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ARMA Representation of Two-Factor Models*

Nour Meddahi'

Résumé / Abstract

Beaucoup de modeéles financiers sont spécifiés a travers des représentations structurelles.
Néanmoins, la connaissance de formes réduites ARMA peut étre utile pour I’analyse de fonction
de réponses, le filtrage, la prévision, et pour les méthodes d’inférence statistique. Cette
représentation ARMA est la forme analytique de I’état stable de la variable inobservable et est
donc une alternative aux méthodes basées sur le filtre de Kalman. Dans cet article, nous dérivons
les formules analytiques des racines moyenne-mobile d’un modele a deux facteurs. Ensuite, nous
proposons une application financiére. Plus précisément, nous caractérisons la représentation
GARCH(2,2) faible d’un modele en temps continu et a volatilité stochastique quand la variance
instantanée est la combinaison linéaire de deux processus auto-régressifs, comme pour les
modeles affines, diffusion GARCH, CEV, Ornstein-Uhlenbeck et positifs, a fonctions propres, et
SR-SARV.

Many financial time series models are specified through a structural representation.
Nonetheless, knowing their reduced ARMA form may be useful for impulse response analysis,
filtering, forecasting, and for purposes of statistical inference. This ARMA representation is the
analytical steady-state of the unobservable variable and is therefore an alternative approach to
Kalman filter-based methods. In this paper, we analytically derive the moving-average roots of
a two-factor model. We then provide a financial application. More precisely, we characterize
the weak GARCH(2,2) representation of continuous time stochastic volatility models when the
variance process is a linear combination of two autoregressive processes, as in affine, GARCH
diffusion, CEV, positive Ornstein-Uhlenbeck, eigenfunction, and SR-SARV processes.

Mots clés : modeles a deux facteurs, modéles structurels, représentation
ARMA, racine moyenne-mobile, modele en temps continu et & volatilité
stochastique, représentation GARCH faible.

Keywords: Two-factor models, structural models, ARMA representation,
Moving-average roots, continuous time stochastic volatility model, weak
GARCH representation.
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1 Introduction

There are many examples of financial models where the variable of interest is defined as the
sum of autoregressive factors of order one and (some times) a noise. Cases include interest
rates in affine models (Vasicek, 1977; Cox, Ingersoll and Ross, 1985; Duffie and Kan, 1996;
Dai and Singleton, 2000); the (stochastic) volatility of exchange rate returns (Taylor, 1986;
Andersen, 1994; Harvey, Ruiz and Shephard, 1994; Jacquier, Polson and Rossi, 1994; Alizadeh,
Brandt and Diebold, 2002; Barndorff-Nielsen and Shephard, 2002; Bollerslev and Zhou, 2002;
Meddahi and Renault, 2002); the volatility of asset returns (Gallant, Hsu and Tauchen, 1999;
Chernov, Gallant, Ghysels and Tauchen, 2002); the time between consecutive trades (Ghysels,
Gourieroux and Jasiak, 2002). Accordingly, the time series properties of variables so defined is
of particular interest. Following Granger and Morris (1976), when the number of autoregressive
factors is p, the sum is an ARMA (p,p-1) if there is no noise and an ARMA (p,p) if there is. It
is easy to characterize the autoregressive roots of the resulting ARMA process as they coincide
with the factors. However, the characterization of the moving-average roots is less obvious. To
the best of our knowledge, there is no analytic characterization of these roots when the order of
the moving-average part is strictly higher than one. The main focus of the paper is to provide
such a characterization. More precisely, we derive analytically the moving-average roots of
ARMA (p,2) processes. The result, while not completely general, is of significant practical
importance given that in most of the financial applications cited above the variable of interest
is an ARMA(3,2) or an ARMA(2,2).

The exact characterization of the ARMA structure of a variable is important for impulse
response analysis, filtering, forecasting, and for purposes of statistical inference. For example,
the expected value of an unobserved variable, like volatility that is the expected value of
squared returns, can be easily obtained from the ARMA representation of the observed variable.
Typically, one finds a recursive formula for the expected value that looks like a GARCH
equation (the filtering procedure from the ARMA representation). By using the results in
Baillie and Bollerslev (1992), one obtains multi-period forecasts of the variable from its ARMA
representation as well as forecasts of the future expected value of the observed variable by using
the (GARCH-like) recursive formula of the expected value variable. The ARMA representation
is also useful for statistical inference. For instance, under Gaussianity, one can compute the
maximum-likelihood estimator. Omne can also use the ARMA representation for estimation
purposes when the innovations of the ARMA are not martingale difference sequences, an
approach that is adopted by Francq and Zakoian (2000) who use the weak GARCH structure
of returns to estimate the volatility parameters. It should also be noted that the (GARCH-like)
recursive equation is the (analytical) steady-state of the Kalman filter. Hence, it can be used

instead of the Kalman filter in a QML estimation procedure for volatility models.



The paper presents a financial application that is of particular relevance for volatility
modeling. In the application, we characterize the GARCH(2,2) structure of a two-factor
continuous time stochastic volatility model. ~More precisely, for a given frequency of
observations, we characterize the ARMA(2,2) structure of the squared returns when the
variance is a linear combination of two autoregressive processes: examples include affine
processes (Heston, 1993; Duffie, Pan and Singleton, 2000); GARCH diffusion (Nelson, 1990);
the CEV process (Meddahi and Renault, 2002); the positive Ornstein-Uhlenbeck processes
(Barndorff-Nielsen and Shephard, 2001), the SR-SARV models (Andersen, 1994; Meddahi
and Renault, 2002); and the eigenfunction stochastic volatility models (Meddahi, 2001). The
ARMA representation of the squared returns is the weak GARCH structure of Drost and
Nijman (1993). In Drost and Werker (1996), the weak GARCH(1,1) structure of the return
process is characterized when the variance depends on one autoregressive process. We extend
this result to the two-factor volatility model. This extension is important for practical purposes
since it has been well established that two factors are needed for correctly modeling volatility:
one factor to capture the persistence of the volatility and a second to deal with fat-tails (e.g.,
Engle and Lee, 1999; Meddahi, 2001; Bollerslev and Zhou, 2002; Gallant, Hsu and Tauchen,
1999; Chernov et al., 2002).

The remainder of the paper is organized as follows. Section 2 contains the basic results:
we derive the roots of an MA(2) process when its first and second autocorrelations are
known. Then we derive the ARMA(2,2) representation of a process defined as the sum of
two autoregressive factors and a noise (two-factor model). In Section 3, we derive the weak
GARCH(2,2) representation of continuous time stochastic volatility models when the variance
depends linearly on two autoregressive factors. We then study the empirical implications of
the weak GARCH representation. Section 4 concludes the paper. All proofs can be found in
the Appendix.

2 Moving-average roots of two-factor models

2.1 An overview

Consider a random variable of interest denoted by y; and defined as the sum of two AR(1)

processes plus noise (and called two-factor model), i.e.,

Y = fre—1 + fog—1 +uy, with (2.1)

fir=wi+vifir1+vig, |vi|<l, fori=1,2, (2.2)

where (v, va4,u¢)" is a white noise. In order to characterize the ARMA dynamics of y, it is

of interest to define the variable z; as

z2=(1—mL)(1 =Ly — (1 —y2)w — (1 —y1)ws. (2.3)



Observe that
2 =V1p1 — YoeVrg2 + Vo1 — Va2 + U — (71 + Y2) U1 + Y172Ut—2- (2.4)
Hence, given that (v1,v24,u;)" is a white noise, we have that (see the Appendix for a proof)
Vh,| h|>2, Cov(z,z-p) =0, (2.5)

i.e., z; is a moving-average process of order two. As a consequence, given the relationship (2.3),
y; is an ARMA(2,2).! In addition, the autoregressive coefficients of y; are v, and 7,. Finally,
the moving-average roots of 4, are those of z;.2

Given that z; is a MA(2) process, it admits the following representation:
zz=(1—=XML)(1 — AoL)n, (2.6)

where 7, is a white noise, L the lag operator and A; and Ay are complex numbers with modulus

smaller than one, i.e. | \; |[< 1 for i =1,2. We can rewrite (2.6) as the following representation

2y =M — PimM—1 — Pani—2, where (2.7)

ﬁl = /\1 + )\2 and ﬁg = —/\1)\2. (28)

It is worth noting that without further assumption, the process 7; is not a martingale
difference sequence (m.d.s.). To the best of our knowledge, the conditional normality and
homoskedasticity of (v14,va4, us) " is the unique example where 7, is m.d.s. and, indeed, normal
and i.i.d. (independent and identically distributed); see Meddahi and Renault (2002). These
authors also show that this m.d.s. property does not hold for volatility models given that
(v14, V24, us) " is heteroskedastic, as in the application considered in the subsequent section.
However, Meddahi and Renault (2002) show that the process 7; is more restricted than a

white noise given that the following condition holds

E[ny — Bime—1 — Bamy—2 | m—3] = 0.

Such multi-period conditional moment restrictions were introduced by Hansen (1985) and
studied in detail by Hansen, Heaton and Ogaki (1987), Hansen and Singleton (1986), West
(2001) and Kuersteiner (2002).

By combining (2.3) and (2.7), one easily obtains the ARMA(2,2) representation of y;:

v = (1 —7)w + (I — y)ws + (71 + 72)Yt—1 — V17%2Yt—2 + 1t — Bim—1 — Bom—o. (2.9)

'When 7, = 72, it is easy to show by a similar proof that y; is indeed an ARMA(1,1).
2However, for some specific values of the model parameters, one moving-average root of y; coincides with
one autoregressive roots of y; (i.e., 71 Lor Yo 1y and y; becomes an ARMA(1,1).
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Let us now define m;_;[y] as the best linear predictor of y; on the Hilbert-space generated by

{1,y,,7 <t—1}. Then we naturally obtain

mily] = w + a1y + aoyi—1 + Bimu—1[y] + Bami—a[y], (2.10)

where

w=1—-y)w + (1 —7)ws, a1 =7+ — b1, = =172 — Po-

The main interesting feature of (2.10) is that it looks like a GARCH(2,2) equation (Bollerslev,
1986). In fact, this recursive equation is useful in both estimation purposes (as in Francq and
Zakoian, 2000) and forecasting procedures (as in Baillie and Bollerslev, 1992). An additional
advantage of (2.10) is that it corresponds to the steady-state of the Kalman filter of the variable
(f1,t+ fot)- Hence, one can use (2.10) instead of a Kalman filter in a QML estimation procedure,
as in Harvey, Ruiz, Shephard (1994) for log-normal volatility models and Barndorff-Nielsen and
Shephard (2002) for realized volatility models.

2.2 Roots of a MA(2) process

We will now characterize the moving-average roots of the process z; in terms of its first and
second autocorrelations. For this purpose, we use the following notation: sign(a) =1 ifa > 0

and sign(a) = —1if a < 0.

Proposition 2.1 Roots of a MA(2) process. Let z; be a moving-average process of order

2, MA(2), with a zero mean, where p; and py are its first and second autocorrelation; i.e.,

Cov|zy, 24-1] Covlzy, 24_9]
=——— —and p=—""—""- 2.11
A= Vel ™ Varf .
and we assume that py is non-zero. Then we have:
1) the process z; admits the representation (2.7) where By and Var[n] are given by
B2 p Var[z]
= — and Var|ny|=——F——", 2.12
while By is given by:
. 1 _ . _
if pp=0:8 = (—m — sign(p2)\/p3? —4) :
;u+1 —Viu+1 (2.13)
if P1 ?é 0: 52 = ,Where
2u
u=2""pop;? [—2 -+ sign(pz)\/@ +po)? — 4/0%052] : (2.14)
2) besides, the process z; admits the representation (2.6) where \; and )y are given by
— /B2 +4 244
=D §1+B2 and dy = 27 §1+52. (2.15)



In the rest of the section, we consider the characterization of the moving-average roots of
the two-factor model defined previously. This example is important in the financial literature
and, indeed, the application we consider later is a special case of it. It is worth noting that in
characterizing the moving-average roots of a general ARMA (p,2) model, one has to adopt the
same approach as we did above, i.e., characterize the moving-average part and its properties
(such as variance, first and second autocorrelations) and use the previous proposition. In
particular, this approach can be adopted if one is interested in the ARMA representation
of a variable defined as the sum of the components of an exact discretization of trivariate
Ornstein-Uhlenbeck process (see Bergstrom, 1984, 1990; Comte and Renault, 1996). We adopt

the same approach for the leading example we consider.

2.3 ARMA(2,2) representation of two-factor models

The ARMA(2,2) representation of the process y; defined in (2.1) is given in (2.9). In order
to complete this representation, we will use the previous proposition to compute the moving
average parameters of the process z;. Therefore, the characterization will be achieved when we
get the variance of z; and its first and second autocorrelations.

We will derive these characteristics of z; in two different manners. The first one derive
them in terms of the structural parameters, i.e., the autoregressive coefficients, vy, and 7., and
variance-covariance matrix of (vl,t,vz,t,ut)T. We will adopt this structural characterization
in the weak GARCH application in Section 3. For this purpose, for any real numbers

Y1, V2, Vi1, Vao, Vas, Va1, Va3, we introduce the notation:
GZ,O(’Yla Y2, ‘/11; ‘/22a %3; ‘/:31; ‘/32) E(]- + ’Y%)Vll + (1 + 7%)‘/22 + (]. + (’Yl + 72)2 + (’}/1"}/2)2)‘/;33
—2(m + 72+ 173)Va — 21 + 72 + 7i72) Vaz

(2.16)

G2,1(71, 72, Vi, Vaz, Vaz, Var, Vao) = — %2 Vin — 71 Vao — (1 + 72) (1 + 7172) Vas (2.17)
+ (L + 217 4+ 73) Va1 + (1 + 27172 + 71) Vaz, .

G2,2(’Yl, Y2, Va3, Va1, V32) = 71172Vas — Va1 — 71 Vaa. (2-18)

Proposition 2.2 Characteristics of z; from the structural representation of y;. Let
Yt, frt, for and z; be the processes defined in (2.1), (2.2) and (2.3). Then:

Var[zi] =Gao (71,72, Var[viy], Varve, Var[u], Covlus, vi 4], Covlug, vay))

(2.19)
+ 2(1 4 y172)Cov[vy ¢, vayl,
Covlzy, zi-1] =Go1(M1, 72, Varivi ], Var[ve ], Var[u], Covlug, v 4], Covlug, va4]) (2.20)
— (71 + 72)Cov[v g, vy, .
Covlzt, zi—2] = Ga2(71, Ve, Var[u], Cov|ug, vy ], Cov|ug, vayl), (2.21)

where the functions Gop(.), G2,1(.) and Goo(.) are defined in (2.16), (2.17) and (2.18).
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In the second approach, we derive the characteristics of z; in terms of the autoregressive

coefficients, the variance of y;, and the first and second autocovariances of ;.

Proposition 2.3 Characteristics of z; from the reduced form of y;. Let vy, fis, fo
and z; be the processes defined in (2.1), (2.2) and (2.3). Then:

Var(z] = (1+ ’Yf’yg +(n+ 72)2)‘/‘”"[%] —2(71 + 72) (1 + 1172)Covlye, ye—1]

(2.22)
+ 27172Cov[ys, Y—a,
Covlz, z-1] = —(L 4+ 1172) (11 +72)Var[y] + (1 + (71 +72)* + 172) Covlys, Y1) (2.23)
— (1 + 72)Cov[yt, yr—2], .
Cov|z, 2zt-2] = veVar(y)] — (11 + 12)Covlys, yi—1] + Cov|ys, ys—2]- (2.24)

3 Continuous time weak GARCH(2,2)

3.1 Weak GARCH(2,2) representation of two-factor volatility
models

In this section, we characterize the weak GARCH representation of models where the variance
is a linear combination of two autoregressive processes, as affine processes (Heston, 1993;
Duffie, Pan and Singleton, 2000), GARCH diffusion (Nelson, 1990), CEV process (Meddahi
and Renault, 2002), positive Ornstein-Uhlenbeck processes (Barndorff-Nielsen and Shephard,
2001), SR-SARV models (Andersen, 1994; Meddahi and Renault, 2002) and the eigenfunction
stochastic volatility models (Meddahi, 2001).® Such a characterization is important because it
gives the relationship between the parameters of the continuous time model and those of the
discrete time model. This characterization is considered by Drost and Werker (1996) when the
variance process depends linearly on one factor and is used by several authors, in particular
Andersen and Bollerslev (1998), Drost, Nijman and Werker (1998), Andersen, Bollerslev and
Lange (1999), Andreou and Ghysels (2002). However, it is now well established that a one
factor stochastic volatility model does not describe well the data. Typically, one needs two
factors, one to capture the persistence of the volatility and a second to capture the tails of the
returns; see, for instance, Meddahi (2001), Chernov et al. (2002). This approach is in line with
the GARCH model of Engle and Lee (1999).* In conclusion, it is of interest to characterize
the weak GARCH representation of two-factor models.

3By using the results of the previous section, one can also easily derive the weak GARCH(2,2) representation
of a temporal aggregation of a discrete time weak GARCH(2,2) or a cross-sectional aggregation of two
independent GARCH(1,1) processes as in Nijman and Sentana (1996).

4An alternative approach to the two-factor model is to consider a one-factor model with jumps as in
Andersen, Benzoni and Lund (2002) and Pan (2002); for a comprehensive empirical comparison of these
approaches, see Chernov et al. (2002).



In the sequel, we assume that the log-price of an asset or the log of an exchange rate,

denoted by x;, is a continuous time model given by

dil?t == O'tth, (31)

with o? a linear combination of two autoregressive processes, i.e.,

ol = oit + og,t, dazt = k;(6; — ozt)dt + Jioiﬁtdﬂfi,t, fori=1,2,1<9; (3.2)

where W;, Wi, and Wy, are three independent standard Brownian motion processes. Note
that we can allow for dependence between ait and a%yt; we only need that these two processes
be uncorrelated. An example of autoregressive processes that are uncorrelated but dependent
can be obtained by considering two eigenfunctions (associated with different eigenvalues) of the
infinitesimal generator of the state variable (Hansen and Scheinkman, 1995). This approach
is adopted by Meddahi (2001) where the Eigenfunction Stochastic Volatility (ESV) models
are introduced.” However, we maintain the assumption that W; is independent with Wi,
and W, and, hence, we exclude the leverage effect, which is a usual assumption in the weak
GARCH setting. This model is a special case of SR-SARV(2) models of Meddahi and Renault
(2002) and is, hence, closed under temporal aggregation.® Another example of SR-SARV is the
positive Ornstein-Uhlenbeck of Barndorff-Nielsen and Shephard (2001). The following weak
GARCH(2,2) characterization holds for any SR-SARV(2) model. However, we will focus on
the model (3.2) since this is the most popular model in the empirical literature, but a similar
proof may be easily developed.

The general formulation of ait is called a CEV process. When §; = 1, we have the usual
square-root process (Feller, 1951; Cox, Ingersoll and Ross, 1984) and we have the GARCH
diffusion process when ¢; = 2 (Wong, 1964; Nelson, 1990). We will assume that the second
moment of o7, is finite in order to ensure the existence of the fourth moment of the returns,
an assumption needed in the weak GARCH formulation. This assumption holds always when
d; < 2 and never when §; > 2.” When §; = 2, this assumption is ensured when o? < 2k;. Thus,
we assume that §; < 2, and o? < 2k; when §; = 2.

For a given h, h > 0, we denote by 68? the (log) return of z; over the period [(t — 1)h, th]:

th

Eg:) = Tth — T(t—-1)h = / Ouqu (33)
(t—1)h

Meddahi and Renault (2002) showed that the discrete time process {sgz),t € N} is a SR-
SARV(2). In addition, given that we have ruled out the leverage effect, the results of Meddahi

SFor an alternative approach using eigenfunction (or principal components), see Chen, Hansen and
Scheinkman (2000). For a review of the properties of the infinitesimal generator operator of a diffusion,
see Ait-Sahalia, Hansen and Scheinkman (2001).

6Meddahi and Renault (2002) show that an exact discretization of a continuous time SR-SARV (p) model is
a discrete time SR-SARV(p) model of Andersen (1994).

"Therefore, we exclude the example of Jones (2002) who considers a CEV volatility process with &; > 2.
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and Renault (2002) imply that {sgz),t € N} is a weak GARCH(2,2) of Drost and Nijman
(1993). We now characterize the coefficient of the weak GARCH(2,2) representation. For this
purpose, we will first derive the structural representation of the squared returns such as (2.1)
and (2.2).8 Then we will get the weak GARCH representation by using both Proposition 2.1
and Proposition 2.2.

Proposition 3.1 Structural representation of squared returns. Let {z;,t € IR"} be the
continuous time SV model defined by (3.1) and (3.2). For any real h, h > 0, define the returns
{Egz),t € N} by (3.3). Then we have:

h h h .
(eln)? = 1((1 et f2(,(35—1)h + ufy,, with (3.4)
1 — exp[—kih .
SO, = 0+ —ex;:’[ ](ai(t_l)h — @), fori=1,2, and (3.5)

g Z/t - exp[—k;i(u — (t — 1)h)] [/(t o explki(s — (t — 1)h)]osolt dWi, | du

" (3.6)
+ 2/ (/ osdW5)o, dW,.
(t—=1)h J(t=1)h
In addition, we have
Fin = w® AW+ ol with (3.7)
w = 0:h(1 — exp[—k:h]), 1" = exp[—k;h], (3.8)
1 — exp[—k;h] th .
vin = ———p —— exp[—kih] explki(u — (t — 1))]oi07%,dWi.. (3.9)
1 (t—1)h
Finally, the process (UY?h, vé’ft)h, ug;))T 1s a white noise and we have
1— —k;h])?(1 — —2k;h .
Varfu®)] = (1 = exp[—h:h])*(1 — exp| DUZ?E[JZ‘} , (3.10)

2k?

2
4 —k;h| — —2k;h] + 2k;h — 3 :
Varfu)] = Y2 10PN Z PIRA A IR 2 oy

2 (3.11)
L+ k;
42 exp|—k; h] + kih Varlo?] + 212 (6, + 6,)?,

(1 — exp[—k;h])3
2k}

(h)

C’ov[v1 th UQZ),L] =0, and Cov[uiz), vi,th] = O’?E[Uz(tsi ) (3.12)

8This structural representation is exactly the SR-SARV representation of Meddahi and Renault (2002).



This proposition can be summarized as follows. The equation (3.4) means that the squared

return (sgz)) is a linear combination of the two processes f1 (—1)h and f2 (—1)h plus the noise

ug,’? Each process f( (—1yn & = 1,2, is an affine function of Uz,(tq)h (see (3.5)) and, hence, is an

AR(1) process with the innovation process v((i Dh (see (3.7)). By using the structure of the

noise .’ and the innovations UZ( ") given respectively in (3.6) and (3.9), we characterize their

variances in (3.11) and (3.10) respectively. Finally, given that UZ( tzl depends only on the process

W, and given the independence of W, ; and Wy, the processes v%)h and vg?h are independent
(and uncorrelated). However, ugf) depends on both W;, and W5, and is therefore correlated
with UY?h and véht)h (see (3.12)).

In Proposition 3.1, we need E [az %] and Var[o},] which are given (see Meddahi, 2001)
0,07 20%k; 620?

o, if 6; =1, and Efo}y] = o 5, Varlol ] = = if §; = 2.

E[ai‘g"] =0, Var[ait] = o = o7

In order to characterize the weak GARCH(2,2) representation of the returns (sgz)), we proceed

as in the previous section. Hence, let zgh) be the process defined by

h h h h h
Zigh) = (‘Egh)) (’)é )""Yé ))(€§t)1)h) +’Y§ )’Yé )(Egt)Q) )2 — W),

where yz(h)

, i=1,2, are given in (3.8) and w® is defined by
w® = (1= 41 = A)h(6) + 62). (3.13)

Now we have to compute the first and second autocorrelation of zgf) denoted by p%h) and pgh)

By combining the results of Proposition 2.2 and Proposition 3.1, it is clear that

h h h h
h) Cov[zt(h), z((tzl)h] h) COU[Zt(h)’ z((tEZ)h,]

py = and py’ = , with (3.14)
1 Var(zy, : Var(zy,

h h h h
Var[zl] = <%%%,vamwmmh]wawu%w%nmmaM&é&>

Gy
h h h h)  (h
C’ov[zgh : ((t)l)h] = Gy (f)é ),fyé ), Vcw“[v1 th] Vm“[v2 AR Var[ugh)] Cov[uth .U, t)h] Cov[ugh),vg t)h )

h
COU[Zgh ’ ((t22)h] = G (% )572 7V0'T[uth] COU[Uth a“1 ] COU[“t UQ,th])

(h)

where ;" Var[vi(”gl], Var[ugz)] and C’ov[ugz), vz(’gl], for s = 1,2, are given respectively in (3.8),

(3.10), (3.11) and (3.12). The last step in characterizing the weak GARCH(2,2) representation
is the computation of the MA roots by using Proposition 2.1. For this purpose, we need to
know if pgh) equals zero or not and the sign of pgh). The coefficient pgh) is generically non-zero.
However, it is not possible to give the sign of péh) without specifying all the parameters. For
instance, in the empirical illustration we consider later, pgh) is positive when one considers

intra-daily returns but becomes positive with weekly returns.



We can now characterize the weak GARCH(2,2) representation of the returns egz):

Proposition 3.2 Weak GARCH(2,2) representation of returns. Let {z;,t € IR"} be the
continuous time SV model deﬁned by (3.1) and (3.2). For any real h, h > 0, define the returns
{ath ,t € N} by (3.3), let ch be the Hilbert-space generated by {1,6Th (&) (h )) T <t TeN}
and denote by hgt)nh the best linear predictor of (6th)) given H((t)l)h Then 6§Z) s a weak
GARCH(2,2) and

h h h); (h h)y (h
hi = w® + 0l (€2))? + 05" ()" + B bl yn + 527G oy (3.15)

with w™ the real number defined in (3.13) and

o = " + 4V - 8", off) = -1 — gV
5(’1) _ ﬁéh) pgh) (h) 2uM + 1 —4u® +1
1

1— (h) p( )’ 2 2uh) ’

where fy-( ) and ,0Z for i=1,2, are defined in (3.8) and (3.14), while u™ is given by

7

u® = 27y ()21 ()2 | <2 = pa(h) ™" + sign(pa(m)/ (2 + pa(h) ) — dps (W)2pa ()|

3.2 An empirical illustration

Consider a two-factor affine continuous time stochastic volatility model, i.e.,
dz, = 0y dW,, of = 05, + 03, dor, = ki(0; — 07,)dt + 0;0:,dW;,, for i = 1,2, (3.16)

where W;, W,,;, and W,; are independent standard Brownian processes. The numerical
results we will provide are based on the parameter estimates reported in Bollerslev and Zhou
(2002) obtained by matching the sample moments of the daily realized volatilities constructed
from high-frequency five-minute DM/$ returns spanning from 1986 through 1996 to the
corresponding population moments for the integrated volatility. The resulting values are,
k1 = 0.5708, 6, = 0.3257, 01 = 0.2286, ky = 0.0757, 6, = 0.1786, 05 = 0.1096, implying the
existence of a very volatile first factor, along with a much more slowly mean-reverting second
factor.

We start our analysis by studying low frequencies, i.e., daily or lower frequencies. More
precisely, we provide in Table 1 the weak GARCH(2,2) parameters of returns computed at the
following lengths: one day, one week, two weeks, one month, two months, three months, and
six months. The results of Table 1 can be summarized as follows. While the model is a (weak)
GARCH(2,2) for all frequencies, it appears as a (weak) GARCH(1,1) for the weekly frequency
and lower ones. The main reason is that the very volatile but non persistent factor has no

impact on volatility clustering. This explains the empirical relevance of the GARCH(1,1) with
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respect to other ARCH-type models. The second interesting and well-known result is that for
very low frequencies, like tri-monthly and lower ones, the ARCH effect is negligible; this result
is in line with the ones of, e.g., Diebold (1988), Drost and Nijman (1993), and Meddahi and
Renault (2002). Finally, it is clear from Table 1 that some coefficients of the GARCH(2,2)
model are negative. We know however since Nelson and Cao (1992) that the positiveness of all
coefficients of the GARCH(p,q) model, p > 1 or ¢ > 1, is not a necessary condition to ensure
the positivity of the (weak) GARCH volatility process. In addition, as highlighted by Meddahi
and Renault (2002), the weak GARCH volatility process is not necessary a positive process.

Consider now the case of intra-daily frequencies. We report in Table 2 the results for
intra-daily returns computed at the following lengths: one day, eight hours, four hours, three
hours, one hour, thirty minutes, fifteen minutes, ten minutes, five minutes, one minute, and
thirty seconds. We still have some negative coefficients. In addition, when the frequency of
observations increases, the persistence of the volatility, measured by the two autoregressive
coefficients 7;(h) and 75(h), increases. Indeed, as pointed out by Nelson (1990), these two
autoregressive coefficients become very close to unity.

However, a new result from Table 2 suggests that the moving average roots, i.e. A;(h) and
Ao(h), are also very close to unity and indeed very close to the autoregressive coefficients. This
implies that the identification of these parameters from high-frequency returns will be difficult
given that the squared returns process is an ARMA process with autoregressive coefficients
that are very close to the moving average ones. The identification of the structural parameters,
i.e. the parameters of (3.16), will also be difficult for the same reason. Another implication of
the closeness of the autoregressive roots and the moving-average ones is that the ARCH effect
may disappear. However, it turns out that this not the case. More precisely, Meddahi (2002a)
shows that

C’om‘[(s(h))2 (€(h) )] — o + 65 when h — 0
th 77 A= (t=g)h 2a% + 3a? + 3d3 ’
where ag = 01 + 6o, a1 = — 01/01/V2k, and ay = — 09v/03/+/2ky. By using the estimates

of Bollerslev and Zhou (2002), one gets

a? + a3
2a% + 3a? + 3a3

= (0.048801,

which is small but non-zero. Thus, the ARCH effect on the squared residual process is small,

while volatility is very persistent.®

9Tt is worth noting that in this analysis, we do not take into account microstructure effects, which is a critical
feature of high frequency returns. In particular, as shown by Andersen and Bollerslev (1997), the ARCH effect
of returns is substantial when one considers very high frequency returns and that this ARCH effect is mostly
due to microstructure effects, like intra-daily periodicities.

11



4 Conclusion

In this paper, we derived analytically the moving-average roots of a two-factor model. As a
result, we characterize the ARMA representation of two-factor models, which are common in
financial modeling. This ARMA representation, which is the analytical steady-state of the
unobservable variable, like volatility, is useful for filtering, forecasting and statistical inference
purposes. As an application, we characterize the weak GARCH(2,2) representation of two-
factor continuous time stochastic volatility models.

In Meddahi (2002b), we apply these results to derive the ARMA representation of
integrated variance and realized variance. This representation, used in Andersen, Bollerslev
and Meddahi (2002), is useful for studying forecasts of integrated and realized variances.
Future research will exploit the same representation of realized variance to estimate continuous
time stochastic volatility models as in Barndorff-Nielsen and Shephard (2002) and Bollerslev
and Zhou (2002).
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Appendix
Proof of (2.5). Let ¢; be the vector defined by 1, = (v1 4, vay, uy) . Observe that

2y = Aoty + A1ihi_1 + Atby_o, where (A.1)
Ay = (ana 1)7 A = (1a 1,—y — 72) and Ay = (_’Yb —72,7172)- (A-Q)

Given that v, is a white noise, we have Cov[¢;, 1, ] = 0 for any h # 0. Hence, Yh, |h |> 2:
Cov[z, 2] = Cov[Aothy + A1ty 1 + Aoty 2, Aohy n + A1s n1 + Aty 2] = 0.0
Proof of Proposition 2.1. 1) Given that 7, is a white noise, we have
Var[z]) = (1+ 87 + B3)Var[n),

Cov(z, 2z 1) = —P1(1 — Bo)Var[n, (A.3)

Cov(zy, z-2) = —BaVar[n.
Hence, Var[n] is deduced from the first equality in (A.3). Moreover, since py # 0, the third
equality in (A.3) implies that 35 # 0. Therefore, the second and third equalities in (A.3) imply

that p1po~! = B1(1 — B2)B; . Thus, we get 8, as in (2.12). By combining the first and third
equalities of (A.3), we get:

2 2
_@ :1+L2p_;
P2 (1= B2)? p3

Define z by z = 32(1 — 35) . Thus, we have 8, = z(1 + z)~'. Hence, (A.4) becomes

+ 3. (A4)

< 1+ 2Pl +
— = 2= .
(1+2)p2 py o (142)?

Hence, we get

1 2
—2(14+2)—=1+22(1+2) +2*(1 + z)2p—;, ie.

P2 P2

2
2P
2
2

1
+(2+p—)s+1:0 where s = z(1+ 2). (A.5)
2

We now characterize the solutions of (A.5). Their nature, i.e. real or complex, depend on the
sign of A, defined by

Ay =(2+p ") —4pip,”. (A.6)

Observe that: | py |= | Bo |1+ B2+ B3~ < | Bo |(1 + B2)~! < 271, Therefore,

A =444p," +py 2 —4plp,> > 4+4py " +py 2 —4p,> =4 +4py " — 3p,?
=-3(p ' —2)(p2 " +231) >0 given that | py [< 2.
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In conclusion, we have A; > 0. Therefore, the solutions of (A.5) denoted by s; and s, are:

s1=2""pop? [—2 —py' - \/(2 +py1)? — 4/)%/)52} :
(A7)

s2=2"p3p;” [—2 —py '+ \/(2 +pa1)? — 4p%p22} :

We have to decide which solution among s; and s, we have to consider. It is well known that
the MA(2) process, admits four equivalent representations corresponding to the polynomials:
(1= ML) —XL), (1= X'L)(1 — AL, (1 = ATPL)(1 — ML) and (1 — M L)(1— ML) Tt
is easy to show that the first and second representations lead to the same s while the third
and fourth ones lead to the same s. It turns out that these two values of s are the solutions of
(A.5). Since we are interested in the representation where | A\; |[< 1 and | Ay |< 1, this mean
that the corresponding (3, is the smallest one in absolute value. Therefore, this is also the case
for the corresponding s since s is an increasing function of 3, given that s = B5(1 — ;) 2. Let
us denote the desired solution by u. Observe that s; and s, have the same sign, which is also
the sign of —2 — p; !, i.e. the opposite sign of p,. Besides, s; < sy. Therefore, when p, < 0,
u = u; while u = us when ps > 0. This is what is stated in (2.14).

We have u = f5(1 — f32)*. Therefore, we get

uBy — (2u+1)By +u = 0.

This equation admits two real solutions. The product of the solutions is one. Therefore, to
solution is the smallest one in modulus, i.e. (2.13).

Assume now that p; = 0. Then (A.4) becomes

B3+ Papyt +1=0.

Observe that the solution of this equation are real since p% — 1 > 0; moreover they have the

2
same sign and their product is one. These two roots are given by

21 =2 Y—pt +14/p5° —4) and xy =2 (—pyt —\/py> —4).

Observe that x9 — 27 > 0 and, hence, x5 > z;. Thus, when the roots are positive, i.e. py <0,
B9 is the smallest root, i.e. B = z1; otherwise, By = 5. This gives (2.13) when p; = 0.

2) A\; and )\ are the roots of the equation A\?> — 3,1\ — 8, = 0; by solving it, one gets (2.15).H
Proof of Proposition 2.2. Given that 1), is a white noise, (A.1) implies that:

Var(z] = AgVar[yAg + AiVar[)A] + AVar[i]A;
Covlzy, 21 = A1Var[1/Jt]A0T + AgVar[z/Jt]AlT
Covlzy, zi_9] = AsVar[ih) A, .

Hence, by using (A.2), one gets easily (2.19), (2.20) and (2.21).1
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Proof of Proposition 2.3. By using (2.3), one proves easily the proposition.l
Proof of Proposition 3.1. By using Ito’s Lemma, we get:

th 2 th th u
(ef)? = [ / ouqu] = / o2du +2 / ( / oy dW)oudW,.  (A8)
(t—-Dh (t-1)h (t=Dh J(t—=1Dh

But we have:
= 0; + exp[—ki(u — (t — 1)h)](0F (,_1yp — 03)]

+ exp[—k;(u — (t — 1)h)] explk;(s — (t — 1)h)]o;00,dW;,s.
(t—1)h

Hence, for : = 1, 2, we have:

th th
/ Jzudu = / [0; + exp[—ki(u — (t — 1)h)](o} (t—1)n — O1)]du
( (

t—1)h t—1)h

n /:l)h exp|—ki(u — (t — 1)h)] [/(:l)h explky(s — (t — 1)h)]010‘15,1de1,5] du

_ ¢
= fiit-1n

N /(:hl)h explbi(u= (=] [ [ exoly (o= (1= Dosofuabs | o
(A.9)

where f( 1yn 1S given in (3.5). By combining (A.8) and (A.9), we get (3.4). Observe that

(h) _ - eXP[—ki h]

5 = oih+ PR G2 )
= 0;h + exp(—k;h)[f{{)_,) — O:h]
1_ —k; th '
- M expl—kih] [ explki(u— (t = D)h)]oso%,d Wi,
i (t—1)h

h h) (b h
= wz( - 71'( )fz‘(,(g—l)h + Uz(,tzl

i.e. (3.7), where wz(h) and %(h) are given by (3.8) while Uz(}gl is defined in (3.9). It is clear

that the let)h, véht)h and ug;) are martingale difference sequences (m.d.s.). Hence, the vector

((h) (h) ())

U 4h Vs gpy Uy, ) 1S @ white noise. In addition, we have:

T2 th
Var[vz(fgl (1 exig kih]) exp|—2k;h] . exp[2k;(u — (t — 1)h)]0i2E[oz-2,‘Z]du
5 t—1)h
1 — exp[—k;h])? 2%k;h] — 1 |
= ( exgg kih]) exp|—2k;h| (exp] ;:kh] )ofE[oifj]
1 — exp|—k;h])2(1 — exp|—2k;h]) .
_ (1 — exp| kzh])zé?) exp| klh])afE[az‘ff],

i.e. (3.10).
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We will now derive the variance of ugz), i.e. show (3.11). We have:

Varlu®™] = Var [ /( :)h expl—F1 (u — (t — 1)h)] [ /@ u_l)h expla(s — (¢ — l)h)]ala‘fjdeLS} du]
+Var [ /(t t:)h exp[—Fs(u — (t — 1)) [ /(t U_Uh explls(s — (¢ — 1)h)]020‘25’28dW2,5} du]

th u
+ 4Var [/ (/ ades)auqu] i
(t-1)h J(E=1)n

We start by computing the third term in (A.10). Note that:

th U th U 2
varl[* [ o] =e[([* ([ o)
(t=1h J(t=1)h (t—1)h J(t-1)h

Define Z;, by
B h U
ZhE/ (/ osdWs) oy dW,.
o Jo

(A.10)

By Ito’s Lemma, we have:

h h h u h u
72 =9 / 7, d7, + / 417, 7, =2 / Zu ( / 0 AW, )0 d W, + / ( / o, dWV,)20% du.
0 0 0 0 0 0

Therefore,

h U
E[Zg]:E[ /O ( /0 ades)Qagdu]
h u s U
:/ E [(2/ </ adew> odes—i-/ Ofds) aidu]
0 0 0 0
h rpru s h  pu
2/ E / (/ deWw> OSUZdWS] —i—/ / E[o%0?]dsdu
0 Lo 0 o Jo
h r ru s h  pu
2/ E / (/ adew> osaZdWs] +/ / E[o%02]dsdu
0 Lo 0 o Jo
h [ ru s 2
_9 / E / ( / deWw) o, <29i+exp[—ki(u—s)])(azs—9i)> dWs]
0 | Jo 0 Py
h  pu
+/ / E[o%0?|dsdu
o Jo

given the independence of dW,, with dW;, and dW,,. Thus,

h  pru
E[Z,Zl]:/0 /0 E[o%0?)dsdu.

But, we have

Blo?02) = Covlo?, 2] + (Bl02])? = Covlo? .07, + Covlod . o3, + (61 + 6o)°
= exp|—ki(u — s)|Var([o? ] + exp[—kq(u — 5)|Var[o3 | + (61 + 62)*.
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Hence,
~ 2 h pu h
BZ2]=Y / / expl—ki(u — 5)ldsdu Var[o?,] + / udu (6: + 6,)?
—'Jo Jo 0

2 h 2

1— —k; h

— E / —exls[ ul du Var[af’u] + 5 (01 + 65)°
i=1 70 L

2
—k;h] — 1+ k;h h?
= Z exp| 1]62 + VaT[O'Zu] + o (61 + 6o)%.
i=1 i

As a summary,

th pu 2. exp[—kih] — 1 + k;h h2
Var [/ (/ ades)auqu] = Z 5 Var[o?,] + — (61 + 65)%

(t—=1)h J(t=1)h — k; ’ 2

We now compute the first and second terms in (A.10). We have:

/(th exp|—ki(u — (t — 1)h)] [/(u explki(s — (t — 1)h)]0i0i5f5dm,s du

t—1)h t—1)h

— /( " . [ / ! exp[—ki(u — (t — 1)h)]du} explki(s — (t — 1)h)]oiol,dWi,

t—1
_ /th (exp[—ki(s — (t — 1)h)] — exp[—k;h]) explki(s — (t — 1)h)]o;0 dW;
(til)h k‘z 1,8 )
_ /th (1 — explki(s — th)])a-a‘?i aW
(t-1)h ki R
Thus,
th u
Var [/ exp[—k;(u — (t — 1)h)] [/ explki(s — (t — l)h)]amffsdm,s} du]
(t—1)h (t=1h
_ /”‘ (1 — exp[ki(s — th)]ya?E[a?‘si]ds _ /h (1 — explki(s — h)])2d8 o2 E[o2
(t=1)h k; e 0 ki T (A.11)
_ 4 exp|—k;h| — exp[—2k;h] + 2k;h — 3 o2 B2
2]43,? i 1,8 1*

In conclusion, we have:

2

4 _kzh — _2k1h kah -3 i
e
=1 !
2
—k;h| -1 i
+4 Z expl—k h/lQ kil Var(o?,] + 2k (6, + 6,)?,
i=1 :

i.e.(3.11). The independence of Wi, and W5, implies that C’ov(vﬁ%,vg?h) = 0. In order to

achieve the proof of the proposition, we need to compute C’ov[ug;), vz(’gl] We have:
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u

th
Covul®, o)) = Con| / expl—ki(u — (£ — 1)B)] [ / explki(s — (¢ — 1)h)oso Wi, | du,
( (

t—1)h t—1)h

1 — exp|[—kih th |
( eXII;[ 1) exp|—k;h] explk;(u — (t — ]_)h)]o’io'?fudm,u]
i (t—1)h

h u
= Cov[/ exp[—k;ul [/ exp[kis]aiaffdei,s] du,
0 0

(1 — exp[—k;h])

h
exp[—k;h] / explk;uloiori, dWi ]
0

k;
= Cov[/o exp[—kiu|Y,du, (1- eXII;'[_kih]) exp[—k;h|Y3]
_ /0 exp[— k] EY, Yildu TP oo ko

_ / ' expl— ks EY 2] du 0= exlf,[_kih]) exp|—k; ]
= /0 exp[—k;ul (/Ou exp[?kw]o?E[ai?}ds) du O exll;[_kih]) exp[—k;h
= /0 exp[—k;u] (epr:Z] —U du aiQE[azii] (1= exll;[_kih]) exp|—k;h]

_ 1. 3
_d ex2pk[3 kih]) o2E[02].m

Proof of Proposition 3.2. By using Meddahi and Renault (2002), we get that 5%) is a
SR-SARV(2). Given that we exclude the leverage effect and we assume that the fourth moment
of the returns sgz) are finite, we deduce that 5§Z) is a weak GARCH(2,2) (Meddahi and Renault,
2002). Finally, (3.15) is an application of (2.10) to the variable (¢\)2.1
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Table 1: Weak GARCH(2,2) representation of daily, weekly and monthly returns

d  Freq 71 (h) Y2(h) At(h)  Aa(h)  ai(h)  as(h) Bi(h)  Ba(h)

1 1 day .b65 927 .665 793 0337  -.0242 1.46 -.500

15) 1 week .0576 685 173 .H49 .0198 -.00294 723 -.0365
10 2 weeks .00332 469 126 333 .0133 -.000426 .459 -.00113
20 1 month 1.10e-05 .220 .0837 .129 00713 -4.64e-05 .213 4.40e-05

40 2 months 1.21e-10 .0484 0218  .0239  .00269 -2.60e-06 .0457  2.60e-06
60 3 months 1.34e-15 .0107 .00463 .00472 .00131 -2.57e-07 .00935 2.57e-07
120 6 months 1.79e-30 .000113 -.0270 -.0244 .0515 -1.60e-07 -.0514 1.60e-07

Table 2: Weak GARCH(2,2) representation of intra-daily returns

I/h Freq  m(h) k)  M(h) As(h) oi(h)  asx(h)  Bi(h) Fs(h)

1 1 day H65 927 665 793  .0337 -.0242 1.46  -.500

3 8 hours .8267 .9751  .8713 .8952 .03536 -.03202 1.766 -.7741
6 4 hours .9093 9875 .9280 .9360 .03276 -.03127 1.864 -.8666
8 3 hours .9311 .9906 .9427 .9479 .03116 -.03011 1.891 -.8923
24 1 hour 9765 .9969  .9742 9754 02376 -.02351 1.950 -.9499
48 30 mn  .9882 .9984 9835 .9841 .01900 -.01891 1.968 -.9677
96 15mn  .9941 .9992 9891 .9894 .01474 -.01470 1.979 -.9786
144 10mn  .9960 .9995 .9914 .9916 .01255 -.01253 1.983 -.9830
288 5 mn 9980 .9997  .9941 .9942 .009392 -.009385 1.988 -.9884
1440 1 mn 9996 19999 9975 .9975 .004541 -.004540 1.995 -.9950
2880 30 sec  .9998 .99997 .9982 .9983 .003272 -.003272 1.997 -.9965
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