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Exact skewness-kurtosis tests for multivariate normality and
goodness-of-fit in multivariate regressions with application to

asset pricing models

Jean-Marie Dufour', Lynda Khalaf', Marie-Claude Beaulieu®

Résumé / Abstract

Dans cet article, nous proposons des tests sur la forme de la distribution des erreurs dans un modele de
régression linéaire multivarié (RLM). Les tests que nous développons sont fonction des résidus
obtenus par moindres carrés multivariés, lesquels sont standardisés de facon a ce que leur distribution
soit invariante a la matrice de covariance, inconnue, des erreurs. Notre approche utilise des mesures
empiriques d'asymétrie et d'aplatissement de la distribution des erreurs, que nous comparons a des
estimations engendrées par simulation de ces caractéristiques sous cette méme hypothése
distributionnelle. Les cas spécifiques que nous étudions comprennent des tests sur les erreurs du
modéle dans le cadre des lois normale, ¢ de Student, mélange de normales et stable. Dans le cas
gaussien, nous obtenons des versions exactes de tests d'ajustement standards sur l'asymétrie et
l'aplatissement des erreurs dans le cas multivarié. A cette fin, nous utilisons des tests de Monte Carlo
simples, doubles et multiples. Dans les cas non-gaussiens, comme les familles de lois dépendent de
parameétres de nuisance, nous proposons des régions de confiance pour ces derniers et la distribution
des erreurs. Les procédures introduites dans cet article sont alors évalulées par une simulation de petite
taille. Finalement, les tests proposés sont appliqués a un modele d'évaluation d'actifs impliquant un
taux d'intérét sans risque observable et utilisant les rendements de portefeuilles mensuels de titres
inscrits a la bourse de New York, sur des sous-périodes de cinq ans allant de janvier 1926 a décembre
1995.

Mots clés : modele de régression multivarié; test d'ajustement; test de normalité;
normalité multivariée; ¢ de Student; mélange de lois normales; distribution stable; test
de spécification; diagnostic; test exact; test de Monte Carlo; bootstrap; parameétre de
nuisance; modéle d'évaluation d'actifs financiers; CAPM.
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We study the problem of testing the error distribution in a multivariate linear regression (MLR) model.
The tests are functions of appropriately standardized multivariate least squares residuals whose
distribution is invariant to the unknown cross-equation error covariance matrix. Empirical
multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their
expected value under the hypothesized distribution. Special cases considered include testing
multivariate normal, Student t, normal mixtures and stable error models. In the Gaussian case, finite-
sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we
exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution
families involving nuisance parameters, confidence sets are derived for the the nuisance parameters
and the error distribution. The procedures considered are evaluated in a small simulation experiment.
Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly
returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.

Keywords: multivariate linear regression; goodness-of-fit; normality test; multivariate
normality; multinormality; Student t; normal mixture; stable distribution, specification
test; diagnostics; exact test; Monte Carlo test; bootstrap, nuisance parameter, asset
pricing model; CAPM.
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1. Introduction

Drawing inference on the parameters of multivariate linear regression (MLR) models is a basic
statistical problem. Such models, which can combine both cross-section and time series data, are
common in various fields of statistics and econometrics; see Rao (1973, Chapter 8), Anderson (1984,
chapters 8 and 13), Kariya (1985), Stewart (1997), Dufour and Khalaf (@0®2, 200Z), and

the references therein. Important cases include consumer and factor demand systems, reduced forms
derived from linear simultaneous equation models, and various asset pricing models in finance. In
particular, familiar MLR-based applications in finance includarket-modelssuch as the capital

asset pricing model (CAPM) which may be traced back to Gibbons (1982) and Fama and French
(1993, 1995). The associated empirical literature which has evolved from Gibbons’ seminal work is
enormous; for reviews, the reader may consult Campbell, Lo and MacKinlay (1997) and Shanken
(1996)1

Inference procedures (such as tests and confidence sets) for MLR models tend to be heavily
influenced by the disturbance distribution and the assumptions made on the latter. Under standard
conditions, usual asymptotic distributions are often distribution-free, but it is well known that the
finite-sample reliability of large-sample approximations tends to be quite bad; see, for example,
Dufour and Khalaf (2002, 2002) for simulation evidence. Some finite-sample procedures have
been proposed in the statistical literature, but these are almost entirely restricted to the case where
the disturbance vectors follow a Gaussian distribution. Another avenue consists in using simulation-
based tests, as described in Dufour and Khalaf (8D0Zhe latter approach allows one to relax
the normality assumption and provides provably exact tests in finite samples, but still requires the
formulation of a parametric model on the errors. In particular, heavy-tailed distributions that would
be important in financial modelling may easily be accommodated in this way.

This situation underscores the importance of testing disturbance normality as well as other para-
metric distributional assumptions in the context of MLR models. Another motivation comes from
the fact that relatively specific distributional assumptions may be required by important economic
or financial hypotheses, e.g. mean-variance efficiency in the context of the CAPM fnodel.

In multivariate regression contexts, relatively little work has been done on testing distributional
goodness-of-fit (GF) tests compared to the univariate case. This holds even when the hypothesized
null distribution is multivariate normal; see the reviews of Mardia (1980), D’Agostino and Stephens
(1986) and Thode (2002). Indeed, system diagnostic tests raise problems not encountered in the
analysis of univariate models. In particular, an important difficulty comes from cross-equation
disturbance correlations. Whereas it is highly desirable to use test procedures that take account of
these correlations, the fact remains that these parameters can easily constitute (unknown) nuisance

well known financial applications include: (i) portfolio efficiency tests in e.g. CAPM contexts [see, for example,
Shanken (1986), MacKinlay (1987), Gibbons, Ross and Shanken (1989, GRS), Affleck-Graves and McDonald (1989),
Shanken (1990), Zhou (1991), Zhou (1993), Zhou (1995), Fama and French (1993, 1995), Stewart (1997), Velu and Zhou
(1999), Chou (2000), Groenwold and Fraser (2001) and Beaulieu, Dufour and Khalab{20@1a)]; (ii) spanning
tests [see for example Jobson and Korkie (1982, 1989), Kan and Zhou (2001)]; and (iii) event studies tests [see Binder
(1985), Schipper and Thompson (1985)].

2For discussions of the class of return distributions compatible with the CAPM, the reader may consult Ross (1978),
Chamberlain (1983), Ingersoll (1987, Chapter 4), Nielsen (1990), Allingham (1991) and Berk (1997). Another possibility
would consist in considering stable Paretian laws; see Samuelson (1967).



parameters. The typical approach to this problem is to consider statistics whose distribution is
asymptotically free of nuisance parameters; see, for example, Mardia (1970), Richardson and Smith
(1993), Kilian and Demiroglu (2000), Fiorentini, Sentana and Calzolari (2003), and the review of
Thode (2002). Although this leads to convenient test procedures, in systems with many equations,
it is likely that the number of nuisance parameters will be quite large relative to the sample size,
S0 again asymptotic results will provide poor approximations in finite samples; see Horswell and
Looney (1992, 1993) and Holgersson and Shukur (2001).

It is worth noting that the statistical literature on GF tests has focused mainly on the location-
scale model, which may be seen as a special case of the MLR model where the regressors reduce
to a vector of ones. This is clearly the case, for example, for the multivariate skewness and kurto-
sis coefficients suggested by Mardia (1970); e.g., see Mardia (1980, 1974), Baringhaus and Henze
(1992), Lutkepohl and Theilen (1991), Horswell and Looney (1992, 1993) and Henze (1994). In-
deed, the presence of covariates considerably complicates the testing problem and related (exact
and asymptotic) distributional theory, even in univariate regressions; see Dufour, Farhat, Gardiol
and Khalaf (1998), Bontemps and Meddahi (2002) and the references therein. Furthermore, despite
the widespread recognition of such problems, our review of the statistics and econometrics literature
has revealed that exact multivariate GF tests are unavailable, even for the Gaussian hypothesis or
the location-scale model.

In this paper, we propose a general exact method for GF testing in MLR models. Our results can
be summarized as followsirst, we address the distributional complications arising from the pres-
ence of covariates and unknown error covariances. We first state some basic finite-sample results
concerning residual-based tests in general MLR models. We show that tests which use properly
standardized residuals have a null distribution that does not depend on either regression coeffi-
cients, error variances or covariances, once the error distribution is parametrically specified up to
an (unknown) linear transformation (or covariance matrix). More specifically, these tests are based
on exploiting invariance properties for two distinct families of empirically scaled residuals: (1) a
properly rescaled version of the residual matrix (using the Cholesky root of the empirical resid-
ual covariance matrix) is invariant to general triangular transformation of the error vector (across
equations); (2) the projector matrix associated with the least square residual matrix from the MLR
model is invariant to general linear transformations of the error vector. Corresponding pivotality
properties then follow from these features. Although related pivotality results have been pointed out
for the simpler Gaussian location-scale models [see Mardia (1980), Horswell and Looney (1993)
and Lutkepohl and Theilen (1991)], it does not appear those presented here have been used in the
earlier literature on inference in general MLR models.

Secondwe exploit the above invariance results to derive finite-sample tests of multinormality
for the disturbances of MLR models. We consider two categories of test statistics based on empirical
multivariate skewness and kurtosis coefficients: (1) multivariate extensions of the familiar Jarque-
Bera tests [Jarque and Bera (1987, henceforth JB)], obtained by combining individual residual-based
J B tests computed from individual equations [as suggested by Kilian and Demiroglu (2000) for
vector-autoregressive (VAR) models]; (2) Mardia-type statistics based on empirical skewness and
kurtosis derived from the least squares residual projector. These statistics have finite-sample null
distributions which may be very difficult to evaluate through analytical methods. However, due to



the fact that their distributions are free of nuisance parameters and easy to simulate, we can exploit
the technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963), Dufour and Kiviet (1996,
1998), Dufour and Khalaf (2001)]. This simulation-based procedure yields an exact test when the
distribution of the test statistic igivotal under the null hypothesis: all we need is the possibility

of simulating the relevant test statistic under the null hypothesis. Due to the flexibility of the MC
test method, we define a number of new multinormality test statistics; in particular, these involve
methods for combining excess skewness and kurtosis criteria.

Thirdly, we show that the multinormality tests proposed can easily be adapted to assess other
hypothesized disturbance distributions. For that purpose, the statistics are modified in order to com-
pare empirical multivariate skewness and kurtosis measuresivitilation-based estimatetheir
expected values under the hypothesized distribution (instead of theoretical _ possibly inaccurate _
expected values that may be difficult to derive). These corrections are also applicable in the Gaus-
sian case. The MC test method then works in this case as in the previous one to achieve perfect
size control, taking account of the fact that the simulated test statistics are exchangeable (due to
the presence of simulated moment estimates) rather than independent identically distiitadijed (
leading to adouble MC tesprocedure. As long as the disturbance distribution is specified up to
an unknown linear transformation, there is no restriction on the form of the tested distribution. For
example, the latter can be heavy-tailed and may even miss moments. The fact that a distribution
does have a finite fourth moment does not preclude one to usmpimical kurtosisas a basis for
assessing its goodness-of-fitiple MC testmethod is also proposed to combine several tests into
an omnibus GF test.

Fourth, in view of financial applications, we focus on three classes of hon-normal (possibly
heavy-tailed) families: (1) multivariate Studendistributions, (2) multivariate mixtures of normal
distributions, and (3) multivariate stable distributions. Our approach, however, is not restricted to
these distributions. In contrast with the normal case, the non-normal families considered involve
additional parameters, such as the degrees of freedom for the Studistribution, that may be
taken as unknown. The proposed MC non-Gaussian GF tests are exact when the null hypothesis
sets these nuisance parameters to specific values. On assembling the nuisance parameter values
which are not rejected (i.e., by “inverting” the GF tests), this yialdsfidence setfor the fitting
distributions. Such confidence sets may then be used as an intermediate step in the context of other
inference problems.

Fifth, we present the results of a small simulation experiment comparing the procedures consid-
ered. These show that the available asymptotic tests are completely unreliable from the viewpoint
of size control, while the MC tests have the correct size (as expected). With respect to power, we
find that Mardia-type tests are generally preferable to JB-type tests, sometimes by a wide margin,
while the JB-type tests can perform marginally better in the case of stable distributions. This may
reflect the fact that Mardia-type statistics are more directly adapted to testing multivariate (rather
than univariate) normality.

Sixth the tests proposed are applied to an asset pricing model with observable risk-free rates.
We consider monthly returns on New York Stock Exchange (NYSE) portfolios, which we construct
from the University of Chicago Center for Research in Security Prices (CRSP) 1926-1995 data
base. Our results reveal the following. We first find that multivariate normality is rejected for alll



subperiods. This conclusion can be contrasted with earlier evidence on this issue, which is mixed:
whereas the results of Campbell et al. (1997) and Affleck-Graves and McDonald (1989) suggest that
normality cannot be rejected, those of Richardson and Smith (1993) indicate more rejections. So
our results provide a firmer basis for rejecting normality. Then, inversion of the GF tests for Student
t and stable error distributions reveals heavy kurtosis. In this empirical analysis, the Mardia-type
tests appear to be much superior from the power viewpoint to those based on JB-type statistics from
individual-equations. In particular, the confidence sets based on Mardia-type statistics are much
tighter with those based on JB-type statistics. This observation is noteworthy, given the popularity
of JB-type tests in econometrics.

The paper is organized as follows. Section 2 sets the framework. In Section 3, we define
standardized residuals, discuss their invariance properties, and state our basic exact distributional
results. In Section 4, we propose our multivariate GF test procedures; the associated size and power
Monte Carlo studies are described in 5. Section 6 reports our empirical analysis. We conclude in
Section 7.

2. Framework

Let us consider a system of correlated regression equations of the form:

Y=XB+U (2.1)
whereY = [Y1, ..., Y] isaT x n matrix of observations on dependent variableX is a7 x k
full-column rank matrix,B = [By, ... , By,]is ak x n matrix of unknown fixed coefficients and
U=[Ui, ..., Uy)=[V, ..., Vp|]'isaT x n matrix of random disturbances. Following Dufour

and Khalaf (200d), we suppose the errors have the following structure:

Vi = JW, t=1,...,T, (2.2)
w = vec(Wy, ..., Wp)~F(v), (2.3)

whereF(v) is a known distribution, which may depend on the parametand.J satisfies one of
the two following conditions:

J is an unknown nonsingular lower triangular matrix; (2.4a)
J is an unknown nonsingular matrix. (2.4b)

Some of the procedures described below will be valid provifledrestricted to be triangular, while
other ones only requiré to be nonsingular.
On setting = [y, ... , Wy, the above assumptions entail that

wW=U(J. (2.5)



In particular, this condition will be satisfied far.d. normal errors. Let
y=JJ (2.6)

which gives the covariance matrix & whenCov(W;) = I,. Note the assumptions (2.4a) and
(2.4a) are equivalent whélv; follows a multinormal distribution (because the covariance matrix
can always be written in the fordd = .J.J' with J lower triangular), but this may not be the case if
Wy is not Gaussian.

The least squares estimatem®fs

B=(X'X)"'X'y (2.7)
and the corresponding residual matrix is
U=[0y,...,U0,] =Y - XB=MY =MU (2.8)

whereM = I — X(X'X)~!1X’. Note that the Gaussian (quasi) maximum likelihood estimators for
this model areB and > = U'U/T . It is clear from (2.5) and (2.8) that the distribution Gfin
general depends on the unknown scaling mafrior on the covariance matriX' = J.J’) so that
test statistics based dfimay involve.J as a nuisance parameter. This will be the case in particular
for the off-diagonal parameters which typically determine the dependence between the disturbances
in different equations.

Our empirical application focuses on the asset pricing model

Tit:ai—l—bﬁMt—l—uit, t=1,...,T,1=1, ..., n, (29)
wherery = Ry — R, Fmy = Rmi — RF, Ry, i=1, ..., n, are returns om securities for period
t, Ry are the returns on the market portfolio under considerafinis the riskless rate of return
(t=1,...,T),andu; is arandom disturbance. Clearly, this model is a special case of (2.1) where
Y =[r1, .., ra), X =[tp, Pm], 70 = (rit, ooy i) T = (Pmt, -, Tr)

andu;; are the elements of the matiix

3. Multivariate standardized residuals

We now consider the problem of building residual-based test statistics whose null distribution will
not be affected by the unknown scaling matfiXn order to do this, we shall now state two general
invariance results ensuring that appropriately standardized residuals have distributions which do not
depend orJ. The first one applies under the assumption (2.4a) wiésaestricted to be triangular,
while the second one holds under the more general assumption (2.4b).
Let
W = Us(f]l (3.1)



wheresS;; is the Cholesky factor di’'v , i.e. Sg is the (unique) upper triangular matrix such that

U0 =88, (U0)™" =55 (s1).

U U

Clearly, W may be interpreted as a standardized forni/of Further, 1 satisfies the following
important property.

Theorem 3.1 INVARIANCE OF CHOLESKY STANDARDIZED MULTIVARIATE RESIDUALS. Under
(2.1) and for all error distributions compatible witf2.2) and (2.4a), the standardized residual
matrix W defined in(3.1) satisfies the identity

W= US ! WS ! (3.2)

wherelV = MW and Sy, is the(unique upper triangular matrix such that

WW =Sl Sy, (WW) =81 (s 1) (3.3)
PrROOF. Using (2.5), (2.8) and (3.3), we have:
W =07 (J'S;") = MUY (J'S;) = MW (J'S ) (3.4)
and
(J'S (TSN = TSHS T = [(THUTIY) T
= [(JHYU'MUTY] T = (W MW) !
S (s:h)

On observing that]’S(;1 is lower triangular, this means théﬂ’S(T]l)' is the (unique) Cholesky
factor of (W' MW)~!, hence
ro—1 _ o—1
SIS =5
Substituting the latter identity in (3.4), we see that

W=MW(J'S; ') =Wws_!.

It follows from the latter theorem that any statistic which depends on the data only through
W follows a distribution which does not involvB or .J (and is thus invariant td’), under the
assumptions (2.1), (2.2) and (2.4a).

Consider now the Mahalanobis matrix

1.5

_O(0'0/T) (3.5)



on which Mardia-type tests of multinormality will be based [see Mardia (1970)]. The elements of
this matrix satisfy an even stronger invariance property given by the following theorem.

Theorem 3.2 INVARIANCE OF MAHALANOBIS RESIDUAL MATRIX. Under(2.1) and for all
error distributions compatible wit{2.2) and (2.4b), the residual-based Mahalanobis matrix
defined in(3.5) satisfies

D=TW(WWw) "W (3.6)
and thus follows a distribution which is completely determined by the distributidi given X.
PROOF. Using the identitied/ = MU andU = W.J’, we see that:

U0'U/T)W0 = TMUU'MU)'U'M = TMUJ ™Y J(U'MU) JJ ' U'M
= TMUJY [ YU MUY T UM
= TMW (WMW) ‘WM
= TW(WW) "W

It follows from the latter theorem that any statistic which depends on the data only thf(bugh
follows a distribution which does not depend 8nand.J (and is thus invariant td), under the
assumptions (2.1), (2.2) and (2.4b). It is worth noting that the latter result relates to Thg&drem
since it is easy to see that

D=TUUU)'U =TUS;' (S;")' T =TWW".
Theorems3.1-3.2 include as special cases several known exact invariance results in the Gaussian
location-scale model; see, for example, Mardia (1970), Lutkepohl and Theilen (1991) and Thode

(2002). Here we show that invarianceBoand X' holds in general MLR models, and for all error
distributions (Gaussian and non-Gaussian) which satisfy assumption (2.2).

4. Skewness-kurtosis goodness-of-fit tests

In this section, we use the above results to derive goodness-of-fit (GF) tests based on multivariate
skewness and kurtosis coefficients. The proposed tests are formally valid for any parametric null
hypothesis which takes the general form (2.2). In our empirical application [see section 6], we focus
on multivariate: and symmetric stable distributions, which we denétg andStb(«a,) respectively,
wherex represents degrees of freedom andhe kurtosis parameter of the stable distribution. Let

us first consider the null hypothesis (2.2) where: v with v known.



4.1. Basic test statistics

The GF test statistics suggested here use two popular multivariate skewness and kurtosis measures:
(i) measures based on Mahalanobis distance, and (ii) measures which aggregate individual equation
skewness and kurtosis criteria. Specifically, we first consider extensions of the statistics

1 T T .
SKvy = ﬁzz st (4.1)
s=1t=1
1
KUy = TZdt‘i, (4.2)

t

Il
—

where the variabled,; are the elements of the matrix = [c?st]. These criteria were introduced

by Mardia (1970) to assess deviations from multivariate normality, in models where the regressor
matrix reduces to a vector of ones; see also Zhou (199@jardia further proposed the omnibus
normality test:

T [KUy —n(n+2)]2
8n(n + 2) T—o0

MSK = %SKM + Y2 ((n/6)(n+1)(n+2) + 1) (4.3)

where the symboTIN refers to the asymptotic null distribution of the test statistic.

(o0}
Second, we consider extensions of the aggregate skewness and kurtosis criteria applied by Kilian
and Demiroglu (2000) in vector-autoregressive contexts; these criteria were originally proposed by
Jarque and Bera (1987, JB) :

SKxp (sk1, ..., skn) (ski, ..., skyn), (4.4)

KUkp (kuy — 3, ..., ku, —3) (kuy — 3, ..., ku, — 3), (4.5)
Ty W

sk; 2= Wi i1=1,...,n, (4.6)

(T_l Ethl Wl%)g/z 7
715 Wi

ku; = Zz’i:l~”2, i=1,...,n, 4.7)

(T_l D1 Wgﬁ)

whereW;; denote the elements of the matfiX defined by (3.1); in other wordsk; andku; are
the individual skewness and kurtosis measures based on the standardized residuals matrix. The
Jarque-Bera omnibus normality test studied by Kilian and Demiroglu (2000) is:

T T
B=_SK — K ~  xX?(2n). 4.
J 65 KD+24 Ukp TaooX ( n) (4.8)

3Zhou (1993) proposed simulation-based variants of these criteria to test elliptically symmetric distributions, without
however providing a finite-sample theory for their application to MLR residuals _ a limitation pointed out by Zhou (1993,
p. 1935, footnote 5) himself.



4.2. Extension to testing non-Gaussian distributions

To extend the above criteria beyond the Gaussian context, we shall modify them in three ways. First,
we propose to use these measures in excess of their expected values under (2.2). Second, we show
that forv given, our modified test statistics are pivotal under the null hypothesis which allows to
derive an exact simulation basge/alue. Finally, we propose an exact combined skewness-kurtosis
test.

Our approach rests on the following invariance properties regarding residuals based skewness
and kurtosis tests, which we prove not only for (2.2), but for all error distributions compatible with
(2.2) and either (2.4a) or (2.4b).

Theorem 4.1 DISTRIBUTION OF JB-TYPE STATISTICS INMLR. Under(2.1) and for all error
distributions compatible witi2.2) and (2.4a), the multivariate skewness and kurtosis critefia
andku;,i =1, ..., n, defined in(4.6) - (4.7) are distributed, respectively, like

— T-15°T S

sk; = Zt:LVglt , i=1,...,n, (4.9)
(71 Ethl W ;)32

N 7151

ku; = Zt:l&t , i=1,...,n, (4.10)
(71 Zthl Wi)?

whereW ;; are the elements of the matnii(Slg/l whereWW = MW and Sy, is the Cholesky factor
of W'W as defined if3.3), M = I — X(X'X)~! X', andW is defined by2.2).

Theorem 4.2 DISTRIBUTION OF MARDIA-TYPE SKEWNESS AND KURTOSIS Under(2.1) and
for all error distributions compatible witlj2.2) and(2.4b), the multivariate skewness and kurtosis
criteria S Ky and KUy defined in(4.1) - (4.2) are distributed, respectively, likg; S 377, di}
and 7+ ST, d2, whered;; are the elements of the matl‘RW(W’W)_lW’, W =MW, M =

I - X(X'X)"1X’, andW is defined by(2.2).

The proof of both theorems follows immediately from Theoreis- 3.2 On this basis, we
propose the following skewness-and-kurtosis based statistics to test (2.2). Let

ESK(vo) |SKym — SKm(vo)| (4.11)
EKUM(V()) = ‘KUM — TUM(Vo)} y (412)
ESKkp(vo) = (eski(vo), ..., eskn(yo))/(eskl(uo), ., eskn (o)), (4.13)
EKUxp(vg) = (ekul(yo), R ekun(l/o))/(ekul(uo), el ekun(uo)), (4.14)

with
eski(vg) = (Sk‘i(l/o) — ,uski(,jo))/aski(yo), 1=1,...,n, (4.15)
ekui(yo) = (kul(y(]) - Mkui(yo))/akui(uo)v i = 17 cee s N (416)



where SK \i(v) and KU (vg) are simulation-based estimates of the meas &% and KUy,

given (2.2) pig, (1) @ndo g, (,,) are simulation-based estimates of the mean and the standard devi-
ation of sk; (1) given (2.2),ku;(vo) andoy,, () are simulation-based estimates of the mean and
the standard deviation @fu;(vo) given (2.2). For presentation ease, we shall call these estimates
“reference simulated momeh(®SM). We also denote by

E = [ESKM(V()), EKUM<V0), ESKKD<V0), EKUKD(I/())}/ (417)

the vector whose components are the test statistics just defined.
To obtain these RSM, one may proceed as follows:

Al. draw N realizations ofi¥” following the distributionF(vq) in (2.3), independently of the
observed data;

A2. for each draw, construct the pivotal quantitléés‘;v1 and T W (W'W) ™' W’ which yield,
applying theoremd.1- 4.2, N, realizations of the statistics under consideration;

A3. the empirical moments of the latter simulated series yield the desired estimates.

4.3. Nonstandard null distributions and multi-stage MC tests

Obviously, our modified test criteria have nonstandard null distributions. In fact, the exact distri-
butions are nonstandard even under normal null hypotheses. Yet these distributions are pivotal (in
normal and non-normal contexts) and can be easily simulated which justifies the application of the
Monte Carlo test technique [Dufour (2002)]. This simulation-based procedure yields a bootstrap-
type exact test whenever the distribution of the underlying statistic is free of nuisance parameters
under the null hypothesis. The fact that the associated analytical distributions are complicated is not
a problem: all we need is the possibility of simulating the test statistic under the null hypothesis.
The general methodology is described in Appendix A. When applied to the above GF criteria, it can
be summarized as follows.

B1l. We obtain the RSM (according to A1-A3), which are generated only once, so the next steps are
conditional on these estimates.

B2. Using the RSM and applying the definitions (4.11) - (4.14) to the sample data, we find the
observed value oF :

EO = [ESKEY® (1), EKUY (v9), ESK (o), EKU (1)) (4.18)
B3. Independently of the RSM an8(®), we draw N i.i.d. realizations of /W according to

F(vp) in (2.3), and for each of these draws, we compute the pivotal quanltﬁrlﬁ%1 and
TW(W’W)_lW’. N; is chosen so that(N; + 1) is an integer.

10



B4. Using the same RSM as for the observed sample, the values of the stdiiSticg (1),
EKUy(vo), ESKkp(vo), EKUkp(vo) are calculated from each of these MC samples; in
what follows, we will refer to these simulated values as th&sic simulated statistit$BSS):

EY) = [ESKY (v0), EKUD (1), ESK) (vo), EKUZ (o)), j=1,..., N.

Using theoremd.1- 4.2, it is easy to see that th¥ + 1 vectorsE), j =0, 1, ..., N are
exchangeable under the null hypothesis.

B5. We can then compute a simulagedalue, for any one of the test statisticsAf® :

PN[ESK\(vo)], DN[EKUM(v0)], DN[ESKkp(vo)l, pn[EKUkp(vo)],

wherepy[-] is defined in Appendix A for each statistic iti [see (A.1)] and can be calculated
from the rank of the observed statistic relative to the relevant BSS. The null hypothesis is
rejected at levedy by the testtS Ky (vo) if pn[ESKwm(vo)] < «, and similarly for the other
tests. By the exchangeability 87/), j =0, 1, ..., N, and provided® follows a continuous
distribution, this procedure satisfies the size constraint, i.e.

P[pn[ESKMm(vo)] < a =« (4.19)
under the null hypothesis, and similarly for all the other tests.

Because the above MC test procedure involves two nested simulations (a first one to get the
reference simulated moments, and a second one to get the test statistics), we dallbteaMC
test The procedure described above allows one to obtain individual simylatalies for each test
statistic. The problem of combining the skewness and kurtosis tests remains unanswered. To avoid
relying on Boole-Bonferroni rules, we propose the following combined test statistic, which may be
used for all null hypotheses underlying Theorér

CSKM(V()) = 1—min {]5]\][ESK'M(I/())}7 ﬁN[EKUM(V())]}, (420)
CSKKD(V()) = 1—min {]5]\[[EWSI(KD(I/O)}7 ﬁN[EKUKD(V())]} (421)

The intuition here is to reject the null hypothesis if at least one of the individual tests is significant;
for convenience, we subtract the minimgravalue from one to obtain a right-sided test. For further
reference on these combined tests, see Dufour and Khalafgr002

The MC test technique may once again be applied in order to obtain an exact combined test. This
can be done by usingthree-stage MC tegbr atriple MC tes), which involves the estimation of the
p-value functiong (- | -) for individual test statistics, through a preliminary simulation experiment.
The algorithm for implementing such a procedure can be described as follows.

Cl. Generate a set of reference simulated moments (according to A1-A3), the observed value of
EW) in (4.18), and theV corresponding BSS (following B1-B4).

11



C2. For each test statistic considered, obtain phealue functions determined by the BSS
(generated at step Clypyn(S(©); S), for S = ESKm(vy), EKUn(vo), ESKkp(vo),
EKUgp(vg), where the functiomy (S(©) ; S) is defined in Appendix A.

C3. Independently of the previous RSM, BSS dfid, generateV; additionali.i.d. realizAations
of W according taF(vy) in (2.3), and for each draw, compute the pivotal quantﬂziéSv‘i/1
andTW(W’W)_lI/T/’. N1 is chosen so that(N; + 1) is an integer.

C4. Using the RSM and th#&’; draws generated at steps C1 and C3, compute the corresponding
simulated statistics:

EEY = [ESKY (), EKUY (1), ESKY (o), EKUL (ve))', 1=1,..., N.

C5. Using thep-value functiongy (- ; -) obtained at step C2 (and based on the BSS generated at
step C1), evaluate the simulatgealues for the observed and tid¢ additional simulated
statistics: p[S] = pn(SD; S), 1 = 0,1,..., Ny, for S = ESKy(vo), EKUn(vo),
ESKKD(Z/()), EKUKD(Z/()).

C6. From the latter, compute the corresponding values of the combined test statistics:

CSKY (o) = 1—min {py[ESKY (v0), pN[EKUL (vo)]}, 1=0,1,..., Ny,
CSKEY (v0) = 1—min {pn[ESKL) ()], PNEKUL, (vo)]}, 1=0,1,..., Ny.
Again, it is easy to see that the vecthSSKl(\?(yo), CSKI(Q)(VO)), 1=0,1,..., N;,are

exchangeable.

C7. The combined test'SKy;(vo) rejects the null hypothesis at levelif px, [CSKwm(vo)] =
PN, (CSK&)) ; CSKwm(vo)) < a, where thep-value functionpy, (- | -) is based on the sim-

ulated variableﬂSKﬁ)(yo),l = 0,1,..., Ny; the rule is similar for the test based on
CSKKD(V()).

The test with critical regiongy, [CSEKm(vo)] < « has levela, because the variables

CSKIE?(VO), Il =0,1,..., N, are exchangeable under the null hypothesis. The same holds
for the test with critical regiop x, [C'SKkp(v0)] < a.

We have also studied the following modified version of the omnibus-type tests based on the sum
of the skewness and kurtosis statistics:

— [ 8Ky —SKu(o) | o1 SKum — SKw(vo)
MD = | gty — KOu(o) | 2™ Y0 | Ko — KOu(ve) | (4.22)

JB = ESKkp(v)+ EKUkp(v), (4.23)

whereAy(vy) is a simulation-based estimate of the covariancé isf; and K Uy, which can ob-
tained as outlined in A1-A3; in this case, in addition to the empirical means and standard deviations
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of simulatedS K and K Uy series, we also obtain these empirical covariances. These statistics are
obviously less expensive to simulate than the ones based on the smallest p-valyesaM€s can

be obtained for them in a way similar to the one described in B1-B5, except that the mMaffix))

now belongs to the set of moments to be estimated by simulation.

4.4. The unknown nuisance parameter case

So far, we have treated the case where the distributional paramisté&nown. To account for an
unknownv, we obtain a confidence set estimate for this parameter which “inverts” the above GF
tests. Specifically, the confidence set corresponds to the sgtvallues which are not rejected by

the GF test for (2.2) whene = v for knownv. This leads to a formal estimate for the distributions
which best fit the data. As we will show in the next section, this estimate may prove to be very useful
for other testing problems regarding the regression under consideration, for it may be easily shown
that the usual test statistics for hypothesis on the regression coefficients or error terms will also
depend orv; see Beaulieu, Dufour and Khalaf (20)2001a). When the confidence set foris

empty, the distributional family (2.2) is rejected.

5. Simulation experiment

We conducted a small-scale simulation experiment to assess the performance of the GF tests. The
model considered is (2.1) with three designs. The first, denoted Design |, includé® equations
and the following regressor matrix:

X[: [Ln X(l)}a

where X(yy is aT x 1 standard normal variate, with = 60. The second, denoted Design II,
includesn = 12 equations and, in addition to the regressors of design I, dummy variable regressors
over a window covering the 20% sample endpoints; the associated regressor matrix takes the form:

Xir = [ X Xp], Xg= [ f@’l) }
k1

whereX ;) and X, 1) areT'x 1 and(T'— k1) x k; standard normal variates ahgd= INT(.02xT),
with 7" = 60. The third design (lll), uses the same regressor matrixbut includesn = 40
equations. In all designg; = 60, Ny = 1000, N = N; = 999 and the number of simulations in
each experiment is 1000. Because of location-scale invariance, all the above tests were applied to
the residuals generated @s= MW, hence there was no need to specify values for the regression
coefficients and error covariances.

We studied the following sets of hypotheség,: W, ~ multivariate normal, against: (If; ~
t(k), with k = 5, 10, 20, 30, 40, 50, (i) W} ~ Stb(as), with g = 1.8, 1.85, 1.9, 1.95, 1,98, 2.0
andg, = 0, and (iii) W; ~ multivariate mixture of normals

W ~ Miz(m,w) o Wy =nZy+ (1 —m)Zs

13



Table 1. Size of multinormality tests

Mardia-type
Design | MSK,., | MSKyc | ESKy  EKUy  CSKy  MD
| 022 .054 .052 047 049  .052
[ 1.00 052 .053 039  .043  .039
I 0.00 044 .034 046 040  .039
JB-type
J By JBye | ESKxp EKUkp CSKkp
| .064 .053 051 .050 .058
[ 521 048 .048 051 .052
I .056 .056 061 054 051

Note _ This table reports the actual rejection frequencies based on 5 percent critical values under the asymptotic and finite
distributions. Design | refers to 12 equations of 60 observations each and a regressor matrix including a constant and a
T x 1 standard normal variate. Design Il refers to 12 equations of 60 observations each but in this case the regressor
matrix contains a constant,/a x 1 standard normal variate and @ — k1) x k1 standard normal variate wheke =
INT(.02xT). Design lll is the same as Design | but includes 40 equations instead 6f4R\, E K Um, ES Kkp and

EKUxkp refer to the excess skewness and excess kurtosis criteria defined in (4.11) - (4SHy; andC'S Kxp refer

to the minp-value combined skewness/kurtosis criteria (4.20)-(4.2@ denotes our dependence-corrected version of
Mardia’s tests (4.22). All the latter tests are MC tests with 999 replicatidhs= N1 = 999, Ny = 1000). MSKs,

andJB.sy refer to original tests (4.3)-(4.8) add S K ¢ and.J B¢ are their MC versions. The number of simulations

in each experiment is 1000.

whereZy; ~ N|0, I,,], Z3; ~ N[0, wl,] and is independent df;;, and0 < 7 < 1; we user = .5
andw = 3, 2.5, 2, 1.5. The multivariatet () is generated as follows

W~ (k) < Wy = Ziy)(Zay J5)Y? (5.1)

where Zy; is multivariate normal0, I,,) and Z,; is a x?(x) variate independent fror;; stable
errors are drawn componentwise, applying Weron (1996). The results are reported in tables 1 to 4.

First, tables 2 - 4 reveal that available asymptotic tests are completely unreliable. Indeed, in
Design I, Mardia’s size is 1.0 and is zero in design 3; even in Design I, the asymptotic test is
undersized. The JB-type testis also seriously oversized in Design Il. We thus only analyze the power
of the MC tests; we note however that the size problems we observed with Mardia’s asymptotic test
translated into very low power, with empirical rejections not exceeding the nominal size.

In terms of power, our results over all designs presented in tables 2 - 4, can be summarized
as follows. For elliptical families, Mardia-type tests are superior to the JB-type; this observation
is important given the relevance of ellipticity in asset pricing applications. The JB-type test dis-
played better power for detecting errors whose marginal distributions are from the stable family.
We note that although all alternatives studied are symmetric, the skewness tests show high power.
This is because the null is parametric; the cut-off points of the skewness tests are thus derived under
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Table 2. Power of multinormality tests: Design |

Design | Mardia-type JB-type

(1) (2) (3) (4) (5) (6) (7) (8) 9)

ESKy FEKUy CSKy MD MSK | ESKxp EKUxp CSKxp JB
t(5) .999 1.0 1.0 10  .999 682 825 807 .819
£(10) 920 .980 972 963  .939  .302 403 383 .39(
£(20) 542 663 636 591 600  .160 .190 182 174
£(30) .320 425 407 378 378  .108 117 120 .113
£(40) 232 307 279 262 266  .099 .099 .098 .101
t(50) .180 232 221 187 231  .074 .084 .083 .081
Miz(.5, 3) 1.0 1.0 1.0 1.0 1.0 768 970 961 .954
Miz(.5, 2.5) 1.0 1.0 1.0 1.0 1.0 675 891 872 .873
Miz(.5, 2) 1.0 1.0 1.0 1.0 1.0 466 661 625 617
Mix(.5, 1.5) 763 .889 874 851  .803  .203 235 227 239
Sth(1.8) .965 971 971 967 970  .991 .997 997 .994
Stb(1.85) 911 930 926 914 922  .967 984 980 .983
Stb(1.90) 763 782 784 761  .789  .873 923 918 .925
Stb(1.95) 476 488 494 474 510  .626 687 678 .684
Stb(1.98) 217 215 223 217 244 331 361 636 .636

Note _ This table reports the actual rejection frequencies based on the 5 percent critical values under the finite-sample
distributions. Design | refers to 12 equations of 60 observations and a regressor matrix including a constdhixahd a
standard normal variate. Design Il refers to 12 equations of 60 observations but in this case the regressor matrix contains a
constant, & x 1 standard normal variate and’8— k1) x k1 standard normal variate whete = INT'(.02xT"). Design

Il is the same as Design | but includes 40 equations instead of 4fands for the Student distribution, Mix the mixture

of normal distribution and Stb the stable distribution. Numbers in parentheses present the chosen values for the nuisance
parameters in these distribution®&SKw, EKUn ESKkp and EKUxp refer to the excess skewness and excess
kurtosis criteria defined in (4.11) - (4.148/SKn andCSKkp refer to the minp-value combined skewness/kurtosis
criteria (4.20)-(4.21).M D denotes our dependence-corrected version of Mardia’s tests (422)< and J B refer to

original tests (4.3)-(4.8) in their MC versions. All MC tests use 999 replicatifns= N1 = 999, Ny = 1000).The

number of simulations in each experiment is 1000.
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Table 3. Power of multinormality tests: Design I

Design I Mardia-type JB-type

(1) (2) (3) (4) (5) (6) (7) (8) 9

ESKy EKUy CSKy MD MSK | ESKxp EKUxp CSKxp JB
t(5) .993 1.0 999 997 999 596 .686 686 .748
£(10) 844 .900 896 .868  .897  .250 314 293 .355
£(20) 433 516 493 447 510  .128 153 148  .163
£(30) 255 324 307 276  .325  .099 102 095 .109
£(40) 178 237 221 198 240  .085 .093 .090 .098
£(50) 146 182 163 147 200  .072 .080 078 .087
Miz(.5, 3) 1.0 1.0 1.0 1.0 1.0 706 901 871 .944
Mix(.5, 2.5) 1.0 1.0 1.0 1.0 1.0 582 772 756 .854
Mix(.5, 2) .994 1.0 1.0 1.0  .999 394 506 485 .602
Miz(.5, 1.5) 652 783 761 729 747 139 178 176 .213
Stb(0, 1.8) 919 932 932 920 936  .963 982 984 .989
Stb(0, 1.85) 810 842 836 .805 .851  .909 946 939 .954
Stb(0, 1.90) 626 658 657 632  .674  .807 843 836 .854
Stb(0, 1.95) 371 378 384 354 402 519 584 563 .582
Stb(0, 1.98) 184 174 173 171 190 269 .303 292 .29d

Table 4. Power of multinormality tests: Design Il

Design Ill Mardia-type JB-type

@ &) 3 4 Q) (6) Q) 8 9

ESKy EKUy CSKy MD MSK | ESKxp FEKUxkp CSKgp JB
t(5) 1.0 1.0 1.0 1.0 14 .584 744 735 .735
t(10) .986 .987 .988 .978 .987 .238 .326 297 .324
t(20) .738 776 763 .703 T71 107 .138 118 .134
t(30) 484 .536 509  .447 519 .091 .100 103 .107
t(40) .346 .380 .365 .305 .381 074 .083 .079 .070
t(50) 247 .281 271 .230 279 .063 .074 .079 .072
Miz(.5, 3) 1.0 1.0 1.0 1.0 14 .844 973 965 .965
Mix(.5, 2.5) 1.0 1.0 1.0 1.0 1.0 .684 .868 .856 .859
Mix(.5, 2) 1.0 1.0 1.0 1.0 10 401 .549 .530 .52§
Mixz(.5, 1.5) .957 .968 962 .948 961 132 162 154 151
Stb(1.8) .958 .964 959 .943 .965 1.0 1.0 10 1.0
Stb(1.85) .857 .686 .870 .825 .878 .999 .998 999 1.0
Stb(1.90) .637 .643 .633 571 .663 991 .994 994 994
Stb(1.95) 315 323 326 .276 .348 .861 .909 989  .91d
Sth(1.98) 129 129 134 115 142 515 .584 562 .580
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Table 5. Portfolio definitions

Portfolio number Industry name Two-digit SIC codes
1 Petroleum 13, 29
2 Finance and real estate 60-69
3 Consumer durables 25, 30, 36, 37, 50, 55, 57
4 Basic industries 10, 12, 14, 24, 26, 28, 33
5 Food and tobacco 1,20,21,54
6 Construction 15-17, 32,52
7 Capital goods 34, 35, 38
8 Transportation 40-42, 44, 45, 47
9 Utilities 46, 48, 49
10 Textile and trade 22,23,31,51,53, 56,59
11 Services 72,73, 75, 80, 82, 89
12 Leisure 27,58, 70,78, 79

Note _ This table presents portfolios according to their number and sector as well as the SIC codes included in each
portfolio using the same classification as Breeden et al. (1989).

symmetry and normal kurtosis. This problem is well known in statistic [see Horswell and Looney
(1993)] and must be emphasized, given the importance empirical practitioners attribute to the skew-
ness coefficient. We also note that our mivalue combined Mardia test was most powerful in
many instances.

6. Empirical application

Our empirical analysis focuses on the asset pricing model (2.9) with different distributional assump-
tions for stock market returns. We use nominal monthly returns over the period going from January
1926 to December 1995, obtained from the University of Chicago’s Center for Research in Security
Prices (CRSP).

As in Breeden, Gibbons and Litzenberger (1989), our data include 12 portfolios of New York
Stock Exchange (NYSE) firms grouped by standard two-digit industrial classification (SIC). Table
5 provides a list of the different sectors used as well as the SIC codes included in the dnétysis.
each month the industry portfolios comprise those firms for which the return, price per common
share and number of shares outstanding are recorded by CRSP. Furthermore, portfolios are value-
weighted in each month. We proxy the market return with the value-weighted NYSE returns, also
available from CRSP. The risk-free rate is proxied by the one-month Treasury Bill rate, also from
CRSP. Our results are reported in Tables 6-10.

Regarding normality tests, Table 6 reveals the following. Although we are dealing with monthly
data, normality is definitely rejected except in the last subsample (1990-95) where the sprallest
value is 9.1%. Furthermore, both excess skewness and excess kurtosis are evident. The MC version

“Note that as in Breeden et al. (1989), firms with SIC code 39 (Miscellaneous manufacturing industries) are excluded
from the dataset for portfolio formation.
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Table 6. Multinormality tests

Mardia-type JB-type

Sample | (1) 2 (3) 4) (5) (6) (1) (8) 9)

ESKy FEKUy MSK CSKy MD | ESKxp FEKUxkp JB CSKxp
1927-30 .001 .001 .001 001 .001  .004 006 .007  .008
1931-35 .001 .001 .001 001 .001 .001 001 .001 .001
1936-40 .001 .001 .001 001 .001  .005 048 .020 .011
1941-45 .004 002 .004 004 .004 378 092 199 141
1946-50 .001 .001 .001 001 .001  .003 009 .005  .004
1951-55 .001 .001 .001 001 .001  .002 003 .003  .005
1956-60 024 003 .015 .003 .016 .700 333 603  .474
1961-65 594 479 736 631 .151 .037 014 .008  .029
1966-70 011 002 .011 .004 .005 632 559 759  .728
1971-75 .001 .002 .001 001 .00 554 015 .060  .029
1976-80 .001 .001 .001 001 .001 .013 015 .012  .030
1981-85 .001 .002 .001 .001 .002 932 096 .305  .154
1986-90 .028 020 .024 030 .061  .006 024 .009 .007
1991-95 177 311 917 239 409 .065 425 127 .091

Note _ Numbers shown are MC p-values. Columns (1), (2), (6) and (7) refer to the excess skewness and excess kurtosis
criteria defined in (4.11) - (4.14). Columns (4) and (9) refer to the paimlue combined skewness/kurtosis criteria
(4.20)-(4.21). Columns (3) and (8) refer to MC versions of the original Mardia and JB-type tests (4.3)-(4.8). Column (5)
reports our dependence-corrected version of Mardia’s tests (4.22p-Wddees in bold highlight cases where the various

tests yield conflicting decisions at the 5% level. All MC tests use 999 replicatiins N; = 999, No = 1000).

of the omnibus tests (based on adding up the skewness and kurtosis criteria) amid phealue
based combined tests seem to yield the same decision. Itis however noteworthy that the Mardia-type
and the Kilian-Demiroglu JB-type tests yield conflicting decisions in several cases: for the 1941-
50, 1956-60, 1966-70 and 1981-8h3 andC'S Kkp are not significant, whereas our Mardia-type
tests are significant; conversely, in 1961-65, béil and C'SKkp are significant yet all of the
Mardia-type tests fail to reject the normal null.

These results seem to suggest that it is worthwhile to consider strategies which combine both
type of tests. For example, exact MC joint tests may be obtained using a criterion of the form:

Indeed, the flexibility of the MC test method allows one to consider combinations that would be
hard to justify applying standard asymptotic strategies; for further references on combining non-
independent tests, see Dufour and Khalaf (2)0Rufour, Khalaf, Bernard and Genest (2003) and
Dufour and Khalaf (2002).

Let us now turn to the GF tests for Studeratnd stable distributions. Tables 7 to 10 report the
test results in the form of confidence sets for the distributional parameters; these correspond to the

®In this regard, see Horswell and Looney (1992) on the cost (in terms of size) of combining normality tests.
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Table 7. Multivariate distributions:
combined-tests based confidence sets for the degrees-of-freedom parameter

(1) (2) (3) (4) (5) (6) ) (8)
Sample Student, 2.5% level Studentt, 5% level
CSKy CSKxp MD  JB | CSKy CSKxp MD — JB

1927-30 | 3 —12 1-17 2-14 1-18| 3—-12 2-14 3-12 1-11
1931-35| 3-8 2—-6 3-8 1-6 3-7 2-3 3-8 1-3
1936-40 | 4—-29 2—-29 4-33 1-30| 5—24 2—-22 5-26 1-29
1941-45 >5 > 2 >5 >1 6 — 40 > 2 >5 >1
1946-50 | 4 — 31 2—-20 5-34 1-27| 4-24 2—-13 5-29 1-19
1951-55 | 5 —34 2—-14 4-39 1-13 | 5-29 2-9 5—-31 1-7
1956-60 >95 2-34 >95 1-34 >6 2-34 >5 1-34
1961-65 > 7 >2 >6 >1 12 — 42 >2 >7 1-26
1966-70 >5 >2 >4 >1 6 — 42 >2 >5 >1
1971-75 | 4—28 >2 5—29 >1 5—21 >2 6 — 22 >1
1976-80 | 4 —17 >2 3-19 >1 4—-16 >2 4—-18 1-41
1981-85 | 5—33 >2 o —41 >1 5 — 26 >2 6 —31 >1
1986-90 | 5—41 2-30 5-41 1-38| 7-—41 2—-19 6-41 1-26
1991-95| >15 >2 >9 >1 24 — 42 >2 > 14 >1

Note _ Numbers shown are values of the degrees-of-freedom paratmeitrejected by the MC-GF tests. Columns (1),
(3), (5) and (7) pertain to our combined Mardia-type statistic (4.20)-(4.22). Columns (2), (4), (6) and (8) are based on the
combined Kilian-Demiroglu JB-type statistic (4.21)-(4.23).
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Table 8. Multivariate symmetric stable distributions:
confidence sets for the kurtosis parameter based on combined tests

1) 2 3 “4)
Sample | Test level Stable distributions witl#, = 0
CSKy  CSKkp MD JB

1927-30 2.5% 1.38—-196 1.1-199 128-1.88 .9-1.99
1931-35 2.5% 1.34—-192 1.1-199 130—-190 .9-1.99
1936-40 2.5% 156 -198 1.1-199 146-198 .9-1.99
1941-45 2.5% 1.568-198 1.1-199 166—-198 .9—-1.99
1946-50 2.5% 156 -198 1.1-199 158—-198 .9-1.99
1951-55 2.5% 156 -198 1.1-199 164-198 .9-1.99
1956-60 2.5% 156 -198 1.1-199 166-198 .9-1.99
1961-65 2.5% 1.66 -2.0 1.1-20 156—-20 .9-20
1966-70 2.5% 1.56 —-198 1.1-199 1.48;1.98 .9-1.99
1971-75 2.5% 1.56 -198 1.1-199 154-198 .9-1.99
1976-80 2.5% 1.5-198 11-199 144-198 .9-1.99
1981-85 2.5% 156 -198 1.1-199 154-198 9-12
1986-90 2.5% 1.62—-20 1.1-20 160—2.0 .9-20
1991-95 2.5% 1.7-2.0 1.1-20 170-20 9-20

1927-30 5.0% 146 -192 1.1-199 136-184 .9-1.99
1931-35 5.0% 142-190 11-199 138—-1.88 .9-1.99
1936-40 5.0% 164-198 12-199 156-198 .9-1.99
1941-45 5.0% 166 -198 12-199 158—-198 .9-1.99
1946-50 5.0% 1.568 -198 12-199 158—-198 .9-1.99
1951-55 5.0% 1.64—-198 1.1-199 156-198 .9-1.99
1956-60 5.0% 166 -198 1.2-199 158-198 .9-1.99
1961-65 5.0% 1.74-20 12-20 166—-20 .9-2.0
1966-70 5.0% 166 —-198 12-199 156-198 .9-1.99
1971-75 5.0% 1.62—-198 12-199 158—-198 .9-1.99
1976-80 5.0% 1.568—-196 1.1-199 146-196 .9—-1.99
1981-85 5.0% 166 —-1.98 12-199 158—-198 .9-1.99
1986-90 5.0% 1.7-198 12-199 164-20 .9-20
1991-95 5.0% 1.78—-20 12-20 178—-20 .9-20

Note _ Numbers shown are values of the kurtosis paranet@ot rejected by the MC GF tests. Columns (1) and (3)
pertain to our combined Mardia-type statistic (4.20)-(4.22). Columns (2) and (4) are based on the combined Kilian-
Demiroglu JB-type statistic (4.21)-(4.23).
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Table 9. Multivariate and stable distributions:
skewness-based confidence sets for distributional parameters

1) 2 3 4
Sample | Testlevel Studentt Stable ¢, = 0)
ESKy  ESKxkp ESKy ESKkp

1927-30 2.5% 3—15 1-16 | 1.38—-1.98 .9-1.99
1931-35 2.5% 2-7 1-7(1134-196 .9-1.99
1936-40 2.5% 4—-25 1-311]146—-198 .9-1.99
1941-45 2.5% 4—42 1-42 | 1.58-198 .9-1.99
1946-50 2.5% 4 —26 1-18 | 146-198 .9-1.99
1951-55 2.5% 437 1-13]154-198 .9-1.99

1956-60 2.5% 5 —42 >11154-198 .9-1.99
1961-65 2.5% 8 —42 >11] 1.60—-20 9—-2.0
1966-70 2.5% 5—42 >1]154-198 .9-1.99
1971-75 2.5% 4—22 >1]146—-198 .9-1.99
1976-80 2.5% 3—-17 1-39]146-198 .9-1.99
1981-85 2.5% 4—-29 >11158-198 .9-1.99
1986-90 2.5% 4—-41 1-19 | 1.56-1.98 .9-1.99
1991-95 2.5% > 12 >1]| 1.68—2.0 9—-2.0
1927-30 5.0% 3—-13 1-10 | 148-196 .9-1.99
1931-35 5.0% 3—-7 1-6]142-194 .9-1.99
1936-40 5.0% 4—-22 1-20]158-198 .9-1.99
1941-45 5.0% 5 — 36 >1 1.6 -1.98 .9-1.99

1945-50 5.0% 4—22 1-13|158-198 .9-1.99
1951-55 5.0% 5 — 26 1-811.60-198 .9-1.99

1956-60 5.0% 6 — 42 >1]164-198 .9-1.99
1961-65 5.0% 14 — 42 >1 1.78-2.0 .9-2.0
1966-70 5.0% 6 — 42 >11160-198 .9-1.99
1971-75 5.0% 4-19 >11160-198 .9-1.99
1976-80 5.0% 4—-15 1-25]154-198 .9-1.99
1981-85 5.0% 2—-26 >11160-198 .9-1.99
1986-90 5.0% 5 —41 1-12 1 1.66-198 .9—-1.99
1991-95 5.0% > 35 >1 1.78 =2.0 .9-1.99

Note _ Numbers shown are values of the distributional parametanfl «s respectively] not rejected by the MC-GF
tests. Columns (1) and (3) pertain to our extension of the Mardia-type statistic (4.11). Columns (2) and (4) are based on
our extension of aggregated individual skewness measures (4.13).
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Table 10. Multivariate¢ and stable distributions:
kurtosis-based confidence sets for distributional parameters

1) 2 4) ®)
Sample | Test level Studentt Stable(3, = 0)
EKUy EKUkp EKUy EKUkp
1927-30 2.5% 3—12 2—-28 1 138-19 1.1-1.99

1931-35 2.5% 3-7 2—-6| 14-192 1.1-1.99
1936-40 2.5% 5—27 >2|154-198 1.1-1.99
1941-45 2.5% >5 >2|154-198 11-1.99
1946-50 2.5% 5 —34 >2 | 156—-198 1.1-1.99
1951-55 2.5% 5—29 2—-13 | 156-198 1.1-1.99
1956-60 2.5% >95 >2]160-198 1.1-1.99
1961-65 2.5% >9 >2 | 1.56—-2.0 1.1-2.0
1966-70 2.5% > 5 >2 ] 158-198 1.1-1.99
1971-75 2.5% 5 —34 >2 | 156—-198 1.1-1.99
1976-80 2.5% 4-17 >2]146-198 1.1-1.99
1981-85 2.5% 5—39 >2 ] 158-198 1.1-1.99
1986-90 2.5% 5—41 >2] 164—-20 12-1.99
1991-95 2.5% > 20 >2| 1.76-2.0 1.1-2.0
1927-30 5.0% 3—-11 2—-161148-192 1.1-1.99
1931-35 5.0% 3—-7 >21144-190 1.1-1.99
1936-40 5.0% 5 —22 >21160-198 1.2-1.99
1941-45 5.0% 6 —39 >21158-198 12-1.99

1945-50 5.0% 5 — 27 2—-261164—-198 12-1.99
1951-55 5.0% 5 — 26 2-71164-198 1.1-1.99

1956-60 5.0% >6 >21170-198 1.2-1.99
1961-65 5.0% > 11 2—-26 1.78 =2.0 1.2-2.0
1966-70 5.0% 6 —39 >21164-198 12-1.99
1971-75 5.0% 5— 26 >21160-198 12-1.99
1976-80 5.0% 4—-15 >21158-196 12-1.99
1981-85 5.0% 6 — 34 >21164-198 12-1.99
1986-90 5.0% 7—41 2—-411170-198 1.2-1.99
1991-95 5.0% > 35 >2 1.80—-2.0 1.2-2.0

Note _ Numbers shown are values of the distributional parametand ., respectively) not rejected by the MC GF
tests. Columns (1) and (3) pertain to our extension of the Mardia-type statistic (4.12). Columns (2) and (4) are based on
our extension of aggregated individual kurtosis measures (4.14).
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parameters not rejected by the GF tests considered. From an empirical perspective, the most relevant
result from these tables is the following: Mardia-type confidence sets are the tightest. Specifically,
smaller values ok and «, (which signal more extreme kurtosis) are more easily rejected with
Mardia-type tests, although, in a few cases, larger valuesaoida; (which imply tails approach-

ing the normal) are more easily rejected with JB-type tests. Following our conclusions regarding
normality tests, we see that combining both type of test statistics may yield more powerful proce-
dures; this is easily achieved in a MC tests framework. Thepnialue KD yields lower p-values

and (tighter confidence sets) than its omnibus counterpart. This is particularly noticeable in the sta-
ble distribution case whetéB suggests thap < a < 1 [which signals severely extreme kurtosis]

is compatible with our data, whereas all other tests rejgct 1.°

7. Conclusion

In this paper, we have proposed a class of exact procedures for testing goodness-of-fit of the error
distribution in MLR models. The test statistics are based on multivariate skewness and kurtosis
measures computed on appropriately standardized multivariate residuals, so their null distributions
do not depend on the unknown error covariance matrix (or the regression coefficients). To deal with
the fact that the statistics may have analytically intractable null distributions, the tests are imple-
mented using simple, double and triple Monte Carlo test methods. Special cases considered include
testing multivariate normal, Studetitnormal mixtures and stable error models. In the Gaussian
case, the procedures proposed include finite-sample versions of standard multivariate skewness and
kurtosis tests for multivariate normality, as well as new ways of combining skewness and kurtosis
measures for that purpose. For non-Gaussian distribution families involving nuisance parameters,
the problem of building confidence sets (through GF test “inversion”) for the nuisance parameters
and the error distribution was also considered.

We have also demonstrated the usefulness of the proposed GF tests with a size and power study
which suggest guidelines for empirical work. In particular, it is evident that asymptotic theory
is highly unreliable; in contrast, the MC tests are straightforward to use and achieve perfect size
control. Furthermore, whereas empirical researchers in econometrics seem to favor JB-type criteria
(perhaps because the available underlying theory allows for regressors), our MC versions of the
Mardia-type tests emerge as a better choice.

Finally, the tests proposed were applied to an asset pricing model using monthly returns on New
York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. The results
confirm through exact test that multivariate normality is rejected in all subperiods. Further, on
inverting the GF tests for Studentand stable error distributions, we found heavy (though non-
extreme) kurtosis. The reader may consult Beaulieu, Dufour and Khalaf§220Q1a) for mean-
variance efficiency tests which exploit these results.

50ne may argue that tests based on empirical moments are not best suited for such alternatives since the true moments
of the associated stable distributions do not exist; yet our tests as conceived somewhat circumvent this difficulty, because
the simulation-based RBM are not necessarily estimates of moments: these may be viewed as estimates of an expected
measure of central tendency and scale compatible with the hypothesized distribution.
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A. Appendix: Monte Carlo tests

The Monte Carlo (MC) test procedure goes back to Dwass (1957) and Barnard (1963). Exten-
sions to the nuisance-parameter-dependent case are from Dufour (2002). Here we summarize the
underlying methodology (given a right tailed test), as it applies to the test statistics we consider
in this paper. Let us first consider the pivotal statistics case, i.e. the case where the statistic
considered, sayy = S(Y, X) can be written as a pivotal function &¥ [in (2.2)], formally

S(Y, X)=S(W, X),whereY andX are as in (2.1)IV is defined by (2.2), and is fully specified.

1. LetS(© denote the test statistic calculated from the observed data set.

2. GenerateN of replications S, ..., S(N) of the test statisticS in such a way that
SO s . SIN) pe exchangeable.
3. Given the series of simulated statistigs", ..., SN), computepn[S] = pn(S©; S),
where
. - NGN(.Q}; S) + 1
pn(x; S) = Nl , (A.1)
1 ‘
Gn(z; S) = NZ; S(S(Z) — :U) , (A.2)

wheres(z) = 1if z > 0, ands(z) = 0if 2 < 0. In other words,py (S ; S) =
INGN(S©): 8) +1]/(N + 1) where NGn(S© ; ) is the number of simulated values

which are greater than or equal$®”. Whens©, s S(N) are all distinct [an event
with probability one when the when the vec(@®, M, ... S())’ has absolutely con-
tinuous distribution] Ry (S©) = N + 1 — NGn(S© ; S) is the rank ofS(¥) in the series
SO s o g,

4. The MC critical region is
pn(SY: S <a, 0<a<l. (A.3)

If «(N + 1) is an integer, then, under the null hypothesis (provided the distributichisf
continuous),
P[pN(S(O); S)<al =a; (A.4)

see Dufour (2002).
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