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Résumé / Abstract 
 
 

On étudie le favoritisme qui existe dans la relation verticale entre une firme à l’amont et 
plusieurs firmes à l’aval. On démontre que le favoritisme est le résultat de la maximisation de 
profit. On considère les questions suivantes. Premièrement, si la firme à l’amont peut fixer des 
prix différents pour le même produit qu’elle vend aux firmes à l’aval, est-ce qu’elle traite mieux 
les firmes qui sont moins efficaces? Deuxièmement, si la firme à l’amont peut offrir aux firmes à 
l’aval des niveaux de qualité d’accès à son réseau, est-ce que la qualité sera uniforme? La 
réponse à la première question dépend de l’aptitude de l’auto-provision des firmes à l’aval. 
Quant à la deuxième question, on montre que certaines firmes sont favorisées. 

 
Mots clés : Relation verticale, le prix des inputs, la qualité d’accès, oligopole. 
 
 

Favoritism in vertical relationship is a situation in which an upstream firm sets favorable 
exchange conditions to some agents at the expense of others. This paper explores the reason for, 
and direction of, favoritism in the vertical relationship between an upstream firm and a number 
of downstream firms that are Cournot rivals relying on the inputs provided by the upstream firm. 
We show that favoritism may arise from profit maximization. We address the following 
questions: (i) if the upstream firm can charge different prices to different downstream firms, will 
it treat the less efficient firms more favorably? (ii) if the upstream firm can provide different 
levels of quality of access to several ex ante identical downstream firms, will it provide a uniform 
quality of access? We show that the answer to (i) depends on whether downstream firms can self-
supply, and we characterize the structure of favors. As for (ii), we show that among ex-ante 
equal firms, some firms will be selected for favorable treatment. 
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1. Introduction:Favoritism in Vertical Relationship

Vertical relationship between upstream …rms and downstream …rms
is one of the most important topics in industrial organization, both at
the theoretical level and in regulatory practices. The following exam-
ples illustrate the prevalence of vertical relationships. In the petroleum
industry, the upstream …rm is the supplier of crude oil, and the down-
stream …rms are oil re…neries. In telecommunications, the downstream
…rms serve the market for long distance calls, while the upstream …rm
is the owner of the local network, without which the long-distance tele-
phone companies cannot sell their products to the consumers. In the
market for electricity, it is often the case that electricity transmission
and distribution is controlled by one …rm, but electricity generation is
not. Downstream …rms generate electricity and sell it to consumers,
using an essential input which is the transmission network provided
by the owner of the network, considered as an “upstream” …rm. In
some situations, an upstream …rm can also be integrated with a down-
stream …rm (e.g., the case of the owner of a local telephone network
who also provides long distance services, in direct competition with
several other “downstream” long-distance service …rms).

In regulatary practices, the pricing of intermediate input supplied
by an upstream monopolist has been a matter of concern. For example,
according to the Economist (Feb. 5, 2000, p. 60), America’s Federal
Trade Commission (FTC) decided to challenge the proposed merger
between BP Amoco, and Atlantic Rich…eld, known as Arco, because
the merged …rm would control 70% of Alaska’s oil reserves, and this
control would allow it to unfairly raise the price of crude oil that it
sells to re…neries on the west coast of America. In particular, the FTC
argued that BP Amoco has discriminated among customers, unfairly
charging higher prices to re…ners that cannot easily switch to imported
oil. According to the FTC, this …rm “should therefore not be trusted
with an even bigger market share” (p.60).

If some agents are unfairly treated compared with others, a com-
plaint about favoritism can be made. If agents are identical, but
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receive unequal treatments, favoritism is easy to establish. But fa-
voritism is more di¢cult to prove when agents are heterogenous. In
this model, we consider an asymmetric downstream oligopoly: …rms
are ex-ante di¤erent with respect to production cost. In this setting,
we examine the incentive for an upstream …rm to pratice favoritism.
Some of the major questions concerning favoritism in vertical rela-
tionship are: (i) what is the direction of favoritism when an upstream
monopolist can practice input price discrimination among downstream
…rms that are not identical? (i.e., what is the impact of downstream
heterogeneity?) (ii) is the answer to (i) sensitive to the curvature
properties of the demand function, (iii) how do the answers to the
above questions change if (a) the downstream …rms can also produce,
perhaps at higher costs, the input themselves, or (b) the upstream
…rm is integrated with a downstream …rm to supply the …nal good to
consumers, in direct competition with other downstream …rms? (iv)
if the upstream …rm can provide input at di¤erent quality levels to
di¤erent downstream …rms, will it put at a disadvantage a subset of
ex ante identical downstream …rms?

Partial answers to some of the above questions have been provided
by DeGraba (1990) and Katz (1987). Assuming that downstream …rms
cannot produce the input, DeGraba shows1 that, under linear demand
and constant marginal costs, “when the supplier is allowed to price-
discriminate, he charges the …rms with lower marginal cost a higher
price than he charges the …rm with the higher marginal cost”(p.1248).
This kind of favoritism has also been termed “discount reversal” be-
cause it predicts the exact opposite of the “quantity discount” phe-
nomenon, i.e., the empirical observation that larger buyers tend to be
charged less per unit than smaller ones. DeGraba explains that “the
apparent contradiction stems from the fact that quantity discounts are
used as a self-selection mechanism when the seller does not know the
demand curves of the buyers”(p.1248). In DeGraba’s model, because

1DeGraba pointed out (p.1248) that this result was presented in Katz (1987)
for Cournot players. DeGraba’s main interest is in how price discrimination a¤ects
downstream producers’ long-run choice of technology.
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of the assumption of perfect information, such quantity discounts do
not arise2. DeGraba’s explanation seems to suggest that under perfect
information, one would not observe quantity discount.

However, Katz (1987) has shown that quantity discounts may arise
even under perfect information, if the input supplied by the upstream
…rm can also be produced by the downstream …rms, under a special
form of increasing returns: constant marginal cost, and falling average
cost, owing to a strictly positive …xed cost in the production of the
intermediate input. Thus, according to Katz, a monopolist that sells
an input would o¤er to a large buyer, such as a chain store, a better
deal than the ones it o¤ers to local stores, because the chain store
can make the credible threat of producing the input itself as it has
the potential advantage of economies of scale. Katz’s model seems
to suggest that increasing return in self-supply is a crucial factor for
quantity discount under perfect information.

In addition to the above “positive” issues, the “normative” issues
of regulation have received a great deal of attention in the industrial
organization literature. If there exists a regulator that seeks to max-
imize social welfare, what are the appropriate regulations on input
prices (or access prices) and input quality? Recent works by Vick-
ers (1995), Armstrong, Doyles, and Vickers (or ADV, 1996), La¤ont,
Rey, and Tirole (1996a, 1996b) have shed much light on these top-
ics. Vickers (1995) considers the case where the downstream …rms
are symmetric Cournot rivals under free entry (implying zero pro…ts),
while ADV (1996) considers a downstream competitive fringe, that
takes as given the price announced by a dominant integrated …rm.
ADV provides an ECPR (e¢cient component pricing rule) formula
that relates the input price (or access price) to the direct cost and to
the opportunity cost of providing access.

This paper explores the economic rationale for favoritism in ver-
tical relationship, and explores the direction of favoritism. First we

2In our Appendix A1, we show that DeGraba’s discount reversal result holds
also in a more general model with non-linear demand and non-constant marginal
costs.
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consider the case where downstream …rms can self-supply, and show
that favoritism against the weak …rms, i.e., quantity discount (in the
sense of lower input price for larger …rms) can occur even under de-
creasing returns, in contrast to Katz’s assumption of increasing re-
turns3.We also derive an access pricing formula for the case in which
downstream …rms are asymmetric Cournot rivals. Since we postulate
that the objective is to maximize the pro…t of the upstream …rm (or,
in some cases, the vertically integrated …rm) rather than to maximize
social welfare, our access pricing formula is not directly comparable to
those of ADV. However, broadly speaking, there is a certain similarity
in interpretation.

Another important form of favoritism that we address in this paper
is input quality discrimination. As pointed out by Vickers (1995, p.14),
input price is only one of several possible ways that an integrated …rm
could use to restrict access. Another dimension of restriction is the
quality of access. Quality discrimination gives an integrated …rm an
alternative way of raising rivals’ costs. An example is the interconnec-
tion of telecommunication networks. According to Vickers, “though
the pricing terms on which British Telecom was to give access to its
rival Mercury were set in 1985, there has been continuing dispute
about the quality of that access in terms of delay, the quality of the
lines of exchanges, etc., and the impact on Mercury’s competitive po-
sition.”(p. 14). Our paper complements Vickers’ informal discussion
on quality discrimination by providing a formal analysis of a model of
input quality favoritism, where an integrated …rm can provide access
at di¤erent quality levels to several downstream rivals. We show that
it can be optimal for the integrated …rm to treat ex-ante identical
rivals in non-identical ways. Our result, that it may be optimal to
practice “favoritism among equals”, indicates that models in which
identical …rms are assumed to be treated equally, can be misleading4.

3We also show, in Appendix A1, that if downstream …rms cannot self-supply
the input, then discount reversal occurs, even when the demand curve is not linear
and marginal cost is not constant.

4For other instances of “unequal treatment of equals”, see Salant and Sha¤er
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This paper, by characterising the direction of favoritism, goes be-
yond the grounds covered by Long and Soubeyran (1997a,1997b, 2001).
They examined a general class of games called “Cost Manipulation
Games with Costs of Manipulating.”This class includes two-stage games,
where, in the second stage, …rms compete as Cournot, or Bertrand,
rivals, and in the …rst stage, some outside agent manipulates some
variables, to maximise its own objective. These manipulations gen-
erate costs of manipulating. In general terms, this class of games
involvs a number of agents i 2 I, who, in the second stage, play a non-
cooperative gameG, and the pay-o¤ to agent i is ¼i = ¼i(ai; a¡i;mi;m0),
where ai denotes agent i’s action, ai 2 Ai:In the …rst stage, a prin-
cipal5, who may be an outsider, or a sub-group of these agents, ma-
nipulates the variables mi 2Mi; i 2 I, and m0 2 M0 to in‡uence the
nature of the second stage game. In this paper the manipulating agent
is the upstream supplier and the variables for manipulation are prices
or quality levels of the intermediate goods. The costs of manipulating
are upstream production costs. If the second stage game has a unique
equilibrium, we show that, by an appropriate change of variable, the
…rst cooperative stage reduces to a decomposable program6.This pro-
gram is a sup-convolution program and can be solved globally using
the mathematical duality theory (Rockafellar 1970). It has an elegant
geometric interpretation.

Our global method of resolution helps us to determine the di-
rection (not just the existence) of favoritism.(For the existence re-
sults, see Salant-Sha¤er (1996,1999) for local conditions, and Long
and Soubeyran (1997a,1997b, 2001), for a global geometric approach,
well adapted to capture non-linearities). Our paper shows that input-
price favoritism puts higher cost …rms at a disadvantage, but among

(1996,1999), Long and Soubeyran (1997a,b, 2001).
5The extension to the case of two rival principals presents no conceptual di¢-

culties.
6 This decomposable program is of the form: max

P
i2N fi(zi; zN) with

respect to the zi ,under the constraint
P

i2N zi = nzN .
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identical downstream …rms there is no favoritism in input price. By
contrast, input quality favoritism can occur among identical …rms7.
(In the input quality case, we do not seek to characterize the direction
of favoritism when …rms are heterogenous, because the convexity of
the objective function makes it di¢cult to determine the bias.)

2. Input price favoritism in the presence of self-supply by
downstream …rms

In this section we focus on the case where all downstream …rms
have constant8 marginal downstream costs of production of the …-
nal good, using an intermediate good that they can either produce
themselves, or buy from the upstream supplier (or both). We wish
to determine whether the upstream …rm would …nd it pro…table to
practice favoritism against the large …rms, i.e. to practice“discount
reversal” (charging higher prices to larger downstream …rms.)

2.1. The timing of the game

We assume that there are n downstream …rms, and a single up-
stream …rm. Let N = f1; 2; :::; ng denote the set of downstream …rms.
The downstream …rms are oligopolists that produce a homogenous …-
nal good, and compete as Cournot rivals in the …nal good market.
The inverse demand function is P = P (Q). In order to produce qi
units of the …nal good, the downstream …rm i needs Di(qi) units of
the intermediate input. It can satisfy this need by purchasing yi units
of the intermediate input from the upstream …rm S, and producing xi
units of the intermediate input itself, such that yi + xi = Di(qi). Let
ti be the …rm-speci…c price of the intermediate good charged by the
upstream …rm S to the downstream …rm i. Let Ui(xi) be the cost to

7The reason is that the quality variable a¤ects, in a non-linear way, the down-
stream …rms’ unit cost of producing the …nal good.

8The case of non-constant marginal costs is analyzed in Appendix A1.
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…rm i of producing xi. We assume that Ui(xi) is strictly convex.The
pro…t function of …rm i is

¼i = P (Q)qi ¡ ti[Di(qi) ¡ xi] ¡ Ui(xi)
Following De Graba and Katz, we focus mainly on the case where
the supplier S cannot charge a …xed fee. It is important to note that
since the downstream …rms can produce the intermediate input, the
upstream …rm can never charge a …xed fee that would reduce …rm i’s
pro…t to zero.

The timing of the game is as follows. In the …rst stage, the up-
stream …rm S sets discriminatory input prices ti, i = 1; :::; n.Its pro…t
is

¦S =
X

i2N
ti[Di(qi) ¡ xi(ti)] ¡ cS

"X

i2N
fDi(qi) ¡ xi(ti)g

#
+

X

i2N
Ti

where Ti = 0 if two-part tari¤ is not allowed, and where cS is …rm S’s
constant marginal cost.

In the second stage, each downstream …rm i makes both its pro-
curement decision and its …nal output decision at the same time9: it
chooses the quantity qi and also decides how much of the required in-
putDi(qi) is to be self-supplied, xi ¸ 0, and how much to be purchased
from the upstream …rm S, yi = Di(qi) ¡ xi ¸ 0:

2.2. The equilibrium in stage two

As usual, the game is solved backwards. We consider …rst the
choice made in the second stage. Given ti, each …rm i solves the
program:

max
qi;xi
¼i = P (qi +Q¡i)qi ¡ ti[Di(qi) ¡ xi] ¡ Ui(xi)

9One could consider two other alternative formulations. In one formulation,
the downstream …rms choose qi in stage 2, and make procurement decision in
stage 3. Another alternative formulation would be to reverse the order: to make
procurement decision in stage 2 and …nal output decision qi in stage 3. It can be
shown that our results are unchanged, because of the separability of xi and qi in
the pro…t function of …rm i.
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subject to

Di(qi) ¡ xi ¸ 0 (1)

and non-negativity constraints.
We will restrict attention to the case where the cost Ui(xi) is su¢-

ciently convex so that the constraint Di(qi) ¸ xi is not binding. Then
the …rst order conditions are:

P 0(Q̂)q̂i + P (Q̂) = tiD0
i(q̂i); i 2 N (2)

and

ti ¡ U 0i(bxi) = 0; i 2 N (3)

where the hat denotes equilibrium values. From (3), we obtain bxi =
bxi(ti) with

bx0i(ti) = 1=U 00i > 0

In what follows, we will focuss on the case where the input require-
ment function Di(:) is linear, i.e.,

D0
i = di > 0

and the function Ui(:) is quadratic

Ui(xi) =
uix2i
2

Then

bxi(ti) =
ti
ui

Let us de…ne …rm i’s marginal cost of producing the …nal good as

µi ´ tidi
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Then (2) becomes

q̂iP 0(Q̂) + P (Q̂) = µi; i 2 N (4)

Summing (4) over all i 2 N; we get

Q̂P 0(Q̂) + nP (Q̂) = nµN (5)

where

µN ´ 1
n

X

i2N
µi

It follows from (5) that the equilibrium output Q̂ depends only on µN ,
and we may write

Q̂ = Q̂(µN ) (6)

We obtain from (4) and (6) the following relationship between equi-
librium output of …rm i and (µN ; µi):

q̂i =
P (Q̂(µN)) ¡ µih
¡P 0(Q̂(µN ))

i ´ q̂i(µN ; µi) (7)

The quantity of input that …rm i purchases from the upstream
monopoly is:

yi = diq̂i ¡ bxi(ti) = diq̂i(µN ; µi) ¡ µi=(uidi) ´ yi(µN ; µi) (8)

2.3. Stage one: input price favoritism

Now consider stage 1. The upstream monopolist sets the ti’s (and
hence µi = diti and µN , to maximize its pro…t :

max
µi

¦S=
X

i2N

·
µi
di

¡ cS
¸
yi(µN ; µi) (9)
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or, using (8),

max
µi

¦S=
X

i2N

·
µi
di

¡ cS
¸
[diq̂i(µN ; µi) ¡ µi=(uidi)] (10)

Thus, the pro…t of the upstream …rm depends on the parameters di
and ui. The pro…t function can be written in a more compact form

max
µi

¦S =
X

i2N
fi(µN ; µi) (11)

where fi(µN ; µi) ´
h
µi
di

¡ cS
i
[ diq̂i(µN ; µi) ¡ µi=(uidi)] ´ ¡Ai(µN)µ2i+

Bi(µN)µi ¡Ei(µN), with

Ai(µN) ´ 1h
¡P 0( bQ(µN ))

i +
1
uid2i

Bi(µN) ´ P ( bQ(µN))h
¡P 0( bQ(µN ))

i + cSdiAi(µN)

Ei(µi) ´ cSdiP (
bQ(µN))h

¡P 0( bQ(µN ))
i

We wish to determine conditions under which the monopolist …nds
it pro…table to practice discount reversal. To do this, it is convenient
to solve the problem (11) in two steps. In the …rst step, µN is …xed,
so that Q̂ = Q̂(µN) is …xed, and the optimal µi’s are determined
subject to

P
i2N µi = nµN . In the second step we determine µN . This

decomposition is useful, because the …rst step amounts to …xing the
price of the …nal good, which allows us to focus on the input price
discrimination aspect of …rm S’s optimization problem. This aspect
is quite separate from the …rm ’s exploitation of consumers by setting
the price of the …nal good.
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2.3.1. Solving the …rst step

The Lagrangian for the …rst step is

L =
X

i2N
fi(µN ; µi) + ¸

"X

i2N
µi ¡ nµN

#
(12)

The program is strictly concave, because @2 fi(µN ; µi) /@µ2i = ¡Ai(µN) <
0. Assuming an interior maximum, we get the …rst order conditions

yi
di

+
µi
di
@yi
@µi

¡ cS
@yi
@µi

+ ¸ = 0 (13)

This equation yields µ¤i = µ
¤
i (¸; µN). Therefore, substituting into the

constraint, we get
X

i2N
µ¤i (¸; µN ) ¡ nµN = 0 (14)

which yields ¸ = ¸(µN ). Given µN , the monopolist’s optimal input
price ti is implicitly given by

t¤i =
µ¤i
di

= cS ¡ 1
@yi
@µi

·
yi(µN ; µ¤i )
di

+ ¸(µN )
¸

(15)

where

@yi(µN ; µi)
@µi

=
di
P 0(Q̂)

¡ 1
diui

< 0

Then (15) gives, explicitly

t¤i =
1
2

"
cS + [uidi]

P (Q̂) + ¸(µN)[¡P 0(Q̂)]
d2iui + [¡P 0(Q̂)]

#
(16)

From (16), we obtains the following result:
Proposition 1 (Direction of favoritism)
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(a) If any pair (i; j) of downstream …rms that have high and identi-
cal costs of self-supply, the monopolist will practise discount reversal,
i.e., …rms with lower downstream costs di are charged a higher ti :

signft¤i ¡ t¤jg = ¡signfdi ¡ djg
(b) If the costs of downstream self-supply are very low then the

monopolist will not practise discount reversal.
(c) For any pair of downstream …rms (i; j) with the same input-

requirement functions (i.e., di = dj), the …rm with a lower cost of
self-supply (i.e., a lower u) will be charged a lower input price.

Proof: (a) and (b): from (16)

sign
@ti
@di

= signf[¡P 0] ¡ d2iuig

The right-hand side is negative if ui is su¢ciently great.
(c) from (16), @ti=@ui > 0:¤

Part (b) of Proposition 1 is broadly in agreement with the result
obtained by Katz (1987), who showed that if downstream …rms can
threaten to self-supply then the the upstream monopolist will give dis-
counts to larger …rms. However, Katz (1987) relied on the assumptions
that self-supply involves a positive …xed cost and a constant marginal
cost. On the contrary, we assume that self-supply involves no …xed
cost, and the marginal cost of self-supply is increasing. Also, part (a)
indicates that discount reversal (i.e., lower ti for smaller …rms) can
occur even if …rms can self-supply, provided the marginal cost curve
of self-supply is steep enough.

Proposition 2: (Absence of favoritism among equals) If
all downstream …rms are ex-ante identical, the upstream supplier will
treat them equally, by charging all of them an identical input price
t¤i = t¤, for all i 2 N:

t¤i = t
¤=

1
2

"
cS + [ud]

P (Q̂) + ¸(µN)[¡P 0(Q̂)]
d2u+ [¡P 0(Q̂)]

#
(17)
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Proof: Use the fact that the Lagrangian is strictly concave.

2.3.2. The second step

For the determination of µN , we use a procedure similar to that
given in the Appendix A1. Substituting µ¤i = µi(¸

¤(µN); µN) into the
objective function (11), we obtain

¦¤
S =

X

i2N
fi(µN ; µi(¸¤(µN); µN)) (18)

Di¤erentiating ¦¤
S with respect to µN and equating the derivative

to zero, making use of the envelope theorem, we get

d¦¤
S

dµN
=

X

i2N
(@fi=@µi)dµ¤i =dµN +

X

i2N
@fi=@µN =

X

i2N
@fi=@µN = 0

This condition determines the optimal µN .

3. Vertically Integrated Input Supplier and Favoritism in
Access Pricing

In the preceding section, the input supplier does not compete in
the downstream market. We now consider the case where the input
supplier is vertically integrated with a downstream …rm and therefore
treats other downstream …rms as rivals. For instance, in telecommu-
nications, the downstream sector serves the market for long-distance
calls, and the upstream …rm is the owner of the local telephone net-
work, which may be vertically integrated with a long-distance service
provider. Similarly, in the market for electricity, electricity transmis-
sion and distribution may be controlled by one …rm, that also owns
an electricity generation plant, in competition with other plants that
rely on the transmission network provided by the integrated …rm.
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Using the model introduced in this section, we seek answers to the
following questions: (i) does the vertically integrated …rm has an in-
centive to practice discount reversal? (ii) how strong is the incentive to
raise rivals’ cost? (iii) what form does the “E¢cient Component Pric-
ing Rule” (ECPR) take when the downstream …rms are non-identical
Cournot oligopolists?

Vickers (1995) addresses the question of access pricing under the
assumptions that the downstream …rms are identical Cournot rivals,
and that downstream pro…ts are zero due to free entry. Armstrong et
al. (1996) assume that the downstream …rms constitute a competitive
fringe (i.e., they take the price of their output as given). We consider
the case of asymmetric downstream …rms that are Cournot rivals, and
their number is …xed.

Let N = f1; 2; :::; ng be the set of downstream …rms. Parti-
tion this set into two subsets, denoted by I = f1; 2; ::; nIg and J =
fnI + 1; :::; nI + nJg where nI + nJ = n. All members of I are in-
tegrated with the upstream …rm S while all members of J are inde-
pendent rivals. If nI ¸ 2, we assume that these downstream …rms
also compete with each others, i.e., the integrated …rm behaves as if
it has a multi-divisional structure that discourages collusion between
the downstream divisions.

If the output of downstream …rm h is qh, its input need is Dh(qh).
This need is satis…ed partly by purchasing yh from the upstream divi-
sion of the integrated …rm, and partly by self-supplying the quantity
xh = Dh(qh)¡yh. The cost of self-supply is Uh(xh). The pro…ts of the
downstream …rms are

¼h = Pqh ¡ thyh ¡ Uh(xh); h 2 I [ J ´ N

where yh + xh = Dh(qh). For simplicity, we assume that Dh(qh) =
dhqh; h 2 N: The pro…t of the upstream division (i.e., the input
supplier S) of the integrated …rm is

¦S =
X

h2N
(th ¡ cS)yh
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The total pro…t of the integrated …rm is

¦IS = ¦S +
X

h2I
¼h =

X

j2J
(tj ¡ cS)yj +

X

i2I
(P ¡ dicS)qi +

X

i2I
[cSxi ¡ Ui(xi)]

The timing of the game is as followed. In the last stage, all the n
downstream entities (the nI divisions of the integrated …rms and the
nJ independent downstream …rms) compete as Cournot rivals. Each
downstream entity h chooses simultaneously its …nal output level qh
and its own production of intermediate input xh · dhqh, while tak-
ing as given all the pairs (qk; xk) for k 6= h. They also take as pre-
determined the input prices th dictated by the upstream entity S.
Thus entity h seeks to maximize

¼h = P (Q¡h + qh)qh ¡ thdhqh + [thxh ¡ Uh(xh)] (19)

subject to dhqh ¸ xh ¸ 0.
Assuming an interior solution, we have 2n …rst-order conditions:

P 0(Q)qh + P (Q) = thdh

th ¡ U 0h(xh) = 0

These conditions give

q̂h = q̂h(µN ; µh) =
P (Q̂(µN)) ¡ µih
¡P 0(Q̂(µN))

i (20)

and x̂h = x̂h(th), where µh = thdh and µN = (1=n)
P
h2N µh.This stage

gives the equilibrium pro…t of the downstream entities (using (20) and
(19))

¼̂h =
h
P (Q̂(µN)) ¡ µi

i
q̂h + V ¤h (th) = [¡P 0(Q̂(µN))]q̂2h + V ¤h (th)

where V ¤h (th) ´ maxxhfthxh ¡ Uh(xh)g s.t. xh ¸ 0.
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We now turn to the …rst stage of the game, when the integrated
…rm chooses the th’s to maximize its pro…t

¦̂IS =
X

j2J
(tj ¡ cS)byj +

X

i2I
(P̂ ¡ dicS)q̂i +

X

i2I
[cSx̂i ¡ Ui(x̂i)]

where P̂ ´ P (Q̂(µN)), q̂h = [P̂ ¡ dhth]=[¡P̂ 0] for all h 2 N , byj = dj q̂j
for all j 2 J , and x̂i = x̂i(ti) for all i 2 I. Recalling that th = µh=dh,
we can formulate the optimization problem of the integrated …rm as
that of choosing the th’ s to maximize ¦̂IS:

As in the preceding section, we solve this problem in two steps. In
step 1, we …x µN (so that P̂ is …xed), and optimize with respect to the
th’s subject to µN ¡ (1=n)

P
h2N thdh = 0. The Lagrangian is

L = ¦̂IS + ¸

"X

h2N
thdh ¡ nµN

#

Manipulations of the …rst-order conditions yield

ti = cS +

Ã
di

[¡P̂ 0]x0i

!h
¸[¡P̂ 0] ¡ (P̂ ¡ dicS)

i
; i 2 I (21)

and, for all j 2 J ,

tj = cS+

Ã
dj

d2j + [¡P̂ 0]x0j

!h
¸[¡P̂ 0] + P̂ ¡ djtj ¡ [¡P̂ 0](x̂j=dj)

i
(22)

These formulas are only implicit because the ti (or tj) appear on both
sides of the equations. One may relate these formulas to the “e¢cient
component pricing rule” (ECPR)10 derived by Armstrong, Doyles and
Vickers (ADV, 1996):

10The ECPR, also known as the Baumol-Willig rule, allows the incumbent to
charges access prices equal to her opprtunity cost on the competitive segment.
For a concise discussion of the theoretical debate on ECPR, see La¤ont and Tirole
(2000, p.p 166-7).
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Input price (or access price) = direct cost + opportunity cost of
providing access.

However, we should note that ECPR was derived by ADV under
the objective of maximizing welfare, not maximizing the pro…t of the
integrated …rm. Our component pricing rules (21) and (22) are for a
monopolist. It contains the Lagrange multiplier ¸ which is a function
of the given µN . (See, for example, equation (14) of the preceding
section.)

In order to proceed further, let us assume that

Uh(xh) =
uhx2h
2

(23)

then we have

ti = c+

"
dicS + ¸[¡P̂ 0] ¡ P̂

[¡P̂ 0]

#
diui ; i 2 I (24)

tj =
1
2

"
cS +

¸[¡P̂ 0] + P̂
d2juj + [¡P̂ 0]

(djuj)

#
; j 2 J (25)

It follows that, for any pair (i; i0) of downstrean divisions such that
di = di0 , we have

ti ¡ cS
ti0 ¡ cS

=
ui
ui0

; i; i0 2 I

and for any pair (j; j0) of external downstream …rms, we have

tj ¡ (cS=2)
tj0 ¡ (cS=2)

=
°j
°j0

; j; j0 2 J

where

°j =
djuj

d2juj + [¡P̂ 0]
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(Note that @°j=@uj > 0). Thus we have established the following
results:

Proposition 3:
(i) the input prices for external downstream …rms (that have the

same dj) are subject to victimization, i.e., …rms with a higher uj (i.e.,
those …rms whose slope of the marginal cost of self-supply is relatively
steep) will be charged a higher tj.

(ii) within the integrated …rms, the transfer prices applied to down-
stream divisions are more favourable to those with lower costs of self-
supply.¤

Property (i) is consistent with part (c) of proposition 1. Property
(ii) implies that the less e¢cient divisions of the integrated …rm are
“penalized”, in the sense that the integrated …rm cross-subsidizes its
more cost-e¢cient divisions. This is similar to the theory of picking-
winner in the strategic trade literature.

Remark 3.1: From (25), we can ask the following question: for a
given µN , (so that Q̂ is …xed), and a given number n of downstream
entities, how does tj change if the set I of downstream divisions ex-
pands relative to the set J of independent downstream …rms? To
simplify, assume that the dh’s are the same for all h 2 N . Compare
the situation where I is the empty set (i.e., the upstream …rm is not
integrated with any downstream …rm) with the situation where I con-
sists of only one …rm, which we denote as …rm 1. Let ¸¤0(µN ) and
¸¤1(µN) denote the optimal value of the Lagrange multiplier in these
two situations respectively. If u1 is very small, then we can show (see
Appendix A4) that

¸¤1(µN) < ¸
¤
0(µN) (26)

This inequality implies that, if …rm j can self-supply, the input price
tj charged by the upstream …rm, given by (25), decreases when the
upstream …rm becomes vertically integrated with …rm 1. Thus, for a
given µN , vertical integration does not result in a “raising rivals’ cost”
strategy.
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Remark 3.2: From (25) and assuming the concavity11 of ¦̂SI with
respect to the tj’s, we conclude that, for any pair of identical down-
stream …rms, the integrated …rm charges them the same input price.
Thus “equals are treated equally”. As we will see in the following
section, this property no longer holds in a model where the upstream
…rm S can choose quality levels that it o¤ers to downstream …rms.

Remark 3.3: The second step in the solving the optimization
problem of the integrated …rm consists of determining the optimal
µN . This can be done using the approach taken in Appendix A1.

4. Favoritism in Quality of Access

So far, we have focussed on input price discrimination. As pointed
out by Vickers (1995, p. 14), input price is only one of several possible
ways that an integrated …rm could use to restrict access. Another di-
mension of restriction is the quality of access. Quality discrimination
gives …rm S an alternative way of raising rivals’ costs. According to
Vickers, “ a possible example is the interconnection of telecommuni-
cations networks. Though the pricing terms on which British Telecom
was to give access to its rival Mercury were set in 1985, there has been
continuing dispute about the quality of that access in terms of delays,
the quality of lines and exchanges, etc., and the impact on Mercury’s
competitive position”(p.14).12

In this section, we complement Vickers’ informal discussion on
quality of access, by developing a formal model of quality discrimina-
tion.We do not claim to present here a model that re‡ects the reality
of the British communications industry13. We will show that input

11In a more general case, the function ¦SI is strictly concave in the tj ’s if
Uh(xh) = (uh=¹)x¹

h where 2 ¸ ¹ ¸ 1.(See the Appendix.)
12According to Oftel, in 1996, Mercury had 10.7% of the domestic-call market

and 15.6% of the international call market. (O¢ce of Telecommunications, or
Oftel, Market Information Update, July, 1977). For most customers, Mercury
relies on its rival, British Telecom, for originating calls and terminating calls.

13For a brief survey of the regulatory problem in the British communication
industry, see La¤ont and Tirole (2000).



20

quality discrimination exhibits a new feature not encountered in in-
put price discrimination: under certain conditions, the upstream …rm
will …nd it pro…table to o¤er identical downstream …rms non-identical
quality levels.

The downstream sector consists of n …rms producing a homogenous
…nal good. Downstream …rm i’s output is qi. Its unit production cost
is di = di(¹i) where ¹i is the quality level of the access supplied
by the upstream …rm S to the downstream …rm i. We assume that
¹i can be chosen from the range [¹L; ¹H ]. Firm S is not vertically
integrated14.We assume that

di(¹i) = d
o
i ¡ ri(¹i) (27)

where doi > 0 and ri(¹L) = 0; r0i > 0, r00i < 0, and ri(¹H) < doi . Thus
ri(¹i) is the reduction in unit cost when the quality of access ¹i exceeds
the minimum level ¹L.

The upstream …rm’s cost of providing access quality level ¹i to …rm
i (whose output is qi) is assumed to be cS¹iqi. This indicates that (i)
for a given ¹i, the cost to the upstream …rm S is linear in qi, (ii) for a
given output level qi, the cost to the upstream …rm S is proportional to
the quality of access that it provides. Let zi = ¹iqi. We may interpret
zi as the number of units of a standardized intermediate input that
…rm i buys from …rm S. Firm S announces to …rm i that the price of
each unit of tandardized intermediate input is ti.

Firm i’s pro…t function is

¼i = Pqi ¡ [doi ¡ ri(¹i)] qi ¡ ti¹iqi
Clearly, for any given output level qi, …rm i, facing a given ti, will
choose the quality level ¹i to maximize ¼i (i.e., to minimize cost.)
Thus ¹¤i is given by

ti = r0i(¹
¤
i ) (28)

14Note that British Telecom is integrated, so our model is not strictly applicable
for the dispute between Mercury and British Telecom
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(here, we assume an interior solution, which would hold if r0(¹L) = 1
and r0(¹H) = 0.) In what follows, we set ¹L = 0.

The cost function of …rm i may thus be written as

Ci(qi; ti) = [doi ¡ ri(¹¤i ) + r0(¹¤i )¹¤i ] qi
De…ne the marginal cost of output qi as

µi(¹¤i ) ´ @Ci(qi; ti)
@qi

= [doi ¡ ri(¹¤i ) + r0(¹¤i )¹¤i ] (29)

Note that, since we assume that ri(:) is strictly concave, and ri(0) = 0;

µi ¡ doi = r0(¹¤i )¹¤i ¡ ri(¹¤i ) < 0 (30)

Consider the Cournot equilibrium achieved by the downstream
oligopolists, given the ti’s. The …rst order conditions yield

q̂i =
P̂ ¡ µi
[¡P̂ 0]

=
P̂ ¡ [doi ¡ ri(¹¤i ) + r0(¹¤i )¹¤i ]

[¡P̂ 0]
(31)

or

q̂i(¹¤i ; P̂ ) =
(P̂ ¡ doi ) + ri(¹¤i ) ¡ r0(¹¤i )¹¤i

[¡P̂ 0]
(32)

where P̂ = P (Q̂(µN)). From (30), if (P̂ ¡ doi ) > 0 then q̂i(¹¤i ; P̂ )>0.
The pro…t of the upstream …rm is

¦̂S =

"X

i2N
ti¹¤i q̂i

#
¡ cS

"X

i2N
¹¤i q̂i

#
(33)

or ,using ti = r0i(¹i);

¦̂S =

"X

i2N
r0(¹¤i )¹

¤
i q̂i(¹

¤
i ; P̂ )

#
¡cS

"X

i2N
¹¤i q̂i(¹

¤
i ; P̂ )

#
= b¡S¡ bCS(34)
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where b¡S =
P
i2N r

0(¹¤i )¹¤i q̂i(¹¤i ; P̂ ) is the total revenue, and bCS =
cS

hP
i2N ¹

¤
i q̂i(¹¤i ; P̂ )

i
the total cost of the upstream supplier.

Thus, the optimization problem of the upstream …rm amounts to
choosing quality levels ¹¤i ’s, via the choice of the ti’s since ti = r0i(¹i);
by (28)) to maximize ¦̂S, subject to the constraint:

"X

i2N
ri(¹¤i ) ¡ r0i(¹¤i )¹¤i

#
= doN ¡ µN (35)

for a given µN (that is, for a given …nal price P̂ ).
Example 4.1:(Favoritism among equals)
Take the case of the strictly concave unit cost reduction power

function

ri(¹i) = (±i¹i)
®; 0 < ® < 1

then r0i(¹i)¹i = ®ri(¹i) .Thus

ri(¹¤i ) ¡ r0i(¹¤i )¹¤i = (1 ¡ ®)ri(¹¤i ) (36)

Substituting (36) into (31), we get

q̂i(¹¤i ; P̂ ) =
(P̂ ¡ doi ) + (1 ¡ ®)ri(¹¤i )

[¡P̂ 0]
(37)

For a given µN , that is for a given P̂ , the revenue function of the
upstream supplier is

= ®
X

i2N
ri(¹¤i )q̂i(¹

¤
i ; P̂ ) = (®=[¡P̂ 0])

X

i2N
ri(¹¤i )

h
(P̂ ¡ doi ) + (1 ¡ ®)ri(¹¤i )

i

This is a strictly convex function of the ri :

b¡S = (®=[¡P̂ 0])
X

i2N
ri

h
(P̂ ¡ doi ) + (1 ¡ ®)ri

i
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For a given µN the cost function of the upstream supplier is

bCS = cS

"X

i2N
¹¤i q̂i(¹

¤
i ; )

#
= (cS=[¡P̂ 0])

X

i2N
¹¤i

h
(P̂ ¡ doi ) + (1 ¡ ®)ri(¹¤i )

i

Let us invert the function ri = ri(¹i) = (±i¹i)® to get ¹i =
¹i(ri) = (1=±i)(ri)1=®: Then the cost function of the upstream supplier
is itself a strictly convex function of the unit cost reductions ri :

bCS=(cS=[¡P̂ 0])
X

i2N
(1=±i)(ri)1=®

h
(P̂ ¡ doi ) + (1 ¡ ®)ri

i

De…ne

rN ´ 1
n

X

i2N
ri (38)

From (36) and (38), we can write (35) as

(1 ¡ ®)rN = doN ¡ µN
This gives

µN = doN ¡ (1 ¡ ®)rN
and thus we may write

P̂ (µN) = P̂ (doN ¡ (1 ¡ ®)rN) = P̂ (rN)

The pro…t function of the upstream supplier is the sum of a di¤er-
ence between two strictly convex functions of ri

¦̂S = b¡S ¡ bCS =
X

i2N
fi(ri; rN ) (39)

where

fi(ri; rN) =
1

[¡P̂ 0]

h
(P̂ ¡ doi ) + (1 ¡ ®)ri

i £
(®ri ¡ cS(1=±i)(ri)1=®

¤
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The upstream …rm’s problem is the to choose, for a given rN (hence,
a given P̂ ), the ri ¸ 0 to maximize

¦̂S =
X

i2N
fi(ri; rN)

subject to
X

i2N
ri = nrN

If cS is small, or if the ±i are great, then each fi(ri; rN) is strictly
convex in ri in the interval 0 · ri · nrN , and so is the sum of them.
Then, for a given rN , the optimum is at a corner. For example, if
n = 2, one …rm will achieve the cost reduction 2rN and the other
…rm’s cost reduction will be zero.

The determination of the optimal ri = r¤i (rN) are injected in
the value of the pro…t function of the upstream supplier ¦̂S(rN) =P
i2N fi(ri(rN); rN). The next step is to maximize with respect to rN

to …nd the optimal r¤N : The optimal µ¤N follows.
Proposition 4 (Favoritism among equals): If the function ¦̂S

is strictly convex in the r¤i ’s (for a given rN), then ex-ante identical
…rms will be given di¤erent quality levels.

Comments on example 4.1:The pro…t function of the upstream
…rm can be convex or concave in ri (cost reductions). Recall that

¦̂S =

"X

i2N
ti¹¤i q̂i

#
¡ cS

"X

i2N
¹¤i q̂i

#
=b¡S ¡ bCS (40)

The revenue of the upstream supplier
P
i2N ti¹

¤
i q̂i is strictly convex

in the unit cost reduction ri (for a given rN) because the price of ¹¤i
units of quality, per unit of the …nal good produced, is proportional
to the unit cost reduction : ti¹¤i = ®ri, and the equilibrium quantity
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q̂i produced by …rm i is a linear and increasing function of the unit
cost reduction of …rm i, for a given rN :

q̂i(ri; P̂ ) =
(P̂ ¡ doi ) + (1 ¡ ®)ri

[¡P̂ 0]
(41)

The cost of the upstream supplier bCS = cS
P
i2N ¹

¤
i q̂i is also

strictly convex in the unit cost reductions ri, because the ¹¤i units of
quality is strictly convex in ri , ri(¹i) = (±i¹i)® () ¹i = (1=±i)(ri)1=®,
® > 1: If the revenue function is su¢ciently greater than the cost
function, the di¤erence between these two convex functions is convex.

Remark: Proposition 4 indicates that input quality discrimina-
tion is very di¤erent from input price discrimination. High level of
quality of the input reduces the downstream …rms’ unit cost (not in-
cluding the upstream …rm”s charge) of producing the …nal output. A
greater ¹i (equivalently, a greater ri) saves the production cost for
…rm i, at any given qi, and increases the production cost for …rm S
at any given qi. Thus, unlike the case of input price discrimination
considered in Sections 2 and 3, input quality discrimination a¤ects the
real cost structure of all …rms.

5. Concluding Remarks

We have showed that if downstream …rms can, to some extent, self-
supply the vital input at relatively low marginal cost, the upstream
…rm will tend to treat more favorably those …rms that are more e¢-
cient in the use of the input it supplies. Moreover, if the upstream …rm
is integrated with one or several downstream …rms, then in general it
will give discount to larger downstream divisions, and victimize exter-
nal downstream …rms that have high costs of self-supply. Downstream
…rms with the same characteristics are treated equally with respect to
input price: favoritism does not occur among equals.

Quality of access provided by an upstream …rm can vary accross
downstream …rms. We have shown that even when all downstream
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…rms are ex-ante identical, favoritism in access quality can occur. Un-
like raw materials, which tend to be proportional to …nal output level,
quality of access is somewhat like capital equipment that shifts down
the marginal cost curves. Thus it may be more e¢cient to concentrate
this type of “investment” in one downstream …rm, to exploit a sort of
economy of scale.

We have also derived an access pricing rule from the point of view
of an upstream …rm that faces heterogenous downstream oligopolists.
This rule resembles the “e¢cient component pricing rule” (ECPR) in
the regulation literature.

Several extensions can be pursued. First, using our model, an
ECPR could be derived from the point of view of a regulator. Second,
asymmetric information may be introduced, to explore the cases where
the upstream …rm or the regulator does not know the cost structure
of the …rms. Third, in the case of quality of access, we must …nd
out whether there is a strong incentive for an integrated …rm to raise
rivals’ costs. Another possible generalization is the case where down-
stream …rms need several intermediate inputs, each being produced
by a distinct upstream …rm..
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Appendix A.1: Favoritism under non-linear demand and non-
constant input-output ratio

In this Appendix we extend our results to the case of non-constant
input-output ratio. The model is similar to that of DeGraba (1990),
but we replace his assumption of linear …nal demand by non-linear
…nal demand, and we assume convex downstream cost instead of con-
stant marginal costs. Furthermore, while DeGraba assumes that, in
relation to input prices, downstream …rms di¤er from each other in an
additive way (i.e., …rm i’s per-unit cost of output is ti + ci, where ti
is the input price for …rm i determined by the upstream monopolist,
and ci is an additional marginal cost of production which vary across
…rms), we assume that, in relation to input costs, downstream …rms
di¤er from each other in a multiplicative way (i.e., …rm i’s per-unit
cost of output is tiDi(qi)=qi, where Di(qi) is the input level necessary
to produce output qi:) We will show that “discount reversal” (i.e.,
the upstream …rm charges a lower price to smaller downstream …rms)
occurs in this model, as it does in DeGraba’s model.15

There are n downstream Cournot oligopolists producing a homoge-
nous good, using an intermediate input produced by an upstream mo-
nopolist. The set of downstream …rms is N = f1; 2; :::; ng. Let qi
denote the output of (downstream) …rm i, and let Q =

P
i2N qi. In

order to produce the quantity qi, the downstream …rm i needs to use zi
units of the intermediate input: zi = Di(qi), where Di(0) = 0, D0

i > 0
and D00

i ¸ 0. We refer to Di(:) as the downstream input-requirement
function of …rm i.The upstream supplier, denoted by S, charges …rm
i the input price ti (per unit). Let yi be the amount of input that
downstream …rm i buys from …rm S. In this Appendix, since we as-
sume that the downstream …rms have no alternative sources of input
supply, we have yi = zi:

We consider a two-stage game. In the …rst stage, the supplier
S chooses …rm-speci…c input prices (t1; :::; tn) , i = 1; :::; n. In the

15For the case of constant marginal costs and non-linear demand, see Long
and Soubeyran (1997b), where the discount reversal is explained in terms of the
“concentration motive theorem.”
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second stage, the downstream …rms choose their outputs, and achieve
a Cournot equilibrium.

The inverse demand function for the …nal good is P = P (Q) with
P 0(Q) < 0: Given t1; :::tn, we have, at a Cournot equilibrium where
all …rms produce, the conditions

P 0(Q̂)q̂i + P (Q̂) = tiD0
i(q̂i); i 2 N (42)

Equilibrium pro…ts are

¼̂i = P (Q̂)q̂i ¡
"
P 0(Q̂)q̂i + P (Q̂)

D0
i(q̂i)

#
Di(q̂i)

or, more compactly,

¼̂i =
µ
1 ¡ 1
¿̂ i

¶
P (Q̂)q̂i +

1
¿̂ i
[¡P 0(Q̂)]q̂2i (43)

where ¿̂ i is the elasticity of the downstream input-requirement
function of …rm i, evaluated at the Cournot equilibrium:

¿̂ i ´
q̂iD0

i(q̂i)
Di(q̂i)

The pro…t function of the upstream …rm is

¦S =
X

i2N
tiyi ¡ C(y)

where y =
P
i2N yi and C(y) is the upstream …rm’s cost of produc-

ing y:Given t1; :::tn, the supplier’s pro…t at the corresponding (down-
stream) Cournot equilibrium is

¦̂S =
X

i2N

"
P 0(Q̂)q̂i + P (Q̂)

D0
i(q̂i)

#
Di(q̂i) ¡ C

"X

i2N
Di(q̂i)

#

Equivalently,

¦̂S =
X

i2N

1
¿̂ i

h
P 0(Q̂)q̂2i + P (Q̂)q̂i

i
¡ C

"X

i2N
Di(q̂i)

#
(44)
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In the …rst stage, the supplier, S, chooses the ti’s to maximize
its pro…t. It is clear that the choice of the ti’s is equivalent to the
manipulation of the marginal costs µi’s of the downstream …rms, which
in turn is equivalent to choosing the equilibrium outputs q̂i’s. Of course
the participation constraints ¼̂i ¸ 0 must be satis…ed.

In what follows, we focus on the benchmark case where S cannot
use two-part tari¤s nor other forms of non-linear pricing. We further
simplify the problem by assuming that the upstream cost is linear

C(y) = cSy; cS > 0

and that the downtream …rms’ input requirement functions are convex
and exhibit constant elasticity:

Di(qi) =
diq¿i
¿

; ¿ ¸ 1; di > 0:

Then …rm S’s pro…t in the (downstream) Cournot equilibrium becomes

¦̂S =
1
¿
P (Q̂)Q̂¡ 1

¿
[¡P 0(Q̂)]Q̂2Ĥ ¡ c

¿

X

i2N
diq̂¿i (45)

where Ĥ is the Her…ndahl index of concentration of the downstream
industry:

Ĥ =
X

i2N

h
q̂i=Q̂

i2

As will be seen below, the discriminatory price structure chosen by S
depends on the Her…ndahl index of concentration and on the elasticity
of the slope of the demand curve.

We now solve …rm S’s optimization problem. It is convenient to
proceed in two steps. In the …rst step, we temporarily …xed the in-
dustry output Q̂, and seek to characterize the monopolist’s choice of
the q̂i’s, conditional on

Pn
i=1 q̂i = Q̂ (given). In the second step, we

determine Q̂.
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The …rst step:
We re-write ¦̂S as

¦̂S =
1
¿

"
P (Q̂)Q̂¡

nX

i=1

fi(q̂i; Q̂)

#
(46)

where

fi(q̂i; Q̂) ´ [¡P 0(Q̂)]q̂2i + cdiq̂¿i
For a given Q̂, choose the Cournot equilibrium outputs, the q̂i’s, to
maximize (46) subject to

Pn
i=1 q̂i = Q̂ and the non-negativity of q̂i

and ¼̂i. (We will focus on the case where the solution is an interior
solution, i.e., q̂i > 0 and ¼̂i > 0). The Lagrangian is

L =
1
¿

"
fP (Q̂) ¡ ¸gQ̂+

nX

i=1

f¸q̂i ¡ fi(q̂i; Q̂)g
#

and is strictly concave in the q̂i for a given Q̂. Then, at an interior
solution,

¸¡ @fi(q̂i; Q̂)
@q̂i

= 0; i 2 N (47)

Equation (47) implies

¸ + 2P 0(Q̂)q̂¤i = dic¿(q̂
¤
i )
¿¡1 > 0; i 2 N

It follows from this equation that q̂¤i > q̂¤j if and only if di < dj : Thus
we have established the following result:

Proposition A.1: The monopolist will adopt an input pricing
scheme that ensures that low-cost …rms (i.e., those with low di) pro-
duce more than high cost …rms. Furthermore, marginal production
costs, di¿ (q̂¤i )¿¡1 are not equalized across …rms.
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The results that marginal production costs are not equalized across
…rms is due to the fact that the monopolist is constrained to use linear
pricing for each downstream …rm, leaving them with positive pro…ts.16

Equation (47) can be inverted17 to give

q̂¤i = Ái(¸; Q̂) (48)

and the optimal value of ¸, denoted by ¸¤(Q̂), can thus be obtained
from the condition

X

i2N
q̂¤i =

X

i2N
Ái(¸; Q̂) = Q̂ (49)

(See Appendix A2 for two examples that illustrate this procedure).
The optimal …rm-speci…c input prices are

t¤i =
P 0(Q̂)q̂¤i + P (Q̂)
di(q̂¤i )¿¡1

(50)

which, together with (47), yields the formula for …rm S’s mark-up

t¤i ¡ c = (¿ ¡ 2)P 0(Q̂)q̂¤i + (¿P (Q̂) ¡ ¸)
¿di(q̂¤i )¿¡1

(51)

The right-hand side of (51) is increasing in q̂¤i for ¿ in the interval [1,2],
and decreasing in di.This fact, together with Proposition A.1 (which
says that q̂¤i is decreasing in di) yields the following result:

Proposition A.2: For ¿ in the interval [1,2], the monopolist will
practice “favoritism against the strongs”, i.e., …rms that are more
e¢cient (those with a smaller di) must pay a higher price per unit of
input supplied by the monopolist.

16It is easy to verify that if the monopolist could use two-part pricing then Ti
would be set so that ¼̂i = 0, in which case downtream marginal costs would be
equalized.

17Because @q̂i=@¸ > 0.
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Another su¢cient condition for “discount reversal” is 2P (Q̂) ¡
¸¤(Q̂) > 0 (given that ¿ ¸ 1). To see this, re-write (50) as

t¤i =
¿fP 0(Q̂)q̂¤i + P (Q̂)g
2P 0(Q̂)q̂¤i + ¸

¤(Q̂)

It follows from this equation that, for given Q̂, t¤i is increasing in q̂¤i if
2P (Q̂) ¡ ¸¤(Q̂) > 0:

Proposition A.3: For ¿ ¸ 1 , the monopolist will practice “fa-
voritism against the strongs” if 2P (Q̂) ¡ ¸¤(Q̂) > 0.

Remark: Proposition A.3 requires the knowledge of ¸¤(Q̂). The
examples in the Appendix show how ¸¤(Q̂) can be computed. Al-
ternatively, as Proposition A.4 below indicates, we can …nd su¢cient
conditions for 2P (Q̂) ¡ ¸¤(Q̂) > 0 in terms of the curvature of the
demand curve and the index of concentration of the downstream in-
dustry.

It remains to determine the monopolist’s optimal Q̂: This is done
in the second step below.

The second step:
We now try to express the monopolist’s pro…t as a function of Q̂,

having known how, for a given Q̂, the q̂¤i (and hence t¤i ) are optimally
chosen. Following the duality approach used in Rockafellar (1970,
Chapter 12), we de…ne the “conjugate function” f¤ of the original
function fi(q̂i; Q̂) as follows:

f ¤i (¸; Q̂) = sup
q̂i

h
¸q̂i ¡ fi(q̂i; Q̂)

i
; q̂i ¸ 0;

where Q̂ is given. Then, the pro…t function of the monopolist, given
the maximization performed in Step 1 above, is

¦¤
S(Q̂) = L

¤(Q̂) =
1
¿

"
(P (Q̂) ¡ ¸¤(Q̂))Q̂+

X

i2N
f¤i (¸

¤(Q̂); Q̂)

#
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Assuming an interior solution, the optimal Q̂ must satisfy the …rst
order condition:

¿
d¦¤
S(Q̂)
dQ̂

= (P 0(Q̂) ¡ ¸¤0(Q̂))Q̂+ (P (Q̂) ¡ ¸¤(Q̂))

+
X

i2N

@f ¤i
@¸
d¸¤

dQ̂
+

X

i2N

@f ¤i
@Q̂

= 0 (52)

Using the envelope theorem, we have @f ¤i =@¸ = q̂¤i , and (52) becomes

¿
d¦¤
S(Q̂)
dQ̂

= P (Q̂) ¡ ¸¤(Q̂) + P 0(Q̂)Q̂ [1 + EH] = 0 (53)

where H is the Her…ndahl index of concentration (1 ¸ H ¸ (1=n)2)
de…ned as

H =
X

i2N

q̂¤i
Q̂2

2

and E is the elasticity of the slope of the demand curve at Q̂ : E =
P 00(Q̂)Q̂=[¡P 0(Q̂)]:

Remark: By de…nition, the Her…ndahl index of concentration is
at its maximum value (H = 1) if the industry output, Q, is produced
by one …rm, and H is at its minimum (H = 1=n2) if all the n …rms
have identical market shares.

If ¦¤
S(Q̂) is strictly concave18 in Q̂ and the maximum is an interior

one, then equation (53) uniquely determines the optimal Q̂¤. At that
optimum point,

2P (Q̂¤) ¡ ¸¤(Q̂¤) = P (Q̂¤) ¡ P 0(Q̂¤)Q̂¤[1 + E¤H¤] (54)

The right-hand side of this equation is positive if E¤ ¸ 0 (this inequal-
ity holds if the demand curve is linear or convex), or if E¤ < 0 but
E¤H¤ ¸ ¡1. Using this result and Proposition A3, we obtain:

18A set of su¢cient conditions for this to hold is ¿ = 1 and P (Q) is linear.
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Proposition A.4: For ““favoritism against the strongs”” to oc-
cur, it is su¢cient that the demand curve is linear or convex (implying
E¤ ¸ 0), or that it is not too concave, i.e., E¤H¤ ¸ ¡1:

The optimal input price that the monopolist charges …rm i is ob-
tained from (50), (47), and (54):

t¤i =
c¿ [P 0(Q̂¤)q̂¤i + P (Q̂¤)]

2P 0(Q̂¤)q̂¤i + P (Q̂¤) + P 0(Q̂¤)Q̂¤[1 + E¤H¤]

where the denominator is positive because it must be the same as the
denominator of the right-hand side of (50), the left-hand side being t¤i
in both equations. This input price is dependent on the concentration
index of the downstream industry, and on the elasticity of the slope
of the demand curve.

Appendix A.2 :Some special cases
We now provide examples illustrating the procedure described by

(48) and (49).
Example 1: with ¿ = 1 (linear downstream costs), (48) gives

q̂¤i = Ái(¸; Q̂) =
¸¡ vbi

2[¡P 0(Q̂)]
and (49) gives

¸¤(Q̂) =
2Q̂[¡P 0(Q̂)]

n
+
v
n

X

i2N
bi > 0

Therefore

q̂¤i (Q̂) =
Q̂
n

¡ v
2[¡P 0(Q̂)]

[bi ¡ bN ]

where bN ´ (1=n)
P
i2N bi. Thus,

sign[q̂¤i (Q̂) ¡ q̂¤j (Q̂)] = ¡sign [bi ¡ bj ]
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that is, the …rm with lower cost will produce more, con…rming Propo-
sition A.1.

Example 2: with ¿ = 2 (quadratic downstream costs), (48) gives

q̂¤i = Ái(¸; Q̂) =
¸

2f[¡P 0(Q̂)] + vbig
´ ¸Ãi(Q̂)

and (49) gives

¸¤(Q̂) =
Q̂P

i2N Ãi(Q̂)

Therefore

q̂¤i (Q̂) =
Ãi(Q̂)Q̂P
i2N Ãi(Q̂)

Here, also, we obtain

signfq̂¤i (Q̂) ¡ q̂¤j (Q̂)g = signfÃi(Q̂) ¡ Ãj(Q̂)g = ¡sign [bi ¡ bj]

APPENDIX A.3: The determination of ¸¤ in Section 3.
Recall that

P
h2N dhth = nµN . Substituting (24) and (25) into the

equation

µN =
1
n

X

h2N
thdh

we obtain

¸¤(µN) =
A+B
D

(55)

where

A = nµN ¡
X

i2I
dicS ¡ 1

2

X

j2J
djcS
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B =
1

[¡P 0(Q̂)]
X

i2I
[P̂ ¡ dicS]d2iui ¡

P̂
2

X

j2J
°j

D =
[¡P 0(Q̂)]

2
+

X

i2I
d2iui

with

°j =
d2juj

d2juj + [¡P 0(Q̂)]

APPENDIX A.4: Proof of (26)
Let dh = 1 for all h 2 N . Then ¸¤(µN) in (55) becomes

¸¤(µN) =
A0 +B0

D0

where

A0 = nµN ¡ (cS=2)(n+ nI)

B0 =
[P̂ ¡ cS]
[¡P 0(Q̂)]

X

i2I
ui ¡

P̂
2

X

j2J
°j

D0 =
X

i2I
ui +

[¡P 0(Q̂)]
2

where

°j =
uj

uj + [¡P 0(Q̂)]

When nI = 0; we have ¸¤(µN) = ¸¤0(µN) where

¸¤0(µN) =
E
F
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with

E = nµN ¡ (ncS=2) ¡ P̂
2

X

j2N
°j

and

F =
[¡P 0(Q̂)]

2

When nI = 1; we have ¸¤(µN) = ¸¤1(µN) where

¸¤1(µN) =
E +G
F + u1

where

G = u1

"
[P̂ ¡ cS]
[¡P 0(Q̂)]

+
P̂

2fu1 + [¡P 0(Q̂)]g

#
¡ cS

2

If u1 is very small, then ¸¤1(µN) < ¸
¤
0(µN). Thus, at an unchanged

µN , the integration of an upstream …rm with a downstream …rm re-
duces the tj’s, j 2 J . (However, µN would not be unchanged when
the integration occurs.)

APPENDIX A.5: The concavity of ¦IS

@¦IS
@ti

= ¡
"
di(P̂ ¡ dicS)

[¡P̂ 0]

#
¡ (ti ¡ cS)x̂0i

@¦IS
@tj

= ŷj + (tj ¡ cS)
@ŷj
@tj

@2¦IS
@t2i

= ¡x̂0i ¡ (ti ¡ cS)x̂00i

@2¦IS
@t2j

= 2
@ŷj
@tj

+ (tj ¡ cS)
@2ŷj
@t2j
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where, from th = U 0i(x̂i);

x̂0i =
1

U 00i (x̂i)
> 0

and

x̂00i = ¡ U
000
i (x̂i)

[U 00i (x̂i)]3
> 0

if U 000i (x̂i) < 0.
We also have

@ŷj
@tj

= ¡ d2j
[¡P̂ 0]

¡ x̂0j < 0

and

@2ŷj
@t2j

= ¡x̂00j

It follows that

@2¦IS
@t2j

= ¡2

"
d2j

[¡P̂ 0]
+ x̂0j

#
¡ (tj ¡ uj)x̂00j

Let us specify

Uh(xh) =
·
uh
¹

¸
x¹h ; ¹ ¸ 1

then U 000h · 0 if and only if 2 ¸ ¹ ¸ 1. In this case, x̂00j > 0 and
@2¦IS=@t2j < 0 if tj ¸ cS.
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