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Résumé / Abstract 
 

L’une des questions les plus étudiées récemment en économétrie est celle des modèles présentant 
des problèmes de quasi non-identification ou d’instruments faibles. L’une des conséquences 
importantes de ce problème est la non validité de la théorie asymptotique standard [Dufour (1997, 
Econometrica), Staiger et Stock (1997, Econometrica), Wang et Zivot (1998, Econometrica), Stock et 
Wright (2000, Econometrica), Dufour et Jasiak (2001, International Economic Review)]. Le défi 
majeur dans ce cas consiste à trouver des méthodes d’inférence robustes à ce problème. Une solution 
possible consiste à utiliser la statistique d’Anderson-Rubin (1949, Ann. Math. Stat.). Nous mettons 
l’emphase sur les procédures de type Anderson-Rubin, car celles-ci sont robustes tant à la présence 
d’instruments faibles et à l’exclusion d’instruments. Cette dernière ne fournit cependant des tests 
exacts que pour les hypothèses spécifiant le vecteur entier des coefficients des variables endogènes 
dans un modèle structurel, et de façon correspondante, que des régions de confiance simultanées pour 
ces coefficients. Elle ne permet pas de tester des hypothèses spécifiant des coefficients individuels ou 
sur des transformations de ces coefficients. Ce problème peut être résolu en principe par des 
techniques de projection [Dufour (1997, Econometrica), Dufour et Jasiak (2001, International 
Economic Review)]. Cependant , ces techniques ne sont pas toujours faciles à appliquer et requièrent 
en général l’emploi de méthodes numériques. 
Dans ce texte, nous proposons une solution explicite complète au problème de la construction de 
régions de confiance par projection basées sur des statistiques de type Anderson-Rubin. Cette solution 
exploite les propriétés géométriques des “quadriques” et peut s’interpréter comme une extension des 
intervalles et ellipsoïdes de confiance usuels. Le calcul de ces régions ne requièrent que des techniques 
de moindres carrés. Nous étudions également par simulation le degré de conservatisme des régions de 
confiance obtenues par projection. Enfin, nous illustrons les méthodes proposées par trois applications 
différentes: la relation entre l’ouverture commerciale et la croissance, le rendement de l’éducation et 
une étude sur les rendement d’échelles dans l’économie américaine. 

  
Mots clés : équations simultanées ; modèle structurel ; variable instrumentale; 
instruments faibles; intervalle de confiance ; test ; projection ; inférence simultanée ; 
inférence exacte; théorie asymptotique. 
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It is well known that standard asymptotic theory is not valid or is extremely unreliable in models 

with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock 
(1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, 
Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out 
consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, 
however, allows one to build exact tests and confidence sets only for the full vector of the coefficients 
of the endogenous explanatory variables in a structural equation, which in general does not allow for 
individual coefficients. This problem may in principle be overcome by using projection techniques 
[Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. Artypes 
are emphasized because they are robust to both weak instruments and instrument exclusion. 
However, these techniques can be implemented only by using costly numerical techniques. In this 
paper, we provide a complete analytic solution to the problem of building projection-based confidence 
sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of 
“quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least 
squares techniques are required for building the confidence intervals. We also study by simulation 
how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed 
by applying them to three different examples: the relationship between trade and growth in a cross-
section of countries, returns to education, and a study of production functions in the U.S. economy. 

 
Keyswords : Simultaneous equations; structural model; instrumental variable; weak 
instrument; confidence interval; testing; projection; simultaneous inference; exact 
inference; asymptotic theory. 



Contents

List of Propositions and Theorems iv

1. Introduction 1

2. Framework 4

3. Quadric confidence sets 7

4. Geometry of quadric confidence sets 9
4.1. Nonsingular concentration matrix. . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1. Positive definite concentration matrix. . . . . . . . . . . . . . . . . . . 10
4.1.2. Negative definite concentration matrix. . . . . . . . . . . . . . . . . . 10
4.1.3. Concentration matrix not positive or negative definite. . . . . . . . . . 10

4.2. Singular concentration matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3. Necessary and sufficient condition for bounded quadric confidence set. . . . . . 11
4.4. Joint confidence sets forβ andγ . . . . . . . . . . . . . . . . . . . . . . . . . 12

5. Confidence sets for transformations ofβ 12
5.1. The projection approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2. Projection-based confidence sets for scalar linear transformations. . . . . . . . 13

5.2.1. Nonsingular concentration matrix. . . . . . . . . . . . . . . . . . . . . 14
5.2.2. Singular concentration matrix. . . . . . . . . . . . . . . . . . . . . . . 16

5.3. A Wald-type interpretation of the projection-based confidence sets. . . . . . . . 18

6. Monte Carlo evaluation 19

7. Empirical illustrations 29
7.1. Trade and growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2. Education and earnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3. Returns to scale and externality spillovers in U.S. industry. . . . . . . . . . . . 34

8. Conclusion 36

A. Appendix: Proofs 38

iii



List of Propositions and Theorems

4.1 Theorem :Necessary and sufficient condition for bounded confidence set. . . . . . 12
5.1 Theorem : Projection-based confidence sets for linear transformations when the con-

centration matrix is positive definite. . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Corollary : Projection-based confidence interval for an individual coefficient. . . . 14
5.3 Theorem : Projection-based confidence sets for linear transformations when the con-

centration matrix has one negative eigenvalue. . . . . . . . . . . . . . . . . . 15
5.4 Theorem : Projection-based confidence sets for linear transformations when the con-

centration matrix has more than one negative eigenvalue. . . . . . . . . . . . . 15
5.5 Theorem :Projection-based confidence sets with a posssibly sigular concentration matrix 17

Proof of equation (4.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Proof of Theorem4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Proof of Theorem5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Proof of Theorem5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Proof of Theorem5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Proof of Theorem5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

List of Tables

1 Empirical coverage rate of TSLS-based Wald confidence sets. . . . . . . . . . . 20
2 Characteristics of AR projection-based confidence sets _Cij = 0 . . . . . . . . . 21
3 Characteristics of AR projection-based confidence sets _1 ≤ Cij ≤ 5 . . . . . . . 23
4 Characteristics of AR projection-based confidence sets _10 ≤ Cij ≤ 20 . . . . . 25
5 Comparison between AR and LR projection-based confidence sets when they are

bounded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Power of tests induced by projection-based confidence sets _H0 : β1 = 0 . . . . 28
7 Confidence sets for the coefficients of the Frankel-Romer income-trade equation. 32
8 Projection-based confidence sets for the coefficients of the exogenous covariates in

the income-education equation. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9 Confidence sets for the returns to scale and externality coefficients in different U.S.

industries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

List of Figures

1 Power of tests induced by projection-based confidence sets _H0 : β1 = 0.5 . . . 30

iv



1. Introduction

One of the classic problems of econometrics consists in making inference on the coefficients of
structural models. Such models typically involve endogenous explanatory variables (which can lead
to endogeneity biases), the need to use instrumental variables, and the possibility that “structural pa-
rameters of interest” may not be identifiable. Recently, the statistical problems raised by structural
modelling have received new attention in view of the observation that proposed instruments are
often “weak”, i.e. poorly correlated with the relevant endogenous variables, which correspond to
situations where the structural parameters are close to being not identifiable (through the instruments
used). The literature on so-called “weak instruments” problems is now considerable; see, for ex-
ample, Nelson and Startz (1990a, 1990b), Buse (1992), Maddala and Jeong (1992), Bound, Jaeger,
and Baker (1993, 1995), Angrist and Krueger (1995), Hall, Rudebusch, and Wilcox (1996), Dufour
(1997), Shea (1997), Staiger and Stock (1997), Wang and Zivot (1998), Zivot, Startz, and Nelson
(1998), Startz, Nelson, and Zivot (1999), Perron (1999), Chao and Swanson (2000), Hall and Peixe
(2000), Stock and Wright (2000), Dufour and Jasiak (2001), Hahn and Hausman (2002a, 2002b),
Kleibergen (2001, 2002), Moreira (2001, 2002), Stock and Yogo (2002) and Stock, Wright, and
Yogo (2002)].

In such contexts, several papers have documented by simulation and approximate asymptotic
methods the poor performance of standard asymptotically justified procedures [Nelson and Startz
(1990a, 1990b), Buse (1992), Bound, Jaeger, and Baker (1993, 1995), Hall, Rudebusch, and Wilcox
(1996), Staiger and Stock (1997), Zivot, Startz, and Nelson (1998), Dufour and Jasiak (2001)]. The
main difficulty here is that the finite-sample distributions of the relevant statistics (in particular, test
statistics) are very sensitive to unknown nuisance parameters; indeed, they can exhibit an arbitrary
large sensitivity to such parameters. Further, limiting distributions are non-standard when identifica-
tion conditions do not hold, while usual large-sample approximations do not converge uniformly, so
that the latter may be arbitrarily inaccurate in finite samples even when identification and standard
regularity conditions obtain. The fact that standard asymptotic theory can be arbitrarily inaccu-
rate in finite samples (of any size) is shown rigorously in Dufour (1997), where it is observed that
valid confidence intervals in a standard linear structural equations model must be unbounded with
positive probability and Wald-type statistics have distributions which can deviate arbitrarily from
their large-sample distribution (even when identification holds). The fact that both finite-sample
and large-sample distributions exhibit strong dependence upon nuisance parameters has also been
demonstrated by other methods, such as finite-sample distributional theory [see Choi and Phillips
(1992)] and local to nonidentification asymptotics [see Staiger and Stock (1997) and Wang and
Zivot (1998)].

As a result, it appears especially important in such problems to build tests and confidence sets
based on properly pivotal (or boundedly pivotal) functions, as well as to study inference procedures
from a finite-sample perspective. The fact that tests should be based on statistics whose distributions
can be bounded and that confidence sets should be obtained from pivotal statistics is, of course, a re-
quirement of basic statistical theory [see Lehmann (1986)]. In the framework of linear simultaneous
equations and in view of weak instrument problems, the importance of using pivotal functions for
statistical inference has been recently reemphasized by several authors [see Dufour (1997), Staiger
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and Stock (1997), Wang and Zivot (1998), Zivot, Startz, and Nelson (1998), Startz, Nelson, and
Zivot (1999), Dufour and Jasiak (2001), Stock and Wright (2000), Kleibergen (2001, 2002), Mor-
eira (2001, 2002), and Stock, Wright, and Yogo (2002)]. In particular, this suggests that confidence
sets should be built by inverting likelihood ratio (LR) and Lagrange multiplier (LM) type statis-
tics, as opposed to the more usual method which consists in inverting Wald-type statistics (such as
asymptotict-ratios).

In this paper, we wish to concentrate on procedures for which finite-sample pivotality obtains
under standard assumptions. In view of the results in Dufour (1997), we consider this approach
as the best guide to selecting test and confidence set procedures (even though asymptotic validity
will hold under weaker distributional assumptions). Useful pivotal functions are however difficult
to find in structural models. The oldest one appears to be the statistic proposed by Anderson and
Rubin (1949, henceforth AR). The latter is a limited-information method which allows one to test
an hypothesis setting the value of the full vector of the endogenous explanatory variable coefficients
in a linear structural equation; under usual parametric assumptions (error Gaussianity, instrument
strict exogeneity) the distribution of the statistic is a central Fisher distribution, while under weaker
(standard) assumptions it is asymptotically chi-square, irrespective of the presence of weak instru-
ments.

Limited-informationmethods typically involve an efficiency loss with respect tofull-information
methods, but do allow for a less complete specification of the model and more robustness. Indeed,
the AR statistic enjoys several remarkableinvariance(or robustness) properties. Namely it is com-
pletely robust (in finite samples) to the presence of weak instruments (robustness to weak instru-
ments), to the exclusion of possibly relevant instruments (robustness to instrument exclusion), and
more generally to the distribution of explanatory endogenous variables (robustness to endogenous
explanatory variable distribution).1 More precisely, its finite-sample distribution (under the null
hypothesis) is completely unaffected by the presence of “weak instruments”, the exclusion of rel-
evant instruments, and the error distribution in the reduced form for the explanatory endogenous
variables. We view all these features as important because it is typically difficult to know whether a
set of instruments is globally weak (so that the resulting inference becomes unreliable) or whether
relevant instruments have been excluded (which seems highly likely in most practical situations).
As a result, tests and confidence sets based on the AR statistic remains valid irrespective whether
instruments are weak or relevant instruments have been excluded. Extensions of the AR statistics
with the same basic robustness properties and a finite-sample distributional theory are also proposed
in Dufour and Jasiak (1993, 2001).

Other potential pivots aimed at being robust to weak instruments have recently been suggested
by Wang and Zivot (1998), Kleibergen (2002) and Moreira (2002). These methods are closer to
being full-information methods _ in the sense that they rely on a relatively specific formulation of
the model for the endogenous explanatory variables of the model _ and thus may lead to power gains
under the assumptions considered. But this will typically be at the expense of robustness. Further,
only asymptotic distributional theories have been supplied for these statistics, so that the level of
the procedures may not be controlled in finite samples. Indeed, it is easy to see that none of these

1We borrow the terminology “robust to weak instruments” from Stock, Wright, and Yogo (2002, p. 518). Robustness
to instrument exclusion appears to have been little discussed in the literature on weak instruments.
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statistics is pivotal in finite samples (i.e., their finite-sample distributions involve unknown nuisance
parameters) or robust to the exclusion of relevant instruments. It is clear that these statistics do not
qualify as pivotal in finite samples.

An important practical shortcoming of the above methods is that they are designed to test hy-
potheses of the formH0 : β = β0, whereβ is the coefficient vector forall the endogenous ex-
planatory variables. In particular these statistics do not allow to test linear and nonlinear restrictions
on the vectorβ. A general solution to this problem is theprojection technique described in Du-
four (1990, 1997), Wang and Zivot (1998) and Dufour and Jasiak (2001).2 This problem was also
considered by Choi and Phillips (1992), Stock and Wright (2000) and Kleibergen (2001). While
Choi and Phillips (1992) did not propose an operational method for dealing with the problem, the
methods considered by Stock and Wright (2000) and Kleibergen (2001) rely on the assumption
that the structural parameters not involved in the restrictions are well identified and rely on large-
sample approximations (which become invalid when the identification assumptions made do not
hold). Consequently they are not robust to weak instruments. For these reasons, we shall focus here
on the projection approach.

The basic idea behind the projection technique is simple. Letθ be a multidimensional parameter
vector for which we can build a confidence setCθ(α) with level 1 − α : P[θ ∈ Cθ(α)] ≥ 1 − α.
Now consider a transformation of interestg(θ) which takes its values inRm. For example,g(θ)
could be one of the components ofθ. Then it is easy to see that the image setg[Cθ(α)] = {g(θ) ∈
Rm : θ ∈ Cθ(α)} is a confidence set with level1 − α for g(θ), i.e. P

[
g(θ) ∈ g[Cθ(α)]

]
> 1 − α.

Such methods are also exploited in Abdelkhalek and Dufour (1998) and Dufour and Kiviet (1998)
for completely different models. In general, however, the calculation ofg[Cθ(α)] is not simple and
may require the use of costly numerical methods [as done, for example, in Abdelkhalek and Dufour
(1998), Dufour and Kiviet (1998) or Dufour and Jasiak (2001)].

In this paper, we study some general geometric features ofAR-type confidence sets and we pro-
vide a complete explicit solution to the problem of building projection-based confidence sets from
such confidence sets. Wefirst observe thatAR-type confidence sets can be described asquadrics
[see Shilov (1961, Chapter 11) and Pettofrezzo and Marcoantonio (1970)], a class of geometric
figures which covers as special cases the usual confidence intervals and ellipsoids but also includes
hyperboloids and paraboloids. In particular, we give a simple necessary and sufficient condition
under which such confidence sets are bounded (which indicates that the parameters considered are
identifiable). We use the projection technique to build confidence sets for components of the vector
of unknown parameters and for linear combinations of these components.

Second, using these results, we then derive simple explicit expressions for projection-based

2Another shortcoming of AR-type tests comes from the fact that power may decline as the number of instruments
increases, especially if they have little relevance. This indicates that the number of instruments should be kept as small
as possible. Because AR statistics are robust to the exclusion of instruments (even if they are relevant), this can be done
relatively easily. We discuss the problem of selecting optimal instruments and reducing the number of instruments in two
companion papers [Dufour and Taamouti (2001b, 2001a)]. In the present paper, we focus on the problem of building
projection-based confidence sets, for agivenset of instruments. For results relevant to instrument selection, the reader
may also consult Cragg and Donald (1993), Hall, Rudebusch, and Wilcox (1996), Shea (1997), Staiger and Stock (1997),
Chao and Swanson (2000), Donald and Newey (2001), Hall and Peixe (2000), Hahn and Hausman (2002a, 2002b), Stock
and Yogo (2002).
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confidence intervals in the case of individual structural coefficients (or linear transformations of
these coefficients). Consequently, no search by nonlinear methods is anymore required. The explicit
calculation of the confidence sets thus makes the projection approach very attractive. When the
projection-based confidence intervals are bounded, they may be interpreted as confidence intervals
based on k-class estimators [for a discussion of k-class estimators, see Davidson and MacKinnon
(1993, page 649)] where the “standard error” is corrected in a way that depends on the level of the
test. The confidence interval for a linear combination of the parameters, sayw′β takes the usual
form [w′β̂ − σ̂zα, w′β̂ + σ̂zα] with β̂ a k-class type estimator ofβ.

Thirdly, we show that the confidence sets obtained in this way enjoy another important property,
namelysimultaneityin the sense discussed by Miller (1981), Savin (1984) and Dufour (1989). More
precisely, projection-based confidence sets (or confidence intervals) can be viewed as Scheffé-type
simultaneous confidence sets _ which are widely used in analysis of variance _ so that the probability
that any number of the confidence statements made (for different functions of the parameter vector)
hold jointly is controlled. Correspondingly, multiple hypotheses onβ can be tested without ever
losing control the overall level of the tests,i.e. the probability of rejecting at least one true null
hypothesis onβ is not larger than the levelα. This can provide an important check on data mining.

Fourth, the methods discussed in this work are evaluated and compared on the basis of Monte
Carlo simulations. In particular we analyze the conservatism of the projection-based confidence
sets.

Fifth, in order to illustrate the projection approach, we present three empirical applications. In
the first one, we study the relationship between standards of living and openness in the context
of an equation previously considered by Frankel and Romer (1999). The second application deals
with the famous problem of measuring returns to education using the model and data considered
by Angrist and Krueger (1995) and Bound, Jaeger, and Baker (1995), while in the third example
we study returns to scale and externalities in various industrial sectors of the U.S. economy, using a
production function specification previously considered by Burnside (1996).

In Section 2, we present the background model and statistical inference methods on the coef-
ficient vector of the explanatory endogenous variables. Section 3 presents the simultaneous confi-
dence sets. In Section 4, we discuss some general properties of quadric confidence sets and provide
a simple necessary and sufficient condition under which such sets are bounded. Section 5 provides
explicit projection-based confidence intervals for individual structural parameters and linear trans-
formations of these parameters. We also discuss the simultaneity property of these confidence in-
tervals. In Section 6, we report the results of our Monte Carlo simulations, while Section 7 presents
the empirical applications. Finally, Section 8 concludes.

2. Framework

We consider here the standard simultaneous equations model (SEM):

y = Y β + X1γ + u , (2.1)

Y = X1Π1 + X2Π2 + V , (2.2)

4



wherey andY areT × 1 andT × G matrices of endogenous variables,X1 andX2 areT × k1

andT × k2 matrices of exogenous variables,β andγ areG × 1 andk1 × 1 vectors of unknown
coefficients,Π1 andΠ2 arek1×G andk2×G matrices of unknown coefficients,u = (u1, . . . , uT )′

is a vector of structural disturbances, andV = [V1, . . . , VT ]′ is aT × G matrix of reduced-form
disturbances. Further,

X = [X1, X2] is a full-column rankT × k matrix (2.3)

wherek = k1 + k2. Finally, to get a finite-sample distributional theory for the test statistics, we
shall use the following assumption on the conditional distribution ofu givenX :

u |X ∼ N
[
0, σ2

u(X)IT

]
(2.4)

whereσ2
u(X) is a positive scalar parameter which may depend onX (but not onβ or γ). This

means that, conditional onX, the disturbancesu1, . . . , uT are i.i.d. Gaussian. In particular, it is
clear (2.4) holds under the following standard assumptions:

u andX are independent; (2.5)

u ∼ N
[
0, σ2

u IT

]
. (2.6)

(2.5) may be interpreted as the strict exogeneity ofX with respect tou.
Note that the distribution ofV is not otherwise restricted; in particular, the vectorsV1, . . . , VT

need not follow a Gaussian distribution and may be heteroskedastic. Below, we shall also consider
the situation where the reduced-form equation forY includes a third set of instrumentsX3 which
are not used in the estimation:

Y = X1Π1 + X2Π2 + X3Π3 + V (2.7)

whereX3 is aT ×k3 matrix of explanatory variables (not necessarily strictly exogenous); in partic-
ular,X3 may be unobservable. We view this situation as important because, in practice, it is quite
rare that one can consider all the relevant instruments have been or should be used.

In such a model, we are generally interested in making inference onβ andγ. In Dufour (1997),
it is shown that if the model is unidentified (the matrixΠ2 does not have its maximal rank) any
valid confidence set forβ or γ must be unbounded with positive probability. This is due to the
fact that such a model may be unidentified and holds indeed even if identification restrictions are
imposed. This result explains many recent findings about the performance of standard asymptotic
statistics when the instrumentsX2 are weakly correlated with the endogenous explanatory variables
Y . The usual approach, which consists in inverting Wald-type statistics to obtain confidence sets,
is not valid in these situations since the resulting confidence sets are bounded with probability 1.
This is related to the fact that finite-sample distributions of such statistics are not pivotal and follow
distributions which depend heavily on nuisance parameters.

Choi and Phillips (1992) considered the same model where they suppose that a subset of param-
eters are not identified. They derive exact and asymptotic distributions of the instrumental variables
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estimator and the Wald statistic. The analytic expressions obtained are complex and differ from
commonly known ones. Staiger and Stock (1997) considered the same model but assumed that the
elements of the matrixΠ2 tend to 0 asT increases (Π2 = C/

√
T , whereC is a fixed matrix). They

derive the asymptotic distributions of different statistics, including two-stage least squares (2SLS)
limited information maximum likelihood (LIML) and the Wald-type statistics based on these esti-
mators. In conformity with the results in Dufour (1997), these distributions depend on nuisance pa-
rameters and are not pivotal. Wang and Zivot (1998) derived [under the same assumption as Staiger
and Stock,i.e. Π2 = C/

√
T ] the asymptotic distributions of likelihood ratio(LR) and Lagrange

multiplier (LM) type statistics based on maximum likelihood and GMM estimation methods. As
before, these distributions depend on nuisance parameters and are not pivotal. These derivations
provide useful insights for understanding the poor performance of asymptotic approximations re-
ported in previous work, but they do not solve the statistical inference problem in these models.

A first solution to this problem [see Dufour (1997) and Staiger and Stock (1997)] consists in
using the Anderson-Rubin statistic [Anderson and Rubin (1949)]. This test is based on the simple
idea that ifβ is specified, model (2.1)-(2.2) can be reduced to a simple linear regression equation.
More precisely, if we consider the hypothesisH0 : β = β0 in equation (2.1), we can write:

y − Y β0 = X1θ1 + X2θ2 + ε (2.8)

whereθ1 = γ + Π1(β − β0), θ2 = Π2(β − β0) andε = u + V (β − β0). Equation (2.8) satisfies
all the conditions of the linear regression model. We can testH0 by testingH

′
0 : θ2 = 0 using the

standardF -statisticH
′
0 [denotedAR(β0)]. With the additional assumptions (2.3) - (2.4), we have

underH0 :

AR(β0) =
(y − Y β0)′[M(X1)−M(X)](y − Y β0)/k2

(y − Y β0)′M(X)(y − Y β0)/(T − k)
∼ F (k2, T − k) (2.9)

where for any full rank matrixB, M(B) = I − P (B) andP (B) = B(B′B)−1B′ is the projection
matrix on the space spanned by the columns ofB. The distributional result in (2.9) holds irrespec-
tive on the rank of the matrixΠ2, which means that tests based onAR(β0) are robust to weak
instruments. It is also interesting to note that this distribution is not affected by the distribution of
V ; in other words,AR(β0) is robust to the distribution of the endogenous explanatory variablesY.

Another important feature ofAR(β0) comes from the fact that (2.9) also obtains under the wider
model (2.7), because in this case:

y − Y β0 = X1θ1 + X2θ2 + X3θ3 + ε (2.10)

whereθ1 = γ + Π1(β − β0), θ2 = Π2(β − β0), θ3 = Π3(β − β0) andε = u + V (β − β0). Since
θ2 = 0 andθ3 = 0 underH0, it is straightforward to see that the null distribution ofAR(β0) is
F (k2, T − k) [under the assumptions (2.1), (2.7), (2.3) and (2.4)]. As a result, the validity of the
test based onAR(β0) is unaffected by the fact that potentially relevant instruments are not taken
into account. For this reason, we will say it isrobust to instrument exclusion. Furthermore, the
distribution ofX3 is irrelevant to the null distribution ofAR(β0), so thatX3 does not have to be
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strictly exogenous. Even more generally, we could also assume thatY obeys a general nonlinear
model of the form:

Y = g(X1, X2, X3, V, Π) (2.11)

whereg(·) is a possibly unspecified nonlinear function andΠ is an unknown parameter matrix.
Since, underH0,

y − Y β0 = X1θ1 + ε ,

the coefficientθ2 in the regression (2.8) must be zero, and (2.9) still holds.
A confidence set forβ with level1− α can be obtained by inverting the statisticAR(β0) :

Cβ(α) = {β0 : AR(β0) ≤ Fα(k2, T − k)} (2.12)

whereFα(k2, T − k) is the1 − α quantile of theF distribution withk2 andT − k degrees of
freedom. This confidence set is exact and does not require an identification assumption. When
G = 1, this set has an explicit form solution involving a quadratic inequation _ i.e.Cβ(α) =
{β0 : aβ2

0 + bβ0 + c ≤ 0} wherea, b and c are simple functions of the data and the critical
valueFα(k2, T − k) _ andCβ(α) is unbounded ifF (Π2 = 0) < Fα, whereF (Π2 = 0) is the
F -test forH0 : Π2 = 0 in equation (2.2); see Dufour and Jasiak (2001) and Zivot, Startz, and
Nelson (1998) for details. Further, Monte Carlo simulations [Maddala (1974), Dufour and Jasiak
(2001)] indicate that the AR-based test behaves well in terms of power (as long as the number of
k2 of additional instruments is not unduly large). This test also remains asymptotically valid under
weaker distributional assumptions, in the sense that the asymptotic null distribution ofAR(β0) is
χ2(k2)/k2 [see Dufour and Jasiak (2001) and Staiger and Stock (1997)].

Below, we shall also consider two alternative statistics proposed by Wang and Zivot (1998). The
first one is anLR−type statistic and the second is anLM−type statistic. Under the assumptions
(2.1)-(2.6) and additional regularity conditions on the asymptotic behavior of the instruments [de-
scribed by Wang and Zivot (1998)], these two statistics followχ2(k2) distributions asymptotically
when the model is exactly identified(k2 = G), and are bounded by aχ2(k2) distribution when the
model is over-identified(k2 > G). To test H0 : β = β0, these statistics are:

LRLIML(β0) = T [ln(k(β0))− ln[k(β̂LIML)] , (2.13)

LM2SLS(β0) =
T (y − Y β0)′P [P [M(X1)X2]Y ](y − Y β0)

(y − Y β0)′M(X1)(y − Y β0)
, (2.14)

where

k(β0) =
(y − Y β0)′M(X1)(y − Y β0)
(y − Y β0)′M(X)(y − Y β0)

.

Asymptotic and conservative confidence sets forβ can be obtained by inverting the latter tests.
However, it is easy to see that these statistics are not generally robust to instrument exclusion.3

A common shortcoming of all these tests is that they require one to specify the entire vectorβ.

3We do not study here the tests proposed by Kleibergen (2002) and Moreira (2002), because it does not appear that
the associated confidence sets can be covered by the theory described in this paper (in terms of quadrics). Furthermore,
these procedures are not robust to instrument exclusion.
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In particular, they do not allow for general hypotheses of the formH0 : g(β) = 0, whereg(β) may
be any transformation ofβ, such asg(β) = βi − βi

0, whereβi is any scalar component ofβ.
In this paper, we deal with this problem by studying the characteristics of the confidence sets

obtained by inverting such statistics, and we use them to derive confidence sets for the components
of β or linear combinations of these components. We first show that the confidence sets based on
the statisticsAR, LR andLM can be expressed in terms of a quadratic-linear form involving a
matrix A, a vectorb and a scalarc. These sets (replacing the inequality by an equality) are known
asquadrics [Shilov (1961, Chapter 11), Pettofrezzo and Marcoantonio (1970, Chapters 9-10)]. We
will then study the different possible cases as functions ofA, b andc, and we will derive analytic
expressions for projection-based confidence intervals in the case of linear transformations of model
parameters.

3. Quadric confidence sets

Let us first consider theAR statistic. A simple algebraic calculation shows that the inequality

AR(β0) ≤ Fα(k2, T − k)

may be written in the following simple form:

β′0Aβ0 + b′β0 + c ≤ 0 (3.1)

whereA = Y ′HY, b = −2Y ′Hy, c = y′Hy and

H ≡ HAR = M(X1)−M(X)
[
1 +

k2Fα(k2, T − k)
T − k

]
. (3.2)

We can thus write:
Cβ(α) = {β0 : β′0Aβ0 + b′β0 + c ≤ 0} . (3.3)

If β is scalar, this set is the solution of a quadratic inequation:

Cβ(α) = {β0 : aβ2
0 + bβ0 + c ≤ 0}. (3.4)

Depending on the values ofa, b andc, this set may take several forms (a closed interval, a semi-open
interval, a union of two semi-open intervals, the setR of all possible values, or the empty set); see
Dufour and Jasiak (2001), and Zivot, Startz, and Nelson (1998).

If we use the statisticLRLIML(β0) or LM2SLS(β0) instead ofAR, we get analogous confi-
dence sets which only differ through theH matrix. ForLRLIML(β0), this matrix takes the form

HLR = M(X1)−M(X) k(β̂LIML) exp[χ2
α(k2)/T ] (3.5)

while, for LM2SLS(β0), it is

HLM = P
[
P [M(X1)X2]Y

]−M(X1)[χ2
α(k2)/T ] . (3.6)
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For theAR andLR statistics, the matrixA can be written:

A = Y ′M(X1)Y − Y ′M(X)Y (1 + fα)

wherefα = k2Fα(k2, T −k)/(T − k) for AR andfα = exp[χ2
α(k2)/T ]k(β̂LIML)− 1 for theLR

statistic. ClearlyA is symmetric and a typical diagonal element of this matrix is

Aii = Y ′
i M(X1)Yi − Y ′

i M(X)Yi (1 + fα) , (3.7)

which is acorrected difference between the sum of squared residuals from the regression ofYi on
X1 and the sum of squared residuals from the regression ofYi on X = [X1, X2]. This difference
may be viewed as a measure of the importance ofX2 in explainingYi, i.e. the relevance ofX2 as an
instrument forYi. A necessary condition for matrixA to be positive definite is that the instruments
X2 should provide sufficient additional explanatory power forY (with respect toX1). Similarly,
c = y′Hy is a corrected difference between the sum of squared residuals from the regression ofy
onX1 and the sum of squared residuals from the regression ofy onX = [X1, X2]. For the vector
b, a typical element is given by

bi = −2{[M(X1)Yi]′[M(X1)y]− [M(X)Yi]′[M(X)y](1 + fα)}. (3.8)

The first term [multiplied by−1/(2T )] is the sample covariance between the residuals of the re-
gression ofYi onX1 and the residuals of the regression ofy onX1, while the second term gives the
same covariance withX1 replaced byX = [X1, X2].

4. Geometry of quadric confidence sets

The locus of points that satisfy an equation of the form

β′Aβ + b′β + c = 0 , (4.1)

whereA is a symmetricG ×G matrix, b is aG × 1 vector andc is a scalar, is known in the math-
ematical literature as aquadricsurface [Shilov (1961, Chapter 11), Pettofrezzo and Marcoantonio
(1970)]. Consequently, we shall call a confidence set of the form

Cβ = {β : β′Aβ + b′β + c ≤ 0} (4.2)

a quadric confidence set. A quadric is characterized by the sum a quadratic form(β′Aβ) and
an affine transformation(b′β + c). Depending on the values ofA, b and c, it may take several
forms. In this section, we examine some general properties of quadric confidence sets, especially
the conditions under which such sets are bounded or unbounded. In particular, we will see that the
eigenvalues of theA matrix play a central role in these properties and that larger eigenvalues are
associated with more “concentrated” (or “smaller”) quadric confidence sets. For these reasons, we
call A theconcentration matrixof the quadric.

In the sequel of this section, it will be convenient to distinguish between two basic cases: the
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one whereA is nonsingular, and the one where it is singular. We adopt the convention that an empty
set is bounded.

4.1. Nonsingular concentration matrix

If A is nonsingular, we can write:

β′Aβ + b′β + c =
(
β +

1
2
A−1b

)′
A

(
β +

1
2
A−1b

)
−

(1
4
b′A−1b− c

)

=
(
β − β̃

)′
A

(
β − β̃

)− d (4.3)

whereβ̃ = −1
2A−1b andd = 1

4b′A−1b− c . SinceA is a real symmetric matrix, we have:

A = P ′DP (4.4)

whereP is an orthogonal matrix andD is a diagonal matrix whose elements are the eigenvalues of
A. Inequality (3.1) may then be reexpressed as

λ1z
2
1 + λ2z

2
2 + · · · + λGz2

G ≤ d (4.5)

where theλi’s are the eigenvalues ofA andz = P (β − β̃). The transformationz = P (β − β̃)
represents a translation followed by a rotation ofβ, so it is clear that

Cβ is bounded⇔ Cz is bounded (4.6)

where

Cβ ≡ {β : β′Aβ + b′β + c ≤ 0} = {β :
(
β − β̃

)′
A

(
β − β̃

) ≤ d}
= {β : λ1z

2
1 + λ2z

2
2 + · · · + λGz2

G ≤ d andz = P (β − β̃)}, (4.7)

Cz ≡ {z : λ1z
2
1 + λ2z

2
2 + · · · + λGz2

G ≤ d} . (4.8)

Again it will be convenient to distinguish between three cases according to the signs of the eigen-
values ofA, namely: (1) all the eigenvalues ofA are positive(λi > 0, i = 1, . . . , G), i.e. A
is positive definite; (2) all the eigenvalues ofA are negative(λi < 0, i = 1, . . . , G), i.e. A is
negative definite; (3)A has both positive and negative values,i.e. A is neither positive nor negative
definite.

4.1.1. Positive definite concentration matrix

If λi > 0, i = 1, . . . , G, the inequality (4.5) can be reexpressed as

(
z1

γ1

)2

+ · · · +
(

zG

γG

)2

≤ d (4.9)
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whereγi =
√

1/λi, i = 1, . . . , G. If d = 0, we haveCz = {0} andCβ reduces to{β̃}. If
d < 0, Cz andCβ are empty. Ifd > 0, Cz is the area inside an ellipsoid, hence it is a compact set.
Consequently,Cz andCβ are bounded.

4.1.2. Negative definite concentration matrix

If λi < 0, i = 1, . . . , G, the setCz is the set of all values ofz that satisfy

(
z1

γ1

)2

+ · · · +
(

zG

γG

)2

≥ −d (4.10)

whereγi =
√
−1/λi, or equivalently, the setnot insidethe open ellipsoid defined by

(
z1

γ1

)2

+ · · · +
(

zG

γG

)2

< −d . (4.11)

Cz andCβ are thus unbounded sets. In particular, ifd ≥ 0, we haveCβ = Cz = RG.

4.1.3. Concentration matrix not positive or negative definite

If A has both positive and negative eigenvalues, we can assume, without loss of generality, that
λi > 0 for i = 1 , . . . , p, andλi < 0 , for i = p + 1 , . . . , G, where1 ≤ p < G. Inequality (4.5)
may then be rewritten:

(
z1

γ1

)2

+ · · · +
(

zp

γp

)2

−
(

zp+1

γp+1

)2

− · · · −
(

zG

γG

)2

− d ≤ 0 (4.12)

wherep is the number of positive eigenvalues ofA, γi =
√

1/λi for i = 1 , . . . , p, andγi =√
−1/λi for i = p + 1 , . . . , G.
In this caseCz and Cβ are unbounded. This is easy to see: for arbitrary given values of

z1, , . . . , zp andd, it is clear that inequality (4.12) will hold if any of the valueszi, p+1 ≤ i ≤ G, is
small enough (as|zi| → ∞). Consequently, each component ofz is unbounded inCz and similarly
for each component ofβ in Cβ.

4.2. Singular concentration matrix

We now consider the case whereA is singular with rankr (r < G).Without loss of generality, we
can assume that the firstr diagonal elements ofD in the decompositionA = P ′DP (the firstr
eigenvalues ofA) used in (4.5) are different from zero, while theG− r other ones are equal to zero.
Then we can write (see the details in the Appendix):

β′Aβ + b′β + c =
r∑

i=1

λiz
2
i +

G∑

i=r+1

δizi − d (4.13)
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where theλi are the eigenvalues ofA (λi 6= 0, i = 1, . . . , r), δ = Pb, z = Pβ + µ and

d = −c +
r∑

i=1

δ2
i /(4λi) , µi =

{
δi/(2λi) , if λi 6= 0 ,
0 , otherwise.

(4.14)

In the new space given by the transformationz = Pβ + µ, Cz may take many forms following the
number of non-zero eigenvalues and their signs. However, this set will always be unbounded. From
(4.13) it is clear that we can make anyzi, i = r + 1, . . . , G, arbitrarily large with an opposite sign
of its coefficientδi, so that the inequality (4.5) will hold.

4.3. Necessary and sufficient condition for bounded quadric confidence set

We can now deduce the conditions under whichCβ is bounded. According to results in Dufour
(1997), a valid confidence setCβ for β (with level1− α) in model (2.1)-(2.6) must be unbounded
with positive probability for any parameter configuration, a probability that should be large(close
to 1− α) when the matrixΠ2 does not have full rank (or is close to have full column rank). Given
the complicated expressions of the random matrixA, the random vectorb and the random scalarc,
it seems difficult to evaluate this probability. In the following proposition, we give an easy-to-verify
necessary and sufficient condition for a confidence set of the formCβ to be bounded.

Theorem 4.1 NECESSARY AND SUFFICIENT CONDITION FOR BOUNDED CONFIDENCE SET.
The setCβ in (4.2) is bounded if and only if the matrixA is positive definite.

Proofs are provided in the Appendix. It is of interest to note here that the case whereA is
singular is unlikely to be met with AR-type confidence sets such as those described in Section 3,
because in this case we haveA = Y ′HY, whereY andH, are aT × G and aT × T matrices
respectively. IfY follows an absolutely continuous distribution (as assumed in Section 2),A will
be nonsingular with probability one as soon as the rank ofH is greater than or equal toG.

4.4. Joint confidence sets forβ and γ

Finally, we note that the above results also apply to the problem of building joint confidence sets for
β and a subvectorγ1 of γ. This can be done by using an appropriate extension of the AR procedure
[see Dufour and Jasiak (2001)]. LetX1 = [X11, X12], γ = (γ′1, γ′2)

′ andΠ1 = [Π11, Π12] where
X11, γ1 andΠ11 have dimensionsT × k11, k11 × 1 andk11 × G respectively(k11 ≤ k1). From
(2.1) - (2.2), we can write:

y − Y β0 −X11γ10 = X11θ11 + X12θ12 + X2θ2 + ξ (4.15)

whereθ11 = Π11(β − β0) + γ1 − γ10, θ11 = Π11(β − β0) + γ2, θ2 = Π2(β − β0) andξ =
V (β − β0) + u. We can test

H0 : (β, γ1) = (β0, γ10) (4.16)
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by testingH ′
0 : θ11 = 0 andθ2 = 0, and obtain a joint confidence set forβ andγ1 by inverting the

correspondingF -test. After a similar simple calculation, we obtain the same form as before:

C(β, γ1)(α) = {(β′0, γ′10)
′ : (β′0, γ

′
10)A1(β′0, γ

′
10)

′ + b′1(β
′
0, γ

′
10)

′ + c1 ≤ 0} (4.17)

whereA1 = [Y, X11]′H1[Y, X11], b1 = −2[Y, X11]′H1y, c1 = y′H1y and

H1 = M(X12)−
[
1 +

k11 + k2

T − k
Fα(k11 + k2, T − k)

]
M(X) . (4.18)

5. Confidence sets for transformations ofβ

5.1. The projection approach

The projection technique is a general approach that may be applied in different contexts. Given a
confidence setCθ(α) with level 1 − α for the vector of parametersθ, this method enables one to
deduce confidence sets for general transformationsg in Rm of this vector. Sincex ∈ E ⇒ g(x) ∈
g(E) for any setE, we have

P[θ ∈ Cθ(α)] ≥ 1− α ⇒ P
[
g(θ) ∈ g [Cθ(α)]

] ≥ 1− α (5.1)

whereg [Cθ(α)] = {x ∈ Rm : ∃ θ ∈ Cθ(α), g(θ) = x}. Henceg [Cθ(α)] is a conservative
confidence set forg(θ) with level1− α.

Even if g(θ) is scalar, the projection-based confidence set is not necessarily an interval. How-
ever, it is easy to see that

P[gL(α) ≤ g(θ) ≤ gU (α)] > 1− α (5.2)

where gL(α) = inf{g(θ0), θ0 ∈ Cθ(α)} and gU (α) = sup{g(θ0), θ0 ∈ Cθ(α)}; see Du-
four (1997), Abdelkhalek and Dufour (1998) or Dufour and Jasiak (2001). ThusIU (α) =[
gL(α), gU (α)

]\{−∞, +∞} is a confidence interval (CI) with level1 − α for g(θ), where it is
assumed that−∞and+∞ are not admissible. This interval is not bounded whengL(α) or gU (α)
is infinite.

It is worth noting that we obtain in this waysimultaneous confidence setsfor any number of
transformations ofβ: g1(β), g2(β), . . . , gn(β). The setCg1(β)(α)×Cg2(β)(α)× · · · ×Cgn(β)(α)
whereCgi(β)(α) is the projection-based confidence set forgi(β), i = 1, . . . , n, is a simultaneous

confidence set for the vector
(
g1(β), g2(β), . . . , gn(β)

)′
with level greater than or equal to1− α.

More generally, if{ga(β) : a ∈ A} is a set of functions ofβ,whereA is is some index set, then

P
[
ga(β) ∈ ga [Cβ(α)] for all a ∈ A

] ≥ 1− α . (5.3)

If these confidence intervals are used to test different hypotheses, an unlimited number of hypotheses
can be tested without losing control of then overall level. The confidence sets obtained in this way
are simultaneousin the sense of Scheffé. For further discussion of simultaneous inference, the
reader may consult Miller (1981), Savin (1984), and Dufour (1989).
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In this section, we build confidence sets forg(β) by “projecting” the setCβ(α).4 We study two
particular transformations:g(β) = w′β (a linear combination of the components ofβ) andg(β) =
βi (the projection on the axisβi). We also show that the confidence intervalIU (α) may involve a
sizeable loss of information when the two optimization problems have unbounded solutions [i.e., if
gL(α) = −∞ andgU (α) = +∞] while the appropriate projection is a proper subset ofR, hence
the importance of studying the setCβ before choosing the way to project it.

If the aim is to testH0 : g(β) = 0, we can easily deduce fromCβ(α) a conservative test. The
latter consists in rejectingH0 when all vectorsβ0 that satisfyH0 are rejected by the AR test, or
equivalently when the minimum ofAR(β0) subject to the constraint (s.c.)g(β) = 0 is larger than
Fα(k2, T − k), i.e.whenmin{AR(β) : g(β) = 0} ≥ Fα(k2, T − k).

5.2. Projection-based confidence sets for scalar linear transformations

We consider now a general confidence set of the form

Cβ = {β0 : β′0Aβ0 + b′β0 + c ≤ 0} (5.4)

wherec is a real scalar,A is a symmetricG×G matrix, andb is aG× 1 vector. By definition, the
associated projection-based confidence interval for the scalar functiong(β) = w′β, wherew is a
nonzeroG× 1 vector, is:

Cw′β ≡ g[Cβ] = {δ0 : δ0 = w′β0 whereβ′0Aβ0 + b′β0 + c ≤ 0} . (5.5)

To study the characteristics ofCw′β, we shall distinguish again between the case whereA is non-
singular and the case where it is singular.

5.2.1. Nonsingular concentration matrix

When the concentration matrix is nonsingular, all the eigenvalues ofA are different from 0. Using
the transformationz = P (β − β̃), Cw′β may then be written:

Cw′β = {w′β0 : λ1z
2
1 + λ2z

2
2 + · · · + λGz2

G ≤ d andz = P (β0 − β̃)}.

Further,
w′β = w′P ′Pβ = w′P ′P (β − β̃) + w′P ′P β̃ = a′z + w′β̃ (5.6)

wherea = Pw. Setting

Ca′z = {a′z : λ1z
2
1 + λ2z

2
2 + · · · + λGz2

G ≤ d} , (5.7)

it is then easy to see that, forx ∈ R,

x ∈ Cw′β ⇔ x− w′β̃ ∈ Ca′z , (5.8)

4SinceC(β, γ1)(α) [in (4.17)] andCβ(α), have the same form, projections fromC(β, γ1)(α) can be computed in the
same way.
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hence:Cw′β = R ⇔ Ca′z = R . We will now distinguish three cases depending on the number
of negative eigenvalues: (1) all the eigenvalues ofA are positive (i.e., A is positive-definite); (2)A
has exactly one negative eigenvalue; (3)A has at least two negative eigenvalues.

WhenA is positive definite,Cβ is a bounded set and, correspondingly, its imageg[Cβ] by the
continuous functiong(β) = w′β is also bounded [see Abdelkhalek and Dufour (1998, Proposition
2)]. The following proposition provides an explicit form for the projection-based confidence set
Cw′β.

Theorem 5.1 PROJECTION-BASED CONFIDENCE SETS FOR LINEAR TRANSFORMATIONS WHEN

THE CONCENTRATION MATRIX IS POSITIVE DEFINITE. Let Cβ be the set defined in(5.4), d ≡
1
4b′A−1b − c and letw be a nonzero vector inRG. If the matrixA is positive definite andd ≥ 0,
then

Cw′β =
[
w′β̃ −

√
d (w′A−1w) , w′β̃ +

√
d (w′A−1w)

]
(5.9)

whereβ̃ = −1
2A−1b. If d < 0, Cw′β is empty.

In the special case wherew = ei = (δ1i, δ2i, . . . , δGi)′, with δji = 1 if j = i andδji = 0
otherwise, the setCw′β is a confidence interval for the componentβi. This set is given by the
following corollary, which is a direct consequence of Proposition5.1.

Corollary 5.2 PROJECTION-BASED CONFIDENCE INTERVAL FOR AN INDIVIDUAL COEFFI-
CIENT. Let Cβ be the set defined in(5.4) and d ≡ 1

4b′A−1b − c . Suppose the matrixA in
(5.4) is positive definite. If the matrixA is positive definite andd ≥ 0, then

Cβi
=

[
β̃i −

√
d (A−1)ii , β̃i +

√
d (A−1)ii

]

whereβ̃i = −(A−1)i.b/2 is the i-th element of̃β = −1
2

′
A−1b, (A−1)i. is the i-th row of A−1,

(A−1)ii is thei-th element of the diagonal ofA−1, and(A−1)ii > 0 . Further, if d < 0, thenCβi
is

empty.

It is interesting to note the relationship with Scheffé-type confidence sets. The confidence set
for β is based on theF -test ofH0 : θ2 = Π2(β − β0) = 0 in the regression equation:

y − Y β0 = X1θ1 + X2θ2 + ε .

Following Scheffé (1959) [see also Savin (1984)], thisF -test is equivalent to the test which does
not rejectH0 when all hypotheses of the formH0(a) : a′θ2 = 0 are not rejected by the criterion
|t(a)| > S(α), for all k2× 1 non-zero vectorsa, wheret(a) is thet-statistic forH0(a) andS(α) =√

k2 Fk2,T−k(α). Sincea′θ2 = w(β − β0) wherew = Π2a, this entails that no hypothesis of the
form H ′

0(w) : w′β = w′β0, wherew = Π2a, is rejected. The projection-based confidence set for
w′β can be viewed as a Scheffé-type simultaneous confidence interval forw′β.

Let us now consider the case whereA has exactly one negative eigenvalue. The basic result in
this case is given by the following proposition.
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Theorem 5.3 PROJECTION-BASED CONFIDENCE SETS FOR LINEAR TRANSFORMATIONS WHEN

THE CONCENTRATION MATRIX HAS ONE NEGATIVE EIGENVALUE. LetCβ be the set defined in
(5.4), d ≡ 1

4b′A−1b − c, w ∈ RG\{0}, and suppose the matrixA is nonsingular with exactly one
negative eigenvalue. Ifw′A−1w < 0 andd < 0, then

Cw′β =
]
−∞ , w′β̃ −

√
d (w′A−1w)

]
∪

[
w′β̃ +

√
d (w′A−1w) , +∞

[
. (5.10)

If w′A−1w > 0 or if w′A−1w ≤ 0 andd ≥ 0, thenCw′β = R. If w′A−1w = 0 andd < 0, then
Cw′β = R\{w′β̃}.

It is interesting to note here thatCw′β can remain informative, even if it is unbounded. In
particular, if we want to testH0 : w′β = r and consider as a decision rule which rejectsH0 when
r /∈ Cw′β, H0 will be rejected for all values ofr in the interval

(
w′β̃ −

√
d(w′A−1w) , w′β̃ +√

d(w′A−1w)
)
. In this case,gL(α) = −∞ andgU (α) = ∞, so thatIU (α) = R an uninformative

set, while in fact the true projection-based confidence set is a proper subset ofR.
Finally, we consider the case whereA has at least two negative eigenvalues. We cover here the

case where the matrixA is negative definite, or not negative definite with at least 2 negative eigenval-
ues. In this case the projection-based confidence set for any linear combination of the components
of β is equal to the real line, thus uninformative. This is stated in the following proposition.

Theorem 5.4 PROJECTION-BASED CONFIDENCE SETS FOR LINEAR TRANSFORMATIONS WHEN

THE CONCENTRATION MATRIX HAS MORE THAN ONE NEGATIVE EIGENVALUE. LetCβ be the
set defined in(5.4) andw ∈ RG\{0}. If the matrixA in (5.4) is nonsingular and admits at least
two negative eigenvalues, thenCw′β = R.

5.2.2. Singular concentration matrix

We will now study the case where the concentration matrixA can be singular. This can occur, for
example, if the system studied involves identities. Sincew 6= 0, we can assume without loss of
generality that the first component ofw (denotedw1) is different from zero. It will be convenient to
consider a nonsingular transformation ofβ :

δ =
[

δ1

δ2

]
=

[
w′β
R2β

]
= Rβ , R =

[
w′

R′
2

]
=

(
w1 w′2
0 IG−1

)
(5.11)

wherew′ = [w1, w′2] andR2 = [0, IG−1] is a (G− 1)×G matrix. If β = (β1, β2, . . . , βG)′, it is
clear form this notation thatδ2 = (β2, . . . , βG)′. We study the problem of building a confidence
set forδ1.

The quadric form which definesCβ in (4.2) may be written:

β′Aβ + b′β + c = δ′Āδ + b̄′δ + c ≡ Q̄(δ) (5.12)
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whereĀ = (R−1)′AR−1, b̄ = (R−1)′b, so that

Cw′β = Cδ1 = {δ1 : δ = (δ1, δ′2)
′ satisfiesQ̄(δ) ≤ 0} . (5.13)

On partitioningĀ andb̄ conformably withδ = (δ1, δ′2)′, we have:

Ā =
(

ā11 Ā′21

Ā21 Ā22

)
, b̄ =

(
b̄1

b̄2

)
(5.14)

whereĀ22 has dimension(G − 1) × (G − 1) and, by convention, we set̄A = [ā11] andb = [b̄1]
whenG = 1. It is easy to see that:̄a11 = a11/w2

1, Ā21 = 1
w2

1
[w1A21 − a11w2],

Ā22 =
1

w2
1

[a11w2w
′
2 − w1A21w

′
2 − w1w2A

′
21 + w2

1A22] , b̄ =
1
w1

(
b1

−b1w2 + w1b2

)
.

We can then write:

Q̄(δ) = ā11δ
2
1 + b̄1δ1 + c + δ′2Ā22δ2 + [2Ā21δ1 + b̄2]′δ2 (5.15)

where, by convention, the two last terms of (5.15) simply disappear whenG = 1. For G ≥ 1, let
r2 = rank(Ā22), where0 ≤ r2 ≤ G− 1, and consider the spectral decomposition:

Ā22 = P2D2P
′
2 , D2 = diag(d1, . . . , dG−1) (5.16)

whered1, . . . , dG−1 are the eigenvalues of̄A22 andP2 is an orthogonal matrix. Without loss of
generality, we can assume that

di 6= 0, if 1 ≤ i ≤ r2 ,
= 0, if i > r2 .

(5.17)

Let us also define (whenever the objects considered exist)

δ̃2 = P ′
2δ2 , Ã21 = P ′

2Ā21 , b̃2 = P ′
2b̄2 , D2∗ = diag(d1, . . . , dr2) , (5.18)

and denote bỹδ2∗, Ã21∗ andb̃2∗ the vectors obtained by taking the firstr2 components of̃δ2, Ã21

andb̃2 respectively:

δ̃2∗ = P ′
21δ2 , Ã21∗ = P ′

21Ā21 , b̃2∗ = P ′
21b̄2 , P2 = [P21, P22] (5.19)

whereP21 andP22 have dimensions(G− 1)× r2 and(G− 1)× (G− 1− r2) respectively. When
A may be singular, the form of the setCδ1 is given by the following theorem.

Theorem 5.5 PROJECTION-BASED CONFIDENCE SETS WITH A POSSSIBLY SIGULAR CONCEN-
TRATION MATRIX . Under the assumptions and notations(5.12)− (5.19), the setCδ1 takes one of
the three following forms:
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(a) if Ā22 is positive semidefinite and̄A22 6= 0, then

Cδ1 = {δ1 : ã1δ
2
1 + b̃1δ1 + c̃1 ≤ 0} ∪ S1 (5.20)

whereã1 = ā11 − Ā′21Ā
+
22Ā21 , b̃1 = b̄1 − Ā′21Ā

+
22b̄2 , c̃1 = c− 1

4 b̄′2Ā
+
22b̄2 , Ā+

22 is the Moore-
Penrose inverse of̄A22 , and

S1 =
{ ∅ , if rank(Ā22) = G− 1 ,
{δ1 : P ′

22(2Ā21δ1 + b̄2) 6= 0} , if 1 ≤ rank(Ā22) < G− 1 ;

(b) if G = 1 or Ā22 = 0 , then

Cδ1 = {δ1 : ā11δ
2
1 + b̄1δ1 + c ≤ 0} ∪ S2 (5.21)

where

S2 =
{ ∅ , if G = 1 ,
{δ1 : 2Ā21δ1 + b̄2 6= 0} , if G > 1 andĀ22 = 0 ;

(c) if Ā22 is not positive semidefinite and̄A22 6= 0, thenCδ1 = R .

In all the cases covered by the latter theorem the joint confidence setCβ is unbounded ifA is
singular [by Theorem4.1]. However, we can see from Theorem5.5 that confidence intervals for
some parameters (or linear transformations ofβ) can be bounded. This depends on the values of
the coefficients of the second-order polynomials in (5.20) and (5.21). Specifically, it is easy to see
that the quadratic set̃Cδ1 = {δ1 : ã1δ

2
1 + b̃1δ1 + c̃1 ≤ 0} in (5.20) can have the following forms:

setting∆̃1 ≡ b̃2
1 − 4ã1c̃1,

C̃δ1 =





[
−b̃1−

√
∆̃1

2ã1
, −b̃1+

√
∆̃1

2ã1

]
, if ã1 > 0 and∆̃1 ≥ 0 ,

]
−∞ , −b̃1+

√
∆̃1

2ã1

]
∪

[
−b̃1−

√
∆̃1

2ã1
, ∞

[
, if ã1 < 0 and∆̃1 ≥ 0 ,

]−∞ , − c̃1/b̃1

]
, if ã1 = 0 andb̃1 > 0 ,[− c̃1/b̃1 , ∞[

, if ã1 = 0 andb̃1 < 0 ,

R , if (ã1 < 0 and∆̃1 < 0)
or (ã1 = b̃1 = 0 andc̃1 ≤ 0) ,

∅ , if (ã1 > 0 and∆̃1 < 0)
or (ã1 = b̃1 = 0 andc̃1 > 0) .

(5.22)

Of course, a similar result holds for the quadratic set in (5.21).
The results presented in sections 5.2.1-5.2.2 are important for two main reasons. First, they

allow one to obtain confidence sets in situations where no other solution has been proposed to
date in the literature. Second, the explicit expressions found avoid one the use of costly numerical
methods as used in the papers cited previously. This is much more important given the nature of the
problems to be solved numerically. We tried many of the standard software as GAUSS and GAMS,
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and they seem to have difficulties to find the solutions, unless the starting point is chosen near the
solution (which is naturally unknown). However, Fortran-based IMSL routines appear to perform
quite well.

5.3. A Wald-type interpretation of the projection-based confidence sets

When the eigenvalues of the matrixA are positive and the projection-based confidence set forw′β
is bounded, it is interesting to note that the form of this confidence set (see Proposition5.1) is
similar to the standard form:[θ̂ − σ̂z(α), θ̂ + σ̂z(α)]. Sinceθ = w′β, the corresponding estimator
of β is β̃ = −(1/2)A−1b .The estimated variance of the estimator should be a scalar (sayσ̂2)
times the matrixA−1, σ̂2A−1, and since the confidence interval has level greater than or equal
1− α,

√
d/σ̂ should correspond to a quantile of an order greater than or equal1− α of the statistic∣∣(w′β̃ − w′β)/[σ̂2(w′A−1w)]1/2

∣∣ . ReplacingA andb by their expressions, the estimatorβ̃ may be
written:

β̃ = (Y ′HY )−1Y ′Hy.

β̃ may be interpreted as an instrumental variables estimator. Indeed, multiplying (2.1) by(HY )′,
we get

Y ′Hy = Y ′HY β + Y ′Hu.

Taking the matrixHY as a matrix of instrumental variables forY, we get:

β̂IV = (Y ′HY )−1Y ′Hy = β̃.

HY is asymptotically uncorrelated with the disturbancesu under Assumption (5.23) bellow. More-
over, whenCβ is obtained from inverting theAR statistic, then under the usual assumptions,

(
X ′X

T
,
X ′u
T

,
X ′V
T

)
p−→

T→∞
(QX̄X̄ , 0, 0) ,

X ′u√
T

L−→
T→∞

N(0, σ2
uQX̄X̄) , (5.23)

it is easy to show that ifΠ2 is of full rank. Then

√
T (β̃ − β) L−→

T→∞
N

[
0, σ2

u plim
T→∞

( 1
T

A
)−1]

(5.24)

where plim
T→∞

1
T A = Π ′

2

[
QX2X2 −QX2X1Q

−1
X1X1

Q′
X2X1

]
Π2 andQXiXj = plim

T→∞
1
T X ′

iXj .

On developing the expression ofβ̃, we may also write:

β̃ = {Y ′[M(X1)− (1 + fα)M(X)]Y }−1Y ′[M(X1)− (1 + fα)M(X)]y.

This is the expression of the well-known Theil’s k-class estimator [see Davidson and MacKinnon
(1993, page 649)] withk = 1 + fα, and sincefα tends to 0 whenT becomes large,̃β is asymptoti-
cally equivalent to the two stage least squares estimator. The later may be written:

β̂2SLS = {Y ′[M(X1)−M(X)]Y }−1Y ′[M(X1)−M(X)]y.
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Hence whenΠ2 is of full rank and the eigenvalues ofA are positive, the projection-based confidence
set forw′β may be interpreted as a Wald-type confidence interval based on the statistic (which is
asymptotically pivotal):

T = (w′β̃ − w′β)/
√

σ̂2
u(w′A−1w) .

6. Monte Carlo evaluation

In this section, we study projection-based statistical inference through Monte Carlo simulations. We
especially focus on the evaluation of the degree of conservatism of the projection-based confidence
sets (CS) and we compare the confidence sets obtained on the basis of different statistics. These
statistics are the Anderson-Rubin statistic (AR) given by (2.9), the asymptotic AR statistic(ARS)
given by (2.9) but without assumption (2.6) (it follows asymptotically aχ2(k2)/k2 distribution) and
the LR and LM statistics proposed by Wang and Zivot (1998) and given by (2.13) - (2.14). We also
study the behavior of the Wald statistic based on 2SLS.

The data generating process is:

y = Y1β1 + Y2β2 + X1γ + u , (6.1)

(Y1, Y2) = X2Π2 + X1Π1 + (V1, V2) , (6.2)

(ut, V1t, V2t)′
i.i.d.∼ N(0, Σ) , Σ =




1 .8 .8
.8 1 .3
.8 .3 1


 , (6.3)

with k1 = 1, G = 2, β1 = 1
2 , β2 = 1 , γ = 2 , andΠ1 = (0.1, 0.2) . The correlation coefficient

r betweenu andVi (i = 1, 2) is set equal to0.8, the variablesY1 andY2 are endogenous and the
instrumental variablesX2 are necessary. The matrixΠ2 is such thatΠ2 = C/

√
T . We consider

three different sample sizesT = 50, 100, 200. The number of instruments (k2) varies from 2
to 40. All simulations are based on 10000 replications. Table 2 presents the results forC = 0
(complete unidentification), Table 3 presents the results for a matrixC with componentscij such
that1 < cij < 5 (weak identification), and Table 4 withcij such that10 ≤ cij ≤ 20. The nominal
confidence level for all tables is95%.

We begin with the behavior of the classical Wald statistic (Table 1), As expected from the
results in Dufour (1997), its real coverage rate may reach 0 when the instruments are very poor.
The only case where it behaves well is when identification holds and the number of instruments is
small compared to the sample size. This shows how crucial is the need for alternative valid pivotal
statistics.

For the exact AR statistic, no size distortion, even very small, is observed. The main observation
is that the coverage rate of the projection-based confidence sets forβ1 decreases ask2 increases and
tends to the exact confidence level1− α of the confidence set forβ. 5 Thus the projection-based
confidence sets become less conservative as the number of relevant instruments increases.This

5Recall that theoretically, this rate is always greater than or equal to the confidence level of the set from which the
projection is done.
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Table 1. Empirical coverage rate of 2SLS-based Wald confidence sets

T k Cij = 0 1 ≤ Cij ≤ 5 10 ≤ Cij ≤ 20

2 56.13 97.40 94.46
3 25.10 94.05 93.71
4 9.19 89.06 93.68
5 3.82 84.49 93.65

50 10 0.03 78.28 93.33
15 0.00 78.99 93.16
20 0.00 77.14 92.88
30 0.00 68.47 93.35
40 0.00 67.84 92.30
2 55.22 97.68 95.07
3 24.53 94.33 94.43
4 10.52 89.45 95.16
5 3.81 87.16 94.16

100 10 0.03 83.88 94.44
15 0.00 81.40 94.12
20 0.00 72.29 94.19
30 0.00 61.47 93.20
40 0.00 45.48 93.66
2 55.53 97.85 95.32
3 24.55 94.68 94.80
4 10.32 90.33 94.95
5 4.10 89.19 94.64

200 10 0.04 83.99 94.75
15 0.00 81.28 94.14
20 0.00 71.71 94.32
30 0.00 62.26 93.89
40 0.00 54.99 93.76

suggests use of a number of relevant instruments as large as possible. But on the other hand, as noted
by Dufour and Taamouti (2001b) and Kleibergen (2002), a large number of instruments will induce
loss of power for the Anderson-Rubin test forβ. Obviously, this should not be true in the extreme
case ofC = 0, X2 vanishes from equation (6.2).

The proportions of unbounded confidence sets and confidence sets equal to the real line are
nearly zero when identification holds (Table 4). When we approach nonidentification (tables 3 and
2), these proportions become large but decrease as the number of instruments increases. This is
predictable according to the results in Dufour (1997). It is natural when the components ofΠ2

approach 0 to get an unbounded confidence set, forβ is not identified in this case and the set of
possible values is large.

The statistic ARS behaves in the same way as the statistic AR, except when the sample size is
small with respect to the number of instruments. In this case we observe a size distortion, in the
sense that the empirical coverage rate forβ becomes smaller than the nominal level (95%).

For the LR and LM statistics, the main observation is that they produce confidence sets much
more conservative than those based on AR or ARS, and unlike the AR statistic, the degree of conser-
vatism of the resulting confidence sets increases with the number of instrumentsk2. The coverage
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Table 5. Comparison between AR and LR projection-based confidence sets
when they are bounded

1 ≤ Cij ≤ 5 10 ≤ Cij ≤ 20

T k2 AR shorter CI mean length AR shorter CI mean length
than LR (%) AR LR than LR (%) AR LR

2 0.00 9.80 13.28 0.00 0.53 0.51
3 38.65 25.85 15.59 45.37 0.43 0.45
4 59.68 20.89 31.69 68.54 0.59 0.65
5 71.75 82.79 62.85 80.47 0.49 0.57

50 10 91.32 17.96 23.62 95.65 0.44 0.58
15 96.24 6.83 11.22 97.39 0.35 0.49
20 94.14 16.07 17.61 97.59 0.35 0.51
30 87.98 7.30 14.94 93.66 0.35 0.51
40 53.66 13.66 11.54 67.12 0.49 0.59
2 0.00 13.05 12.88 0.00 0.62 0.61
3 44.21 16.37 15.93 59.74 0.49 0.52
4 69.88 17.00 23.77 82.57 0.58 0.66
5 85.97 16.48 16.16 92.01 0.43 0.50

100 10 99.20 6.04 14.87 99.65 0.36 0.48
15 99.79 4.71 10.85 99.92 0.28 0.40
20 100.00 4.78 23.20 99.98 0.33 0.50
30 99.96 3.85 31.25 100.00 0.28 0.46
40 100.00 8.67 17.75 100.00 0.27 0.47
2 0.00 13.59 43.78 0.00 0.53 0.52
3 56.82 33.94 18.59 70.54 0.49 0.52
4 88.33 41.99 259.61 91.35 0.55 0.62
5 95.67 21.27 15.42 96.71 0.40 0.47

200 10 99.86 7.82 14.02 99.93 0.32 0.43
15 100.00 7.90 14.17 100.00 0.28 0.40
20 100.00 5.30 24.65 100.00 0.23 0.35
30 100.00 2.14 11.72 100.00 0.24 0.41
40 100.00 1.61 20.78 100.00 0.24 0.43

rate of the confidence sets based on LM and LR statistics are always greater than 98.5% and ap-
proaches rapidly 100% ask2 increases. This is predictable since the LM and LR based confidence
sets are doubly conservative, by majorization of their distribution and by projection. Even in the
exact identification case, the statistic LR have a small size downward distortion.

In Table 5, we present a comparison between AR and LR projection-based confidence sets when
they are bounded. The first column gives the percentages of AR confidence sets shorter than LR
ones, columns 2 and 3 give the mean length of these intervals. We do not consider the caseC = 0,
since the intervals are nearly always unbounded in this case. As can be seen clearly, except in the
case of exact identification, the AR-based confidence sets are shorter than the LR-based ones.

As we may expect the high coverage rate of the LM and LR-based confidence sets induces
power loss for the test that rejectsH0 : β1 = β0

1 when the projection-based confidence set for
β1 excludesβ0

1. This is shown in Table 6 and Figure 1 where we present estimates ofP [rejecting
H0 : β1 = 0.5 |β1 = βi

1] with a decision rule consisting of rejectingH0 if 0.5 is excluded from the

28
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Figure 1. Power of tests induced by projection-based confidence sets
H0 : β1 = 0.5
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confidence set forβ1. The theoretical size is 95%. The value of the alternative varies from−0.5 to
1.5 with increments of0.1.

For k2 = 2, the three tests have the same power but ask2 increases, it appears clearly that the
LM and LR based tests have less power and tends to reject few often. On the other hand, whenk2

increases, the test ARS appears to be powerful but in fact its size becomes greater thanα.

7. Empirical illustrations

In this section we illustrate the statistical inference methods discussed in the previous sections
through three empirical applications related to important issues in the macroeconomic and labor eco-
nomics literature. The first one concerns the relation between growth and trade examined through
cross-country data on a large sample of countries, the second one considers the widely studied prob-
lem of returns to education, and the third application is about the returns to scale and externality
spillovers in U.S. industry.

7.1. Trade and growth

A large number of cross-country studies in the macroeconomics literature have looked at the re-
lationship between standards of living and openness. Recent literature includes Irwin and Tervio
(2002), Frankel and Romer (1996, 1999), Harrison (1996), Mankiw, Romer, and Weil (1992) and
the survey of Rodrik (1995). Despite the great effort that has been devoted to studying this issue,
there is little persuasive evidence concerning the effect of openness on income even if many studies
conclude that openness has been conductive to higher growth.

Estimating the impact of openness on income through a cross-country regression raises two
basic difficulties. The first one consists in finding an appropriate indicator of openness. The most
commonly used one is the trade share (ratio of imports or exports to GDP). The second problem is
the endogeneity of this indicator. Frankel and Romer (1999) argue that the trade share should be
viewed as an endogenous variable, and similarly for the other indicators such as trade policies.

As a solution to this problem, Frankel and Romer (1999) proposed to use IV methods to estimate
the income-trade relationship. The equation studied is given by

yi = a + bTi + c1Ni + c2Ai + ui (7.1)

whereyi is log income per person in countryi, Ti the trade share (measured as the ratio of imports
and exports to GDP),Ni the logarithm of population, andAi the logarithm of country area. The
trade shareTi can be viewed as endogenous, and to take this into account, the authors used an
instrument constructed on the basis of geographic characteristics [see Frankel and Romer (1999,
equation (6), page 383)].

The data used lists for each country, the trade share in 1985, the area and population (1985), and
its income per person in 1985.6 The authors focus on two samples. The first is the full 150 countries

6The data set and its sources are given in the appendix of Frankel and Romer (1999).
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Table 7. Confidence sets for the coefficients of the Frankel-Romer income-trade equation
A. Bivariate joint confidence sets (size= 95%)

θ Joint confidence set(95%)

(b, c1) θ′
(

1.78 −16.36
−16.36 257.85

)
θ +

( −2.23 , −34.50
)
θ + 0.19 ≤ 0

(b, c2) θ′
(

3.83 −34.58
−34.58 386.87

)
θ +

( −10.6 , 69.17
)
θ + 2.13 ≤ 0

(b, a) θ′
(

38.41 33.34
33.35 29.52

)
θ +

( −611.55 , −537.47
)
θ + 2445.58 ≤ 0

B. Projection-based individual confidence intervals (size≥ 95%)

Coefficient Projection-based confidence setsIV-based Wald-type confidence sets
Openness [−0.21 , 6.18] [−0.01 , 3.95]

Population [−0.01 , 0.52] [−0.01 , 0.37]

Area [−0.14 , 0.49] [−0.11 , 0.29]

Constant [2.09 , 9.38] [0.56 , 9.36]

covered by the Penn World Table, and the second sample is the 98-country sample considered by
Mankiw, Romer, and Weil (1992).

In this paper we consider the sample of 150 countries. For this sample, it is not clear how
“weak” the instruments are. TheF -statistic of the first stage regression

Ti = α + βZi + γ1Ni + γ2Ai + εi (7.2)

is about 13 [see Frankel and Romer (1999, Table 2, page 385)].
To draw inference on the coefficients of the structural equation (7.1), we can use the Anderson-

Rubin method in two ways. First if we are interested only in the coefficient of trade share, we can
invert the AR test forH0 : b = b0 to obtain a quadratic confidence set forb. On the other hand, if
we want to build confidence sets for the other parameters of (7.1), we must first use the AR test to
obtain a joint confidence set forb and each one of the other parameters and then use the projection
approach to obtain confidence sets for each one of these parameters.7 As assumed in the literature,
the observations are considered to be homoskedastic and uncorrelated but not necessarily normal,
we use the asymptotic AR test with aχ2 distribution. The results are as follows.

The95% quadratic confidence set for the coefficient of trade shareb is given by:

Cb(α) = {b : 0.963b2 − 4.754b + 1.274 ≤ 0} = [0.284 , 4.652] . (7.3)

7We can not use the AR test to build directly confidence sets for the coefficients of the exogenous variables.
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Thep-value of the Anderson-Rubin test forH0 : b = 0 is 0.0244, this means a significant positive
impact of trade on income at the usual5% level. The IV estimation of this coefficient is1.97 with a
standard error of0.99, yielding the confidence interval

(b̂IV − 2σ̂b̂IV
, b̂IV + 2σ̂b̂IV

) = [−0.01 , 3.95], (7.4)

which is not very different from the AR-based confidence set. Interestingly, in contrast with (7.3),
(7.4) does not exclude zero and may suggest thatb is not significantly different from zero.

The joint confidence sets obtained by applying the methods of section 4.4 to each pair obtained
by putting the trade share coefficient and each one of the other coefficients of (7.1) are given in Table
7A. All the confidence sets are bounded, a natural outcome since we do not have a serious problem
of identification in this model. From this confidence sets we can obtain projection-based confidence
intervals for each one of the parameters. Using Proposition5.1, we obtain the results presented in
Table 7B. Even if 0 is included in the confidence sets for the coefficient of openness it is likely that
the true value of the coefficient is positive.AR-projection-based confidence sets are conservative so
when the level of the joint confidence set is95% it is likely that the level of the projection is close to
98% (see the simulations in Section 6), but if we compare them to those obtained fromt-statistics,
they are not really larger.

7.2. Education and earnings

The second application considers the well known problem of returns to education. Since the work of
Angrist and Krueger (1991), a lot of research has been done on this problem; see, for example, An-
grist and Krueger (1995), Angrist, Imbens, and Krueger (1999), Bound, Jaeger, and Baker (1995).
The central equation in this work is a relationship where the log weekly earning is explained by the
number of years of education and several other covariates (age, age squared, year of birth, region,
...). Education can be viewed as an endogenous variable, so Angrist and Krueger (1991) proposed
to use the birth quarter as an instrument, for individuals born during the first quarter of the year start
school at an older age, and can therefore drop out after completing less schooling than individuals
born near the end of the year. Consequently, individuals born at the beginning of the year are likely
to earn less than those born during the rest of the year. Other versions of this IV regression take as
instruments interactions between the birth quarter and regional and/or birth year dummies.

It is well documented that the instrument set used by Angrist and Krueger (1991) is weak and
explain very little of the variation in education; see Bound, Jaeger, and Baker (1995). Consequently,
standard IV-based inference is quite unreliable. We shall now apply the methods developed in this
paper to this relationship. The model considered is the following:

y = β0 + β1E +
k1∑

i=1

γiXi + u , E = π0 +
k2∑

i=1

πiZi +
k2∑

i=1

φiXi + v ,

wherey is log-weekly earnings,E is the number of years of education (possibly endogenous),X
contains the exogenous covariates [age, age squared, marital status, race, standard metropolitan
statistical area (SMSA), 9 dummies for years of birth, and 8 dummies for division of birth].Z
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Table 8. Projection-based confidence sets for the coefficients of the exogenous covariates in the
income-education equation (size= 95%)

Covariate CS for education CS for covariate Wald CS covariate
Constant [−0.86076934, 0.77468002] [−4.4353178, 16.836347] [4.121, 5.600]

Age [−0.86076841, 0.77467914] [−0.12099477, 0 .06963698] [−0.031, 0.002]

Age squared [−.86076865, 0.77467917] [−0.00772368, 0.00748569] [−0.001, 0.002]

Marital status R R [0.234, 0.263]

SMSA R R [0.120, 0.240]

Race R R [−0.352, −0.173]

Year 1 [−0.86076899, 0.77467898] [−0.72434684, 1.1399276] [−0.002, 0.187]

Year 2 [−0.86076919, 0.7746792] [−0.64290291, 1.0246588] [0.003, 0.172]

Year 3 [−0.86076854, 0.77467918] [−0.51469586, 0.84369807] [0.008, 0.154]

Year 4 [−.86076758, 0.77467916] [−0.4042831, 0.69265631] [0.013, 0.141]

Year 5 [−0.86076725, 0.77467906] [−0.28675828, 0.52165559] [0.015, 0.123]

Year 6 [−0.8607684., 0.77467903] [−0.2206811, 0.39879656] [0.007, 0.0980]

Year 7 R R [0.008, 0.080]

Year 8 [−0.86768146, 0.78338792] [−0.08312128, 0.17409244] [0.005, 0.0581]

Year 9 [−0.86076735, 0 .77467921] [−0.04610583, 0.1050552] [0.005, 0.038]

Division 1 R R [−0.150, −0.081]

Division 2 R R [−0.094, −0.015]

Division 3 R R [−0.048, 0.073]

Division 4 R R [−0.153,−0.067]

Division 5 R R [−0.205,−0.080]

Division 6 R R [−0.265,−0.074]

Division 7 R R [−0.161,−0.051]

Division 8 R R [−0.111,−0.075]

contains 30 dummies obtained by interacting the quarter of birth with the year of birth.β1 measures
the return to education. The data set consists of the 5% public-use sample of the 1980 US census
for men born between 1930 and 1939. The sample size is 329509 observations.

Since the instruments are likely to be weak, it appears important to use a method which is
robust to weak instruments. We consider her the AR procedure. If we were only interested by
the coefficient of education, we could compute the quadratic confidence set forβ1. But if we are
also interested in other coefficients, for example the age coefficient (say,γ1), the only way to get
a confidence interval is to compute the AR joint confidence set for(β1, γ1) and then deduce by
projection a confidence set for age. Obviously since the instruments are weak, we should expect
large, if not completely uninformative, intervals. Table 8 gives projection-based confidence sets
for the coefficients of education and different covariates. For each covariateXi, we computed the
AR joint confidence set with education (a confidence set for(β1, γi) and then project to obtain a
confidence set forβ1 (column 2) and a confidence set forγi (column 3). The last column gives Wald-
based confidence sets for each covariate obtained by 2SLS estimation of the equation of education.
As expected many of the valid confidence sets are unbounded while Wald-type confidence sets are
always bounded but likely invalid.

For the coefficientβ1 measuring returns to education, the AR-based quadratic confidence inter-
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val of confidence level 95% is given by

AR_ICα(β1) = [−0.86, 0.77] . (7.5)

It is bounded but too large to provide relevant information on the magnitude of returns to education.
The 2SLS estimate forβ1 is 0.06 with a standard error of 0.023 yielding the Wald-type confidence
intervalW_ICα(β1) = [0.0031, 0.1167].

7.3. Returns to scale and externality spillovers in U.S. industry

One of the widely studied problems in recent macroeconomics literature is the extent of returns
to scale and externalities in the U.S. industry. Recent work on these issues includes Hall (1990),
Caballero and Lyons (1989, 1992), Basu and Fernald (1995, 1997) and Burnside (1996). The results
of these researches and many others have important implications on many fields of macroeconomics,
such as growth and business cycle models.

Burnside (1996) presents a short survey of different specifications of the production function
adopted in this literature. One of these specifications considers the following equation:

Yit = F (Kit, Lit, Eit,Mit) (7.6)

where, for each industryi and each periodt, Yit is the gross output, Kit is the amount of capital
services used,Lit is the amount of labor,Eit is energy used, andMit is the quantity of materials. If
we assume thatF is a differentiable function and homogeneous of degreeρ, we get the following
regression equation [see Burnside (1996)]:

∆yit = ρ∆xit + ∆ait (7.7)

where∆yit is the growth rate of the output,∆xit is a weighted average of the inputs and∆ait

represents technological changes.8 In this specification,ρ is the coefficient that measures the extent
of returns to scale. Returns to scale are increasing, constant or decreasing depending on whether
ρ > 1, ρ = 1 or ρ < 1.

To identify simultaneously the effects of externalities between industries, Caballero and Lyons
(1992) added to the previous regression equation the aggregated industrial output as a measure of
this effect. Burnside (1996) suggested a variable based on inputs rather than output, arguing by
the fact that the first measure may induce spurious externalities for industries with a large output.
Adopting the later suggestion, the previous regression equation becomes:

∆yit = ρ∆xit + η∆xt + uit (7.8)

where∆xt is the cost shares weighted average of the∆xit [Burnside (1996, equation (2.8))] and
uit = ∆ait. The coefficientη measures the externalities effect.

To estimate this equation, Hall (1990) proposed a set of instruments that was used in most sub-
sequent researches. These instruments include the growth rate of military purchases, the growth rate

8The weights are the production cost shares of each input.
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of world oil price, a dummy variable representing the political party of the President of Unites States
and one lag of each of these variables. Estimation methods used include ordinary least squares, two
stages least squares and three stages least squares.

The regressions are performed using panel data on two-digit SIC (Standard Industrial Classifi-
cation) code level manufacturing industries. This classification includes 21 industries. The data set
is described in detail by Jorgenson, Gollop, and Fraumeni (1987) and contains information on gross
output, labor input, stock of capital, energy use, and materials inputs.

These regressions are interesting as an application for the statistical inference methods devel-
oped in this paper because the instruments used appear to be weak and may induce identification
problems. These instruments have been studied in detail by Burnside (1996) who showed on the
basis of calculations ofR2 and partialR2 [Shea (1997)], that these instruments are weak. A valid
method to draw inference onρ (returns to scale) andη (externalities) then consists in using an ex-
tension of the Anderson-Rubin approach [as suggested in Dufour and Jasiak (2001)] to build a joint
confidence set for(ρ, η)′ and then build through projection individual confidence intervals forρ and
η.9

Given this identification problem, we expect unbounded confidence sets. Using the same data
set as Burnside (1996), we obtained the results presented in Table 9. This table presents the 2SLS
estimates and the confidence sets for the returns to scale coefficients and externalities coefficients in
21 U.S. manufacturing industries over the period 1953-1984. The projection based confidence sets
are obtained from joint confidence sets for(ρ, η) of level90%.10

The average estimation over all industries of the coefficientsρ andη are of the same order as
those obtained by Burnside (1996).11 Only 7 among 21 confidence sets are bounded. For industries
19 (stone, clay and glass) and 26 (instruments), the returns to scale are increasing. For industry 15
(chemicals), the returns to scale are decreasing. For industries 9 (textile mill products), 12 (furniture
and fixtures), 13 (paper and allied), and 23 (electrical machinery) the hypothesis of constant returns
to scale is rejected with a significance level smaller than or equal 10%. For industry 10 (apparel) the
confidence set is empty which may be explained by the fact that the data does not support the model.
For industries 7 (food and kindred products), 8 (tobacco), 11 (lumber and wood), 16 (petroleum and
coal products), 17 (rubber and miscellaneous plastics), 18 (leather), and 24 (motor vehicles), the
confidence sets are equal toR and thus provide no information onρ andη.

8. Conclusion

Recent research in econometrics has shown that weak instruments are quite widespread and should
be carefully addressed. Techniques which are robust to weak instruments typically require one
to consider first joint inference problem on all or, at least, some subvector of model parameters.
This leads to the problem of drawing inference on individual coefficients (or lower dimensional

9As reported in Caballero and Lyons (1989), there is no evidence of serial correlation from either the Durbin-Watson
statistic or the Ljung-BoxQ statistic.

10We usedχ2 as asymptotic distribution for the Anderson-Rubin statistic instead of the Fisher distribution valid under
normality and independence assumption.

11The small differences may be due to the use of TSLS instead of 3SLS.
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Table 9. Confidence sets for the returns to scale and externality coefficients in different U.S.
industries (size≥ 90%)

Returns to scale Externalities
Industry 2SLS Confidence set 2SLS Confidence set

7: Food & kindred products 0.99 R -0.06 R
8: Tobacco 1.06 R 0.28 R
9: Textile mill products 0.61 ]−∞, 0.56] ∪ [2.23, ∞[ 0.20 R
10: Apparel 1.09 ∅ -0.05 ∅
11: Lumber & wood 0.86 R -0.08 R
12: Furniture and fixtures 1.13 ]−∞, 0.58] ∪ [1.77, ∞[ -0.01 ]−∞, −0.73] ∪ [0.55, ∞[

13: Paper and allied 0.54 ]−∞, 0.74] ∪ [4.56, ∞[ 0.61 ]−∞, −4.51] ∪ [0.45, ∞[

14: Printing; publishing 0.93 [−1.2, 4.23] 0.23 [−0.11, 1.05]

15: Chemicals 0.22 [−7.36, 0.54] 1.06 [0.85, 11.7]

16: Petroleum & coal products 0.34 R 0.29 R
17: Rubber & misc. plastics 1.29 R -0.31 R
18: Leather 0.39 R 0.01 R
19: Stone, clay, glass 1.21 [1, 3.34] -0.03 [−3.16, 0.15]

20: Primary metal 0.79 [0.46, 1.01] 0.42 [−0.37, 1.51]

21: Fabricated metal 0.80 ]−∞, 2.25] ∪ [1.15, ∞[ 0.30 ]−∞, −0.13] ∪ [4.21, ∞[

22: Machinery, non-electrical 1.16 [0.73, 1.81] 0.02 [−1.41, 0.76]

23: Electrical machinery 1.17 ]−∞, 0.29] ∪ [2.47, ∞[ 0.05 ]−∞, 1.16] ∪ [1.72, ∞[

24: Motor vehicles 1.23 R -0.12 R
25: Transportation equipment 1.07 [0.64, 1.55] 0.10 [−0.36, 1.6]

26: Instruments 1.38 [1.19, 3.29] -0.07 [−1.5, 0.38]

27: Misc. manufacturing 1.5 ]−∞, −88.7] ∪ [0.48, ∞[ -0.51 ]−∞, 0.12] ∪ [102.1, ∞[

Mean 0.94 0.11
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subvectors). In this paper, we considered this problem from a finite-sample limited-information
viewpoint and focused on AR-type tests and confidence sets. Important reasons for this choice stem
from the fact that AR statistics are free of nuisance parameters in finite samples under standard
assumptions, as well as robust to excluded instruments and more generally to the specification of a
model for the endogenous explanatory variables.

We observed that AR-type confidence sets belong to a class of sets defined through quadric
curves (which include ellipsoids as a special case). A simple condition for deciding whether such
confidence sets are bounded was derived. On observing that a projection technique does provide
finite-sample confidence sets for individual coefficients in such contexts (indeed, the only procedure
for which a finite-sample theory is currently available), we derived a complete analytic solution to
the problem of building projection-based confidence sets for individual structural coefficients (or lin-
ear combinations of the latter) when the joint confidence set has a quadric structure. The confidence
sets so obtained turn out to be as easy to compute as standard Wald-type 2SLS-based confidence
intervals. When they take the form of a closed interval, they can be interpreted as Wald-type con-
fidence intervals based on k-class estimators using a pseudo “standard error” which depend on the
AR critical value. The confidence sets so obtained have the additional feature of being simultaneous
in the sense of Scheffé, so an unlimited number of such confidence sets can be built without losing
control of their overall level. We also provided simulation results showing that projection-based
confidence sets perform reasonably well in terms of accuracy. Since no alternative finite-sample
procedure that enjoys the same robustness features appears to be available, it is currently the best
solution to the problem at hand.

We think that analytical results presented here on quadric confidence sets can be useful in other
contexts involving, for example, errors-in-variables models [see Dufour and Jasiak (2001)], nonlin-
ear models [see Dufour and Taamouti (2001b)] and dynamic models. Such extensions would go
beyond the scope of the present paper. Another issue not discussed here consists in choosing the
instruments to be used for the purpose of performing AR-type tests. It is easy to see that the power
of AR-type tests may decline as the number of instruments increases, especially if they have little
relevance. We study in detail the problem of selecting optimal instruments and reducing the number
of instruments in two companion papers [Dufour and Taamouti (2001b, 2001a)].
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A. Appendix: Proofs

PROOF OF EQUATION(4.13) Settingx = Pβ andδ = Pb, we can write:

β′Aβ + b′β + c = β′P ′DPβ + b′P ′Pβ + c = (Pβ)′D(Pβ) + (Pb)′(Pβ) + c

=
r∑

i=1

λix
2
i +

G∑

i=1

δixi + c =
r∑

i=1

λi(x2
i +

δixi

λi
) +

G∑

i=r+1

δixi + c

=
r∑

i=1

λi(xi +
δi

2λi
)2 +

G∑

i=r+1

δixi + c−
r∑

i=1

δ2
i

4λi
=

r∑

i=1

λiz
2
i +

G∑

i=r+1

δizi − d

whered = −(
c−

r∑
i=1

δ2
i /(4λi)

)
, z = Pβ + u, with ui = δi

2λi
, if λi 6= 0, andui = 0, otherwise.

PROOF OFTHEOREM4.1 The proof of this proposition is a direct consequence of the study of the
characteristics ofCβ in Section 4. If the eigenvalues ofA are all positive (see Section 4.1.1),Cβ

is bounded. If the eigenvalues ofA are negative,Cβ is unbounded (see Section 4.1.2). If they are
different from 0 but of different signs,Cβ is always unbounded whatever the sign ofd (see Section
4.1.3). IfA is singular,Cβ is unbounded by (4.13); see Section 4.2.

PROOF OFTHEOREM 5.1 Consider again the decompositionA = P
′
DP as in (4.4). By (5.8),

we have, for anyx0 ∈ R, x0 ∈ Cw′β ⇔x0 − w′β̃ ∈ Ca′z , wherea = Pw. Let x = x0 − w′β̃ . By
definition,x ∈ Ca′z iff (if and only if) there is a vectorz ∈ RG such that

z′Dz ≤ d anda′z = x . (A.1)

Further, there is az verifying (A.1) iff the solution of the problem

min
z

z′Dz s.c.a′z = x (A.2)

verifies the constraint (A.1). Ifd < 0, it is clear there is no solution verifying (A.1) _ forD is
positive definite _ and consequentlyCa′z = Cw′β = ∅. Let d ≥ 0. The Lagrangian of the problem
(A.2) isL = z′Dz+µ(x−a′z) . SinceD is positive definite, the first order conditions are necessary
and sufficient. These are:

2Dz = µa , a′z = x,

hence

µ =
2x

a′D−1a
, z =

x

a′D−1a
D−1a , z′Dz =

1
2
µx =

x2

a′D−1a
.

Thus

x ∈ Ca′z ⇔ x2

a′D−1a
≤ d ⇔ |x| ≤

√
d (a′D−1a) ⇔ |x0 − w′β̃ | ≤

√
d (a′D−1a) .
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On noting thata′D−1a = w′A−1w, this entails that the confidence set forw′β is given by (5.9).

PROOF OFTHEOREM5.3 As in the proof of Proposition5.1, we consider again the decomposition
(4.4), the equivalencex0 ∈ Cw′β ⇔x0 − w′β̃ ∈ Ca′z , and we setx = x0 − w′β̃ anda = Pw .
Now, x ∈ Ca′z iff there is a value ofz ∈ RG such that

a′z = a1z1 + · · ·+ aG−1zG−1 + aGzG = x , (A.3)

z′Dz = λ1z
2
1 + · · ·+ λG−1z

2
G−1 − |λG|z2

G ≤ d , (A.4)

where (without loss of generality) we assume thatλG is the negative eigenvalue. Leta(G) =
(a1, a2, . . . , aG−1)′, z(G) = (z1, z2, . . . , zG−1)′, andD(G) = diag(λ1, λ2, . . . , λG−1)′.

If aG = 0, thena(G) 6= 0 (becausew 6= 0 entailsa 6= 0), andw′A−1w = a′D−1a > 0. In this
case, for anyx ∈ R, we can choosez such thata1z1 + · · ·+ aG−1zG−1 = x andzG is sufficiently
large to ensure that (A.4) holds. HenceCa′z = R andCw′β = R .

We will now suppose thataG 6= 0. Then, the conditions (A.3) - (A.4) are equivalent to:

zG = (x− a′(G)z(G))/aG , (A.5)

|λG|
(

x− a′(G)z(G)

aG

)2

≥ −d + z′(G)D(G)z(G) , (A.6)

where the latter inequality can also be written as
[
|λG| s2

(G) − a2
G(z′(G)D(G)z(G))

]
− 2|λG|s(G)x +

[|λG|x2 + da2
G

] ≥ 0 (A.7)

wheres(G) = a′(G)z(G). Since (A.5) always allows one to obtain (A.3) once the vectorz(G) is
given, a necessary and sufficient condition forx ∈ Ca′z is the existence of a vectorz(G) which
satisfies inequality (A.7). Further, such a vectorz(G) does exist iff we can find a values such
that the supremum (with respect toz(G)) of the left-hand side of (A.7) subject to the restriction
a′(G)z(G) = s is larger than zero. Consequently, we consider the problem:

min
z

z′(G)D(G)z(G) s.c.a′(G)z(G) = s (A.8)

wheres is some real number. SinceD(G) is positive definite, the first order conditions are necessary
and sufficient to characterize a solution of (A.8). The Lagrangian for this problem is given by
L = z′(G)D(G)z(G) − µ(a′(G)z(G) − s) and the corresponding first order conditions are:

2D(G)z(G) = µa(G) , a′(G)z(G) = s , (A.9)

hence

µ =
2s

a′(G)D
−1
(G)a(G)

, z(G) =
s

a′(G)D
−1
(G)a(G)

D−1
(G)a(G) , z′(G)D(G)z(G) =

s2

a′(G)D
−1
(G)a(G)
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wherea′(G)D
−1
(G)a(G) > 0. Substituting the solution of (A.8) into (A.7), we get:

q s2 − (2|λG|x)s +
(|λG|x2 + da2

G

) ≥ 0 (A.10)

whereq = |λG| −
[
a2

G/a′(G)D
−1
(G)a(G)

]
= δG(w′A−1w) andδG ≡ |λG|/a′(G)D

−1
(G)a(G) > 0. Thus,

x ∈ Ca′z iff there is a value ofs such that (A.10) holds. The discriminant of this second degree
equation is

∆ = 4λ2
Gx2 − 4Q

(|λG|x2 + da2
G

)
= 4δGa2

G

[
x2 − d(w′A−1w)

]
.

We will now consider in turn each possible case for the signs ofw′A−1w andd .
If w′A−1w > 0, thenq > 0 and, for anyx, we can find a (sufficiently large) value ofs such that
(A.10) will hold. Consequently,Ca′z = Cw′β = R . Thus,w′A−1w > 0 entailsCa′z = Cw′β = R ,
irrespective of the value ofaG (the caseaG = 0 was considered at the beginning of the proof).
If w′A−1w < 0 andd < 0, thenq < 0 and (A.10) has a (real) solution iff∆ ≥ 0 or, equivalently,
x2 ≥ d (w′A−1w) > 0 . Consequently,

Ca′z =
]−∞ , −

√
d (w′A−1w)

] ∪ [√
d (w′A−1w), +∞ [

, (A.11)

Cw′β =
]−∞ , w′β̃ −

√
d (w′A−1w)

] ∪ [
w′β̃ +

√
d (w′A−1w), +∞ [

. (A.12)

If w′A−1w = 0 andd < 0, (A.10) can be satisfied for anyx 6= 0, henceCa′z = R\{0} and
Cw′β = R\{w′β̃}.
Finally, if d ≥ 0, (A.10) is satisfied for anyx (on takings = 0), and we haveCa′z = Cw′β = R.
All possible cases have been covered.

PROOF OFTHEOREM 5.4 We need to show thatCa′z = R. To see this, letλi1 andλi2 be the two
negative eigenvalues of the matrixA, and (without loss of generality) supposea1 6= 0. For any real
x, we will show thatx ∈ Ca′z , which entails thatCw′β = Ca′z = R.
If λi1 or λi2 is associated withz1 (say it isλi1), we can set set the components ofz such that:
(1) z1 =

(
x− ai2zi2

)
/a1 ; (2) zi = 0, for i > 1, i 6= i2 ; (3) λ1z

2
1 + λi2z

2
i2
≤ d . Sinceλi1 andλi2

are negative,zi2 does exist. The vectorz verifies (4.5) anda′z = x, hencex ∈ Ca′z.
If none ofλi1 andλi2 is associated withz1, we can setz so that:(1) z1 = x/a1 ; (2) zi = 0, for
i 6= i1, i 6= i2 andi > 1 ; (3) λi1z

2
i1

+ λi2z
2
i2
≤ d− λ1 (x/a1)

2 andai1zi1 + ai2zi2 = 0 . Sinceλi1

andλi2 are negative, appropriate values ofzi1 andzi2 always exist, hencex ∈ Ca′z.

PROOF OF THEOREM 5.5 (a) Consider first the case wherēA22 is positive semidefinite with
Ā22 6= 0. To cover this situation, it will be convenient to distinguish between 2 subcases: (a.1)
r2 = G− 1; (a.2) 1 ≤ r2 < G− 1 .
(a.1) If r2 = G − 1, Ā22 is positive definite. From (5.15), we can writēQ(δ) = Q̄(δ1, δ2).
δ1 ∈ Cδ1 iff the following condition holds: (1) ifQ̄(δ1, δ2) has a minimum with respect toδ2,
the minimal value is less than or equal to zero, and (2) ifQ̄(δ1, δ2) does not have a minimum
with respect toδ2, the infimum is less than than zero. To check this, we consider the problem of
minimizing Q̄(δ1, δ2) with respect toδ2. The first and second order derivatives ofQ̄ with respect
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to δ2 are:
∂Q̄

∂δ2
= 2Ā22δ2 + 2Ā21δ1 + b̄2 = 0 ,

∂2Q̄

∂δ2∂δ′2
= 2Ā22 . (A.13)

Here the Hessian2Ā22 is positive definite, so that there is a unique minimum obtained by setting
∂Q̄/∂δ2 = 0 :

δ̃2 = −1
2
Ā−1

22

[
2Ā21δ1 + b̄2

]
= −Ā−1

22 Ā21δ1 − 1
2
Ā−1

22 b̄2 . (A.14)

On settingδ2 = δ̃2 in Q̄(δ1, δ2), we get (after some algebra) the minimal value:

Q̄(δ1, δ̃2) = ã1δ
2
1 + b̃1δ1 + c̃1 (A.15)

whereã1 = ā11 − Ā′21Ā
−1
22 Ā21 , b̃1 = b̄1 − Ā′21Ā

−1
22 b̄2 , c̃1 = c − 1

4 b̄′2Ā
−1
22 b̄2 . In this case, we also

haveĀ−1
22 = Ā+

22, and (5.20) holds withS1 = ∅.
(a.2) If 1 ≤ r2 < G− 1, we get, using (5.15), (5.17) - (5.19):

Q̄(δ) = ā11δ
2
1 + b̄1δ1 + c + δ̃

′
2D2δ̃2 +

[
2Ã21δ1 + b̃2

]′
δ̃2

= ā11δ
2
1 + b̄1δ1 + c + δ̃

′
2∗D2∗δ̃2∗ +

[
2Ã21∗δ1 + b̃2∗

]′
δ̃2∗ +

[
P ′

22(2Ā21δ1 + b̄2)
]′

δ̃22

whereδ̃2∗ = P ′
21δ2 , δ̃22 = P ′

22δ2 , andD2∗ is a positive definite matrix. We will now distinguish
between two further cases: (i)P ′

22(2Ā21δ1 + b̄2) = 0 , and (ii)P ′
22(2Ā21δ1 + b̄2) 6= 0 .

(i) If P ′
22(2Ā21δ1 + b̄2) = 0, Q̄(δ) takes the form:

Q̄(δ) = ā11δ
2
1 + b̄1δ1 + c + δ̃

′
2∗D2∗δ̃2∗ + [2Ã21∗δ1 + b̃2∗]′δ̃2∗ . (A.16)

By an argument similar to the one used for (a.1), we can see that

δ1 ∈ Cδ1 iff ã1δ
2
1 + b̃1δ1 + c̃1 ≤ 0 (A.17)

whereã1 = ā11 − Ā′21∗D
−1
2∗ Ā21∗ , b̃1 = b̄1 − Ā′21∗D

−1
2∗ b̄2∗ , c̃1 = c − 1

4 b̄′2∗D
−1
2∗ b̄2∗. Further, since

Ā22 = P2D2P
′
2, the Moore-Penrose inverse of̄A22 is [see Harville (1997, Chapter 20)]:

Ā+
22 = P2

[
D−1

2∗ 0
0 0

]
P ′

2 = [P21, P22]
[

D−1
2∗ 0
0 0

]
[P21, P22]′ = P21D

−1
2∗ P ′

21 , (A.18)

hence

Ā′21∗D
−1
2∗ Ā21∗ = Ā′21P21D

−1
2∗ P ′

21Ā21 = Ā′21Ā
+
22Ā21 , (A.19)

Ā′21∗D
−1
2∗ b̄2∗ = Ā′21P21D

−1
2∗ P ′

21b̄2 = Ā′21Ā
+
22b̄2 , (A.20)

b̄′2∗D
−1
2∗ b̄2∗ = b̄′2P21D

−1
2∗ P ′

21b̄2 = b̄′2Ā
+
22b̄2 . (A.21)

(ii) If P ′
22(2Ā21δ1 + b̄2) 6= 0, then for any value ofδ1 we can choosẽδ22 so thatQ̄(δ1, δ2) < 0,
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which entails thatδ1 ∈ Cδ1 . Putting together the conclusions drawn in (i) and (ii) above, we see that

Cδ1 = {δ1 : P ′
22(2Ā21δ1 + b̄2) = 0 andã1δ

2
1 + b̃1δ1 + c̃1 ≤ 0} ∪ {δ1 : P ′

22(2Ā21δ1 + b̄2) 6= 0}
= {δ1 : ã1δ

2
1 + b̃1δ1 + c̃1 ≤ 0} ∪ {δ1 : P ′

22(2Ā21δ1 + b̄2) 6= 0} (A.22)

and (5.20) holds withS1 = {δ1 : P ′
22(2Ā21δ1 + b̄2) 6= 0} . This completes the proof of part (a) of

the theorem.
(b) If G = 1 or Ā22 = 0 , we can write:

Q̄(δ1, δ2) = ā11δ
2
1 + b̄1δ1 + c + [2Ā21δ1 + b̄2]′δ2 (A.23)

where we set̄A21 = b̄2 = 0 whenG = 1. If 2Ā21δ1 + b̄2 = 0, we see immediately that:δ1 ∈ Cδ1

iff ā11δ
2
1 + b̄1δ1 +c ≤ 0. Of course, this obtains automatically whenG = 1. If 2Ā21δ1 + b̄2 6= 0, we

can chooseδ2 so thatQ̄(δ1, δ2) < 0, irrespective of the value ofδ1. Part (b) of the theorem follows
on putting together these two observations.
(c) If Ā22 is not positive semidefinite and̄A22 6= 0, this means we can find a vectorδ20 such that
δ′20Ā22δ20 ≡ q0 < 0 . Now, for any scalar∆0, we have:

Q̄(δ1, ∆0δ20) = ā11δ
2
1 + b̄1δ1 + c + ∆2

0 q0 + ∆0[2Ā21δ1 + b̄2]′δ20 . (A.24)

Sinceq0 < 0 , we can choose∆0 sufficiently large to havēQ(δ1, ∆0δ20) < 0, irrespective of the
value ofδ1. This entails that all values ofδ1 belong toCδ1 , henceCδ1 = R .
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