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The Unreliability of Output Gap Estimates in Real Time*
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Résumé / Abstract

Nous examinons la fiabilité de plusieurs méthodes qui sont utilisés pour rendre des séries chronologiques
stationnaires, en portant une attention particulière à la précision des estimations en temps réel de l'écart de
la production. Nous montrons que de la taille des révisions ex post de nos estimations de l'écart et celle
des estimations faites en temps réels sont du même ordre de grandeur et que ces révisions sont fortement
persistantes. Même si elle est importante, la révision des données n'est pas la source principale des
révisions des estimations. La majorité de ce problème est due à la forte imprécision des estimations des
tendances actuelles de la production. Des techniques multivariés, qui exploitent aussi le taux d'inflation
pour estimer l'écart de la production, ne sont pas plus précises que leurs équivalents univariés.

We examine the reliability of alternative output detrending methods, with special attention to the accuracy
of real-time estimates of the output gap. We show that ex post revisions of the estimated gap are of the
same order of magnitude as the estimated gap itself and that these revisions are highly persistent.
Although important, the revision of published data is not the primary source of revisions in measured
output gaps; the bulk of the problem is due to the pervasive unreliability of end-of-sample estimates of the
trend in output. Multivariate methods that incorporate information from inflation to estimate the output
gap are not more reliable than their univariate counterparts.
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I. Introduction

Understanding macroeconomic fluctuations entails the study of an economy’s output relative

to its trend or potential level. The difference between the two is commonly referred to

as the business cycle or the output gap. Although macroeconomic analysis often takes

measurement of the output gap for granted, its construction is subject to considerable

uncertainty. As a practical matter, empirical estimates of the output gap for any given

method may not be particularly reliable. This may pose an acute difficulty for economic

stabilization policy that requires reliable estimates of the output gap in real time when

policy decisions are made.

Three distinct issues complicate measurement of the output gap in real time. First,

output data may be revised, implying that output gaps estimated from real-time data may

differ from those estimated from data for the same period published later. Second, as data

on output in subsequent quarters become available, hindsight may clarify our position in

the business cycle even in the absence of data revision. Third, the arrival of new data may

instead make us revise our model of the economy which in turn revises our estimated output

gaps.

This paper investigates the relevance of these issues for the measurement of the output

gap in the United States since the 1960s using several well-known detrending methods.1 For

each method, we examine the behavior of end-of-sample output gap estimates and of the

revisions of these estimates over time. We also decompose the revisions into their various

sources, including that due to revisions of the underlying output data and that due to
1An early exposition of issues pertaining to estimating trends appeared in the inaugural issue of this

Review, Persons (1919). The potential quantitative relevance of the issues we investigate has been pointed
out before. Kuttner (1994) and St-Amant and van Norden (1998) pointed out that differences between end-
sample and mid-sample estimates of the output gap can differ substantially for some commonly used methods
for estimating the output gap. Orphanides (1998, 2000) documented that the errors in “official” estimates
of the output gap available to policymakers have indeed been substantial and several authors, including
Kuttner (1992), McCallum and Nelson (1999), Orphanides (1998, 2001) and Smets (1998) have elaborated
on the policy implications of this issue. This study is the first to assess and decompose the measurement
errors associated with several techniques and is the first to assess these techniques with real-time data.

This issue also closely relates to investigations of uncertainty regarding estimation of the “unemployment
gap,” that is, the difference between the actual rate of unemployment and estimates of the natural rate
of unemployment. Staiger, Stock and Watson (1997a,b) document that these estimates are very imprecise,
which parallels the unreliability of the output gaps we discuss here.
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re-estimation of the process generating potential output.

Presuming that revisions “improve” our estimates, the total amount of revision gives us

a lower bound on the measurement error thought to be associated with real-time output

gaps. This is informative when and if we find that revision errors are relatively large since

we can conclude that the total error of these estimators must be larger still. Furthermore,

our results are quite general; they apply regardless of whether output gaps are used to

cyclically-adjust budget balances, to forecast inflation or for other purposes, and do not

require a priori assumptions on the true structure of the economy or on the true time-series

model generating observed output.

II. Alternative Detrending Methods

A detrending method decomposes the log of real output, qt, into a trend component, µt,

and a cycle component, zt.

qt = µt + zt (1)

Some methods use the data to estimate the trend, µt, and define the cyclical component as

the residual. Others specify a dynamic structure for both the trend and cycle components

and estimate them jointly. We examine detrending methods that fall into both categories.

A. Deterministic Trends

The first set of detrending methods we consider assume that the trend in (the logarithm

of) output is well approximated as a simple deterministic function of time. The linear

trend is the oldest and simplest of these models and the quadratic trend is a popular simple

extension.

Because of the noticeable downturn in GDP growth after 1973, another simple deter-

ministic technique is a breaking linear trend that allows for the slowdown in that year.

Our implementation of the breaking trend method will incorporate the assumption that the

location of the break is fixed and known. Specifically we assume that a break in the trend

at the end of 1973 would have been incorporated in real time from 1977 on. This conforms
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with the debate regarding the productivity slowdown during the 1970s and evidence (e.g.

Council of Economic Advisers, 1977) that it would not have been reasonable to introduce

the 1973 break earlier but would be appropriate to do so as early as 1977.2

B. Unobserved Component Models and the Hodrick–Prescott Filter

Unobserved component (UC) models offer a general framework for decomposing output

into an unobserved trend and a cycle, allowing for an assumed dynamic structure for these

components.

This framework can also nest smoothing splines, such the popular filter proposed by

Hodrick and Prescott (1997) (the HP filter).3 We implement the HP filter, following Harvey

and Jaeger (1993) and King and Rebelo (1993), by writing it in its unobserved components

form. Assuming that the trend in (1) follows:

(1 − L)2µt = ηt (2)

the HP filter is obtained from (1) and (2) under the assumption that zt and ηt are mutually

uncorrelated white noise processes with a fixed relative variance q. We set q to correspond

to the standard application of the HP filter with a smoothing parameter of 1600.

UC models also permit more complex dynamics to be estimated, and we examine two

such alternatives, by Watson (1986) and by Harvey (1985) and Clark (1987). The Wat-

son model modifies the linear level model to allow for greater business cycle persistence.

Specifically, it models the trend as a random walk with drift and the cycle as an AR(2)

process:

µt = δ + µt−1 + ηt (3)

zt = ρ1 · zt−1 + ρ2 · zt−2 + εt (4)
2We also investigated alternatives, including ones with a break of unknown location and also the possibility

of multiple breaks. Qualitatively, the results were similar for the other alternatives. We also used Bai-Perron
tests to determine when an econometrician would have been able to detect the change in trend and obtained
similar conclusions.

3The development of smoothing splines dates back to the work of Whittaker (1923) and Henderson (1924)
and discussion of its use for measuring business cycles may be found in Orphanides and van Norden (1999).
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Here εt and ηt are assumed to be i.i.d mean-zero Gaussian and mutually uncorrelated and δ,

ρ1 and ρ2, and the variances of the two shocks are parameters to be estimated (5 in total).

The Harvey-Clark model similarly modifies the local linear trend model:

µt = gt−1 + µt−1 + ηt (5)

gt = gt−1 + νt (6)

zt = ρ1 · zt−1 + ρ2 · zt−2 + εt (7)

Here ηt, νt, and εt are assumed to be i.i.d mean-zero Gaussian and mutually uncorrelated

processes and ρ1 and ρ2 and the variances of the three shocks are parameters to be estimated

(5 in total).

C. Unobserved Component Models with a Phillips Curve

Multivariate formulations of UC models attempt to refine estimates of the output gap

by incorporating information from other variables linked to the gap. However, they also

introduce additional sources of misspecification and parameter uncertainty which may offset

potential improvements. To examine this issue, we consider two models which add a Phillips

curve to the univariate formulations described above; those of Kuttner (1994) and Gerlach

and Smets (1997).

Let πt be the quarterly rate of inflation. The Kuttner model adds the following Phillips

curve equation to the Watson model:

∆πt = ξ1 + ξ2 · ∆qt + ξ3 · zt−1 + et + ξ4 · et−1 + ξ5 · et−2 + ξ6 · et−3 (8)

The Gerlach-Smets model modifies the Harvey-Clark model by adding a similar Phillips

curve:

∆πt = φ1 + φ2 · zt + et + φ3 · et−1 + φ4 · et−2 + φ5 · et−3 (9)

In each case the shock et is assumed i.i.d. mean zero and Gaussian. In the Gerlach-Smets

model, et is also assumed uncorrelated with shocks driving the dynamics of the trend and
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cycle components of output in the model. Thus, by adding the Phillips curve, the Gerlach-

Smets model introduces an additional six parameters that require estimation ({φ1, ..., φ5}
and the variance of et). The Kuttner model also allows for a non-zero correlation between et

and the shock to the cycle, ηt. Thus, it introduces eight additional parameters that require

estimation ({ξ1, ..., ξ6}, the variance of et and its covariance with ηt.)

III. Data Sources and Revision Concepts

A. Data

Most of our data is taken from the real-time data set compiled by Croushore and Stark

(forthcoming); we use the quarterly real-time variables for real output from 1965:1 to 1997:4.

Construction of the series and its revision over time is further described in Orphanides and

van Norden (1999). We use 2000:1 data as “final data” recognizing, of course, that “final”

is very much an ephemeral concept in the measurement of output. To implement the

bivariate models, we also use the quarterly rate of inflation in the consumer price index

(CPI) as available in 2000:1. CPI data do not generally undergo a revision process similar

to that of output data. We therefore use this vintage of CPI data for all the analysis,

allowing us to focus our attention on the effects of revisions in the output data.

B. Measuring the revision of output gaps

We use our data with each of the detrending methods described earlier to produce estimated

output gap series. We apply each detrending method in a number of different ways in order

to estimate and decompose the extent of the revisions in the estimated gap series.

The first of these estimates for each method simply takes the last available vintage of

data (2000:1) and detrends it. The resulting series of deviations from trend constitutes our

Final estimate of the output gap corresponding to that method.

The Real-Time estimate of the output gap is constructed in two stages. First, we

detrend each and every vintage of data available to construct an ensemble of output gap

series. That is, in every quarter we apply the detrending method with data as available
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during that quarter. Next, we use these different vintages to construct a new series which

consists of the latest available estimate of the output gap for each point in time. The

resulting Real-Time estimate represents the most timely estimate of the output gap which

could be constructed in real time using the method employed.

The difference between the Real-Time and the Final estimate gives us the total revision

in the estimated output gap at each point in time. This revision may have several sources,

one of which is the ongoing revision of published data. To isolate the importance of this

factor, we define a third output gap measure, the Quasi-Real estimate. The Quasi-Real

estimate of the output gap is simply the rolling estimate based on the Final data series.

That is, the gap at period t is calculated using only observations 1 through t to estimate

the long-run trend and the deviations around it. The difference between the Real-Time and

the Quasi-Real series is entirely due to the effects of data revision, since estimates in the

two series at any particular point in time are based on data samples covering exactly the

same period.

For unobserved component (UC) models, we further decompose the revision in the

estimated gap by defining a Quasi-Final estimate. UC models use the data in two distinct

phases. First, they use the available data sample to estimate the parameters of a time-

series model of output. Next, they use these estimated parameters to construct filtered and

smoothed estimates of the output gap. For this class of models, smoothed estimates of the

output gap are used to construct the Final series, while filtered estimates are used for the

Quasi-Final series.4

The difference between the Quasi-Final and the Quasi-Real series reflects the use of

different parameter estimates (i.e. full-sample ones versus partial-sample ones) to filter the

data. The extent of the difference will reflect the importance of parameter instability in the

underlying UC model. The difference between the Quasi-Final and the Final series reflects

the importance of ex post information in estimating the output gap given the parameter
4In both cases, the UC model’s parameters are estimated using the full sample of the same data which

is then used for filtering and smoothing. The sole exception is the HP filter for which no parameters are
estimated.
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values of the process generating output.5

C. Standard Errors and Confidence Intervals

For the UC models, we compute standard errors and the corresponding gaussian confidence

intervals for the estimates of the output gaps and revisions. The Kalman filter and smoother

provide estimates of the mean-squared error associated with the Quasi-Final (filtered) and

Final (smoothed) estimates of the output gap. We use these to construct 95% confidence

intervals for these estimates of the gap and for their revision. The Kalman filter standard

errors are appropriate for gauging the size of the Final/Quasi-Final revisions, since both

estimates are conditioned on a given parameter vector. Because these standard error esti-

mates ignore the effect of parameter uncertainty on estimation of the gap, we also employ

the approximation suggested by Ansley and Kohn (1986) to compute a comparable set

of confidence intervals that capture this uncertainty. We use the Ansley-Kohn errors and

confidence intervals to gauge the size of the total revisions. The Ansley-Kohn standard

errors approximate the uncertainty associated with the Final parameter estimates. In this

respect, they are typical of the reliability calculations found previously in the output gap

literature. We stress, however, that these capture neither the effects of data revision nor

the presumably greater parameter uncertainty found in the shorter samples available for

estimation in real time. A test statistic can also be constructed, in the spirit of Diebold and

Mariano (1995), of the null hypothesis that the size of the revisions is consistent with the

estimated confidence intervals. Details on these calculations may be found in the Appendix.

IV. Results

Figure 1 compares the estimated business cycles for the eight different methods mentioned

in Section 2. Real-Time estimates are shown in the top half of the figure while Final

estimates are shown in the lower half. The shaded regions reflect recessions as dated by the

National Bureau of Economic Research (NBER). Several features are readily apparent. The
5St-Amant and van Norden (1998) argue that the degree to which the subsequent behavior of output is

informative about the output gap is linked to presence or absence of hysteresis in output.
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different methods have strong short-term comovements; most appear to be moving upwards

or downwards at roughly the same time. Further, the different methods typically give rise

to a wide range of estimates for the output gap though the range of final estimates is not

as wide as the range of real-time estimates.

A. Revision size and persistence

Figure 2 shows the total revision in the output gap for each method, that is the difference

between the Final and Real-Time estimates. Table 1 provides descriptive statistics on the

various Real-Time, Quasi-Real, Quasi-Final and Final estimates, while Table 2 provides

provides similar statistics for the total revision. Comparing the two tables, we see that

the revisions are of the same order of magnitude as the estimated output gaps, although

this varies somewhat across methods. The last column of Table 2 reports the estimated

first order autocorrelation coefficients for the revisions. All the revision series are highly

persistent, with coefficients ranging from 0.80 for the Gerlach-Smets model to 0.96 for the

Quadratic Trend.

It is worth noting that the statistical properties of these revisions are broadly in line

with those of the revisions of “official” output gap estimates for the United States. For

example, the revisions of Federal Reserve staff estimates of the output gap for the 1980s

and early 1990s reported in Orphanides (1998), have a root mean square of 2.84 percent,

compared to a standard deviation of 2.44 percent for historical estimates available at the

end of 1994. The autocorrelation of those revisions also exceeds 0.8.6

Table 3 presents some measures of the relative importance of the revision in each series.

Column 1 presents the correlation between the Final and Real-Time series for each method,

which ranges from a low of 0.49 for the Hodrick-Prescott filter to a high of 0.89 for the Linear

Trend and Watson models. The next two columns, NS and NSR, provide two proxies for
6During the 1960s and 1970s, Federal Reserve staff relied on the Council of Economic Advisers estimates

of potential output to construct estimates of the output gap. As shown in Orphanides (2000), the “official”
estimates for the 1960s and 1970s, produced and published by the Council of Economic Advisors and
Commerce Department were subject to even greater revision errors. Of course, such comparisons should be
interpreted with caution as official estimates have been based on statistical methodologies that have evolved
over time—presumably reflecting changes in beliefs about how best to estimate the output gap—and also
incorporate judgemental considerations that cannot be fully captured with statistical methods.
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the noise-to-signal ratio in the Real-Time estimates. NS (NSR) reports the ratio of the

standard deviation (the root mean square) of the total revision to the standard deviation

of the final estimate of the gap. NSR therefore captures the effects of persistent upward

or downward revisions and exceeds one for six out of the eight methods reported.7 Even

the best methods have rather large ratios by these criteria.8 The last column provides

the frequency with which the Real-Time and Final gaps were of opposite signs. For five

methods this frequency exceeds 40 percent and for the Kuttner and Linear Trend models, it

is almost 50 percent. These results show that the errors associated with real-time estimates

of the output gap are substantial. Ex post revisions are of the same order of magnitude

as the ex post estimates of the gap, estimation errors appear to contain a highly persistent

component of substantial size, and the real-time estimates frequently misclassify the sign

of the gap.

B. Decomposition of Revisions

To help us understand the importance of different factors in accounting for the total revision

for each method, in Figures 3 through 7 we plot the Real-Time estimate of the output gap

together with its total subsequent revision and the components of that revision. Table 4

presents related summary statistics.

Figure 3 shows results for the Linear Trend. As a guide to subsequent figures for the

other methods, we discuss this figure in some detail. First, compare the total revision to the

Real-Time estimate. The fact that the revision is roughly equal to the Real-Time estimate

at the trough of the 1975 recession tells us that our final estimate of the output gap is

roughly zero. In other words, despite the extreme evidence of recession in the Real-Time

estimate, ex post we would judge that the economy was operating roughly at potential at

that time, by this method.

To understand the source of these revisions, the graph also shows the effects of data

revision (measured as the Real-Time estimate minus the Quasi-Real estimate). For example,
7The NSR ratio for the Federal Reserve staff estimates mentioned earlier is 1.16.
8Using the root mean square of the output gap as the benchmark for comparison yields similar conclusions.

These alternative ratios can be constructed from Tables 1 and 2.
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the total revision and data revision are roughly equal in both graphs in late 1995 which

means that nearly all of the revision in our estimated output gap for those quarters was

due to subsequent revisions in the published data.

Looking at the whole sample period, the data revision is typically less than ± 2 percent

of output and its variability tends to be small compared to that of the total revision. This

in turn means that most of the revision is due to the addition of new points to our data

sample. However, data revisions still play a role as can be confirmed by looking at the

summary statistics of the difference between the Quasi-Real and Real-Time estimates of

the output gap shown in Table 4.

Figures 4, 5 and 6 show results for the Breaking Trend, Quadratic Trend and HP filter

models. Again we note that the total revision is often close to the size of the Real-Time

output gap. Further, although the data revisions seem to play a secondary role in explaining

the total revision of the Real-Time estimates, some exceptions are notable.

Figures 7 and 8 show results from the four estimated UC models. The models are paired

so that each figure shows results from a univariate model (top panel) and its multivariate

counterpart that incorporates information from a Phillips curve (bottom panel.) Figure

7 presents the Watson and Kuttner models. The two models provide somewhat similar

real-time estimates of the gap. As with the models discussed earlier, the total revision is

frequently close to the size of the Real-Time output gap and the data revision only accounts

for a small part of the total. Instead, changing parameter estimates play a large role and

systematically revise potential output downwards.

The revisions of the Watson and Kuttner models resemble those of the Linear Trend

model seen in Figure 3. This suggests that these models’ performance suffers from their

common assumption of a constant long-term trend in output growth. Given the secular

decline in output growth over our sample, this assumption leads to persistent downward

revisions in estimates of the ”constant” trend rate of growth.

Note that the addition of the Phillips curve in the Kuttner model does not enhance

the reliability of the output gap estimates relative to the Watson model. The figure and
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Table 4 show that the total revision is both more biased and more variable for the Kuttner

model than for the Watson model. Comparison of the standard deviation of the Quasi-

Final/Quasi-Real revisions for the two models indicates that the error introduced by the

estimation of the additional parameters required for the Kuttner model is substantial.

In Figure 8 we consider the results from the Harvey-Clark and Gerlach-Smets models.

For the Harvey-Clark model, both parameter revision and data revision effects are relatively

minor. In contrast, the Gerlach-Smets model exhibits much larger parameter revision, due

in part to particularly severe parameter instability in the Quasi-Real estimates of the output

gap. Again, the addition of the Phillips curve does not appear to enhance the reliability of

the resulting output gap estimates.

C. Turning Points

It is particularly interesting to know how the different business cycle measures do around

business cycle turning points, since these are presumably periods when an accurate and

timely estimate of the output gap (and its changes) would be of particular interest to policy

makers. To help assess this, we calculated a number of descriptive statistics regarding the

size or the revision in Real-Time estimates in the three quarters centered about each of the

NBER business cycle peaks from 1966 to 1997. Results are shown in Table 5. We see that

all methods seem to underestimate the output gap in Real-Time at cyclical peaks, although

the degree to which this is true varies considerably from one method to another. The Linear

Trend, Watson and Kuttner methods have the most severe underestimates while all but the

Breaking Trend underestimate the gap by more than 1.5% on average.

D. Revisions and Confidence Intervals

Figures 9 and 10 present the output gap estimates and their confidence intervals from the

four estimated UC models. The top and middle panels show Quasi-Final and Final estimates

of the output gap with their corresponding 95% confidence intervals. The bottom panel

shows the Final/Quasi-Final and total (Final/Real-Time) revisions together with two sets

of confidence intervals, which alternatively ignore (Kalman) and include (Ansley-Kohn) the
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estimated effects of parameter uncertainty.

Comparing confidence intervals for the Harvey-Clark and Gerlach-Smets models in Fig-

ure 9, we see that the Kalman bands are somewhat narrower for the Gerlach-Smets model

but the Ansley-Kohn bands are considerably wider, on average.9 This suggests that, in the

absence of parameter uncertainty, incorporating information from the Phillips curve based

on the final data helps narrow the uncertainty of the estimated output gaps. However this

narrowing is reversed when parameter uncertainty is accounted for.

Perhaps more importantly, both sets of confidence bands include zero in virtually every

quarter from 1966 to 1997. This is true for both the Final and Quasi-Final gaps and for both

models. Thus, these gap estimates are virtually never significantly different from zero in this

sample. The situation must be worse for Real-Time estimates, since these face additional

effects of parameter uncertainty and data revision not accounted for in these bands.

Examining the revisions in the bottom panel suggests that neither the Final/Quasi-

Final nor the total revisions appear unusually large relative to their confidence intervals.

This impression is confirmed by the results in Table 6. The first two columns give the

RMS revisions (Final-RealTime, from Table 2) and the mean of the Ansley-Kohn standard

errors for the revisions. The third column reports the test statistic for the null hypothesis

that these revisions are consistent with these standard errors. The statistic is approximately

normally distributed so that rejection against the one-sided alternative that the revisions are

larger than expected requires large positive values. For the Harvey-Clark and the Gerlach-

Smets models, it shows no significant evidence that the revisions are larger than one should

expect.

Figure 10 presents the corresponding estimates and confidence bands for the Watson

and Kuttner models.10 The gaps for the Watson model are (with only few exceptions) not

significantly different from zero. The Kuttner model gives much more evidence of significant
9For the 1966:1 to 1997:4 period shown in the figure, the average Kalman standard errors for the Quasi-

Final estimates from the Harvey-Clark and Gerlach-Smets models are 2.32 and 1.93 percent, respectively.
By contrast, the corresponding average Ansley-Kohn standard errors are 2.46 and 8.78 percent.

10The average Kalman (Ansley-Kohn) standard errors for the QuasiFinal estimates from the Watson and
Kuttner models are 1.81 (2.42) and 1.83 (2.20) percent, respectively.
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output gaps, including, perhaps surprisingly, most of the first half of the 1990s.

The Final/Quasi-Final revision falls within the Kalman bands in virtually every quarter

for both models. However, the total revisions are frequently outside the Ansley-Kohn bands.

This is reflected by the test statistics in Table 6, which strongly reject the null in favour of

the alternative that total revisions are more volatile than these standard errors predict.11

This suggests that the calculated confidence intervals understate the degree of uncertainty

associated with real-time estimates of the output gap for these two models.

Finally, we note that for policy simulation exercises, it would be helpful to know the

magnitude of the total estimation error associated with typical RealTime estimates of the

output gap. For the Kuttner and Watson models, the results presented in Table 6 imply

that the average mean square errors estimated for the QuasiFinal (i.e. filtered) estimates

of the UC models significantly underestimate the true degree of uncertainty in RealTime

estimates. The Gerlach-Smets estimates suggest severe effects of parameter uncertainty in

that model. For the Harvey-Clark model, the average Ansley-Kohn standard error of the

QuasiFinal estimates is 1.6 (1.1) times the standard deviation of its Quasi-Final (Final)

output gap estimates. These error estimates may appear to be rather large. However,

based on the models we have examined, it appears unrealistic to assume significantly better

accuracy than this in policy simulations.

V. Conclusions

We have examined the reliability of several detrending methods for estimating the output

gap in real time. In doing so, we have focused on the extent to which output gap estimates

are updated over time as more information arrives and data are revised. This gives us

results which are robust to alternative assumptions about the structure of the economy and

give lower bounds on the estimation error associated with any given method.

Our results suggest that the reliability of output gap estimates in real time tends to be

quite low. The revisions are of the same order of magnitude as the estimated output gap
11The same was not true for test statistics (not reported) using Final/Quasi-Final revisions and Kalman

standard errors.
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itself for all the methods examined. The size of the measurement error is compounded by

a high degree of persistence of the revisions. While these results are based on a mechanical

application of simple models, they mirror results based on the revision of output gap series

produced by the Federal Reserve staff during the 1980s and early 1990s.

For unobserved component models, we find that multivariate methods that incorporate

information from inflation to estimate the output gap are not more reliable than their

univariate counterparts. Though the information from multivariate methods may be useful

in principle, their added complexity introduces additional sources of parameter uncertainty

and instability which may offset the potential improvement in real time.

Although important, the revision of published data does not appear to be the primary

source of revisions for the methods we examined. Rather, the bulk of the problem is due

to the pervasive unreliability of end-of-sample estimates of the output trend. Thus, even if

the reliability of the underlying real-time data were to improve, real-time estimates of the

output gap would remain unreliable.

Our findings suggest that output gap mismeasurement may pose a serious policy prob-

lem, one that can be especially acute for economic stabilization policy. Policy experiments

in macroeconometric models suggest that a strong systematic policy response to the output

gap could greatly stabilize economic fluctuations—provided a reliable measure of the out-

put gap is available for policymakers to use.12 However, policy actions based on incorrect

measures of the output gap can inadvertently cause instability. Policy design based on the

erroneous presumption of unwarranted reliability can lead to flawed policy recommenda-

tions.13 In light of the unreliability of real-time estimates of the output gap, great caution

is required in their use.
12See, for example, Taylor (1999) for a recent survey of policy evaluations of this nature.
13An informative illustration of this pitfall in the context of Linear-Quadratic-Gaussian (LQG) models of

optimal control is provided in Orphanides (1998).
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Appendix: Confidence Intervals for UC Models

A.1 Revisions

Let St|τ denote the estimate of the unobserved state vector St conditional on the parameter
vector θ of the UC model as well as on all data available through time τ . Since we do not
observe θ, we replace it by its maximum likelihood estimator θ̂. For convenience, we will
refer to St|t(θ̂) as the “filtered” estimate St|t and to St|T (θ̂) as the “smoothed” estimate
St|T . For a given θ̂, the revision in this estimate may be defined as Rt|T = St|T − St|t.14

If we have Pt|t = V ar(St|t − St) and Pt|T = V ar(St|T − St), then it follows that

Pt|t = V ar(St|t − St) = V ar((St|t − St|T ) + (St|T − St)),

Pt|t = V ar(Rt|T ) + Pt|T + Cov(St|t − St|T , St|T − St) (A.1)

Provided this last term is zero, the variance of the revision must be

V ar(Rt|T ) = Pt|t − Pt|T (A.2)

St|t − St|T will be orthogonal to St|T − St since St|T incorporates all information available
up to time T .15 In what follows, we use equation (A.2) as the basis of our calculations for
the confidence intervals surrounding revisions Rt|T .

A.2 Standard Errors

If θ is known, Pt|t(θ) and Pt|T (θ) may be calculated using the usual Kalman Filter equations.
In reality, however, we have only θ̂, and its estimation uncertainty therefore adds to the
uncertainty in our estimated output gaps. We therefore require estimates of Pt|t(θ̂) > Pt|t(θ)
and Pt|T (θ̂) > Pt|T (θ).

Hamilton (1986) suggests a Bayesian simulation approach to the problem. It draws n

i.i.d. parameter vectors θi from a multivariate normal distribution N(θ̂, Σ̂θ),16 then uses the
simulated values of 1

n

∑n
i=1(St|t(θ̂) − St|t(θi))2 and 1

n

∑n
i=1(St|T (θ̂) − St|T (θi))2 as estimates

of Pt|t(θ̂) − Pt|t(θ) and Pt|T (θ̂) − Pt|T (θ).17 Alternatively, Ansley and Kohn (1986) suggest
using the first-order approximation:18

Pt|t(θ̂) − Pt|t(θ) =
(

d

dθ
St|t(θ)|θ=θ̂

)
Σ̂θ

(
d

dθ
St|t(θ)|θ=θ̂

)′

Pt|T (θ̂) − Pt|T (θ) =
(

d

dθ
St|T (θ)|θ=θ̂

)
Σ̂θ

(
d

dθ
St|T (θ)|θ=θ̂

)′
(A.3)

14If θ̂ is fixed at its full-sample (Final) estimate, this corresponds to the revision from the Quasi-Final to
the Final estimate of the state vector.

15More generally, this would continue to hold if we replace St|t(θ̂) with St|t(θ) and St|T (θ̂) with St|T (θ)
for any arbitrary θ.

16Σ̂θ is simply the estimated variance-covariance matrix of θ̂ about its true value θ.
17See Hamilton (1994), section 13.7, p. 397-399, for a more detailed exposition.
18See Harvey (1989) p. 149. These derivatives are typically not available in closed form but may be easily

computed numerically.
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Quenneville and Singh (2000) stress that both of these methods are simply approxima-
tions, but their simulations suggest that the Ansley and Kohn approach performs better in
small samples.19 We experimented with both methods but found the Hamilton approach
problematic in our case. For some parameter draws with some models, the output gap be-
came explosive, generating extremely large standard errors or numeric overflows. For these
reasons, the results we report are based exclusively on the Ansley-Kohn method.

As noted in (A.2), the implied variability of Rt|T is simply the difference of the variances
of the filtered and smoothed estimates. When θ is known, the Kalman filter guarantees that
this difference is always positive semi-definite. The same cannot be said of the approxima-
tions above for Pt|t(θ̂) and Pt|T (θ̂); neither Hamilton’s nor Ansley and Kohn’s method
guarantees Pt|t(θ̂) > Pt|T (θ̂).20 However, a logical extension which guarantees this result is
to simply use

V ar(Rt|T ) = (Pt|t(θ) − Pt|T (θ)) +
d

dθ

(
St|T (θ) − St|t(θ)

) ∣∣
θ=θ̂ Σ̂θ

d

dθ

(
St|T (θ) − St|t(θ)

)′ ∣∣
θ=θ̂ (A.4)

Accordingly, (A.4) is used to generate the implied confidence intervals for the revisions
under the null hypothesis that Rt|T ∼ N(0, V ar(Rt|T )).

A.3 Test Statistics

Equation (A.4) allows us to construct a confidence interval for the revision at any specific
point in time. We also wish to test whether the variability of Rt|T over the entire observed
sample is consistent with what we would expect from our UC model and its parameter
estimates. One way to test this would be to standardize the revisions by their estimated
standard errors σt|T =

√
V ar(Rt|T ) and test the variance of the resulting process. A problem

here is that Rt|T is almost certain to be serially correlated. We correct for this using a
heteroscedasticity and autocorrelation consistent (HAC) estimator along the same lines as
Diebold and Mariano (1995). Specifically, we construct the test statistic

D =

(
1
T

T∑
t=1

(Rt|T /σt|T )2 − 1

)
ω−1 (A.5)

which has an asymptotic standard normal distribution under the null hypothesis that
E(Rt|T ) = 0 and E(R2

t|T ) = σ2
t|T . Here, ω is a HAC estimate of the standard deviation

of (Rt|T /σt|T )2. Approximate p-values for D were simply calculated using the standard
normal cdf. For the results reported in Table 6, we computed the statistic using 8 lags and
a Bartlett kernel. We found similar results using a Parzen kernel and using lag truncation
parameters from 5 to 10.

19Quenneville and Singh (2000) and Pfeffermann and Tiller (2000) both suggest more sophisticated ap-
proximations. However, the former’s simulations show that their method works only about as well as Ansley
and Kohn’s, while the latter method is too computationally intensive to be practical in our context.

20In practice, this proved to be a problem for both methods, although the problem was more common for
the Hamilton method.
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Table 1

Output Gap Summary Statistics

Method MEAN SD MIN MAX COR
Hodrick-Prescott
Final 0.04 1.65 −4.67 3.60 1.00

Quasi-Real −0.12 1.70 −3.96 3.79 0.55

Real-Time −0.27 1.90 −6.63 3.84 0.49

Breaking Trend
Final 0.18 2.58 −6.98 5.31 1.00

Quasi-Real 0.56 2.79 −6.55 7.02 0.85

Real-Time 0.21 3.15 −10.52 5.02 0.82

Quadratic Trend
Final 0.30 2.72 −7.39 5.20 1.00

Quasi-Real −0.70 2.71 −7.23 6.19 0.60

Real-Time −0.96 3.03 −10.83 4.70 0.58

Linear Trend
Final 1.30 3.87 −5.44 8.06 1.00

Quasi-Real −2.65 3.49 −10.32 7.02 0.88

Real-Time −3.45 3.98 −10.52 5.02 0.89

Watson
Final 0.45 2.37 −5.34 4.56 1.00

Quasi-Final −0.26 2.19 −5.07 5.06 0.95

Quasi-Real −1.71 2.37 −7.31 4.42 0.83

Real-Time −2.08 2.61 −7.43 3.56 0.89

Kuttner
Final 1.20 3.63 −5.52 7.69 1.00

Quasi-Final 0.78 3.51 −5.61 6.92 0.99

Quasi-Real −1.63 2.79 −6.81 6.23 0.87

Real-Time −2.37 3.16 −7.91 4.86 0.88

(continued on next page)
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Table 1 (continued)

Output Gap Summary Statistics

Method MEAN SD MIN MAX COR
Harvey-Clark
Final 0.25 2.17 −5.51 4.06 1.00

Quasi-Final −0.71 1.53 −4.62 3.21 0.89

Quasi-Real −0.66 1.60 −4.14 3.41 0.81

Real-Time −0.93 1.91 −6.99 3.02 0.77

Gerlach-Smets
Final 0.08 1.95 −5.37 3.51 1.00

Quasi-Final −0.57 1.55 −4.85 3.30 0.92

Quasi-Real −0.89 2.57 −13.17 1.95 0.56

Real-Time −1.57 2.08 −11.05 0.90 0.75

Notes: The alternative detrending methods are as described in the text. The statistics
shown for each variable are: MEAN, the mean; SD, the standard deviation; and MIN and
MAX, the minimum and maximum values. COR, denotes the correlation with the final
estimate of the gap for that method. All statistics are for the 1966:1–1997:4 period.
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Table 2

Summary Revision Statistics
Final vs Real-Time Estimates

Method MEAN SD RMS MIN MAX AR
Hodrick-Prescott 0.30 1.81 1.83 −3.48 3.44 0.93

Breaking Trend −0.04 1.78 1.78 −5.24 5.93 0.85

Quadratic Trend 1.25 2.64 2.91 −4.20 7.65 0.96

Linear Trend 4.78 1.82 5.12 0.09 10.21 0.91

Watson 2.53 1.17 2.78 −0.11 5.18 0.89

Kuttner 3.57 1.75 3.97 −0.83 7.29 0.92

Harvey-Clark 1.17 1.39 1.82 −2.07 4.25 0.92

Gerlach-Smets 1.64 1.43 2.17 −1.42 6.33 0.80

Notes: The detrending method and statistics are as described in the notes to Table 1. RMS
denotes the root mean square of the revision series shown and AR the first order serial
correlation of the series.
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Table 3

Summary Reliability Indicators

Method COR NS NSR OPSIGN
Hodrick-Prescott 0.49 1.10 1.11 0.41

Breaking Trend 0.82 0.69 0.69 0.22

Quadratic Trend 0.58 0.97 1.07 0.35

Linear Trend 0.89 0.47 1.32 0.49

Watson 0.89 0.49 1.17 0.42

Kuttner 0.88 0.48 1.09 0.49

Harvey-Clark 0.77 0.64 0.84 0.34

Gerlach-Smets 0.75 0.73 1.11 0.41

Notes: The table shows measures evaluating the size, sign and variability of the revisions
for alternative methods. COR, denotes the correlation of the real-time and final estimates
(from Table 1). NS indicates the ratio of the standard deviation of the revision and the
standard deviation of the final estimate of the gap. NSR indicates the ratio of the root
mean square of the revision and the standard deviation of the final estimate of the gap.
OPSIGN indicates the frequency with which the real-time and final gap estimates have
opposite signs.
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Table 4

Detailed Breakdown of Revision Statistics

Method MEAN SD RMS MIN MAX AR
Hodrick-Prescott
Final/Real-Time 0.30 1.81 1.83 −3.48 3.44 0.93

Final/Quasi-Real 0.16 1.59 1.60 −3.49 3.12 0.97

Quasi-Real/Real-Time 0.14 0.65 0.66 −1.05 2.95 0.66

Breaking Trend
Final/Real-Time −0.04 1.78 1.78 −5.24 5.93 0.85

Final/Quasi-Real −0.38 1.47 1.51 −3.96 1.99 0.92

Quasi-Real/Real-Time 0.34 1.05 1.10 −2.30 4.14 0.76

Quadratic Trend
Final/Real-Time 1.25 2.64 2.91 −4.20 7.65 0.96

Final/Quasi-Real 1.00 2.44 2.63 −1.80 5.27 0.99

Quasi-Real/Real-Time 0.23 1.04 1.06 −2.57 4.08 0.76

Linear Trend
Final/Real-Time 4.78 1.82 5.12 0.09 10.21 0.91

Final/Quasi-Real 3.95 1.81 4.34 0.07 6.43 0.96

Quasi-Real/Real-Time 0.80 1.21 1.44 −1.67 4.14 0.79

Watson
Final/Real-Time 2.53 1.17 2.78 −0.11 5.18 0.89

Final/Quasi-Final 0.71 0.75 1.03 −0.68 2.17 0.94

Quasi-Final/Quasi-Real 1.45 0.85 1.68 −0.23 2.62 0.95

Quasi-Real/Real-Time 0.37 1.13 1.19 −1.96 3.54 0.86

Kuttner
Final/Real-Time 3.57 1.75 3.97 −0.83 7.29 0.92

Final/Quasi-Final 0.42 0.43 0.60 −0.63 1.29 0.91

Quasi-Final/Quasi-Real 2.40 1.49 2.82 −0.39 4.86 0.97

Quasi-Real/Real-Time 0.74 0.86 1.14 −1.06 3.45 0.83

Harvey-Clark
Final/Real-Time 1.17 1.39 1.82 −2.07 4.25 0.92

Final/Quasi-Final 0.96 1.08 1.44 −1.06 3.23 0.94

Quasi-Final/Quasi-Real −0.05 0.37 0.37 −1.08 0.93 0.91

Quasi-Real/Real-Time 0.27 0.61 0.66 −0.81 2.85 0.84

Gerlach-Smets
Final/Real-Time 1.64 1.43 2.17 −1.42 6.33 0.80

Final/Quasi-Final 0.65 0.79 1.02 −0.88 2.57 0.93

Quasi-Final/Quasi-Real 0.32 2.08 2.09 −3.48 8.73 0.69

Quasi-Real/Real-Time 0.68 1.94 2.05 −7.88 5.67 0.61

Notes: See notes to Tables 1 and 2.
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Table 5

Revision Statistics at NBER Peaks
Final vs Real-Time Estimates

Method MEAN SD RMS MIN MAX
Hodrick-Prescott 2.38 0.76 2.49 0.64 3.44

Breaking Trend 0.67 0.55 0.86 −0.27 1.35

Quadratic Trend 2.86 2.07 3.48 −0.95 5.20

Linear Trend 5.40 1.38 5.56 3.57 7.50

Watson 2.83 1.25 3.08 1.19 4.86

Kuttner 4.37 1.29 4.55 2.11 6.58

Harvey-Clark 1.82 0.97 2.04 0.42 3.80

Gerlach-Smets 1.82 0.84 1.99 0.47 3.06

Notes: The revision is defined as the difference between the final and the real-time estimates.
For each method, the sample used to compute the revision statistics is limited to the three
quarters centered around each of the NBER peaks from 1966 to 1997. See also notes to
Tables 1 and 2.
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Table 6

Standard Errors and Test for Total Revisions

Revision Mean SE Revision Size
Method RMS Ansley-Kohn Test Statistic
Watson 2.79 1.88 2.84∗

Kuttner 3.98 1.32 3.23∗

Harvey-Clark 1.82 1.75 0.07

Gerlach-Smets 2.18 3.20 −1.25

Notes: The root mean square (RMS) of the total revisions is from Table 2. The mean
standard error (SE) and test statistic are computed for the 1966:1–1997:4 period as detailed
in the Appendix. The test statistic is for the hypothesis that the size of the revisions is
consistent with the estimated standard errors against the alternative that they are bigger,
on average. ∗ indicates rejection at the 0.1% significance level.
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Figure 1

Real-Time Estimates of the Business Cycle
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Final Estimates of the Business Cycle
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Figure 2

Total Revision in Business Cycle Estimates
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Figure 3

Estimated Business Cycle: Linear Trend
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Figure 4

Estimated Business Cycle: Breaking Linear Trend
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Figure 5

Estimated Business Cycle: Quadratic Trend
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Figure 6

Estimated Business Cycle: Hodrick-Prescott
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Figure 7

Estimated Business Cycle: Watson
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Estimated Business Cycle: Kuttner
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Figure 8

Estimated Business Cycle: Harvey-Clark
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Estimated Business Cycle: Gerlach-Smets
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Figure 9

Estimates and 95% Confidence Intervals

Harvey-Clark Gerlach-Smets
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Notes: The top and middle panels show Quasi-Final and Final estimates of the output gap
and the bottom panel shows the total and Final/Quasi-Final revisions for the indicated
UC models. Two sets of 95% confidence intervals are also shown. Kalman is based on the
Kalman filter variances assuming no parameter uncertainty. Ansley-Kohn is based on an
approximation that also incorporates parameter uncertainty.
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Figure 10

Estimates and 95% Confidence Intervals

Watson Kuttner
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Notes: See notes to Figure 8.
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