ∗
2t + η2t

with Y ∗
2t = Y2t+1 + Y2t−1. Now, withmt = Mt − λMt−1 andβ = λ/

(
1 + λ2

)
, (5.3) becomes

Y2t = β1m2t + β2m2t+1 + βY ∗
2t + η2t , t = 1, 2, . . . , n ,

in whichβ1 ≡ 1/
(
1 + λ2

)
, β2 ≡ −β. Finally, sincemt =

∑K
k=0 bkZk,t, the transformed model is

Y2t = βY ∗
2t +

K∑
k=0

θ1kZk,2t +
K∑

k=0

θ2kZk,2t+1 + η2t (5.4)
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whereθ1k ≡ bk/
(
1+λ2

)
andθ2k ≡ −λbk/

(
1 +λ2

)
. Using the matrix notation, (5.4) is equivalent

to

νt = Z∗′
t δ + η∗t , t = 1, 2, . . . , n , (5.5)

with νt ≡ Y2t , Z∗
t ≡ (Z2t, Z2t+1, Y

∗
2t)

′, δ ≡ (θ′
1, θ′

2, β)′, θi ≡ (θi,0, θi,1, . . . , θi,K)′, i =
1, 2. If we assume thatη is normally distributed, we can perform exact tests onλ and/orbk, k =
0, 1, . . . ,K. This is done in the next section.

5.1. Exact confidence sets and tests onbk

As we showed, the parameters of (5.5) must satisfyθ2k = −bkβ, k = 0, 1, . . . ,K. The hypothesis
bk = b̄0 is therefore equivalent toθ2k + b̄0β = 0 which can be tested in (5.5) by a standard
F procedure. Furthermore it is well known that the set of all valuesb̄0 such that the hypothesis
H0 : θ2k + b̄0β = 0 is not rejected at levelα forms a confidence region forbk at level1 − α.
Using the same relation between the transformed parametersθ2k andβ and the initial parameters
bk, k = 0, 1, . . . ,K, any linear hypothesis of the formRb−r = 0, whereR is a knownq×(K+1)
matrix with rankq, r is a knownq × 1 vector andb = (b0, b1, . . . , bK)′, can be tested at levelα.
To see how to exploit the relation between the two sets of parameters, note that

Rb− r = 0 ⇐⇒ Rθ2 + rβ = 0 ⇐⇒ R∗δ = 0

whereR∗ ≡ (0, R, r) so that a test ofRb− r = 0 is equivalent to a test ofR∗δ = 0. Again, this
is a hypothesis on the parameters of (5.5) which can be tested with the usualF procedure.

5.2. Exact tests onλ

The components ofδ in (5.5) must satisfyθ2k = −θ1kλ, k = 0, 1, . . . ,K andβ = λ/
(
1 + λ2

)
.

From these relations, we see that a test ofλ = λ0 is equivalent to a test of the joint hypothesis:
θ2k + λ0θ1k = 0, k = 0, 1, . . . ,K, andβ = λ0/(1 + λ0

2). Using matrix notation we can easily
write this set of restrictions as a linear hypothesis on the parameters of (5.5),i.e., R̃δ = r0 with

R̃ ≡
(
λ0IK+1 IK+1 0

0′ 0′ 1

)
, r0 ≡

(
0

λ0/(1 + λ0
2)

)
.

Unlike for the pure AR(1) process of Section 4, we are now able to obtain a test for anya priori
valueλ0 of the autocorrelation parameterλ.

5.3. Exact confidence sets forλ

In Section 4.3 we showed how to build an exact confidence region forλ at level 1 − α. This
confidence region, denotedCK+1(y, α), satisfiesP

[{y : CK+1(y, α1) 3 λ}] = 1 − α1 or
P
[
AK+1(α1)

]
= 1− α1, whereAK+1(α1) ≡ {y : CK+1(y, α1) 3 λ}, ∀α1 ∈ (0, 1).

Similarly, we can also use the relationθ2k + λθ1k = 0, k = 0, 1, . . . ,K, to derive an exact
test ofH0 : λ = λ0. This hypothesis is equivalent toH0,k(λ0) : ak(λ0)′δ = 0, whereak(x) ≡
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(
xι′k+1, ι′k+1, 0

)
, ιl being thel-th vector of the canonical basis ofR

K+1, x ∈ R. The set

Ck(y, α1) of all valuesλ0 of λ such thatH0,k(λ0) is not rejected at levelα1 is a1− α1 confidence
region forλ. ThereforeP

[
Ak(α1)

]
= 1 − α1, whereAk(α1) ≡ {y : Ck(y, α1) 3 λ}. Since this

condition holds for anyk = 0, 1, . . . K, we can combine these regions to form a single confidence
region forλ which has level1− α. Clearly, we have

P

[
K+1⋂
k=0

Ak(α1)

]
= 1− P

[
K+1⋃
k=0

Ak(α1)

]

whereAk(α1) denotes the set of ally which are not inAk(α1), and

P

[
K+1⋃
k=0

Ak(α1)

]
≤

K+1∑
k=0

P
[
Ak(α1)

]
= (K + 2)α1 ,

hence

P

[
K+1⋂
k=0

Ak(α1)

]
≥ 1− (K + 2)α1

and choosingα1 such thatα1 = α/(K + 2), we get

P

[
K+1⋂
k=0

Ak(α1)

]
≥ 1− α .

But
⋂K+1

k=0 Ak(α1) =
{
y :
⋂K+1

k=0 Ck(y, α1) 3 λ
}
. This shows thatC(y, α) ≡ ⋂K+1

k=0 Ck

(
α

K+2

)
is a1− α confidence region forλ.

5.4. Exact tests of joint hypotheses

It is also possible to use (5.5) to derive an exact test of a linear hypothesis on the vector
(
λ,b(m)′)′ ,

whereb(m) is anm× 1 subvector ofb. Consider the null hypothesis

H0 : λ = λ0 andRb(m) − r = 0

whereR is a known q × m matrix with rank q, r is a known q × 1 vector andb(m) =
(bk1 , bk2 , . . . bkm)′. The following equivalences hold

λ = λ0

Rb(m) − r = 0

}
⇔
{
θ2k + λ0θ1k = 0 , k ∈ Km

Rb(m)β − rβ = 0

}
⇔
{
Imθ

(m)
2 + λ0Imθ

(m)
1 = 0

Rθ
(m)
2 + rβ = 0
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whereKm ≡ {k1, k2, . . . km}, θ(m)
i ≡ (θik1, θik2, . . . θikm)′ , i = 1, 2. Defining

Q ≡
(
Im λ0Im 0
0 R r

)
, δ(m) ≡

 θ
(m)
1

θ
(m)
2

β

 ,

we see thatH0 is equivalent toQδ(m) = 0. Finally H0 appears as a linear hypothesis on the

parameters of (5.5):H0 : R̂δ∗ = 0 with R̂ ≡ (Q 0) , δ∗ ≡
(
δ(m)′, δ)m(′

)′
, δ)m( ≡

(θ1,k θ2k , k 6∈ Km)′ . Once again, the standard Fisher procedure solves the problem.

5.5. Linear regression models with AR(1) errors

We now show that model (5.1) withp = 1 includes as an important special case the linear regression
model with AR(1) errors. This model is given by

Yt = mt + ut , ut = φut−1 + εt , t = 1, 2, . . . , T,

with εt
i.i.d.∼ N(0, σ2

ε) andu0 given. An alternative form of this model is

Yt = mt + φut−1 + εt , t = 1, 2, . . . , T.

Sinceut = Yt −mt , t = 1, 2, . . . , T, we have

Yt = m∗
t + φYt−1 + εt , t = 2, 3, . . . , T, (5.6)

wherem∗
t ≡ mt − φmt−1. It is now clear that this model is a special case of (5.1). The proce-

dures developed in the previous sections therefore apply to (5.6). In particular, exact inference in
integrated AR(1) models is available.

5.6. A test on the order of an autoregression

We now turn to another kind of inference problem. We are no longer interested in inference on the
components of the mean vector or autocovariance matrix, but rather on the order of the autoregres-
sion in AR(p) models. There is a situation in which Theorem3.6 and its corollary are of special
interest. Consider{Xt : t ∈ T} , a stochastic process for which we know that one of the following
representations is true:

Φ(B)Xt = εt , whereΦ(z) = 1− φ1z − φ2z
2 − · · · − φp1

zp1 ,

Ψ(B)Xt = νt , whereΨ(z) = 1− ψ1z − ψ2z
2 − · · · − ψp2

zp2 ,

whereεt and νt are both Gaussian white noises andp1 6= p2 (we setp1 < p2). Suppose we
wish to testH0 : {Xt : t ∈ T} ∼ AR(p1) againstH1 : {Xt : t ∈ T} ∼ AR(p2). If H0 is
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true, then{Xt : t ∈ T} is Markovian of orderp1, and we know from Corollary3.7 that the
coefficient ofXτ in the affine regression ofXt on p2 leads andp2 lags will be zero for anyτ such
that |τ − t| = p1 + 1, . . . , p2. Since the affine regression is a classical linear regression model,
standard inference procedures apply. From the exposition of the procedures, it is clear that splitting
the sample entails an information loss. We may then suspect the tests to lack power. We investigate
this issue in the next section.

6. Combination of tests

One of the purposes of this paper is to improve the Ogawara-Hannan testing procedure. In the
previous sections, we showed that Ogawara’s results can be extended to a much wider class of
processes than those considered in Ogawara (1951) and Hannan (1955a, 1955b, 1956). We also
showed one can use these results to obtain finite sample inference procedures for a wide variety of
econometric models. However, when we apply those, we are led to leave one half of the sample
apart, at least. In this section, we discuss methods that allow one to make use of the full sample. We
also present simulation results which show our method performs better than that of Ogawara and
Hannan.

6.1. Theoretical results

Consider a statistical model characterized by a family of probability laws, parameterized byθ :
P = {Pθ, θ ∈ Θ}. Suppose we wish to testH0 : P ∈ P0 againstH1 : P ∈ P \ P0. If the model
is identified, which will be assumed, this amounts to testH0 : θ ∈ Θ0 againstH1 : θ ∈ Θ1,
whereθ ∈ Θ0 ⇐⇒ Pθ ∈ P0. Assume we havem statisticsTi, i ∈ J ≡ {1, 2, . . . ,m}, that
can be used for testingH0. Further assume that underH0, Pθ [{y : Ti(y) > t}] is known, for all
t ∈ R, i ∈ J. The relation between these statistics is typically unknown or difficult to establish.
We wish to combine the information provided by each of thosem statistics on the true probability
distribution of the model.

A natural way of doing this is to proceed as follows. Using them statisticsTi, we buildm
critical regionsWi(αi) ≡ T−1

i

(
(ti(αi),∞)

)
, where theti(αi)’s are chosen so thatPθ [Wi(αi)] =

αi. We rejectH0 with a test based an thei-th statistic if y is in Wi(αi), or equivalently if the
observed valueti of Ti is in (ti(αi),∞) . Consider the decision rule which consists in rejectingH0

when it has been rejected by at least one of the tests based on aTi statistic. The rejection region
corresponding to this decision rule is

⋃
i∈J Wi(αi). This test is called aninducedtest ofH0 [see

Savin (1984)]. Its size is impossible or difficult to determine since the distribution of the vector
(T1, T2, . . . , Tm)′ is generally unknown or intractable. It is however possible to choose theαi’s so
that the induced test has levelα. We have

Pθ

[ ⋃
i∈J

Wi(αi)
]
≤
∑
i∈J

Pθ [Wi(αi)] ≤
∑
i∈J

αi

and so we only need to choose theαi’s so that they sum toα. To our knowledge, there is no criterion
for choosing theαi’s in a way that could be optimal in some sense. Without such a rule, we will set
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αi = α0 = α/m for all i ∈ J.
It is difficult to compare the power of anα level test based on a single statisticTi with that of a

α level induced test. The latter uses the information provided by the whole sample, but is obtained
by combiningm tests of levelα/m only, whereas the former has levelα > α/m, but only exploits
a subsample. In other words, with respect to power, what can be gained from the larger sample size
on which is based the induced test could be lost because the levels of the individual tests combined
are lower (e.g., α/m instead ofα). We now present simulations that reveal the power increase
associated with combining tests.

6.2. Power simulations for AR(1) processes

Let {Yt : t ∈ T}, whereT = {1, 2, . . . , T}, a random process admitting an AR(1) representation

Yt = λYt−1 + εt , εt
i.i.d.∼ N(0, IT ) , t ∈ T , (6.1)

with Y0 given. For the sake of simplicity, we assume thatT is even withT = 2n. Since{Yt :
t ∈ T} is a Markov process of order 1, the results of Section 2 apply and we know that: (1)
Y2t , t = 1, 2, . . . , n − 1, are mutually independent, conditionally to(Y1, Y3, . . . , Y2n−1); (2)
Y2t+1 , t = 1, 2, . . . , n − 1, are mutually independent, conditionally to(Y2, Y4, . . . , Y2n). If we
define two subsets ofT, J1 = {2, 4, . . . , 2n − 2} andJ2 = {3, 5, . . . , 2n − 1}, we obtain two
transformed models of type (4.2):

Yt =
λ

1 + λ2 (Yt+1 + Yt−1) + ηit , t ∈ Ji, , ηi ∼ N(0, σ2
ηIni) (6.2)

whereηi ≡ (ηit, t ∈ Ji)′, i = 1, 2, andn1 = n − 1, n2 = n. In each of these two models it
is possible to testH0 : λ = λ0 at levelα/2, as shown in Section 4. We combine these two tests
according to the procedure described in 6.1.

In our simulations, we proceed as follows. We considerλ0 = 0, 0.5, 1 andT = 100. For
a setV (λ0) of S values ofλ in a neighborhood ofλ0, we simulate a sample of sizeT from the
AR(1) process (6.1). Then we form the two subsamples(yt : t ∈ Ji), i = 1, 2, from which we
testH0(β0) : β = β0 in the transformed model (6.2), withβ0 = λ0/

(
1 + λ2

0

)
. For purposes of

comparison, these tests are performed at levels 5% and 2.5%. The two 2.5% level tests are combined
to give a 5% level induced test. These computations are repeated 1000 times, for each value ofλ
in V (λ0). The number of rejections ofH0(β0) gives an estimation of the performance of the test.
Results are shown in Figures 1 to 6 where the solid line (—) represents the 5% induced test and the
dashed lines(−−) and(− · −) represent the 5% subsample-based tests.

Figures 1 to 3 display the estimated power function forλ = 0, 0.5, 1 respectively, whereas
the last three (Figures 4 to 6) show the differences of rejection frequencies forλ = 0, 0.5, 1
respectively. More precisely these differences are computed as:Number of rejections ofH0(β0)
with the induced test− Number of rejections ofH0 with the test based on subsample(yt : t ∈ Ji), :
i = 1, 2.

Apart from the case whereλ0 = 0, the combination method leads to a power increase, relative
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Figure 1. Rejection frequencies ofH0 : λ = 0
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Figure 2. Rejection frequencies ofH0 : λ = 0.5
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Figure 3. Rejection frequencies ofH0 : λ = 1
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Figure 4. Differences of rejection frequencies forH0 : λ = 0

22



0 0.5 1 1.5 2 2.5
-2

0

2

4

6

8

10

12

14

16

18

lambda

dr
f (

%
)

Figure 5. Differences of rejection frequencies forH0 : λ = 0.5

23



-1 -0.5 0 0.5 1 1.5 2

0

5

10

15

lambda

dr
f (

%
)

Figure 6. Differences of rejection frequencies forH0 : λ = 1

24



to a 5% level test based on a subsample. Whenλ0 = 0, the power loss from combining is about
8% at most, which appears small. Forλ0 6= 0, it is important to note that the valuesλ andλ−1

yield the same value ofβ in (6.2). For exampleλ = 0.5 andλ = 2.0 both yieldβ = 0.4. In other
words, unless we impose restrictions such as|λ| ≤ 1 or |λ| ≥ 1, the value ofβ does not completely
identify λ. This explains the presence of the mirror peak atλ = 2 [Figure 2].

7. Conclusion

In this paper we proposed a method allowing one to make finite-sample inference on the parameters
of autoregressive models. This was made possible by special properties of Markov processes. The
conditions under which such results hold are very mild since their demonstrations only require the
existence of density functions. In particular, they are general enough to be applied to multivariate
and possibly non stationary and/or non-Gaussian processes. However, with the addition of condi-
tional stationarity and normality assumptions, we were able to use these properties to derive exact
tests and confidence regions on the parameters of AR(1) models. In order to apply our procedure, it
is necessary to split the sample as two subsets of observations. Our simulations in the case of a pure
AR(1) model showed that a combination of separate inference results based on these subsamples
generally leads to an improvement in the performance of the procedure.

Our method displays several attractive features. First, since it is exact, it controls the probability
of making a type I error. Second, it is readily applicable to a wide range of econometric specifica-
tions of AR(1) models. In particular, it can be used to deal with random walk models, models with
a deterministic mean expressed as a linear combination of exogenous variables, including polyno-
mial deterministic trends,etc. Third, the critical regions are built from standard distributions which,
unlike most asymptotic procedures, do not change with the sample size and/or model specification.
Finally, Monte Carlo experiments show that it has good power properties. For those reasons, we
think that our procedure should be considered as a good alternative to asymptotic inference methods.

In Section 6, we argued that simulations of power functions were necessary because we could
not saya priori whether the combination method yields more power. Indeed, on the one side we
make use of the whole sample when combining, but on the other side we must lower the bound on
the probability of making a type I error (the level) in each of the tests we combine. The former
should increase the performance of the procedure whereas the latter should decrease it. The method
is easily transposable to higher order autoregressive models and it appears quite plausible the same
effect will take place in more general processes. It would certainly be of interest to study this issue
further.

Of course, the finite-sample validity of thet andF -type tests described in sections 4 and 5
remain limited to models with Gaussian errors. As usual, these procedures will however be asymp-
totically valid under weaker distributional assumptions. Further, it is of interest to remember that
the general theorems on Markovian processes given in Section 3 hold without parametric distri-
butional assumptions. In particular the conditional independence and truncation properties do not
at all require the Gaussian distributional assumption, hence opening the way to distribution-free-
procedures. Similarly the test combination technique described in Section 6, which is based on the
Boole-Bonferroni inequality, is by no way restricted to parametric models. For example, the lat-
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ter might be applied to combine distribution-free tests or bootstrap tests [see Nankervis and Savin
(1996)] which accommodate more easily non-Gaussian distributions. Such extensions go however
beyond the scope of the present paper.
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A. Appendix: Proofs

A.1 Proof of Theorem 3.1 We must show that

fX(p+1) ,...(p+1)... ,Xn(p+1)|A1,p
=

n∏
t=1

fXt(p+1)|A1,p
.

The following equality is always true

fX(p+1) ,...(p+1)... ,Xn(p+1)|A1,p
= fX(p+1)|A1,p

n∏
t=2

fXt(p+1)|A1,p,X(p+1),...(p+1)... ,X(t−1)(p+1)
. (A.1)

Consider thet-th term of the product in (A.1) fort ≥ 2 :

fXt(p+1)|A1,p,X(p+1),...(p+1)... ,X(t−1)(p+1)
= fXt(p+1)|X1,...(1)... ,Xt(p+1)−1,At+1,p

=
fXt(p+1),At+1,p|X1,...(1)... ,Xt(p+1)−1

fAt+1,p|X1,...(1)... ,Xt(p+1)−1

. (A.2)

The numerator in (A.2) can be written

fXt(p+1),At+1,p|X1,...(1)... ,Xt(p+1)−1
=

∫
· · ·
∫
fXt(p+1),...(1)... ,Xn(p+1)+p|X1,...(1)... ,Xt(p+1)−1

d(x(t+1)(p+1), . . .(p+1) . . . , xn(p+1))

=
∫
· · ·
∫ n(p+1)+p∏

s=t(p+1)

fXs|X1,...(1)... ,Xs−1
d(x(t+1)(p+1), . . .(p+1) . . . , xn(p+1))

=
∫
· · ·
∫ n(p+1)+p∏

s=t(p+1)

fXs|Xs−p,...(1)... ,Xs−1
d(x(t+1)(p+1), . . .(p+1) . . . , xn(p+1))

where the last identity follows from the Markovian propertyM(p). Set

g1(at+1,p, xt(p+1)) ≡ fXt(p+1),At+1,p|X1,...(1)... ,Xt(p+1)−1
(at+1,p, xt(p+1)) .

Similarly, we can write the denominator of (A.2) as

fAt+1,p|X1,...(1)... ,Xt(p+1)−1
=
∫
· · ·
∫ n(p+1)+p∏

s=t(p+1)

fXs|Xs−p,...(1)... ,Xs−1
d(xt(p+1), . . .(p+1) . . . , xn(p+1))
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and we denoteg2(at+1,p) ≡ fAt+1,p|X1,...(1)... ,Xt(p+1)−1
(at+1,p). Clearly, neitherg1(at+1,p, xt(p+1))

nor g2(at+1,p) depends on(X(p+1), . . .(p+1) . . . , X(t−1)(p+1)). Therefore these variables do not
enter the ratio (A.2) and we may write thet-th term of the product (A.1) fort ≥ 2 as

fXt(p+1)|A1,p,X(p+1),...(p+1)... ,X(t−1)(p+1)
= fXt(p+1)|A1,p

.

Since this is true for anyt = 1, 2, . . . , n, we can factor the conditional density as

fX(p+1) ...(p+1)... ,Xn(p+1)|A1,p
=

n∏
t=1

fXt(p+1)|A1,p

which yields the result to be proved. Q.E.D.

A.2 Proof of Theorem 3.2 From Theorem3.1, Xp+1,X2(p+1), . . . ,Xn(p+1) are mutually in-
dependent conditionally onA1,p, hence

fXt(p+1)|A1,p
= fXt(p+1)|X1,...(1)... ,Xt(p+1)−1,Xt(p+1)+1,...(1)... ,X(n+1)(p+1)

=
fXt(p+1),...(1)... ,X(n+1)(p+1)|X1,...(1)... ,Xt(p+1)−1

fXt(p+1)+1,...(1)... ,X(n+1)(p+1)|X1,...(1)... ,Xt(p+1)−1

=
fXt(p+1),...(1)... ,X(n+1)(p+1)|X1,...(1)... ,Xt(p+1)−1∫

fXt(p+1),...(1)... ,X(n+1)(p+1)|X1,...(1)... ,Xt(p+1)−1
dxt(p+1)

=

∏(n+1)(p+1)
s=t(p+1) fXs|X1,...(1)... ,Xs−1∫ ∏(n+1)(p+1)

s=t(p+1) fXs|X1,...(1)... ,Xs−1
dxt(p+1)

=

∏(n+1)(p+1)
s=t(p+1) fXs|Xs−p,...(1)... ,Xs−1∫ ∏(n+1)(p+1)

s=t(p+1) fXs|Xs−p,...(1)... ,Xs−1
dxt(p+1)

(A.3)

where the last equality is derived using the Markovian propertyM(p). The product of conditional

densities in the numerator of (A.3) can be splitted as
∏(n+1)(p+1)

s=t(p+1)
fXs|Bs,p

= G1 ×G2, where

G1 ≡
(t+1)(p+1)−1∏

s=t(p+1)

fXs|Xs−p,...(1)... ,Xs−1
, G2 ≡

(n+1)(p+1)∏
s=(t+1)(p+1)

fXs|Xs−p,...(1)... ,Xs−1
.

Clearly,G2 does not depend onXt(p+1). Therefore, the ratio (A.3) simplifies as

fXt(p+1)|A1,p
=

G1∫
G1dxt(p+1)

. (A.4)

Now, due to the Markovian propertyM(p), any of the conditional densities in the productG1 can
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be written asfXs|Xs−p,...(1)... ,Xs−1
= fXs|Xt(p+1)−p,...(1)... ,Xs−1

, s = t(p+1), t(p+1)+1, . . . , (t+
1)(p + 1). Therefore it is easy to see that

G1 =
(t+1)(p+1)−1∏

s=t(p+1)

fXs|Xt(p+1)−p,...(1)... ,Xs−1

= fXt(p+1),...(1)... ,X(t+1)(p+1)−1|Xt(p+1)−p,...(1)... ,Xt(p+1)−1
.

Hence ∫
G1dxt(p+1) = fXt(p+1)+1,...(1)... ,X(t+1)(p+1)−1|Xt(p+1)−p,...(1)... ,Xt(p+1)−1

and

fXt(p+1)|A1,p
=

G1∫
G1dxt(p+1)

= fXt(p+1)|Xt(p+1)−p,...(1)... ,Xt(p+1)−1,Xt(p+1)+1,...(1)... ,X(t+1)(p+1)−1
.

SinceXt(p+1)+1 = X(t+1)(p+1)−p, we can use the notation of Section 3.1 to writefXt(p+1)|A1,p
=

fXt(p+1)|Bt(p+1),p,B(t+1)(p+1)
which is the desired result. Q.E.D.

A.3 Proof of Theorem 3.6 We need to show thatfXt|Bt,q,Bt+q+1,q
does not depend onXt−τ and

Xt+τ , for τ = p+ 1, p+ 2, . . . , q. We have:

fXt|Bt+q+1,q,Bt,q
=
fXt,Bt+q+1,q|Bt,q

fBt+q+1,q|Bt,q

=
fXt,Bt+q+1,q|Bt,q∫
fXt,Bt+q+1,q|Bt,q

dxt
.

Now, using the fact that{Xt : t ∈ T} is Markovian of orderp, the numerator of this last term can
be writtenfXt,Bt+q+1,q|Bt,q

= fXt ,...(1)... , Xt+q|Bt,q
=
∏t+q

s=t fXs|Bs,p
so that

fXt|Bt+q+1,q,Bt,q
=

∏t+q
s=t fXs|Bs,p∫ ∏t+q

s=t fXs|Bs,p
dxt

=

∏t+q
s=t fXs|Bs,p(∏t+q

s=t+p+1 fXs|Bs,p

)( ∫ ∏t+p
τ=t fXτ |Bτ,p

dxt

)
=

∏t+p
s=t fXs|Bs,p∫ ∏t+p

s=t fXs|Bs,p
dxt

.

It is easy to see that the variablesXs with t+ q ≥ s ≥ t+ p+ 1 andt− p− 1 ≥ s ≥ t− q do not
appear in the latter expression. Q.E.D.

A.4 Proof of Theorem 3.8 Let {Yt : t ∈ T} be a Gaussian process having the same first and
second order moments as{Xt : t ∈ T} . Then{Yt : t ∈ T} must also satisfy the condition in the
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theorem

Yt⊥(Y1, . . .(1) . . . , Yt−p−1)|Yt−p, . . .(1) . . . , Yt−1 , ∀t ≥ p+ 1 ,

which is equivalent to the Markovian conditionfYt|Y1,...(1)... ,Yt−1
= fYt|Yt−p,...(1)... ,Yt−1

, ∀t ≥ p+1,
since{Yt : t ∈ T} is Gaussian. From Theorem3.1, Yp+1, . . .(p+1) . . . , Yn(p+1) are mutually
independent, conditional onAY

1,p, whereAY
1,p is defined likeA1,p in Section 3.1 withX replaced by

Y. Using the normality of{Yt : t ∈ T} , this is equivalent to

Yt(p+1)⊥Ys(p+1)|AY
1,p , ∀t, s such that1 ≤ t, s ≤ n, t 6= s .

This is a condition on the first and second order moments of{Yt : t ∈ T} , which must also be
satisfied by the first and second order moments of{Xt : t ∈ T} . Hence, ifA1,p denotes the set of
X variables as defined in Section 3.1,

Xt(p+1)⊥Xs(p+1)|A1,p , ∀t, s such that1 ≤ t, s ≤ n, t 6= s .

Q.E.D.

A.5 Proof of Theorem 3.9 Let {Yt : t ∈ T} be a Gaussian process having the same first and
second order moments as{Xt : t ∈ T}. From the proof of Theorem3.8, we know that{Yt : t ∈ T}
must also satisfy

fYt|Y1,...(1)... ,Yt−1
= fYt|Yt−p,,...(1)... ,Yt−1

, ∀t ≥ p+ 1 .

Then, from Theorem3.2, we have

fYt(p+1)|AY
1,p

= fYt(p+1)|BY
(t+1)(p+1),p

,BY
t(p+1),p

, ∀t such that1 ≤ t ≤ n ,

where for anys, BY
s,p ≡ (Ys−p, . . .(1) . . . , Ys−1). Since{Yt : t ∈ T} is Gaussian, this condition is

equivalent to

Yt(p+1)⊥BY
s(p+1),p|

(
BY

(t+1)(p+1),p, B
Y
t(p+1),p

)
for all t ≥ 1 ands ≥ 1 such thats 6= t ands 6= t+ 1. Since this is condition on the first and second
order moments of{Yt : t ∈ T} , it must also be satisfied by those of{Xt : t ∈ T}. Q.E.D.

A.6 Proof of Theorem 4.1 EL

[
Xt|
(
Bt+p+1,p, Bt,p

)]
= EL

[
Xt|
(
Bt+p+1,p, B

∗
t,p

)]
is the affine

regression ofXt on
(
Bt+p+1,p, Bt,p

)
, whereB∗

ν,p ≡ (Xν−p,Xν−p+1, . . . ,Xν−1). The matrix of
the coefficients of this regression is given byΨ12Ψ−1

22 , where

Ψ12 ≡ cov
[
Xt,

(
Bt+p+1,p, B

∗
t,p

)]
, Ψ22 ≡ V

[(
Bt+p+1,p, B

∗
t,p

)]
.
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We partition these matrices in the following way:

Ψ12 ≡
(
C1 C2

)
, Ψ22 ≡

(
A11 A12

A21 A22

)

where

A11 ≡ V
(
Bt+p+1,p

)
, A22 ≡ V

(
B∗

t,p

)
, A′

21 = A12 ≡ cov
(
Bt+p+1,p, B

∗
t,p

)
,

C1 ≡ cov
(
Xt, Bt+p+1,p

)
, C2 ≡ cov

(
Xt, B

∗
t,p

)
.

Since{Xt : t ∈ T} is weakly stationary,C1 = C2 ≡ C andA11 = A22 ≡ A1. We next show that
A12 = A21, i.e.,A12 is symmetric. The(i, j)-th element of this matrix is

cov(Xt+p+1−i,Xt−p+j−1) = γ|t+p+1−i−t+p−j+1| = γ|2(p+1)−(i+j)|

whereγ|s−t| ≡ cov(Xs,Xt), and its(j, i)-th element is

cov(Xt+p+1−j ,Xt−p+i−1) = γ|t+p+1−j−t+p−i+1| = γ|2(p+1)−(j+i)| .

These two terms are identical and consequentlyA12 = A′
12 = A21 ≡ A2. The vectorΠ whose

components are the coefficients ofXt+k andXt−k , 1 ≤ k ≤ p, in the affine regression ofXt on(
Bt+p+1,p, B

∗
t,p

)
is given by

Π =
(
C C

)( A1 A2

A2 A1

)−1

.

DefineΠ1 and Π2, the two (1 × p) subvectors ofΠ whose elements are the coefficients of the
variables inBt+p+1,p and inB∗

t,p, respectively. Then

C = Π1A1 + Π2A2

C = Π1A2 + Π2A1

⇒


A1(Π1 −Π2) +A2(Π2 −Π1) = 0

A2(Π1 −Π2) +A1(Π2 −Π1) = 0

which is equivalent to

Ψ22

(
Π1 −Π2

Π2 −Π1

)
= 0 .

Assuming that the variance-covariance matrixΨ22 is non singular, we must haveΠ1 = Π2. Q.E.D.
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B. Appendix: Coefficients of two-sided autoregressions for AR(1)
processes

The model is

Yt = φYt−1 + ut , t = 1, 2, . . . , n ,

u = (u1, ... , un)′ ∼ N(0, σ2
uIn) ,

with Y0 given. RewritingYt = φtY0 +
∑t−1

i=0 φ
iut−i and taking expectations, we getE(Yt) = φtY0.

The mean deviation process{Xt ≡ Yt − E(Yt) : t = 1, 2, . . . , n} satisfies the autoregression
Xt = φXt−1 + ut.

B.1. Computation of first order moments

DefineΨ12 ≡ cov
[
Y2t,

(
Y2t+1 , Y2t−1

)′]
andΨ22 ≡ V

[
(Y2t+1 , Y2t−1)′

]
. From the definition of

{Xt : t = 1, 2, . . . , n}, we haveXt =
∑t−1

i=0 φ
iut−i andE(Xt) = 0, E(X2

t ) = σ2
u

∑t−1
i=0 φ

2i.
Furthermore the autocovariances are

cov(Y2t+1, Y2t) = E(X2t+1X2t) = σ2
uφ
∑2t−1

i=0 φ2i ,

cov(Y2t, Y2t−1) = E(X2tX2t−1) = σ2
uφ
∑2t−2

i=0 φ2i ,

cov(Y2t+1, Y2t−1) = E(X2t+1X2t−1) = σ2
uφ

2∑2t−2
i=0 φ2i ,

hence

Ψ12 = φσ2
u

(
2t−1∑
i=0

φ2i ,

2t−2∑
i=0

φ2i

)
, Ψ22 = σ2

u

 ∑2t
i=0 φ

2i φ2∑2t−2
i=0 φ2i

φ2∑2t−2
i=0 φ2i ∑2t−2

i=0 φ2i

 .

B.2. The affine regression ofY2t on
(
Y2t+1 , Y2t−1

)′
when |φ| 6= 1

In general we have:

EL

[
Y2t|
(
Y2t+1 Y2t−1

)]
= E(Y2t) + Ψ12Ψ−1

22

(
Y2t+1 − E(Y2t+1)
Y2t−1 − E(Y2t−1)

)
.

Using the fact that, for|φ| 6= 1,

k∑
i=0

φ2i =
1− φ2(k+1)

1− φ2 ,
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we obtain the following expressions:

Ψ12 =
φσ2

u

1− φ2

(
1− φ4t , 1− φ4t−2

)
, Ψ22 =

σ2
u

1− φ2

 1− φ4t+2 φ2(1− φ4t−2)

φ2(1− φ4t−2) 1− φ4t−2

 ,

hence

EL

[
Y2t|
(
Y2t+1 Y2t−1

)]
= E(Y2t) + φ

1+φ2

(
1 1
) ( Y2t+1 − E(Y2t+1)

Y2t−1 − E(Y2t−1)

)
= a+ β(Y2t+1 + Y2t−1),

wherea = E(Y2t) − β[E(Y2t+1) + E(Y2t−1)] andβ = φ/(1 + φ2). Since for allt ≥ 0, E(Yt) =
φkE(Yt−k) , k = 0, 1, . . . , t, a = 0.

B.3. The affine regression ofY2t on
(
Y2t+1 , Y2t−1

)′
when |φ| = 1

When|φ| = 1, we have

Ψ12 = φσ2
u

(
2t , 2t− 1

)
, Ψ22 = σ2

u

(
2t+ 1 2t− 1
2t− 1 2t− 1

)
,

henceEL

[
Y2t|
(
Y2t+1 Y2t−1

)]
= φ

2 (Y2t+1 + Y2t−1) = φ
1+φ2 (Y2t+1 + Y2t−1). Note that from the

derivations in the case where|φ| 6= 1, a = 0 irrespective to the value ofφ. In any case, the residual
variance is

V
[
Y2t − EL

[
Y2t|
(
Y2t+1 Y2t−1

)] ]
= V(Y2t)−Ψ12Ψ−1

22 Ψ′
12 =

σ2
u

1 + φ2 , φ ∈ (−∞,∞).
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