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Detecting Mutiple Breaksin
Financial Market VVolatility Dynamics

Elena Andreou’ Eric Ghysels’
Résumé / Abstract

Nous appliquons plusieurs nouveaux tests congus pour déceler les ruptures structurelles dans la
dynamique de variance et de covariance conditionnelles. Les tests sappliquent a la fois aux processus de
la classe ARCH et de type SV et tiennent compte des caracté&ristiques de mémoire longue. Nous les
appliquons également aux estimateurs de volatilité engendrés par les données, en utilisant des données a
haute fréquence et nous suggérons des applications multivariées. En plus de déterminer la présence des
ruptures, les statistiques permettent d’ identifier le nombre de ruptures ains que I'emplacement de ruptures
multiples. Nous étudions la talle et la puissance des nouveaux tests pour divers modéles réaistes
univariés et multivariés de variance conditionnelle et d’ échantillonnage. L’ article conclut avec une analyse
empirique a partir de données provenant des marchés d'actions et de taux de change pour lesquels nous
trouvons de multiples ruptures associées aux crises financiéres asiatiques et russes. Dans les échantillons
sdlectionnés avant et apres les ruptures, nous trouvons des changements dans la dynamique et dans la
mémoire longue de la volétilité.

We apply several recently proposed tests for structural breaks in conditional variance and
covariance dynamics. The tests apply to both the class of ARCH and SV type processes and allow for long
memory features. We also apply them to data-driven volatility estimators using high-frequency data and
suggest multivariate applications. In addition to testing for the presence of breaks, the statistics allow to
identify the number of breaks and the location of multiple breaks. We study the size and power of the new
tests under various realistic univariate and multivariate conditional variance models and sampling
schemes. The paper concludes with an empirical analysis using data from the stock and FX markets for
which we find multiple breaks associated with the Asian and Russian financial crises. We find changesin
the dynamics and long memory of volatility in the samples prior and post the breaks.

Mots clés: Ruptures structurelles, ARCH, mémoire longue, données a haute fréquence
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Introduction

On this twentieth anniversary of Rob Engle’s seminal paper on ARCH it is
worth reflecting on some of the outstanding questions in the literature. It has
long been conjectured that stock market volatility exhibit occasional breaks.
Diebold (1986), Hendry (1986) and Lamoureux and Lastrapes (1990) were
among the first to suggest that persistence in volatility may be overstated
with the presence of structural breaks. More recently, Bos et al. (1999),
Diebold and Inoue (2001), Granger and Hyung (1999), Mikosch and Starica
(1999), Lobato and Savin (1998), among others, argued that the presence of
breaks may explain the findings of long memory in volatility.

There is a substantial literature on testing for the presence of breaks
in linearly dependent stochastic processes. A partial list of papers includes
Antoch et al. (1997), Bai (1994, 1997), Bai and Perron (1998), Davis et
al. (1995), Giraitis et al. (1996), Giraitis and Leipus (1990), Horvath and
Kokoszka (1997), and Leipus (1994). There is a temptation to apply the
tests for ARMA-type processes in the context of ARCH or stochastic volatil-
ity. For instance, one could view squared returns as an ARMA process and
proceed with the application of tests suggested for testing breaks in the mean.
Unfortunately, things are not so simple. The resemblance between ARMA
models and GARCH is deceiving (see e.g. Francq and Zakoian (2000b)). It
took many years of research after the original work of Engle (1982) to clarify
the asymptotics of GARCH(1,1) processes for instance (see Lee and Hansen
(1984) and Lumsdaine (1996)) and the asymptotics of more general univari-
ate and multivariate GARCH processes (see Ling and McAleer (1999 a,b)).
In a recent paper Carrasco and Chen (2001) establish that GARCH processes
are J-mixing, which precludes the application of many aforementioned tests
for structural breaks requiring a much stronger mixing condition.® The class
of discrete time stochastic volatility models also yields ARMA representa-
tions of squared returns (see e.g. Ghysels et al. (1996)) but care must again
be taken of non-standard settings (see e.g. Francq and Zakoian (2000a)).
These issues become even more involved when allowing for the presence of
long memory.

The purpose of this paper is to explore recent advances in the theory of
change-point estimation for ARCH and SV models. A number of papers have

I Most tests proposed for linear processes impose ¢-mixing or strong mixing conditions
which are not satisfied by ARCH processes. For a general treatment of estimating so called
weak GARCH models, see Francq and Zakofan (2000b).



shown the consistency of various CUSUM type change-point estimators and
tests for multiple breaks in the context of volatility models. The tests are not
model-specific and apply to a large class of (strongly) dependent processes
such as ARCH and SV type processes. The theoretical developments are de-
scribed in a series of recent papers, see in particular Giraitis, Kokoszka and
Leipus (1999, 2000), Horvath and Steinebach (2000), Kokoszka and Leipus
(1998, 1999, 2000) and Laveille and Moulines (2000). So far only limited sim-
ulation and empirical evidence is reported about these tests. We enlarge the
scope of applicability by suggesting several improvements that enhance the
practical implementation of the proposed tests. We focus on the Kokoszka
and Leipus and Laveille and Moulines tests and propose three types of ex-
tensions. First, the series used in the tests so far are either squared returns
or absolute returns. We suggest to extend the application of change-point to
more precise measures of volatility, including the high frequency data-driven
processes studied by Andersen et al. (2001), Andreou and Ghysels (2000),
Barndorff-Nielsen and Shephard (2000), Taylor and Xu (1997), among oth-
ers. Second, we propose extending the tests to multivariate volatility settings.
While there is no fully developed theory for multivariate processes we sug-
gest to apply the existing tests to cross-products of returns and show this
strategy is feasible and useful in practical applications. Finally, the finite
sample performance of the new tests is examined via extensive Monte Carlo
simulations.

We consider various financial series, including equity index returns for
several financial markets in the Hong Kong, Japan, the U.K. and U.S. We also
consider FX market series. The data series are similar to several prior studies,
such as Andersen et al. (2001) and Granger and Hyung (1999), that found
long memory properties in volatility. Our empirical analysis is particularly
complementary to Granger and Hyung (1999) who use a statistic proposed
by Incldn and Tiao (1994) and Bai (1997). The advantage of the Kokoszka
and Leipus and Laveille and Moulines tests used here is their validity under a
wide class of strongly dependent processes, including long memory, GARCH-
type and nonlinear models. The Inclan and Tiao test applies in principle to
independent series and is designed to find a break in the (unconditional)
variance with unknown location. We show via Monte Carlo that the Inclan
and Tiao test has nevertheless power and only minor size distortions when
applied to dependent data, though it is not as powerful as the Kokoszka and
Leipus (1998, 1999, 2000) and Laveille and Moulines (2000) tests.

The paper is organized as follows. In section 2 we describe the various



tests. Section 3 presents the Monte Carlo design and results. Section 4
contains the empirical application and a final section concludes.

1 Test statistics for breaks in volatility dy-
namics

A classical statistical problem is to test the homogeneity of a process or the
parameter constancy of models. There is a substantial literature on this
question known as a change-point problem. The task is to test if a change or
structural break has occurred somewhere in a sample and, if so, to estimate
the time of its occurrence. The simplest form of departure from stationarity is
a change in mean at some (unknown) point in the sample. This problem has
received a great deal of attention, see for instance Csérgo and Horvath (1997)
for a literature review. Financial returns series typically have constant mean,
but exhibit noticeable and complex clustering patterns in volatility (see e.g.
Bollerslev et al. (1994) for a survey of stylized facts). Such processes pose
some non-trivial challenges as detecting a change in variance in an ARCH
model can be rather difficult.? The section is divided in several subsections.
The first covers CUSUM type tests for a single breakpoint. The second
handles multiple break point tests. Finally, the final subsection covers the
various series to which the tests are applied.

1.1 CUSUM type tests for a single break

In this paper we examine CUSUM type tests and estimators, which are simple
and easy to implement. We focus only on a brief description of the theoretical
aspects of the problem, starting with the following basic characterization of
the CUSUM type tests and estimators. Suppose we have a sample of size
N of a stochastic process {X;}. We will think of X; as a generic process
satisfying certain regularity conditions that are sufficiently general to cover
various return volatility related empirical series.

We will devote the entire final subsection to the description of the vari-
ous processes to which the tests will apply. To facilitate the presentation, let
us briefly mention some examples of X;. Consider a return process, and let

20ne could for instance think of extreme cases, where unconditional moments don’t
change, only the the conditional variance dynamics is perturbed.



X; = |r]° for § = 1,2. We will not provide all the details of the regularity
conditions, yet it is clear that the progress made in recent years pertains to
the types of temporal dependence allowed in the processes of interest, under
the null of no breaks. The temporal dependence, in the context of hetero-
geneously distributed observations, is described by mixing conditions. Until
recently, only weakly dependent or ¢-mixing processes were covered by tests
for structural breaks. Now, we can handle strongly depend, or strong mix-
ing, i.e. a-mixing processes. To proceed further, it is worth recalling that
measurable functions of mixing processes are mixing and of the same size
(see White (1984, Theorem 3.49)). Hence, when the process r; is a-mixing
then X; = G(ry,...,7_,), for finite 7 is also a-mixing. While mixing con-
ditions are not the only regularity conditions that need to be satisfied, it is
clear that (1) those conditions play a key role in the recent advances and (2)
once a primitive process, say returns at some sampling frequency, satisfies
the assumed mixing conditions, then transformations such as X; = |r;|° for
0 = 1, 2, satisfy those conditions too. The choice of ¢ is of course important.
For § = 2 we look at squared returns which relatw to volatility in an ARCH
or SV context, since squared returns are the parent processes parametrically
modelled in ARCH or SV-type models.®> Without an explicit specification
of an ARCH or SV model, the tests discussed in this section will examine
whether there is evidence of structural breaks in the data generating process
of squared returns (when ¢ = 2). If we find a break, one must conclude that
when fitting ARCH or SV-type processes, there will be breaks in their para-
metric structure. Alternatively, when § = 1, we examine absolute returns,
which are another measure of volatility (see e.g. Ding et al. (1993)). Again
without specifying a specific model, we will be looking at the presence of
breaks in absolute returns for which various models have been proposed to
mimic the long memory features of such processes. We can take this rea-
soning a step further and think of sampling returns intra-daily, denoted 7; ;
for some intra-day frequency 7 = 1, ..., m, and form data-driven estimates of
daily volatility by taking sums of squared intra-day returns. This is an exam-
ple of X; = G(r(l),t, cen T(m),t). The high frequency process is a-mixing, and
so is the daily sampled sum of intra-day squared returns, or various other
empirical measures of quadratic variation. Using the notation of Andreou
and Ghysels (2000) X; = (QV'i); which are locally smoothed filters of the

3 As noted before, Carrasco and Chen (2001) establish that GARCH and SV processes
are, under suitable regularity condition, S-mixing.




quadratic variation using ¢ days of high-frequency data. The case of QV'1
corresponds to the filters studied by Andersen et al. (2001) and Barndorff-
Nielsen and Shephard (2000). With such high-frequency data-driven volatil-
ity measures we are again examining processes that relate to the ARCH and
SV class of processes. Similar to squared returns, if we find a break in X;
representing high-frequency data-driven volatility, one must conclude that
when fitting ARCH or SV-type processes, there will be breaks in their para-
metric structure (without specifying the actual parametric structure). The
details of the various specifications for the X; process will be discussed in the
last subsection.
To test for breaks, Giraitis, Kokoszka and Leipus (1999, 2000) and Kokoszka

and Leipus (1998, 2000) consider the following process:

Uy (k) = (1/\/_2X—k/N\/_§j ) (1.1)

for 0 < k < N. Kokoszka and Leipus (1998, 2000) consider X; = r? in (1.1),
i.e. squared returns, and study CUSUM type estimators k of an change point
k* where the parameters of an ARCH(cc) process change. The CUSUM type
estimators are defined as:

b= min{k s [Un (k)| = max Uy ()]} (1.2)
The estimate k is the point at which there is maximal sample evidence for
a break in the squared return process. To decide whether there is actually a
break, one has also to derive the asymptotic distribution of supy<p<y Un (k)
or related processes such as [) U%(t)dt. Moreover, in the presence of a sin-
gle break it has to be proven that k is a consistent estimator of k*. More
specifically, suppose that

9 r?2, 1<t<k*
Ty = 2’ *
¢ ry, k*<t<N

then Kokoszka and Leipus (1998, 2000) show that P{|k* — k| > &} <
C/(6e%/n), for some positive constant C' and ¢ depending on the ARCH

4Please recall that no ARCH or SV model are explicitly specified. Kokoszka and Leipus
(1998) assume (i) a stationary ARCH(oo) process with short memory ie the coefficients
decay exponentially fast, and (ii) the errors of the ARCH process are not assumed Gaussian
but merely that they have a finite fourth moment.




parameters and they also show that |k* — k| = O,(1/n). Giraitis, Kokoszka
and Leipus (1999, 2000), Horvéath and Steinebach (2000) and Kokoszka and
Leipus (1999, 2000) extend these results to include volatility processes with
long memory (using X; = |r;|) , though they result in different convergence
rates for k. Finally, these authors also establish that under the null hypothesis
of no break:

UN(]C) _>D[0,1] O'B(k) (13)

where B(k) is a Brownian bridge and ¢® = 52 Cov(Xj, Xo). Conse-
quently, using an estimator ¢, one can establish that under the null:

sup{|Un(k)[}/6 = pp,1 sup{B(k) : ke[0, 1]} (1.4)

which establishes a Kolmogorov-Smirnov type asymptotic distribution.?
The computation of the Kokoszka and Leipus (1998, 2000) test (hence-
forth K&L test) is relatively straightforward, with the exception of the com-
putation of 6 appearing in (1.4). The authors suggest to use a Heteroskedas-
ticity and Autocorrelation Consistent (HAC) estimator applied to the X;
process. There are a multitude of such estimators, depending on the kernel
function one uses. Examples of kernels which have been used by econometri-
cians include: Hansen (1982) and White (1984) use the truncated kernel; the
Newey and West (1987) estimator uses the Bartlett kernel; and the estimator
of Gallant (1987) uses the Parzen kernel and that of Andrews (1991) uses
the Quadratic Spectral (QS) kernel. We have experimented with a number
of estimators in addition to the procedure of den Haan and Levin (1997)
who propose a HAC estimator without any kernel estimation, which is called
the Vector Autoregression Heteroskedasticity and Autocorrelation Consistent
(VARHAC) estimator. This estimator has an advantage over any estima-
tor which involves kernel estimation in that the circular problem associated
with estimating the optimal bandwidth parame- ter can be avoided. For
the VARHAC estimator involves fitting a parametric autoregressive model
and a usual method to choose the order of AR such as the AIC is applied.
The Monte Carlo evidence reported in den Haan and Levin (1997) indicates
that the VARHAC estimator performs better than the nonprewhitened and
prewhitened kernel estimators in many cases. Although we have not done
a systematic study of various kernel HAC estimators versus the VARHAC

5Critical values can be found in most textbooks on nonparametric methods. The 90
%, 95 % and 99 % percentile (two-sided test) critical values are, respectively: 1.22, 1.36
and 1.63.



estimator, we found the latter to be the most reliable. All the results in
the paper are therefore based on the VARHAC estimator for the variance &
appearing in (1.4).

The advantage of the K&L test is its validity under a wide class of pro-
cesses, including long memory, GARCH-type and nonlinear models. In a
study closely related to ours, Granger and Hyung (1999) use a different test,
proposed by Inclan and Tiao (1994) in the context of linear models with
breaks such as Chen and Tiao (1990) and Engle and Smith (1999).5 The
Inclan and Tiao test (henceforth I&T test) applies in principle to i.i.d. series
and is designed to find a break in the (unconditional) variance with unknown
location. The test statistic is defined as:

IT=\/N/2m,?,X|Dk| (1.5)

where D), = [(Z?Zl X;/ Z;-V:l Xj) — k/N] . It is interesting to note that the
asymptotic distribution of the statistic in (1.5) is the same as in (1.4), that is
the supremum of Brownian bridge, and hence the same Kolmogorov-Smirnov
type asymptotic distribution. In the Monte Carlo simulations we will exam-
ine how the the Incldn and Tiao test performs in non-i.i.d. settings and
compare it to the Kokoszka and Leipus test, the latter applicable to long
memory, ARCH, SV and other nonlinear processes.

1.2 Test statistics for multiple breaks

While testing for the presence of breaks in strongly dependent processes is a
challenge, the literature has tackled an even greater challenge, namely test-
ing for the number of breaks and, if there are multiple breaks, locating them.
Bai and Perron (1996) have proposed a least squares estimation procedure to
determine the number and location of breaks in the mean of linear processes
with weakly dependent errors. The key result in Bai and Perron (1996),
and prior work of Bai (1994), is the use of a Hajek-Rényi inequality to es-
tablish the asymptotic distribution of the test procedure. Recent work by
Lavielle and Moulines (2000) has greatly increased the scope of testing for
multiple breaks. They obtain similar inequality results for weakly as well as
strongly dependent processes, including long memory processes, ARCH-type

6Note that Granget and Hyung also use the Bai (1997) test applied to absolute returns.



processes, etc.” The number of breaks is estimated via a penalized least-
squares approach similar to Yao (1988). In particular, Laveille and Moulines
show that an appropriately modified version of the Schwarz criterion yields
a consistent estimator of the number of change-points.

To be more specific, consider the following generic model:

Xy=pi+e ti_, <t<tl 1<k<r (1.6)

where t; = 0 and ¢;,;, = T, the sample size. The indices of the breakpoint
and mean values puj, k = 1,...,r are unknown. It is worth recalling that X,
is a generic stand-in process. In practical applications, equation (1.6) applies
to squared returns, absolute returns, high-frequency data-driven volatility
estimates, etc. The Laveille and Moulines tests are based on the following
least-squares computation:

r+1 tr

QT(t , Z Z Xk - ,uk (1.7)

L. ’rk 1t=ty_1+1

Estimation of the number of break points involves the use of the Schwarz or
Bayesian information criterion (following Yao (1988)) and hence a penalized
criterion Qr(t) + Prr, where r is the number of break points and fr =
4log(T)/T'—228

If several change-points are suspected, the usual procedure is to divide
the sample into two parts, before and after an estimated change point, and
to test for the presence of a change point in each of the subsamples. A com-
plementary procedure following this strategy was developed prior to Laveille
and Moulines (2000). Incldn and Tiao (1994) propose an Iterated Cumulative
Sum of Squares (ICSS) algorithm that covers testing for multiple breaks in
the variances of independent processes. It has been applied by Aggarwal et
al. (1999) and Granger and Hyung (1999). We combine the ICCS algorithm
of Incldn and Tiao with the K&L test appearing in (1.1), to sequentially test
for multiple breaks. We will use the sequential application of K&L tests in
the empirical section to test for multiple breaks, in addition to using the
L&M test.

"The Laveille and Moulines tests apply to various classes of processes, including a-
mixing processes. Since GARCH processes are [-mixing they are a-mixing and thus
satisfy the Laveille and Moulines set of regularity conditions.

8This formula allows for the possibility of long memory, with d Hosking’s long-range
dependence parameter.




Given the sequential application of change-point tests in subsamples we
may obviously end up with relatively small samples. It will therefore be
important to appraise the power and size properties of change-point tests in
small samples via Monte Carlo simulations.

1.3 Empirical processes

So far we discussed mostly X; as a generic process. It was noted that besides
squared return processes Kokoszka and Leipus (1999, 2000) suggest to apply
their CUSUM type tests to absolute values of returns, which are covered
by their regularity conditions. The interest in studying the absolute returns
stems from Ding, Granger, and Engle (1993) and the subsequent work on
long memory ARCH models, see Baillie, Bollerslev and Mikkelsen (1996), and
long memory SV models, see Breidt, Crato and de Lima (1998), Comte and
Renault (1998), among others. Hence, we examine CUSUM type tests with
X; equal to absolute returns. With squared returns we shall be examining
whether there are breaks in ARCH and SV-type processes that are driven
by squared returns. With absolute returns we investigate whether there are
breaks in the type of processes often found in the literature on long memory in
volatility. It should be stressed, however, that breaks in FIGARCH processes
can be found through examining squared returns, whereas breaks in long
memory volatility features in a more broadly defined sense, can be examined
via absolute returns.

A departure from the limited number of applications found in the lit-
erature so far is to use actually estimates of conditional volatility through
the use of high frequency data. The logic for considering such empirical
processes is that squared returns can be viewed as noisy realizations of the
underlying conditional volatility process (see Andersen and Bollerslev (1998)
for a discussion). Hence, instead of considering the daily return process
and square it, we can take advantage of high frequency intra-daily data
to obtain daily estimates of volatility.” Using the notation T(m),t tO repre-
sent high frequency data on day ¢ sampled with frequency m we can study
sums of squared returns r(zm)’t for different values of m, to produce the daily

volatility measure: (i) 627" = i r(Qm),tH_j/m, t = 1,...,N, where for

9We refrain here from discussion the diffusion details of this class of estimators as well
as definitions of quadratic variation. For details we refer the reader to Andersen et al.
(2001), Andreou and Ghysels (2000) and Barndorff-Nielsen and Shephard (2000).



the 5-minute sampling frequency the lag length is m = 288 for financial
markets open 24 hours per day (e.g. FX markets) as in Andersen et al.
(2001), Andreou and Ghysels (2000) and Barndorff-Nielsen and Shephard
(2000) or (ii) One-day Historical Quadratic Variation (introduced in An-
dreou and Ghysels, 2000) defined as the sum of m rolling QV estimates:
GHAVL = 1/m >0 QV 1y tr1—j/m; t =1,...; N. The intraday volatilities are
denoted as QV'i, HQV'i for window lengths 7 = 1, 2, 3. Clearly, the regularity
conditions for squared daily returns, viewed as noisy estimates of quadratic
variation, can be transplanted to more efficient filtering schemes like QV'i
(recall our discussion about mixing conditions and measurable functions).

The last empirical process we consider is one not currently covered ex-
plicitly by econometric theory and for which we can only conjecture that the
regularity conditions are sufficient and justify the use of the existing asymp-
totic distributions. Namely, to study breaks in volatility co-movements we
suggest to consider X; = r;; x r;;, that is the cross-product of returns for
markets ¢ and j. The advantage of using the cross-product is that we examine
multivariate features through a univariate process, enabling us to apply the
existing tests. Using Proposition 3.50 in White (1984), one would need to
establish mixing conditions for the bivariate or multivariate GARCH pro-
cess in order to derive mixing conditions for products like X; = r? x rl. At
this points, no such conditions are available. Formally, we do not know the
stochastic process properties of multivariate ARCH type models or discrete
time SV type models and even for continuous time SV models very few results
are known. Carrasco and Chen (2001) only establish mixing conditions for
univariate ARCH type processes, and no results are available for multivariate
processes. Our empirical analysis is therefore only speculative, in terms of
its theoretical foundations. To provide some confidence in the reliability of
the tests in a multivariate setting, we will conduct some Monte Carlo simu-
lations that support the use of tests in multivariate settings. Since the data
generating processes in the Monte Carlo simulations are representative, they
provide some confidence to the usefulness of these tests beyond the current
reach of econometric theory.

2 The Monte Carlo Design and Results

The aim of this section is to evaluate the performance of the Kokoszka and
Leipus (1998, 2000) sup{|Ux(k)|}/6 appearing in (1.4) as well as Inclan and

10



Tiao (1994) tests IT appearing in (1.5) (also refered to as K&L and 1&T
tests respectively) in detecting breaks in the volatility dynamics of financial
asset returns. The observed absolute or squared returns transformations are
the series monitored for breaks. The test recently proposed in Kokoszka and
Leipus (1998, 2000) provides a framework for testing breaks in (r;)? and |ry|
where 7 follows an ARCH(o0) or a fractional ARIMA process.

The simulation design examines the size and power properties of the
Kokoszka and Leipus (1998, 2000) test for GARCH type processes that can
be considered as representative models of financial asset returns. The simu-
lation results reported in Kokoszka and Leipus (2000) focus on the sampling
distribution of the change-point estimator & for an ARCH(1) process. They
find that its sampling distribution depends on the location of the change-
point, the size of the variance change and its source. The extensive results
presented in this section complement Kokoszka and Leipus (2000) in estab-
lishing the test’s power for univariate and bivariate GARCH processes and
a number of alternative change-point hypotheses often encountered in asset
returns. The robust character of the test is also examined in the presence
of outliers given the stylized fact of jumps or extreme observations observed
in volatility and absolute returns which may lead to spurious nonlinearities
or IGARCH effects (e.g. Lamoureux and Lastrapes, (1990), van Dijk et al.
(1999 a,b), Franses et al. (2001)). Last but not least, the simulations pro-
vide positive results regarding the power of the tests for detecting breaks in
the co-movements between financial series that can be considered as a use-
ful direction for further theoretical analysis in the multivariate change-point
problem.

The apparent similarity of the CUSUM-type statistics in K&L with that
specified by Inclan and Tiao (1994) for independent sequences calls for an
interesting comparison which brings about the connection between these two
tests and their power in detecting change-points in GARCH processes as
well as jumps in financial markets. The I1&T test was recently applied to the
squared returns of stock indices in emerging and Asian markets by Aggar-
wal et al. (1999) and Granger and Hyung (1999). In the former study the
detection of breaks leads to incorporating dummies in the GARCH models
whereas in the latter it leads to implications regarding the long-memory of
the process that is assumed to follow the linear model with breaks developed
by Chen and Tiao (1990) and Engle and Smith (1999).1° For comparison

0Granger and Hyung (1999) also apply the Bai (1997) test to the absolute returns of
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purposes both tests, namely K&L sup{|Uxn(k)|}/6 in (1.4) and IT in (1.5),
are evaluated for absolute and squared returns whereas the latter test is also
applied to the residuals of a GARCH process given that this test is origi-
nally designed for independent processes. In a first subsection the simulation
design is discussed, followed by a subsection describing the results.

2.1 Simulation design

The simulated returns processes are generated from the following two types
of DGPs: (i) a univariate Normal-GARCH process, and (ii) a multivariate
GARCH process with constant correlation (M-GARCH-CC) (see e.g. Boller-
slev (1990)). The choice of the M-GARCH-CC is due mainly for its simplicity
and parsimony as well as the fact that it constitutes a multivariate design
most closely related to the univariate GARCH models. More specifically, the
two DGPs are:

(i) Univariate Normal-GARCH process:

Tit = Ui,t\/hi,t

- , - o (2.1)
it = Wi + aiui,tfl + ﬁihi,tfla t= 1, ,T and = 0, 1.

where 7;; is the returns process generated by the product of u;; which is
an i.1.d.(0,1) series and the volatility process, A7, that has a GARCH(1,1)
specification, and

(i) Multivariate GARCH process

Tiie = Uigey/ Panig + Uzithio (2.2)
Tooie = Uagp\/Pazig + Urithioge, t=1,..,T7 and =0,1.

where 711, and ro;; are the returns processes that are generated by u ;4
and ug;; 1.1.d.(0, 1) processes, GARCH conditional variances:

2
hivie = wigtoaiuy, q+ Bi1ihi1ie (2.3)

_ 2
hasip = wog;+ Q224U 41 T Bazhaoit—1

and the conditional covariance:

hi2it = pra;i \/ hi1ithog,iz. (2.4)

the linear STOPBRFEAK model (Engle and Smith, 1999).
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The process in (i) or (ii) without change points is denoted by i = 0
whereas a break in any of the parameters of the process is symbolized by
1 = 1. The models used in the simulation study are representative of finan-
cial markets data with the following set of parameters that capture a range
of degrees of volatility persistence (measured by ag+ fy). The vector param-
eters (wo, ag, fo) in (2.1) describes the following Data Generating Processes:
DGP1: (0.4,0.1,0.5), DGP2: (0.2,0.1,0.7) and DGP3 (0.1,0.7,0.1). The
three DGPs are characterized by low, average and high volatility persistence,
respectively. In order to control the multivariate simulation experiment the
volatility processes in the M-GARCH-CC model (2.3), are assumed to have
the same parameterization. The sample sizes of N = 500,1000, 3000 are
chosen so as to examine not only the asymptotic behavior but also the small
sample properties of the tests. The small sample features are particularly
relevant for the sequential application of the tests in subsamples.

The models in (i) and (ii) without breaks (i = 0) denote the processes
under the null hypothesis for which the simulation design provides evidence
for the size of the K&L and I&T tests. The simulation results are discussed
in the section that follows. Under the alternative hypothesis the returns
process is assumed to exhibit breaks and four cases are considered to evaluate
the power of the tests. The simulation study focuses on the simple single
change-point hypothesis. In the context of (2.1) we study breaks in the
conditional variance h; which can also be thought as permanent regime shifts
in volatility at change points 7N (7 = .3,.5,.7). Such breaks may have the
following sources. Hj' : a change in the volatility dynamics (or persistence),
B;. HP : a change in the intercept, w;. H{ : a change in the tails of ug,
to ury ~ N(0,04), (0, = 1.1,1.5 ) at t = 7N +1,...,N. HP : outliers in
the error, ugy; to uyy ~ N(fy, 1), with jump sizes p, = 4,5 and frequencies
at given regular dates of a daily sample, A - t;, (where A = 250,500 and
t; =1,2,..,A/N) and zero otherwise.™

The simulation investigation is organized as follows: Firstly, we consider
the application of the K&L and I&T tests for a single series given by the
univariate GARCH model in (i). The alternative hypotheses of a change
point in (i) examine the power of the test in detecting breaks due to either
changes in the parameters or the error of the GARCH process (as defined by
HA HEB HE HP). Given the international linkages amongst financial mar-

"Tn our experiment the above simple jump process would facilitate the evaluation of
the test’s power in the presence of controled outliers.
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kets it is interesting to examine whether breaks that occur in one market are
transmitted and can be detected in another market. Hence we consider the
framework of (i) with a break that occurs in one of the GARCH processes.
We test for a change-point in 711, in equation (2.2) while the break is due
to either hgoy in (2.3) or hyoy in (2.4). The power of the K&L test in the
context of model (ii) is evaluated for the following alternative hypotheses:
HPE : Breaks in the correlation coefficient pyo as well as H{', HE, HY, HP
that refer to the parameters or the error in hgy ;. Secondly, in the context of
(ii) we extend the application of the tests in a bivariate framework for the
cross-product between two processes. As discussed in section 1.3 we examine
the cross-product of returns to appraise the performance of the tests in an
area of great potential application, but with caution about the theoretical
underpinnings that justify the asymptotic analysis.

2.2 Simulation Results

The simulation analysis commences with the examination of the asymptotic
critical values of the K&L and I&T CUSUM-type tests for a GARCH pro-
cess with different volatility persistence (given by DGP1 and DGP2) and
for various sample sizes. The small samples (N = 250,500) are particu-
larly useful for the sequential application of the tests for multiple breaks
whereas large samples are routinely encountered in applications of financial
asset returns data. When the K&L test is applied to (r?) and |ry| the crit-
ical values for the 90%, 95% and 99% percentiles are simulated using the
VARHAC estimator for standardizing the statistic, over 10,000 replications.
The results in Table 1 (top panel) show that the critical values for the 95%
percentile are on average higher than the asymptotic critical value of 1.36
obtained by the supremum of the Brownian Bridge, i.e. the asymptotic dis-
tribution. Although the increase in the critical values is only marginal in the
low persistent GARCH (DGP1) this increase is more evident for the more
persistent GARCH (DGP2). These results also apply to the I&T test for
the (r?) process. In contrast, when the I&T test is applied to the errors
(us) from the simulated GARCH, defined as u; = r;/v/h; in model (2.1), the
simulated critical values approximate the asymptotic level since this process
is independent. Note, however, that there are still some minor fluctuations
around the asymptotic critical values for various sample sizes, an indication
that minor size distortions still may occur. The performance of the K&L
test is further evaluated when the underlying process is a univariate Normal-
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GARCH(1,1) by reporting the nominal sizes of the tests instead of the Monte
Carlo simulation percentiles. In Table 2 we report results for tests that have
an asymptotic size of 5 %. We find that there are only minor size distortions
for GARCH models with low persistence (e.g. DGP1 where ag + 5y = 0.6)
and that these minor distortions remain as the sample size increases from
N = 500 to 3000. Some mild distortions are found for DGP2 which yields
a size around 10% whereas for the high-persistent process (DGP3) the test
suffers more serious distortions up to 20%.

The power of the K&L test is evaluate by a number of alternative hypothe-
ses as defined in the previous section. The results in Table 2 suggest that
the tests have good power in detecting breaks under the following alterna-
tive hypotheses: Break in the constant (HZ) or dynamics (H{!) of volatility.
The power of the K&L test is demonstrated for small changes (e.g. a 0.1 in-
crease) in fy for all DGPs. Similar results apply to the alternative of a small
change in the error term (HC). The power of the tests increases with N in
all DGPs. Note that the high nominal power for the persistent GARCH pro-
cess (DGP3) needs to be weighted by the size distortions for near IGARCH
processes mentioned above. In H we examine the K&L test when outliers
or short-lived jumps are present in financial markets. These are generated
in u; and do not seem to have an adverse effect on the K&L test. The last
panel shows that infrequent but large outliers are not mistakenly detected
for permanent change points. Finally we evaluate the power of the K&L test
for early change-points. The last three panels of Table 2 (for H{!, HZ HY)
show that the K&L test can detect breaks that occur as early as m = 0.3 of
the sample.

The size and power properties of the K&L test are compared with those
of I&T. The latter is derived for independent series but has been applied
to processes that exhibit dependence (Aggarawal et al. 1999, Granger and
Hyung, 1999). Therefore we examine the properties of the test for (r;)?, |ry|
as well as the errors of the GARCH process (u;)? where u; = r;/v/h; yields an
independent series. Table 3 presents the nominal size and power simulation
results of the I&T test under the same null hypothesis of a univariate Normal-
GARCH(1,1) and all the alternative hypotheses discussed above (and also
presented in Table 2). Let us first compare the performance of the 1&T for
(r¢)? and |r;|. The I&T test for (r;)? suffers from size distortions (above 10%)
for all DGPs and sample sizes but appears to have good power in detecting
even small changes in the GARCH coefficients or the error process (shown
by the alternative hypotheses H{, HE, HC) for large N. Nevertheless, its
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performance is adversely affected by outliers which appear to be consistently
detected as change-points. If instead we adopt the |r;| transformation we note
some interesting differences. The I&T test for |r;| appears seriously under-
sized and with relatively less power, when compare with (r;)?, in detecting
breaks by any of the alternative hypotheses. However, it is interesting to note
that for large N (e.g. 1000, 3000) and highly persistent GARCH processes
(e.g. DGP3) the I&T test has good power properties and is not susceptible
to outliers as opposed to (r;)%. Finally we examine the I&T test for (u;)?
which is by design an independent series. The results in Table 3 show that
the size of the I&T statistic for (u;)? is near the nominal 5% level. The 1&T
test for (u;)? has power in detecting even small changes in the variance of
error term (demonstrated by HY) and is not seriously affected by outliers
(HP) for large samples, N = 3000. This evidence complements the results
in I&T for i.i.d. series and small samples in that it shows that this test can
be applied to the residuals of a GARCH for which it would have power to
detect breaks only in the error term for very large samples. This statement
is supported by the simulation results for the H{* and HE for (u;)? which
show that it lacks power in detecting breaks in the conditional variance. The
reason u; lacks power is due to the standardization of the returns process
r¢/v/h: that offsets the corresponding changes in r; and v/h; and yields an
1.1.d. error process, us.

The co-movements of asset returns in international stock markets are of
particular importance in periods of financial crises during which shocks and
structural changes can be transmitted between financial markets. The co-
movements between returns are simulated based on a M-GARCH-CC as de-
fined in equations (2.2)-(2.4). Th K&L test applies to a univariate ARCH(o00)
process and we provide some preliminary simulations that examine the size
and power of the test which we extend in the following two directions. First,
we test for breaks in the returns of one asset, 114, while change-points occur
in the process of the second asset, r99;, or the correlation between them, pis.
This simulation experiment addresses the issue of the transmission of breaks.
Second, we examine the change-point hypothesis in the cross-products of the
returns (7114 X T924) process if breaks occur in r9; or in the correlation
between the two returns, p;s.

In Table 4 we evaluate the properties of the K&L test in detecting breaks
in 711, when it is generated by the bivariate GARCH process (2.2)-(2.4).
Under the null hypothesis of homogeneity the average nominal size of the
test is around 10% for the alternative DGPs (and different p;5’s). Under the
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alternative hypotheses of a single break in the parameters of hg; the K&L
test for 711, yields some interesting results. The size and the location of the
break in hgy, affects the power of the test. For instance, for a small break
(e.g. 0.1 increase in B9, ws20 and oy,,,) the application of the K&L test
in 711, lacks power as opposed to the univariate GARCH model (2.1) case
in Table 2. Increasing the size of break by 0.2 in S and by 0.5 in 0y,,,
attributes better power to the K&L test for r1;, especially when N is large
(e.g. N = 3000). These large sample results also apply to the power of
the K&L test for 711, in detecting breaks in the correlation coefficient, po.
Summarizing, the simulation results of Table 4 show that if two financial
assets follow a bivariate GARCH with constant correlation then a break in
the correlation coefficient p;5 of volatility co-movements can be detected in
the returns process of either asset for large N. However, a change-point in
the GARCH process of one asset (o) needs to be of a size equal to 1.50y,,
and 205 to be transmitted and detected as a change point in 7.

As a final case in our simulation exercise we consider the change-point hy-
pothesis in the cross-product of returns, (71,4 X r92¢), and normalized returns,
(7“11,t X Tog9.¢/ 4 /hn,thgg,t) , in model (ii), shown in Table 5. The cross-product
transformation reduces the dimensionality of multivariate models and allows
the application of the K&L in a univariate framework. It is not surprising
that when there is change-point in the correlation coefficient, p;o, (as given
by HP in Table 5), the K&L test has good power in the cross-products of
both the returns and normalized returns, squared or absolute transforma-
tions. This property also holds when there is a relatively large (equal to 0.5)
change in 0y, ,. The difference between the two transformations, returns and
normalized returns, lies in the power of the K&L to detect change-points in
hao . Indeed, comparing the results for the H{ in Table 5 we observe that
the normalized returns have less power because their cross-product reduces
the process to the cross-covariance given by (2.4) and shown by:

T11,t T2, _ 2 b b = h
\/h— — Ut — Uzt | = U Ut (012) 22,4M11,¢ = U tU2,¢P12012,¢
11,¢

22,

In contrast, the cross-product of returns involves all the conditional moments
of the M-GARCH (2.2)-(2.4) as shown by:

T114 X Togt = (U1,t\/h11,t + U2,th12,t) X (Uf?,t\/hQQ,t + Ul,thu,t)
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which may explain the relatively higher power in detecting change points
whose source is hgg 4.

Overall the simulation excercise focuses on single breaks in ARCH-type
proccesses for which the K&L and I&T tests have good power properties.
Extensions of the simulation experiment can include multiple breaks and
long memory dependent series.

3 Empirical Results

There is a plethora of empirical evidence that the squared asset returns se-
ries are characterized by dynamic heteroskedasticity (e.g. Bollerslev et al.,
1994) and the absolute returns process features long-range dependence (e.g.
Granger and Ding, 1996). Empirical studies recognize that the existence of
breaks or regime changes in financial markets affects volatility and long-range
dependence in stock returns (e.g. Lamourex and Lastrapes, 1990, Mikosch
and Starica, 1999, Granger and Hyung, 1999, Diebold and Ioune, 2001).

The empirical analysis aims to complement the simulation evidence in the
following directions. We examine the change-point hypothesis in volatility
dynamics and long-range dependence of international stock market indices
and FX returns. The empirical performance of the tests, discussed in the
previous sections, is evaluated by examining the relation of the change-points
to economic events detected not only in the squared and absolute returns but
also to a family of data-driven volatility filters. Moreover, we estimate the
volatility and long-range dependence in subsample prior and post breaks in
an attempt to verify changes in the dependence of the series. The empirical
analysis also extends the simulation results to tests for multiple breaks using
the Lavielle and Moulines test as well as applying the ICSS algorithm to the
Kokoszka and Leipus test (henceforth K&L and M&L, respectively). The
analysis also addresses change-points in the comovements between the major
stock market indices in view of the global character of such markets and the
importance of the transmission of financial crises.

The empirical analysis is performed using data from the stock and FX
markets. The four international stock market returns indices, the Financial
Times Stock Exchange 100 index (FTSE), the Hang-Seng Index (HSI), the
Nikkei 500 index (NIKKEI) and the Standard and Poors 500 index (S&P500)
are studied over the period 4/1/1989 - 19/10/2001 at daily frequency (sample
size, N = 3338). The data source is Datastream. The choice of the sample is
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based on the recent experience of the Asian and Russian financial crises. We
also study the Yen vis-a-vis the US dollar returns over the period 1/12/1986-
30/11/1996 at 5-minute sampling frequency. The data source is Olsen and
Associates. The original sample is 1,052,064 five-minute return observations
(2653 days - 288 five-minute intervals per day). The returns for some days
were removed from the sample to avoid having regular and predictable market
closures which affect the characterization of the volatility dynamics. For the
description of the data removed refer to Andersen et al. (2001). The final
sample includes 705,024 five-minute returns reflecting N = 2448 trading
days.

The empirical analysis commences with investigating the hypothesis of a
single break in the four international stock market indices. The results in
Table 6 provide evidence that neither the K&L nor the 1&T tests support
the null hypothesis of homogeneity in the absolute or squared returns of the
stock market indices over the sample 1989-2001. These results hold for two
alternative nonparametric estimators of (r;)? and |r;| used for standardiz-
ing the max Uy (k) statistic defined in section (1.1): the VARHAC estimator
and the NLS estimation of the ARMA(1,1) of squared and absolute returns
(Francq and Zakoian, 2000b). The results hold whether we use the asymp-
totic critical value or the simulated critical values in Table 1. The tests
detect a change-point in the volatility and long-range dependence of returns
as approximated by the squared and absolute returns transformations. The
overall picture of the four stock market returns series dates the change point
in 1997 and in particular in the summer months of 1997 for the FTSE, HKI
and NIKKEI. The same change-point dates are also supported by the Inclan
and Tiao (I&T) test. Using the simulation evidence in Table 3 we note that
for large sample sizes N the I&T test for |ry| is well-behaved in terms of size
and power and is not distorted by outliers. It is interesting to note that the
extention of the I&T statistic by Kim et al. (2000) (also reported in Table 6
as By (C')) does not detect any change-points. One possible explanation can
be the poor power performance of the test in the presence of highly persistent
GARCH processes as documented in Kim et al. and as is supported by the
estimation of GARCH models for the four stock market indices.

The change-points detected in the three international stock market indices
in Table 6 refer to the Asian crisis period. However the single change point
hypothesis can mask the existence of multiple breaks which implies that in
dating change-points it is advisable to follow a multiple breaks procedure.
For this purpose Inclan and Tiao (1994) propose the ICSS algorithm which we
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apply to the Kokoszka and Leipus test. The multiple change-point hypothesis
is also examined following the approach in Moulines and Lavielle (2000) also
discussed in section 1.2. The results of these two tests are summarized in
Table 7. In the M&L test we adopt two penalty function criteria, the first
is the Bayesian Information Set (BIC) and the second is a modified BIC as
proposed in Liu et al. (1996) (denoted by LWZ in Table 7) and we set the
number of segments ¢, equal to 3 and 5. The empirical findings show that
irrespective of the choice of ¢, the Moulines and Lavielle test consistently
detects the same number of breaks, except when applied to the |r;| using the
BIC which seems to estimate an increasing number of breaks as ¢, increases.
In the top panel of Table 7 we report the M&L test results. The overall results
show that the combination of the BIC and |r;| tends to predict the largest
number of breaks whereas the pair of LWZ and (r;)? the smallest number
of change-points. The Asian crisis period appears to be a common break
in the above combinations (of processes and information criteria) and in all
stock market indices that is revealed in different months of 1997. In July
and August 1997 we detect the first change-points associated with the Asian
crisis in the FTSE, HSI and NIKKEI followed by the October 1997 change-
point in the S&P500 as well as the NIKKEI.'2 A second common break in
the stock indices that is revealed in the L&M procedure is associated with
the Russian crisis. In July 1998 we detect change-points in the FTSE and
the S&P500 followed by the August 1998 break in the NIKKEI. The second
panel of Table 7 reports tests for multiple breaks applying the ICSS algorithm
to the Kokoszka and Leipus test. Comparing the results from the two tests
we observe that the latter test detects a larger number of breaks especially
when applied to the |r;| process. The two multiple change-point tests detect
some common breaks in the same year mainly that of 1997.

Change-points are also detected in the nonlinear comovements between
stock market indices. We adopt the cross-product of returns for pairs of the
stock markets which can be considered as the cross-covariances of a general
variance-covariance matrix in multivariate volatility models such as the M-
GARCH. The simulation results in Table 5 in the context of a bivariate
GARCH with costant correlation can be used for comparison. The results
in Tables 8 and 9 show robust evidence that breaks have occurred in the

120 detailed chronology  of  the Asian  financial crisis  events
in 1997 and 1998 produced by N. Roubini can be found at
http:/ /www.stern.nyu.edu/nroubini/asia/AsiaChronologyl.hml.
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comovements between the four international stock market indices in August
and October 1997. These results are supported using both the K&L single
change-point approach (in Table 8) as well as the M&L multiple breaks test
(in Table 9) applied to the absolute and quadratic cross-product returns
transformations of the four largest stock market indices.

As a final empirical application we test for change-points in the FX market
applying the K&L test to the family of high-frequency volatility filters that
estimate the Quadratic Variation (QV) of diffusion processes with stochastic
volatility as briefly discussed in section 1.3. These high-frequency volatility
estimates have been introduced by Merton (1980) and applied in Poterba
and Summers (1986), French et al. (1987) and Hsieh (1991) interalia. More
recently Andersen and Bollerslev (1998) reintroduced these filters using in-
traday data, similar to Hsieh (1991). Based on a continuous time diffusion
process Andersen and Bollerslev (1998) estimate the one-day Quadratic Vari-
ation (QV'1) which is also called integrated volatility and defined as the sum
of the squared returns r(,); for the intraday frequency m, to produce the
daily volatility measure: QV'1, discussed in section 1.3, using 5-minute sam-
pling frequency the lag length is m = 288 for financial markets open 24 hours
per day (e.g. FX markets). QV'1 can be considered as an efficient estimate of
the quadratic variation of a stock returns process. One reason for their effi-
ciency being that they utilize the high-frequency intraday data information.
The QV1 filters are generalized in Andreou and Ghysels (2001) using the
results in Foster and Nelson (1996) to increase the window length k£ = 2,3
days in QV'k and to suggest rolling instead of block sampling schemes. The
rolling estimation method yields the one-day Historical Quadratic Variation
(HQV1) defined as the sum of m rolling QV estimates, as discussed in sec-
tion 1.3, which is also extended to a k£ window length, HQV'k. The rolling
estimation method yields smooth volatility filters which answers one of the
criticisms of the QV'1 filter (see for instance Barnidoff-Nielsen and Shep-
hard, 2001). The K&L and I&T tests are applied to these estimates of the
quadratic variation and compared with the results for (r;)?. The results in
Table 10 reveal the existence of a single change-point that is detected in all
the QV type filters by the Unyax/0varmac and IT even at the 1% signifi-
cance level as opposed to the mixed evidence of a change-point in (r;)? and
|r¢|. This change-point in the quadratic variation of the YN/US$ series is
consistently estimated by the high-frequency volatility filters to be located
on the 8/2/1993 and 9/2/1993 and associated with the highest increase of
the YN vis-a-vis the US dollar since the 1970s and the possibility of Central
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Bank interventions (as published in the Asian Wall Street Journal dated 23rd
February, 1993).

The empirical analysis so far applied single and multiple breaks test pro-
cedures and identified the common dates estimated by the above tests as
change-points. In an approach to verify that there was indeed a structural
change in the asset returns processes we examine the volatility and long mem-
ory characteristics of the series in alternative subsamples - prior and after
the breaks. The results in Table 11 report the estimated MLE parameters
from a Normal GARCH(1,1) and the long memory parameter d using the
semiparametric estimator in Robinson (1994). The varying estimated coeffi-
cients of volatility persistence, unconditional variance and long memory over
the subsamples can be considered as further supportive empirical evidence
that complements the change-point tests.

4 Conclusions

There is a substantial literature on testing for the presence of breaks in lin-
early dependent stochastic processes. The purpose of this paper is to explore
recent advances in the theory of change-point estimation, using various new
CUSUM type change-point estimators and tests for multiple breaks in the
context of volatility models. The tests are not model-specific and apply to
a large class of (strongly) dependent processes such as ARCH and SV type
processes and were developed in a series of recent papers by in particular
Giraitis, Kokoszka and Leipus (1999, 2000), Horvéath and Steinebach (2000),
Kokoszka and Leipus (1998, 1999, 2000) and Laveille and Moulines (2000).
We focus on the Kokoszka and Leipus and Laveille and Moulines tests which
monitor nonlinear transformations of returns processes (in square and abso-
lute returns) without the need to specify any particular, restrictive functional
form of the process. Moreover, the CUSUM type test of Kokoszka and Leipus
(1998, 2000) and RSS minimization type test of Moulines and Lavielle (2000)
are characterized by computational simplicity which is an additional advan-
tage for the complex nonlinear structure of financial time series. So far only
limited simulation and empirical evidence is reported about these tests. We
enlarge the scope of applicability by suggesting several improvements that
enhance the practical implementation of the proposed tests. The extensive
simulation investigation regarding the performance of the recently proposed
Kokoszka and Leipus test provides evidence that the test has good power
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properties in detecting even small changes in all the GARCH parameters
and the error and appears robust to outliers, but suffers some size distor-
tions in the persistent GARCH case.'> The simulation experiment extends
the performance of the test in testing for breaks in the nonlinear comovements
of returns. The relatively good power results opens the route for theoreti-
cal extentions of these tests in multivariate settings. While there is no fully
developed theory for multivariate processes we suggest to apply the existing
tests to cross-products of returns and show this strategy is feasible and useful
in practical applications. We also suggest the application of change-point to
more precise measures of volatility, including the high frequency data-driven
processes studied by Andersen et al. (2001), Andreou and Ghysels (2000),
Barndorff-Nielsen and Shephard (2000), Taylor and Xu (1997), among others.

We consider various financial series, including equity index returns for sev-
eral financial markets in the Hong Kong, Japan, the U.K. and U.S. The data
series are similar to several prior studies, particularly Granger and Hyung
(1999) who consider a longer but less recent sample. The applications of
the Kokoszka and Leipus as well as the Lavielle and Moulines tests detect
change-points in the volatility dynamics and long memory which are associ-
ated with the Asian and Russian financial crises. Evidence is provided that
these events has also affected the nonlinear comovements between these stock
market return indices. The empirical analysis is also performed using high
frequency data from the FX markets. The above tests are applied to the
Yen/US$ class of data driven volatility filters in an attempt to provide more
efficient approximations of the quadratic variation of the process for which
we also detect change-points.

13The IGARCH type of models violate the assumption of finite fourth moments required
by the Kokoszka and Leipus tests.
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Table 1: Empirical and Asymptotic Quantiles of the Kokoszka and L eipus (2000),
max Un(k)/6 yac, and the Inclén and Tiao (1994), IT,
Statistics for a GARCH Process.

GARCH Model: ro: = Uoty/hot, hot = oo + aou%’t,l + Bohot-1

(@0 = 0.4,a0 = 0.1, g = 0.5) (@0 = 02,a0 = 0.1, g = 0.7)
max Un(K)/6 Hac max Un(K)/6 Hac
Qp 0.90 0.95 0.99 0.90 0.95 0.99
Xy G S Y (S G Y I (29 S (01 N S N |01 I (£ K Y I (SO K 1

N
250 1.2538 1.2738 1.3996 14129 1.6518 1.6851|1.3508 1.3544 1.4921 1.5061 1.7586 1.7845
500 1.2675 1.2740 1.3986 1.4101 1.6914 1.6833|1.3653 1.3769 15164 1.5294 1.8307 1.8403
750 1.2536 1.2592 1.3921 1.4008 1.6737 1.6684 |1.3851 1.3739 15341 15281 1.8151 1.8357
1000 1.2782 1.2866 1.4203 1.4329 1.7152 1.7199|1.3860 1.3904 1.5449 15373 1.8276 1.8510
1250 1.2865 1.2957 1.4309 1.4313 1.7126 1.7359|1.3836 1.3839 1.5366 1.5354 1.8314 1.8279
1500 1.2831 1.2840 1.4169 1.4249 1.6737 1.6888|1.3923 1.3626 1.5493 1.5411 1.8601 1.8558
2000 1.2758 1.2857 1.4268 1.4285 1.7180 1.7028|1.3938 1.3858 1.5476 1.5357 1.8500 1.8578
3000 1.2927 1.2931 1.4370 14343 1.7151 1.7325|1.4087 1.4000 1.5713 1.5538 1.8807 1.8680
3500 1.2907 1.2890 1.4258 14177 1.6719 1.6809|1.4105 1.4088 15706 1.5472 1.8606 1.8588
IT IT
Qp 0.90 0.95 0.99 0.90 0.95 0.99
Xt r)?  (U?  (r)?  (W)?  (r)? (U)? | () W)? () W)® () (W)?
N
250 1.3894 1.1802 1.5556 1.3169 1.9283 1.6110|1.5222 1.1791 1.7026 1.3151 2.0610 1.5669
500 1.4202 1.1954 15831 1.3268 1.8907 1.5791|1.5660 1.2003 1.7618 1.3317 2.0974 1.5947
750 1.4299 1.1938 15929 1.3259 1.9296 1.6043|1.5818 1.1952 1.7469 1.3216 2.1250 1.6089
1000 14345 1.1988 1.6119 1.3402 1.9410 1.6144|1.5930 1.2089 1.7714 1.3440 2.1682 1.6171
1250 14476 1.2088 1.6137 1.3452 1.9280 1.6010|1.5989 1.2080 1.7680 1.3319 2.1335 1.5868
1500 14434 1.2054 1.6210 1.3444 1.9662 1.6255|1.5967 1.2035 1.7797 1.3353 2.1426 1.6157
2000 1.4537 1.1997 1.6081 1.3333 1.9292 1.5989|1.6000 1.2031 1.7769 1.3305 2.1482 1.6069
3000 1.4597 1.2104 1.6275 1.3479 1.9733 1.6222|1.6222 1.2157 1.7938 1.3499 2.1717 1.6205
3500 1.4570 1.2078 1.6080 1.3370 1.9279 1.5977|1.6147 1.2072 1.7830 1.3373 2.1577 1.6225
Note: The Kokoszka and Leipus (1998, 2000) statistic is defined as Un(k) = (VYN X, X - W(N/N) Y X }. The
max Un(K) is standardized by the VARHAC estimator 61ac Which is applied to X, either squared or absolute returns of the
GARCH model. The standardized statistic converges to the supremum of a Brownian Bridge with asymptotic critical value 1.36.
The Inclén and Tiao statistic IT = /N/2 max|Dk| where D = [ (X, Xi/ 1, X; ) — kN | is applied to the squared returns as well
astheresiduas Uy = I/ h?"r’ from the GARCH process also converges to the sup of a Brownian Bridge. The Monte Carlo

standard errors for p = 0.90,0.95,0.99 based on the Normal approximation of the binomial given by 3.92,/p(1 — p)/N are: 0.0118,
0.0085, 0.0037, respectively, estimated from 10,000 replicates of the GARCH model for N observations.
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Table 2: Nominal Size and Power of the K okoszka and L eipus (2000)
test for a change-point in the volatility and long-range dependence
based on a univariate GARCH process.

N 500 1000 3000
X O O ro?  ry

Ho : Univariate GARCH, ro¢ = Uog/Noyt, hot = @o + @oud; 1 + Bohor1

(@0, a0, Bo)
DGP1: (0.4,0.1,0.5) 0.059 0.072 0.061 0.078 0.061 0.067
DGP2: (0.2,0.1,0.7) 0.083 0.098 0.097 0.112 0.116 0.116
DGP3: (0.1, 0.1, 0.8) 0.171 0.165 0.187 0.185 0.212 0.205

H% : Break in the dynamics of volatility, Bo (increase of 0.1) at 0.5N.

DGP1: Bo = 0.5t0 81 = 0.6 0.273 0.280 0.492 0.473 0.945 0.926
DGP2: Bo = 0.7t0 1 = 0.8 0.714 0.714 0.935 0.928 1.000 1.000
DGP3: Bo = 0.8t0 g1 = 0.9 0.978 0.978 0.999 0.999 1.000 1.000

H¥ : Break in the constant of volatility, o (increase of 0.1) at 0.5N.

DGP1: wp = 0.4t0 1 = 0.5 0.210 0.204 0.353 0.353 0.809 0.787
DGP2: wp = 0.2t0 w1 = 0.3 0.470 0.455 0.743 0.723 0.985 0.984
DGP3: wp = 0.1t0 w1 = 0.2 0.718 0.702 0.913 0.915 1.000 1.000

H¢ : Bresk in the error, up ~ N(0, 1) (increase o, = 1.1) at 0.5N

DGP1: u; ~ N(0,1.1) 0.287 0.277 0.548 0.520 0.921 0.917
DGP2: u; ~ N(0,1.1) 0.368 0.356 0.624 0.613 0.960 0.948
DGP3: u; ~ N(0,1.1) 0.449 0.437 0.710 0.700 0.982 0.975

HY : Outliersin theerror, ug ~ N(O, 1) (uy, = 5 every 250 observations).

DGP1: u; ~N(5,1) 0.019 0.046 0.015 0.039 0.005 0.044
DGP2: u; ~N(5,1) 0.044 0.082 0.033 0.070 0.020 0.070
DGP3: u; ~N(5,1) 0.039 0.115 0.046 0.134 0.062 0.145
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Table 2: Continued.
Properties of Kokoszka and Leipus (2000) test for an early change-point

N 500 1000 3000
X ro?  ry ro?  ry ro?  ry

H% : Break in the dynamics of volatility, 8o (increase of 0.1) at 0.3N.
DGP1: Bo = 0.5t0 1 = 0.6 0.190 0.204 0.382 0.390 0.838 0.825
DGP2: Bo = 0.7to p1 = 0.8 0.566 0.561 0.850 0.837 1.000 0.999
DGP3: Bo = 0.8t0 1 = 0.9 0.934 0.942 0.996 0.999 1.000 1.000

H® : Break in the constant of volatility, @o (increase of 0.1) at 0.3N.
DGPl: wo = 0.4tow; = 0.5 0.148 0.153 0.254 0.262 0.674 0.634
DGP2: wo = 0.2tow; = 0.3 0.336 0.327 0.568 0.557 0.959 0.951
DGP3: wo = 0.1tow; = 0.2 0.552 0.573 0.851 0.844 0.999 0.999

H$ : Bresk in theerror, up ~ N(0, 1) (increase o, = 1.1) at 0.3N

DGP1: u; ~ N(0,1.1) 0.195 0.199 0.329 0.333 0.833 0.804
DGP2: u; ~ N(0,1.1) 0.290 0.304 0.492 0.482 0.885 0.870
DGP3: u; ~ N(0,1.1) 0.376 0.386 0.548 0.548 0.932 0.923

Note: The Kokoszka and Leipus (1998, 2000) statistic is defined as Un(k) = (VN T, X - W(N/N) Y X }. The
max Un(K) is standardized by the VARHAC estimator 61ac Which is applied to X, either squared or absolute returns of the
GARCH model. The normalized statistic converges to the sup of a Brownian Bridge with asymptotic critical value 1.36. The
Normal GARCH (1,1) model is simulated (1,000 replications) where the superscirpts 1 and 0 inthe variables and coefficients in the
Table denote the cases with and without change-points, respectively.
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Table 3: Nominal Size and Power of the Inclan and Tiao (1994) test
for a change-point in the volatility and long-range
dependence based on a univariate GARCH process.

N 500 1000 3000
X4 o Ird (u)? (o Ird (u)? (o Ird (u)?
Ho : Univariate GARCH, ro; = Uog,/hos, hog = o+ @ouf_1 + Bohos 1
(@0, a0, Bo)
DGP1: (0.4,0.1,0.5) 0.133 0.000 0.038 0.131 0.000 0.041 0.165 0.000 0.042
DGP2: (0.2,0.1,0.7) 0.191 0.000 0.050 0.229 0.000 0.033 0.217 0.000 0.042
DGP3: (0.1, 0.1, 0.8) 0.286 0.000 0.038 0.337 0.005 0.041 0.353 0.003 0.051

H% : Break in the dynamics of volatility, Bo (increase of 0.1) at 0.5N

DGP1: Bo = 0.5, 81 = 0.6 0.404 0.001 0.047 0.633 0.023 0.047 0.966 0.294
DGP2: Bo = 0.7, 81 = 0.8 0.794 0.113 0.047 0.958 0.359 0.049 1.000 0.980
DGP3: Bo = 0.8, 81 = 0.9 0.989 0.621 0.047 1.000 0.969 0.046 1.000 1.000

H¥ : Break in the constant of volatility, wo (increase of 0.1) at 0.5N

0.058
0.042
0.047

DGP1: wp = 0.4, @1 = 0.5 0.276 0.002 0.047 0.519 0.014 0.043 0.883 0.131
DGP2: wp = 0.2, @1 = 0.3 0.576 0.023 0.037 0.806 0.108 0.036 0.998 0.672
DGP3: o = 0.1, @1 = 0.2 0.786 0.121 0.043 0.959 0.385 0.047 1.000 0.981

H$ : Bresk in the error, up ~ N(0, 1) (increase o, = 1.1) at 0.5N

0.044
0.053
0.032

DGP1: u; ~ N(0,1.1) 0.610 0.057 0.242 0.806 0.133 0.461 0.993 0.685 0.910

DGP2: u; ~ N(0,1.1) 0.517 0.014 0.258 0.761 0.070 0.460 0.981 0.474 0.899

DGP3: u; ~ N(0,1.1) 0.599 0.046 0.247 0.823 0.128 0.432 0.994 0.668 0.929
H? : Outliersin theerror, up ~ N(O,1) (uu, = 5 every 250 observations).

DGP1: u; ~ N(5,1) 0.357 0.000 0.231 0.271 0.000 0.112 0.219 0.000 0.079

DGP2: u; ~ N(5,1) 0.442 0.001 0.223 0.401 0.003 0.135 0.360 0.000 0.077

DGP3: u; ~ N(5,1) 0.505 0.001 0.257 0.500 0.002 0.136 0.481 0.002 0.079

Note: The Inclan and Tiao (1994) statistic IT = /N/2 max|Di| where Dy = [ (X, r&/ o 17) - £ | is specified for

j-1

independent processes. It also converges to the sup of a Brownian Bridge with asymptotic critical value 1.36.



Table 4: Nominal Size and Power of the K okoszka and Leipus (2000)
test for a change-point in the volatility and long-range dependence
based on a bivariate GARCH with constant correlation
(p12): Testing the change-point hypothesisin

r 11 When the change-points occur in p12 and r ;.

N 500 1000 3000

Xt (riee)? |roug (riee)? |rou (riee)? |roug

Ho : Bivariate constant correlation GARCH mode where (i 0, ¢ii 0, Bii 0. Pij,0)-

DGP1: (0.2, 0.1, 0.7, 0) 0.099 0.087 0.113 0.113 0.128 0.112
DGP2: (0.2,0.1, 0.7,0.3) 0.097 0.097 0.098 0.097 0.102 0.095
DGP3: (0.2, 0.1, 0.7, -0.3) 0.094 0.093 0.109 0.106 0.117 0.116
DGP4: (0.2,0.1,0.7,0.5) 0.089 0.100 0.110 0.112 0.124 0.122

H% : Break in the dynamics of hyy; volatility, B2z (increase at 0.5N)
DGP2: B0 = 0.7, 221 = 0.8 0.113 0.110 0.109 0.113 0.177 0.162
DGP2: B0 = 0.7, 221 = 0.9 0.182 0.194 0.319 0.309 0.671 0.646
DGP4: B2 = 0.7, 221 = 0.8 0.098 0.100 0.107 0.111 0.168 0.180
DGP4: B2 = 0.7, B221 = 0.9 0578 0.541 0.847 0.823 1.000 0.999

H : Break in the constant of hy, volatility, @22 (increase at 0.5N)
DGP2: w0 = 0.2, w1 = 0.3 0.087 0.082 0.110 0.111 0.134 0.137
DGP2: w0 = 0.2, w1 = 0.4 0.119 0.132 0.141 0.135 0.203 0.185
DGP4: w0 = 0.2, w1 = 0.3 0.112 0.123 0.143 0.141 0.239 0.230
DGP4: w0 = 0.2, w1 = 0.4 0.170 0.180 0.242 0.239 0.526 0.497

H$ : Bresk in the error, usz0 ~ N(O, 1) (at 0.5N)

DGP2: uz1 ~ N(0,1.1) 0.109 0.103 0.117 0.122 0.137 0.131
DGP2: ux1 ~ N(0,1.5) 0.201 0.207 0.329 0.322 0.729 0.706
DGP4: ux1 ~ N(0,1.1) 0.107 0.112 0.133 0.129 0.206 0.192
DGP4: uxn1 ~ N(0,1.5) 0.592 0.577 0.892 0.867 1.000 1.000

HY : Bresk in the correlation coefficient, p120
DGP1: p120 = 0, p121 = 0.3 0.108 0.110 0.188 0.177 0.320 0.312
DGPI1: p120 = 0, p121 = 05 0.341 0.333 0541 0.516 0.921 0.908
DGP2: p12o = 0.3, p121 = 0.5 0.192 0.188 0.288 0.290 0591 0.579
DGP4: p12o = 0.5, p1o1 = 0.3 0.182 0.191 0.282 0.265 0.578 0.559
Note: The simulated bivariate GARCH with constant correlation under the null of no breaks (denoted by the O superscript) is

speficied as: ri1y = Uzoty/N1rot + Uzot4/N120r @ r2oe = Uzoty/h220t + Urory/hizor Where

11,0t = @110 + 0110Uf 01 1 + B110N110t 1, N220t = @220 + @20U50; 1 + B220h22011 120t = P1204N110th220t .
h 110 + 00110U3 05 1 + B11oh h @20+ 020U30; 1 + B220h and h p1204/h110th The Kokoszka
and Leipus test is summarized in the note of Table 1.
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Table 5: Nominal Size and Power of the K okoszka and Leipus (2000)
test for a change-point in the volatility and long-range dependence
based on a bivariate GARCH with constant correlation
(p12): Testing the change-point hypothesisin
ri1¢ X r22¢ When the change-points occur in

p12andr ;.

N 1000

Xt (F1re x F220)2 [Faae % P24 (U1ze X Uz20)?  |U1se X Uzzy

Ho : Bivariate constant correlation GARCH modd where (wii 0, @ii0, Bii 0: Pij,0)-

DGP1: (0.2,0.1,0.7,0) 0.079 0.099 0.031 0.038
DGP2: (0.2,0.1,0.7,0.3) 0.059 0.094 0.040 0.039
DGP3: (0.4,0.1, 0.5, 0.5) 0.033 0.061 0.037 0.043
DGP4: (0.2,0.1, 0.7, 0.5) 0.061 0.090 0.042 0.055
H% : Break in the dynamics of hyy; volatility, B2z (increase at 0.5N)
DGP2: B220 = 0.7, 821 = 0.8 0.477 0.641 0.069 0.087
DGP2: B220 = 0.7,821 = 0.9 0.997 1.000 0.270 0.330
DGP4: B0 = 0.7, B221 = 0.8 0.999 1.000 0.092 0.132
DGP4: B0 = 0.7,8221 = 0.9 0.542 0.730 0.539 0.709
DGP3: B220 = 0.5,821 = 0.7 0.770 0.914 0.099 0.157
H : Break in the constant of hy, volatility, @22 (increase at 0.5N)
DGP2: w0 = 0.2, w1 = 0.3 0.276 0.425 0.055 0.072
DGP2: w0 = 0.2, w1 = 0.4 0.630 0.825 0.079 0.093
DGP4: w0 = 0.2, w1 = 0.3 0.277 0.417 0.065 0.099
DGP4: w0 = 0.2, w1 = 0.4 0.739 0.895 0.116 0.177
DGP3: w0 = 0.4, w1 = 0.8 0.865 0.965 0.139 0.205
H$ : Bresk inthe error, usz0 ~ N(O, 1) (at 0.5N)
DGP2: uz21 ~ N(O,1.1) 0.181 0.290 0.093 0.146
DGP2: uz21 ~ N(O,1.5) 0.984 1.000 0.992 0.999
DGP4: uz21 ~ N(O,1.1) 0.182 0.275 0.151 0.198
DGP4: uz21 ~ N(O,1.5) 0.974 1.000 0.994 1.000
DGP3: u221 ~ N(O,1.5) 0.972 1.000 0.980 0.998
HY : Bresk in the correlation coefficient, p12
DGPL: p120 = 0, p121 = 0.3 0.668 0.632 0.752 0.679
DGPL: p120 = 0, p121 = 05 0.989 0.997 0.996 1.000
DGP2: p120 = 0.3, p121 = 05 0.610 0.713 0.681 0.780
DGP4: p120 = 0.5, p121 = 0.3 0.607 0.710 0.683 0.775
DGP3: p120 = 0, p121 = 05 0.986 1.000 1.000 1.000

Note: The bivariate GARCH is defined in the note of Table 4. The Kokoszka and L eipus statistic is defined in the note of Table
1 and is applied to the absolute and squared transformations of the cross-product of returns and the residuals defined as

Uit = it/ Y hiie -
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Table 6: Testing for asingle change-point in the volatility
and long-range dependence of daily Stock Market Indices (SM1)
over the period 1989-2001

Change-point Satistics

SMI Returns
Change-point Kokoszka & Leipus Test Inclan & Tiao Tests
k maxUy(k) N0 mexUn(ke) IT Bn(C)
OHAC O ARMA

FTSE Ire] 05/06/97 1.917 5.862* 6.665* 4.414* 0.599
(r))?  04/08/97 2.238 5.266* 3.511* 9.195* 1.249

HSI Ire] 18/08/97 3.460 4.619* 5.828* 4.954* 0.321
(r))?  18/08/97 7.104 2.181* 1.291 8.583* 0.556

NIKKEI |r¢| 31/07/97 1521 3.091* 3.806* 2.905* 0.449
(ro)?  21/10/97 1.836 1.972* 1.305 4.427* 0.684

S&P500 |r¢| 04/02/97 2.395 6.882* 7.181* 5.837* 0.356
(r))?  26/03/97 2.718 4.888* 1.665* 11.103* 0.678

Notes: (1) The Stock Market Index (SMI) series refer to the Financial Times Stock Exchange index 100 (FTSE100), the
Hang-Seng Index (HS), the Nikkei 500 (NIKKEI), the Standards and Poors 500 index (S& P500). The daily sample over the period
4/1/1989 to 19/10/2001 yields N = 3338 observations. The seriesr; = logp: — logp.1 represents the returns on each index. The
change-point tests are applied to the (r()? and |r¢| transformations as well as (u;)? where u; is the residual from the GARCH.

(2) The Kokoszka and Leipus (1998, 2000) reported statistic is defined as Un(k) = (VYN X, X - W(N/N) Y X }. The
max Un(K) is standardized by the VARHAC estimator 61ac Which is applied to X, either squared or absolute returns and ARMA
estimators 6 arva Of squared and absolute returns. The normalized statistic max U N(k)fa\ converges to the sup of a Brownian
Bridge.

(3) The Inclan and Tiao (1994) statistic Dy = (Zjil r2/3 r2) - & specified for independent processes normalized as

IT= M max|D| also converges to the sup of a Brownian Bridge and is extended in Kim et al. (2000) for GARCH processes to
be Bn(C) = CVN max|Dk| where C2and x are constants that are estimated by substituting the quasi-MLESs of the GARCH(L,1) &,
&, Bad N*lzj'ilrj“ tow, o, B and E(r}).

(4) k refers to the location of the break and the * symbol attached to statistics denotes that the null hypothesis of no structural
change is rejected using the asymptotic critical value of 1.36.
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Table 7: Testing for multiple change-points in the volatility
and long-range dependence of daily Stock Market Indices (SM1)
over the period 1989-2001

Lavielle and Moulines Test

SMI Process Selection Criterion Number & Location of Breaks
FTSE Ire] BIC -2.616(2),-2.610(1) 2 16/11/92, 4/8/97
LWZ -2.599(1), -2.549(0) 1 4/8/97
(rt)2 BIC -2.123(1),-2.070(0) 1 13/7/98
LWZ -2.112(1), -2.069(0) 1 13/7/98
HSI Ire] BIC -1.121(3),-1.117(2) 3 3/7/92, 24/1/95, 15/8/97
LWZ -1.108(1), -1.074(0) 1 15/8/97
(rt)2 BIC 2.005(1), 2.009(0) 1 15/8/97
LWZ 2.010(0) o -
NIKKEI |r¢| BIC -1.874(2),-1.867(1) 2 16/9/92, 31/7/97
LWz -1.857(1), -1.851(0) 1 20/8/98
(rt)2 BIC -0.457(2),-0.452(1) 2 16/9/92, 14/10/97
LWZ -0.448(0) o -
S&P500 |r¢| BIC -2.525(3),-2.513(2) 3 21/8/91, 4/7/96, 22/7/98
LWZ -2.492(2),-2.491(1) 2 21/8/91, 4/2/97
(rt)2 BIC -1.602(1), -1.559(0) 1 15/10/97
LWZ -1.591(1), -1.559(0) 1 15/10/97

Notes: For brief data description refer to note 1, Table 6. The number of segments for multiple breaks is set equal to 3 and 5
and similar results are obtained. The selection criteria BIC and LWZ refer to the Bayesian or Schwarz Information Criterion and
modified BIC proposed inLiu et al. (1996). The Lavielle and Moulines statistic is described in the second section of the paper and is
compared with the results from the application of the ICSS agorithm to the Kokoszka and L eipus test for detecting multiple breaks.
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Table 7: Continued. The ICSS type Algorithm for the K okoszka and Leipus test in detecting

multiple breaks.
ICSS Algorithm for the Kokoszka and Leipus Test
SMI  Process Subsamples k %Ai(k) Number
(observations) Observ. Date of Breaks
FTSE [re| 1-3338 2197 5/6/97 5.861* 5
1-2197 1021 2/12/92  3.508*

2198-3338 2497  30/7/98 1.366*
1021-2197 1631  5/4/95  2.041*
2498-3338 2624  25/1/99 1.650*

(re)? 1-3338 2239  4/8/97  5.265* 5
1-2239 991 21/10/92 2.744*
992-2239 1556  21/12/94 1.734*
992-1556 1279  29/11/93 2.507*
1557-2239 2058  22/11/96 1.666*

HSI [re| 1-3338 2247 18/8/97 4.619* 6
1-2247 1630  4/4/95  1.815*
2248-3338 2554  19/10/98 2.818*
1-1630 1239  4/10/93 2.416*

1240-1630 1404  23/5/94 2.540*
1405-1630 1534  21/11/94 1.953*

(re)? 1-3338 2249 18/8/97 2.181* 2
2250-3338 2554  22/10/98 2.072*

NIKKEI |r¢| 1-3338 2237 347/97 3.091* 5
1-2237 966 16/9/92 2.476*
2238-3338 2792 16/9/99 2.161*
1-966 293 16/2/90 3.119*
2238-2792 2365  27/1/98 1.716*
(re)? 1-3338 2295  21/10/97 1.972* 4
1-2295 966 16/9/92 2.470*
2296-3338 2861  22/12/99 1.757*
1-966 295 20/2/90 2.162*
S&P500 |ry] 1-3338 2110  4/2/97  6.841* 4
1-2110 776 30/12/91 4.143*

2111-3338 2495  28/7/98 1.863*
780-2110 1776  25/10/95 2.130*

(re)? 1-3338 2146 26/3/97 4.888* 3
1-2146 779 31/12/91 3.159*
780-2146 1814  18/12/95 2.343*
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Table 8: Testing for asingle change-point in the comovements
of daily stock market indices over the period 1989-2001

Kokoszka and Leipus

SMI Process Statistic
Un(k Un(k
kK maxUy(k) T2u®  madn
HSI*FTSE Irigxrje| 14/08/97 27186  4.8168*

(rigxr)? 17/10/97 56168  2.3906*

HSI*NIKKEI exrj] 18/08/97 28441  3.6477*
(rigxr)? 28/8/97 96730  1.5906*

HSI*S&PS00  |rigxrjs| 14/08/97 27587  4.2474*
(figxrj0)? 17/10/97  7.2665  1.4063*

NIKKEI*FTSE ~ |rigxrjs| 04/08/97 13802  3.8403*
(figx )2 2110197 14674  1.4591*

NIKKEI*S&P500 |riyxrjs| 15/10/97 14020  4.0103*
(figx )2 22/10/97 16199  2.0001*

FTSE*S&P500  |rigxrjy|  5/8/97 17594  6.0627*
(figxr)? 14/8/97 19434 36723

Notes: The data are briefly described innote 1, Table 6. The tests are applied on the cross-products of the returns between
pairs of stock market returns indices (ri; x rj.) and their transformations. Details of the test statistics can be found in note 2, Table
6.
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Table 9: Testing for multiple change-points in the comovements
of daily FX rates vis-a-vis the DM over the period 1989-2001

Lavielle and Moulines

SMI Process Selection Criterion Number & Location of Breaks
HSI*FTSE Irigxrj] BIC -1.685(2),-1.684(1) 2 13/8/97, 14/7/99
LWZ -2.673(1), -1.635(0) 1 14/7/99
(riexrjp)® BIC  1.343(1),-1.349(0) 1 16/10/97
LWZ 1.349(0) 0
HSI*NIKKEI Irig xrj(] BIC -0.904(1), -0.882(0) 1 14/8/97
LWZ -0.893(1), -0.882(0) 1 14/8/97
(riexrjp)® BIC 3.328(0) 0
LWZ 3.329(0) 0
HSI*S& P500 Irigxrj] BIC -1.556(2),-1.556(1) 2 13/8/97, 14/7/99
LWZ -1.545(1), -1.512(0) 1 13/8/97
(riexrjp)® BIC 2.787(0) 0
LWZ 2.787(0) 0
NIKKE*FTSE  Jritxrj BIC -2.464(2), -2.462(1) 2 6/10/92, 23/9/97
LWZ -2.451(1), -2.436(0) 1 23/9/97
(riexrjp)®> BIC -0.071(0) 0
LWZ -0.071(0) 0
NIKKEI*S&P500 [ritxrjt] BIC -2.638(2), -2.635(1) 2 24/8/92, 22/10/97
LWZ -2.624(1), -2.606(0) 1 22/10/97
(riexrjp)®> BIC  -0.649(1), -0.647(0) 1 22/10/97
LWZ -0.647(0) 0
FTSE*S&PS00  [ritxrj] BIC -2.916(2), -2.915(1) 2 21/8/91, 5/8/97
LWZ -2.904(1), -2.844(0) 1 5/8/97
(riex rj)®> BIC  -1.559(1), -1.540(0) 1 22/10/97
LWZ -1.549(1), -1.539(0) 1 22/10/97

Notes: Asinnotes1 and 2 in Table 3.
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Table 10: Testing for a single change-point in high-frequency volatility filters
inthe YN/US$ in the period 1986-1996

Change-point Satistics
Volatility Kokoszka & Leipus Inclan & Tiao type tests
. maxUn(k)  maxUn(K)

Filters k max Un(K) 6HA’1 &AR;:A IT Bn(C)
Ir| 26/4/91 0.3538  1.493* 1.589* 1.996* 0.451
(ry)? - 02676 1120 1.273 1151  0.260
Qvi 9/2/93  0.3445  1.925¢ 3.845* 2.302* -
QVv2 9/2/93  0.3443 1.262 7.685* 2.301* -
QV3 9/2/93  0.3442 1.021 11.212* 2.300* -
HQV1 8/2/93  0.3428  1.804* 4.222* 2.291* -
HQV2 8/2/93  0.3429 1.207 8.467* 2.292* -

HQV3 9/2/93  0.3432 0.948 12.435* 2.294* -

Notes: (1) The Yenvis-a-vis the US dollar returns over the period 1/12/1986-30/11/1996 at 5-minute sampling frequency. The
data source is Olsen and Associates. The original sampleis 1,052,064 five-minute return observations (2,653 days ® 288 five-minute
intervals per day). The returns for some days were removed from the sample to avoid having regular and predictable market
closures which affect the characterization of the volatility dynamics. The final sample includes 705,024 five-minute returns
reflecting N=2448 trading days.

(2) The one-day Quadratic Variation (QVl) isthe sum of the squared returns I' ¢y ¢ for the intraday frequency M, to produce
the daily volatility measure: QV1 = 2121 r(zm),t+1—j/m’ t = 1,...,Ngays, where for the 5-minute sampling frequency the
lag length isM = 288 for financial markets open 24 hours per day. In QV2 and QV3 the window lengthisK = 2, 3 days,
respectively. The rolling estimation method yields the one-day Historical Quadratic Variation (HQV1) defined as the sum of M
rolling QV estimates HQV1 = Umzjzl QV1(mte1-jms t = 1, ..., Tdays, whichis also extended to a K window
length, HQVK.

(3) Thetests are described in notes (2) and (3) of Table 6.
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Table 11: Estimating volatility dynamics and long range dependence in subsamples of stock market
returns indices.

SMI Process Subsamples k* Normal GARCH(1,1) Estimates Long Memory
(observations)  Date @ a B d
FTSE  |ry 1-3338 0.398
1-1009 16/11/92 0.450
1010-2218 4/8/97 0.472
2219-3338 0.517
(r)?>  1-3338 0.003[4.409] 0.067[10.46] 0.919[111.8]
1-2484 13/7/98 0.003[3.669] 0.058[6.744] 0.915[64.18]
2485-3338 0.017[2.839] 0.100[4.410] 0.845[22.40]
HSI I 1-3338 0.388
1-913 3/7/92 0.378
914-1580 24/1/95 0.505
1581-2269 15/8/97 0.478
2270-3338 0.518
(r)?>  1-3338 0.016[15.80] 0.124[19.29] 0.855[128.6]
1-2248 15/8/97 0.023[18.71] 0.134[17.04] 0.810[97.42]
2249-3338 0.029[4.387] 0.092[7.462] 0.878[63.48]
NIKKEI |ry| 1-3338 0.407
1-966 16/9/92 0.440
967-2237 317/97 0.448
2238-3338 0.470
(r)?>  1-3338 0.005[6.979] 0.134[16.33] 0.859[105.4]
1-966 16/9/92 0.002[2.206] 0.229[11.11] 0.801[58.14]
967-2290 14/10/97 0.007[4.959] 0.080[7.805] 0.877[52.79]
2291-3338 0.011[3.125] 0.100[5.752] 0.875[41.36]
S&P500 |ri] 1-3338 0.374
1-673 2/8/91 0.506
674-2218 4/7/96 0.427
2219-3338 22/7/98 0.457
(r)?>  1-3338 0.0007[4.712] 0.039[12.979] 0.958[294.4]
1-2291 15/10/97 0.0003[3.256] 0.018[7.796] 0.979[409.1]
2292-3338 0.013[3.440] 0.075[5.801] 0.883[42.41]

Notes: The Moulines and Lavielle (2000) multiple breaks detected in Table 7 for the absolute and squared returns processes
are used to create various subsamples of each stock market returnindex. The estimated Normal GARCH(1,1) coefficients as well
as the long memory parameter (Robinson, 1994) are reported for the total sample (N=1-3338) as the various subsamples
determined by the estimated break points. The values in square brackets refer to t-values. Although not all subsamples have equal
size some are approximately equal which allow for a better comparison of the estimated parameters. The bold parameters
emphasize the change in the size of the volatility estimates in most subsamples (especially the parameters referring to the constant
and ARCH effects of dynamic volatility).
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