

Montréal
Mai 2003

© 2003 Nicolas Chapados. Tous droits réservés. All rights reserved. Reproduction partielle permise avec citation du
document source, incluant la notice ©.
Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source.

Série Scientifique
Scientific Series

 2003s-21

SAFIR: A Simple API for
Financial Information

Requests

Nicolas Chapados

CIRANO

Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le
financement de son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-
membres, d’une subvention d’infrastructure du ministère de la Recherche, de la Science et de la Technologie, de
même que des subventions et mandats obtenus par ses équipes de recherche.

CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and
research activities are funded through fees paid by member organizations, an infrastructure grant from the
Ministère de la Recherche, de la Science et de la Technologie, and grants and research mandates obtained by its
research teams.

Les organisations-partenaires / The Partner Organizations

PARTENAIRE MAJEUR
. Ministère des Finances, de l’Économie et de la Recherche [MFER]

PARTENAIRES
. Alcan inc.
. Axa Canada
. Banque du Canada
. Banque Laurentienne du Canada
. Banque Nationale du Canada
. Banque Royale du Canada
. Bell Canada
. Bombardier
. Bourse de Montréal
. Développement des ressources humaines Canada [DRHC]
. Fédération des caisses Desjardins du Québec
. Gaz Métropolitain
. Hydro-Québec
. Industrie Canada
. Pratt & Whitney Canada Inc.
. Raymond Chabot Grant Thornton
. Ville de Montréal

. École Polytechnique de Montréal
. HEC Montréal
. Université Concordia
. Université de Montréal
. Université du Québec à Montréal
. Université Laval
. Université McGill

ASSOCIÉ AU :
. Institut de Finance Mathématique de Montréal (IFM2)
. Laboratoires universitaires Bell Canada
. Réseau de calcul et de modélisation mathématique [RCM2]
. Réseau de centres d’excellence MITACS (Les mathématiques des technologies de l’information et des systèmes complexes)

ISSN 1198-8177

Les cahiers de la série scientifique (CS) visent à rendre accessibles des résultats de recherche effectuée au CIRANO
afin de susciter échanges et commentaires. Ces cahiers sont écrits dans le style des publications scientifiques. Les idées
et les opinions émises sont sous l’unique responsabilité des auteurs et ne représentent pas nécessairement les positions
du CIRANO ou de ses partenaires.
This paper presents research carried out at CIRANO and aims at encouraging discussion and comment. The
observations and viewpoints expressed are the sole responsibility of the authors. They do not necessarily represent
positions of CIRANO or its partners.

SAFIR: A Simple API for Financial Information Requests

Nicolas Chapados*

Résumé / Abstract

Nous décrivons une structure générale permettant de représenter de manière régulière et
extensible toutes les données financières disponibles dans un laboratoire de recherche
(présentement, le Laboratoire d'informatique des systèmes adaptatifs de l'Université de
Montréal). Après une analyse de domaine, nous explicitons la représentation XML de
l'information et introduisons une interface C++ permettant d'y accéder par un mécanisme de
requêtes puissant. Nous décrivons en appendice une méthodologie permettant de retrouver les
prix d'exercice (strikes) d'options depuis des bases de données contenant seulement des prix et
les "ticker symbols"; cette méthodologie est robuste en présence de prix d'exercice irréguliers
(qui ne correspondent pas aux tickers).

Mots clés : Base de données financières, XML, DTD, C++, redécouverte de
prix d'exercice d'options, prix d'exercice irréguliers.

We describe a general structure allowing to represent in a regular and extensible way all the
financial data available in a research laboratory (at present, the Adaptive Computer Systems
Laboratory of the Université de Montréal). After an analysis of field, we clarify the XML
representation of information and introduce a C++ interface allowing to reach it by a powerful
mechanism of requests. We describe in appendix a methodology allowing to find the option strike
prices from databases containing only the prices and the ticker symbols; this methodology is
robust in the presence of irregular strike prices (not corresponding to the tickers).

Keywords: Financial database, XML, DTD, C++, option strike price
discovery, irregular strike prices.

* Département d’informatique et recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada,
H3C 3J7. Email: chapados@iro.umontreal.ca.

Contents

Table of Contents ii

1 Introduction 1

2 Considerations and desiderata 3
2.1 Financial Quantities to be Represented 3
2.2 Random Points to Note . 4
2.3 Exploration of the Design Space 4

2.3.1 Hierarchical Approach 4
2.3.2 Relational (Semi-Flat) Approach 6
2.3.3 Summing it up . 6

3 Meta-information: XML description 7
3.1 Illustrative Example . 7
3.2 Formal DTD Definitions (Annotated) 10

3.2.1 XML Jargon Demystified 10
3.2.2 Some Basic Definition 11
3.2.3 Document Elements 15
3.2.4 Element: <option-class> 19
3.2.5 Element: <option-series> 20

4 Financial Database Access From C++ 23
4.1 Basic Access Code . 23

4.1.1 What is a SAFIR::TimeSeries Object? 24
4.1.2 Allowable Queries . 25

4.2 Marginalization Across Time Series 25
4.2.1 Marginalization Example 26

5 Future Work 29

A Recovering Option Strikes from the Ticker Symbol Alone 31

1 Introduction

This document introduces the elements of a financial database—named
SAFIR∗—which has been developed over the past year within the LISA† ∗Simple API for Financial

Information Requests.

†Laboratoire
d’informatique des
systèmes adaptatifs, at
University of Montréal.

laboratory. The need for this piece of infrastructure arose clearly from
our many-year practical work in applying statistical learning algorithms
to problems in financial decision-making: in experimenting with several
learning architectures, we have been finding ourselves constantly troubled
by data management problems that seem endemic in finance. Some of these
problems include:

Heterogeneous series types We have to deal with many different types of
financial series data: stock quotes, option quotes, bond prices, interest
rates, macroeconomic indicators, and so forth. These series are not
all available at the same frequency (e.g. daily for stock prices, but
quaterly for unemployment data).

Heterogeneous data formats Some series are available in text form, others
in binary; the column order varies from data source to data source,
etc.

Inconsistent preprocessing Some stock price series are dividend-adjusted‡, ‡See p. 18.
others are split-adjusted§, others still are both. The computation of the

§See p. 18.total security return differ in all cases.

The key problem words here are heterogeneity and inconsistency of
the available data. What we instead require is:

Our Elementary Requirements

We need a consistent and flexible interface for accessing financial data
of all types for machine learning experiments, primarily within a C++
framework.

In spite (or perhaps because) of the consistency requirement, the data-
base must be sufficiently rich to express all the real-world subtleties found
in observed data; in particular it must not suffer from the defect of impos-
ing a fixed a priori structure with no room for extension, or of assuming
an academic simplicity that bears no relationship to the messiness found
in the wild. In addition, it must be suited to the specifics of financial data,
which most often take the form of time series.

2

These considerations led us to posit a data/meta-data representation for
a major part of the database. The data elements are the time series them-
selves, i.e. physical observations (or even measurements) made at given
time points about a specific financial quantity. The meta-data expresses all
that is known about the financial process yielding the data, and its rela-
tionship to other relevant processes. More details about this separation of
concerns are given in section 3.

This document is organized as follows: we first review (section 2) a de-
tailed list of desiderata that an ideal database architecture would satisfy,
and examine the pro and cons of several candidate architectures. We next
(section 3) describe the details of the XML∗ representation that was chosen∗Extensible Markup

Language. to express the meta-data. We then (section 4) give an overview of the set of
C++ classes that make SAFIR easy to access and suitable for learning algo-
rithms experiments. We conclude (section 5) with a list of plausible future
extensions. An appendix (p. 31) gives a solution to a nagging problem fac-
ing a customer of many third-party databases of option prices.

2
Considerations and
desiderata

This section makes an inventory of all the factors that must be accounted
for in designing a repository for financial data. It is hoped that it should
help the reader gain an appreciation for some design decisions, and the
intrinsic tradeoffs that inevitably arise in the implementation of any such
large system.

2.1 FINANCIAL QUANTITIES TO BE REPRESENTED

To start with, SAFIR must represent quotes for several different markets, in
more than one country:

• options quotes

• stock quotes

• interest rates

• government and corporate bonds, etc.

• other products (interest rate derivatives, etc.)

• macroeconomic indicators

• commodities

• foreign exchange

• mutual funds

Several of those series may be interlinked: for instance, options quotes
do not make sense in isolation of corresponding stock quotes and a dis-
count rate (risk-free). Moreover, the discount rate always exists in relation
to a given country.

In addition, we may want to represent news sources (i.e. dated plain text
attachments) associated with each series, and more generally, each financial
entity. This is necessary for enabling eventual text-mining applications and
event-study analyses.

4

Important Remark It is necessary up front to make a distinction between
quote and transactions data. Quote data record prices at which securities are
theoretically available (with a separate "bid price" and "ask price"); transac-
tion data, on the other hand, record actual prices at which real transactions
have been made. It is necessary to preserve this distinction between those
types of data across the database.

2.2 RANDOM POINTS TO NOTE

• Some corporations may have more than one stock series, e.g. com-
mon stocks and preferred stocks; however, these are all related: they
belong to the same “corporation”.

• There may be multiple data sources for a single series, e.g. quotes
from Reuters and Bloomberg.

• The economy is not a static construction: public corporations are cre-
ated, sold, merged, go bankrupt. To reflect this, stock indexes evolve
with time.∗ The database must accomodate, and if necessary record,∗For instance, the

S&P500 index is
“recomposed” every once
in a while; so is the Dow
Jones Industrials Average.

such structural evolution.

• Stocks do split, and option strikes are re-adjusted after splits. For a
stock, we may have three associated series:

1. The price series itself

2. The dividend series

3. The stock-split history

2.3 EXPLORATION OF THE DESIGN SPACE

There are two basic design options for expressing the sort of heterogeneous
data requirements we seek to represent: the hierarchical approach, and the
relational approach. Let us consider them in turn.

2.3.1 Hierarchical Approach

This first method places each financial datum at a well-defined point in a
tree of financial elements, organized hierarchically. For example, daily quotes
for IBM common stocks would conceptually be located along the path

Country = USA

=⇒ Financial entity type = Public Corporation

=⇒ Corporation Name = IBM

5

=⇒ Series type = Common stock quotes
=⇒ Frequency = Daily

As would be expected, all information pertaining to IBM-USA branches
out from a single point (e.g. option series, bonds, news sources) and orga-
nizes itself naturally. It is understoood that a higher level in the hierarchy
contains an explicit list of the available items in the immediately lower lev-
els.

Transnational corporations, whose activities and series are likely to be
fairly cointegrated, would need to be addressed more thoroughly than this
scheme currently suggests; they are perhaps best handled through direct
pointers across the individual (national) constituents.

Related entities (for example the stock quotes associated with an op-
tions series) can either be located implicitly (from options to stock quotes,
for example, we go up the hierarchy until we find the enclosing public
corporation (or other financial entity), then down along the common stock
path; or explicitly by having a direct pointer from the options resource (XML

object) to the stocks resource.

Advantages of the Hierarchical Approach

• The method is scalable within the provisions allowed by the initial
structure. It easily allows new kinds of series to be represented, as
long as they can be inserted at a natural point in the hierarchy.

• The method maintains an explicit directory of all the series associated
with a specific financial entity. As such, it makes it easy for a human
to visualize and understand the available data at a glance (more or
less).

Disadvantages of the Hierarchical Approach

• All code written to a specific hierarchy becomes tied to that hierarchy,
to a certain extent. Although it is desirable to minimize the coupling
between the physical data representation and the code accessing it,
an insufficient initial design increases the likelihood of an eventual
representation breakdown.

• All series have to insert themselves at exactly one point within the
hierarchy. This can be alleviated by a judicious use of pointers.

• The collection of, say, all options quotes related to U.S. corporations
requires a complete traversal of the tree; resources by type are not
immediately available through a direct (SQL-like) query.

6

2.3.2 Relational (Semi-Flat) Approach

This second method assigns a unique identification string (“key”, or for our
purposes, “ticker”) to every data item that is stored in the system. Data
items of a specific type are stored together in a single table for that type.
No explicit directory or hierarchy of resources is maintained, or need to be
traversed; a datum’s type and unique key are necessary and sufficient to
access it. Reference between data items are made strictly with the keys.

Advantages of the Relational Approach

• The individual data items become resilient to changes in the data or-
ganization, since there is no little or no organization to start with. A
new type of data item simply results in the addition of a new table.
Put differently, the meaning of pointers between data items are not
dependent upon an a-priori hierarchy.

• An odd series, one that does not easily fit within a specific a-priori
hierarchy, can be easily accomodated, as long as its address is known.

Disadvantages of the Relational Approach

• The code accessing the data becomes tied to the database schema (the
interrelations between the tables). The schema is hard to evolve be-
yond its initial design.

• The contents of the database are hard to grasp at a glance, since there
is no overall picture (decomposition) of the available data; the data
related to a given financial entity is scattered across many tables.

• A traditional DBMS∗ is more suited than XML for the management of∗Database Management
System. a relational database. The cost of a database infrastructure must be

taken into account and justified.

2.3.3 Summing it up

An objective of this database is to be easily modifiable by human hands,
as well as by machine access. This requirement, which goes hand in hand
with the choice of XML as a representation language, makes the choice of a
relational approach an untenable proposition: the integrity of a relational
database can hardly be guaranteed after a series of hand modifications that
include changing several tables. In contrast, the hierarchical approach, al-
beit perhaps less “elegant” from a formal standpoint, appears more suited
to the set of requirements that must be satisfied.

3
Meta-information: XML
description

This section explains the XML structure of the financial database behind
SAFIR. Recall that XML is used as the storage medium for meta-information;
it does not store that meat of the database—the actual time series—but only
descriptions of those time series, and how different time series are interre-
lated.

3.1 ILLUSTRATIVE EXAMPLE

We start by illustrating a simple case (see sidebar 3.1) of how XML is used
to describe the meaning of various time series, along with the relationships
between them.

The Tags <?xml> and <!DOCTYPE>

These tags serve, respectively, to mark the file as an XML document, and
to associate a DTD∗ with the file. The contents of the finance.dtd file are ∗Document Type

Description: a type of
“formal grammar” for an
XML file.

detailed in section 3.2.

The <financial-data> Element

Every XML document must be contained within a single “master” element,† †See section 3.2.1 for an
explanation of this word
and other associated XML
jargon.

which is called, for SAFIR, <financial-data>.

The <country> Element

The financial information in SAFIR is organized hierarchically, starting with
countries. In this example, we introduce a definition for the USA, which en-
closes all the financial entities found in that country. The globally unique
identifier is us. We further specify the prevailing risk-free rate, as a refer-
ence to another series whose id is us-tbills. The name attribute gives the
complete (free-form) text name, and the currency attribute specifies the
currency code, for storing FX‡ information. ‡Foreign Exchange.

8

Sidebar 3.1 Example XML Meta-Information for SAFIR
<?xml version="1.0" ?>
<!DOCTYPE financial-data SYSTEM "finance.dtd">
<financial-data>
<!-- A country is defined by a currency and a risk-free interest rate -->
<country id="us"

name="United States of America"
currency="usd"
risk-free-rate="us-tbills">

<!-- US Government Information -->
<financial-entity id="us-government"

name="Government of the USA"
type="government">

<bond id="us-tbills"
name="US Government Treasury Bills"
maturity="3 month">

<time-series series-type="bond yield"
observation-type="quote"
frequency="daily"
column-format="&default-column-bond-daily-basic;"
uri="file://usa/government/us_tbill_3m.amat" />

</bond>
</financial-entity>

<!-- Stock index SP500 -->
<financial-entity name="Standard & Poors 500"

type="stock-index">
<stock id="us-spx"

ticker="spx" flavor="source:dialdata frequency:daily"
dividend-adjusted="yes" split-adjusted="yes">

<time-series series-type="stock price"
observation-type="quote"
frequency="daily"
column-format="&default-column-stockindex-daily;"
uri="file://usa/stock-index/spx/index_daily.amat" />

</stock>
</financial-entity>

<!-- Public Corporation IBM -->
<financial-entity id="us-ibm"

name="International Business Machines"
type="public-corporation">

<description>
International Business Machines Corporation

</description>

<!-- IBM Series related to stocks -->
<stock stock-type="common" id="us-ibm-stock"

exchange="NYSE" ticker="IBM"
flavor="source:dialdata frequency:daily"
dividend-adjusted="no" split-adjusted="no">

<time-series series-type="stock price"
observation-type="quote"
frequency="daily"
column-format="&default-column-stock-daily;"
uri="file://usa/corporations/ibm/stock_daily.amat" />

</stock>
</financial-entity>

</country>
</financial-data>

9

Describing the Risk-Free Rate

The risk-free rate for the USA is described by three nested elements:∗ ∗Complete explanations
for all the possible
attributes within each
element are given in
section 3.2.3 and
following.

1. We start by introducing an element <financial-entity> (as a sub-
element within the USA <country>), with an attribute indicating the
type government. This element houses all government-related infor-
mation within the enclosing <country>.

2. Within the <financial-entity>, we introduce a 3-month-maturity
bond, whose globally-unique id is us-tbills. Recall that a refer-
ence to this id had already been made previously within the enclosing
<country> element: such forward-references are completely permis-
sible. This bond declaration serves as the risk-free rate for the country.

3. Finally, we use a <time-series> element to point to a physical data
file containing the actual time series data. The element’s other at-
tributes indicate the column meaning, and the general sampling con-
ditions for the series. As explained below, the string &default-column-bond-daily-basic;
is a shorhand way of representing a series having four columns: the
date of the observation over three columns (YYYY MM DD), followed
by the bond yield on that day. Since the <time-series> element does
not itself contain any other sub-elements, we close it right away—as
per the XML specification—by preceding the closing angle bracket by
a single slash: <time-series ... />.

Representing the S&P 500 Index

Similarly to the above way of representing the risk-free rate for the USA,
the S&P 500 index is described in a threefold sequence:

1. A <financial-entity> element is introduced, naming the index and
declaring it to be of type stock-index.

2. Next, a <stock> element is declared, which encloses the price series
for the index itself (as opposed to any options or futures on the index).
This element specifies the additional following information through
attributes:

id The globally-unique id for this series is us-spx. For securities that
have derivative products associated with them (like the S&P500),
it is quite essential to specify an id for the stock price series, as it
allows the derivative to directly refer to the underlying security,
in this instance the stock-index price.

ticker This is the standard stock-exchange ticker associated with the
security.

10

flavor As explained in section 3.2.2, the flavor permits to track the
source of a data series, and allows to distinguish between two
otherwise-identical series. The flavor in the current example in-
dicates that the data was obtained from the service Dialdata, and
is sampled daily.

*-adjusted Various adjustments that can be made to a series; see the
explanation in section 3.2.3.

3. Finally, the <time-series> element records the pointer to the physi-
cal data file containing the time-series data.

Options and other series associated with the S&P 500 would likewise be
added under the same <financial-entity> (using, for instance, <option-class>
elements).

Representing a Public Corporation

The mechanisms for representing a public corporation (in this example,
IBM) are very much the same as for the S&P 500 index. The only differ-
ence lies in the attributes given to the <financial-entity> element. The
example also illustrates that a <financial-entity> can contain a free-form
text <description>.

3.2 FORMAL DTD DEFINITIONS (ANNOTATED)

This section reviews the formal definition of a SAFIR XML database, by ex-
plaining the constructions allowed by the DTD file finance.dtd.

3.2.1 XML Jargon Demystified

For readers that are not conversant with the subtleties of the XML stan-
dard, we give here some informal definitions that are useful for under-
standing the following descriptions. For further details, please refer to
the official W3C Recommendation for the XML Specification, available at
www.w3c.org/TR/REC-xml.

Entity An XML entity is an abbreviation for a replacement string that is sub-
stituted in-place when the entity is referenced. In the DTD, entities are
introduced by the <!ENTITY entity-name value > construct. They
are referenced (and thereby expanded) in the XML file using the &entity-
name ; construct (the semi-colon is important!). They can be thought
of as macros in the C programming language, but cannot be parame-
terized.

11

Element An XML element is a nesting construct taking the form <element >
...</element >. The opening element tag can specify a set of at-
tributes (see below). Enclosed between the opening and closing tags
can be included (properly nested) sub-elements, as well as unstruc-
tured text data (also called #PCDATA in XML-speak). In the DTD, ele-
ments are introduced by the <!ELEMENT ...> construct, which per-
mits the specification of the allowable enclosed sub-elements

Attribute An XML attribute is a parameter that can be specified when open-
ing an element. It takes the form <element param="value" >, where
param is the formal attribute name, and "value " is the user-supplied
value for the attribute. In the DTD, attributes associated with a given
element are introduced with theATTLIST elem-name attr-list con-
struct, which, for each attributes, specifies the set of allowable values,
and whether the attribute is i) required (#REQUIRED), or ii) optional
with no default value (#IMPLIED), or iii) optional with provided de-
fault value (default value specified between double quotes).

Attribute Type CDATA An attribute with this type can have any character
data as values (no format restriction).∗ ∗However, in XML,

attribute values must
always be enclosed in
double quotes.

Attribute Type NMTOKENS An attribute with this type can have values
that are white-space-separated lists of tokens. For practical purposes, a
token can contain letters, digits, dashes, and colons (plus a small set
of other characters).

Attribute Type ID and IDREF An attribute with type ID (see p. 12 for the
practical implications within SAFIR) declares a globally-unique iden-
tification character string within the XML file. An attribute with type
IDREF refers to a declared element having the specified ID attribute
(forward references are allowed).

3.2.2 Some Basic Definition

The following DTD definitions specify entities that can act as shortcuts when
writing the XML file.

Entities for Characters and Symbols (lifted from XML spec)
<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY amp "&#38;">
<!ENTITY apos "'">
<!ENTITY quot """>
<!ENTITY nbsp " ">
<!ENTITY mdash "&#x2014;">
<!ENTITY ldquo "&#x201C;">
<!ENTITY rdquo "&#x201D;">

12

These entities are usually standard for most XML files (and HTML files
too), and their definitions is extracted directly from the XML specification.

Entities for Common (Parameter) Attributes
<!-- id attribute: Provide a means to uniquely identify an element in -->
<!-- order to refer to it later -->
<!ENTITY % id.att ’id ID #IMPLIED’>

<!-- common attributes: attributes that all entities support -->
<!ENTITY % common.att ’%id.att;’>

<!-- flavor attribute: Permits specification of identifying features -->
<!-- in order to distinguish two otherwise-identical series -->
<!ENTITY % flavor.att ’flavor NMTOKENS #IMPLIED’>

Entity: id.att

This specifies an id attribute that can be specified for all SAFIR elements.
This attribute specifies a globally unique character string∗ that can be used∗“Globally” means across

the SAFIR XML database. as a target for object references. In other words, if you need to refer to a
given XML element from somewhere else, mark this element with a unique
id attribute.

Entity: common.att

This specifies the attributes that are common to all SAFIR elements; at the
moment, this is restricted to the id attribute.

Entity: flavor.att

This specifies a flavor attribute that can be added to time-series elements.
A flavor permits to track the source of a data series, and allows the dis-
tinction to be made between two otherwise-identical series. For example,
suppose that we have intraday data for a stock over a certain period, and
daily data for the same stock, over a much longer range. Both of those se-
ries are, indeed, “stock data” for the company, and yet both need to be kept
separate since they do not obey any strict inclusion relationship. The same
can be said, for instance, of transaction data versus quote data for a given
security, or multiple data providers. Each of those variations is termed a
flavor.††With the default flavor

being, of course, vanilla. Flavors are entirely specified with a flavor="xxx" attribute that can be
added to stock, bond, and option class elements (see below).‡§ We are not,

‡In keeping with the
American domination of
the world, we shall use the
American spelling of the
word.

for now, going to impose any definite structure on the flavors (except they

§Especially astute readers may recall that “Flavors” was the name of an early object sys-
tem for Lisp, where a class was named a flavor, the mother class of all was named Vanilla,
and every flavor was ultimately a subclass of Vanilla.

13

are XML NMTOKENS); we consider them simply as character strings, and a
naïve string comparison serves to establish the identity of two flavors.

Note that it is not the purpose of a flavor to make substantive change
about the identity of a series. For instance, the maturity of a bond has no
business being specified with a flavor. The sole purpose of the flavor is
to record, in a sense, the experimental conditions that led to the particular
time series being recorded, for a given financial quantity.

Entities for Common Document-Level Specifications
<!-- Default stock index daily column format --> <!ENTITY
default-column-stockindex-daily "year month day open:level high:level

low:level close:level">

<!-- Default common stock daily column format -->
<!ENTITY default-column-stock-daily

"year month day open:level high:level low:level close:level
volume:level">

<!-- Default daily bond column format (basic form) -->
<!ENTITY default-column-bond-daily-basic

"year month day yield:return">

<!-- Default option series column format (implied form) -->
<!ENTITY default-column-option-daily-implicit

"year month day open:level high:level low:level close:level
volume:level open-interest:level">

<!-- Default option series column format for Yahoo! Intraday data -->
<!ENTITY default-column-option-intraday-yahoo

"year month day hour minute second last-price:level bid:level
ask:level volume:level open-interest:level">

<!-- Default BAX transaction data column format -->
<!ENTITY default-column-baxhq-transaction

"year month day hour minute second last-price:level volume:level">

<!-- Default exchange rate data column intraday format -->
<!ENTITY default-column-fx-intraday

"year month day hour minute second fx:level">

<!-- Default exchange rate data column daily format -->
<!ENTITY default-column-fx-daily

"year month day close:level">

<!-- Short-term (12-month) term structure of interest rates/ intraday -->
<!ENTITY default-column-term-structure-short-intraday

"year month day hour minute second one-month:level
two-month:level three-month:level six-month:level twelve-month:level">

<!-- Short-term (12-month) term structure of interest rates/ daily -->
<!ENTITY default-column-term-structure-short-daily

"year month day one-month:level two-month:level
three-month:level six-month:level twelve-month:level">

These entities declare abbreviations for standard column format descrip-
tion in time series elements. Time series always start with three columns
representing the date of the observation (YYYY MM DD). Intraday time
series follow with three additional columns representing the time of the
observation (HH MM SS).

14

Other columns are listed by their names, which can be an arbitrary se-
quence of letters and digits separated by spaces (respecting the NMTOKEN
of XML). Following the name is an optional sequence of modifiers, sepa-
rated by colons, that qualifies the contents. The first kind of modifier gives
an indication of the rough data type, which can be either a level (e.g. a
stock price), or a return. The return, by default, is computed as a simple
return with respect to the level at the previous time-step:

rt =
pt − pt−1

pt−1
.

Depending on the enclosing context,∗ it is sometimes assumed that the re-∗Specified as attributes for
the stock series data, for
instance.

turn is adjusted to account for stock splits and dividend distributions (i.e.
the return is given as a total return, and not solely based on price compu-
tation.)

The standard column headings are:

year observation year (integer YYYY)

month observation month (integer 1 to 12)

day observation day (integer 1 to 31)

hour observation hour (integer 0 to 23)

minute observation minute (integer 0 to 59)

second observation second (integer 0 to 61†)†Permitting leap seconds,
if necessary.

yield:return annualized yield on bond

open:level opening price for a daily series (usually a bid quote)

high:level maximum price for a daily series (usually an ask quote)

low:level minimum price for a daily series (usually a bid quote)

close:level closing price for a daily series (usually a bid quote)

volume:level transactions volume during the whole day for daily data, or
up to the present time for intraday data

open-interest:level for options and futures data series, the number of ac-
tive contracts (at the end of the day for daily data, or up to the present
time for intraday data)

bid:level instantaneous bid price for intraday series

ask:level instantaneous ask price for intraday series

15

3.2.3 Document Elements

The following DTD definitions specify the various elements making up the
core of a SAFIR XML database.

High-Level Elements
<!-- financial-data: this is the root of the XML document -->
<!-- No attributes -->
<!ELEMENT financial-data

(country
| exchange-rate)* >

<!-- country: information specific to within a given country -->
<!ELEMENT country (financial-entity)*>
<!ATTLIST country

%common.att;
name CDATA #REQUIRED
currency NMTOKEN #REQUIRED
risk-free-rate IDREF #REQUIRED>

<!-- exchange rate: specifies exchange-rate information between countries -->
<!-- How much of currency 2 do we need to buy 1 unit of currency 1 -->
<!ELEMENT exchange-rate (time-series)>
<!ATTLIST exchange-rate

%common.att;
%flavor.att;
ticker CDATA #IMPLIED
exchange CDATA
currency1 NMTOKEN #REQUIRED
currency2 NMTOKEN #REQUIRED>

<!-- financial-entity: a source of financial innovations -->
<!-- ‘‘innovations’’ taken in the sense of Wold (1941) -->
<!ELEMENT financial-entity

(description
| stock
| bond
| option-class)* >

<!ATTLIST financial-entity
%common.att;
name CDATA #REQUIRED
type (public-corporation

| stock-index
| government) #REQUIRED>

<!-- description: describes the contents of something (!) -->
<!ELEMENT description (#PCDATA)>

Element: <financial-data>

This is the “master” element englobing the entire SAFIR XML database. It
currently defines no attributes. It can contain zero or more instances of
<country> or <exchange-rate> elements.

Element: <country>

A country houses all the information pertaining to a given country. It can
contain zero or more instances of <financial-entity> elements. In addi-

16

tion to the common attributes, the allowable attributes are:

name The free-form text name of the country.

currency An XML token identifying the currency code for that country. A
country cannot have more than one currency∗, but several countries
may share the same currency.

risk-free-rate An XML id pointing to the bond series representing the risk-
free rate for that country.

Element: <exchange-rate>

An exchange-rate element contains exchange rate data between two cur-
rencies within an enclosed <time-series> element. The interpretation is
“how many units of currency2 do we need to buy one unit of currency1”.
Both currencies are specified as strings in their respective attributes; the
same currency codes should be used within the <country> elements. In
addition to currency1 and currency2, the other allowable attributes are:

name The free-form text name for the exchange-rate.

flavor Flavor information.

exchange Optional name of the exchange where the series is traded

ticker Optional ticker under which the series is traded on the exchange

Element: <financial-entity>

A finantial entity represents a source of financial innovations within a given
country. It can specify, in any order, zero or more instances of the following
elements: <description>, <stock>, <bond>, <option-class>. In addition
to the common attributes, the allowable attributes are:

name The free-form text name for the financial entity.

type The type of the financial entity, currently restricted to "public-corporation",
"stock-index", "government"; the meanings are intended to be self-
explanatory.††Future revisions will

allow the specification of
commodities and other
such products.

∗This might have to be revisited in the future, as this design does not handle two cases:
i) a country changing its currency, e.g. EU countries adopting the Euro, and ii) countries
involved with more than one currency, e.g. Argentina.

17

Element: <description>

A free-form text description of a financial entity. It can contain as much text
as deemed necessary, and must be closed by a proper </description> tag.

Stocks and Bonds
<!-- stock: a list of series enclosing stock price data -->
<!ELEMENT stock (time-series)+>
<!ATTLIST stock

%common.att;
%flavor.att;
stock-type (common

| privileged
| other) "other"

name CDATA #IMPLIED
dividend-adjusted (yes|no) "no"
split-adjusted (yes|no) "no"
exchange CDATA #IMPLIED
ticker CDATA #IMPLIED>

<!-- bond: encloses a time series giving bond price/yield information -->
<!ELEMENT bond (time-series)>
<!ATTLIST bond

%common.att;
%flavor.att;
name CDATA #IMPLIED
maturity CDATA #IMPLIED>

Element: <stock>

A stock houses information for stock-price-like series, like common stocks,
stock indexes, and mutual funds. It must contain one or more <time-series>
elements, each with specific meaning:

• A first series contains the stock price series itself. Depending on the
attributes given to the <stock> element, the price series may repre-
sent raw prices (interpreted with respect to the currency in the enclos-
ing country), or split- and/or dividend-adjusted prices (see below for
an explanation).

• A second series contains the history of dividends paid by the stock
(i.e. the amount paid on each dividend-due date); at the moment,
the system does not allow the specification of the dates at which the
dividends become known (as opposed to paid).

• A third series contains the stock-split history.

The following attributes may be specified for <stock>, in addition to an
id and a flavor:

stock-type is either "common" (for common stocks with full voting rights),
"privileged" (for stocks that have usually no voting rights but re-
ceive preferred dividends), or "other" (the default; when the type is
unknown or unspecified).

18

name is a free-form name for the stock. (Optional with no default value.)

dividend-adjusted is either "yes" or "no" (the default). With value "no",
the stock price series is interpreted as the series of raw prices that are
traded on the stock exchange. With value "yes", the price series has
undergone a dividend correction: Elementary finance theory indicates
that, on the day that a dividend is paid, the price of a stock undergoes
a jump down by the magnitude of the paid dividend. Hence, both the
price history and the dividend history are necessary to compute the
total return brought forth by a stock. In a dividend-corrected series,
the stock prices are retroactively adjusted to the level they would have,
had the dividend not been paid; in other words, the effect of the paid
dividends on the stock price is nullified. This enables the correct cal-
culation of the total return from the price series alone, without an
explicit consideration of the dividend stream.

split-adjusted is either "yes" or "no" (the default). With value "no", the
stock price series is interpreted as the series of raw prices that are
traded on the stock exchange. With value "yes", the price series has
undergone a retroactive split correction: this is similar to a dividend
correction but for splits. Suppose that a stock that traded for $100
on August 31 is split 2 : 1 on September 1. With the split correction
applied, all prices (in the data series) before August 31 have been
divided by two, to make their level comparable to post-September 1
prices. Hence, the August 31 price is brought back to $50.

exchange is an optional free-form text string giving the exchange on which
the stock is traded.

ticker is an optional free-form text string giving the symbol (ticker) by
which the stock trades on the exchange.

Element: <bond>

The current specification is extremely preliminary is is likely to undergo
substantial changes in the future.∗ A bond houses information for bond-∗The current use of

<bond> in SAFIR is
limited to specifying
risk-free rates.

like securities. It may enclose exactly one <time-series> element. The
following attributes may be specified, in addition to an id and a flavor:

name is the free-form text name of the bond

maturity is a free-form text name describing the bond maturity (likely to
be made more structured in the future).

19

Option-Related Elements

<!-- option-class: specification of call/put, payoff type, exercise type -->
<!-- settlement-type indicates whether the underlying opening or closing -->
<!-- price is used to compute the option payoff. -->
<!ELEMENT option-class (option-series)*>
<!ATTLIST option-class

%common.att;
%flavor.att;
underlying-asset IDREF #REQUIRED
payoff-type (call|put) #REQUIRED
exercise-type (american|european) #REQUIRED
settlement-type (open|close) "close"
exchange CDATA #IMPLIED>

<!-- option-series: specification of strike price and expiration date -->
<!-- The EXPIRATION DATE is a character string in the YYYYMMDD format -->
<!-- AN IRREGULAR STRIKE is a strike price whose letter does not match -->
<!-- the strike code letter in the ticker symbol -->
<!-- A DEDUCED STRIKE is a strike price that was derived indirectly, -->
<!-- e.g. using the put-call parity. No guarantee of 100% accuracy. -->
<!ELEMENT option-series (time-series)>
<!ATTLIST option-series

%common.att;
strike CDATA #REQUIRED
expiration-date CDATA #REQUIRED
irregular-strike (yes|no) "no"
deduced-strike (yes|no) "no"
ticker CDATA #IMPLIED>

3.2.4 Element: <option-class>

The is the first level of elements used to represent exchange-traded options.∗ ∗SAFIR cannot represent
all conceivable contract
clauses arising in OTC
options; only those of
standardized
exchange-traded options
are handled.

An <option-class> groups together one or more <option-series>, and
specifies the conditions that are common to several series. In addition to
the id and flavor attributes, it specifies the following:

underlying-asset is the XML id of the <stock> element corresponding to
the underlying asset with respect to which the option is priced. Re-
quired attribute.

payoff-type is either "call" or "put", standing respectively for—surprise!—
call and put options. Required attribute.

exercise-type is either "american" or "european", for the corresponding
type of exercise restrictions. American options can be exercised at any
time up to the option maturity, whereas European options can only be
exercised at maturity. Other exotic options (Asian, Bermudian, etc.)
are not currently supported. Required attribute.

settlement-type is either "open" or "close" (the default). For an open op-
tion, the opening price of the underlying asset on settlement day is
used to determine the option’s payoff. For a closed option, the closing
underlying price is used for that purpose.

exchange is an optional free-form text string giving the exchange on which
the option is traded.

20

3.2.5 Element: <option-series>

An <option-series> element contains the price series of an individual op-
tion contract (i.e. with a specific strike and maturity date). It must contain
exactly one <time-series> element. In addition to an id attribute, the fol-
lowing attributes may be specified:

strike is the option strike price, expressed in the currency of the corre-
sponding underlying security. If the underlying stock series is split-
adjusted, the strike prices are adjusted accordingly. The behavior for
dividend adjustments depends on the rules of the exchange on which
the option is traded. Required attribute.

expiration-date is the option maturity date in YYYYMMDD format. Re-
quired attribute.

irregular-strike has value "yes" if the option strike price does not match
the strike price code in the option ticker. Irregular-strike series are
sometimes issued by exchanges when the underlying asset experi-
ences price swings of large magnitude over a short time period, and
a new option series must be issued with a strike code that is already
used by an actively-traded series. Default value is "no".

deduced-strike has value "yes" if the specified strike price has been in-
ferred from an indirect procedure, and hence has some probability of
being incorrect. The prototypical example is options data that only
contain a ticker code without an explicit strike price, and where the
strike must be “guessed” from the ticker code; unfortunately, this
process is not 100% reliable because of the irregular-strike problem
hinted at above. The appendix addresses this issue. Default value is
"no".

ticker is a free-form text string giving the option complete ticker (including
maturity and ticker codes).

21

Time Series
<!-- time-series: point to binary data and gives sampling conditions -->
<!-- The number-obs, start-date, and end-date are optional, but can speed -->
<!-- up processing operations (queries, etc). Start-date and end-date -->
<!-- are given in ’YYYY MM DD HH MM SS’ format (HH MM SS are optional). -->
<!-- The end-date is inclusive, and is the date of the LAST observation. -->
<!ELEMENT time-series EMPTY>
<!ATTLIST time-series

%common.att;
series-type CDATA #IMPLIED
observation-type (quote

| transaction
| other) "other"

frequency (quarterly
| monthly
| weekly
| daily
| hourly
| thirty-min
| fifteen-min
| five-min
| tick-by-tick
| other) "other"

column-format NMTOKENS #REQUIRED
uri CDATA #REQUIRED
number-obs CDATA #IMPLIED
start-date CDATA #IMPLIED
end-date CDATA #IMPLIED>

A <time-series> element specifies a “pointer” to a physical data series
(numerical) matrix, in addition to listing various conditions under which
the series has been recorded. It is an EMPTY element, meaning that it cannot
contain any sub-element and must be closed right away (this is generally
done by using the XML “close-right-away” shortcut: <time-series ... />.
The following attributes may be specified, in addition to the standard id:

series-type is an optional text string giving the type of the data series. The
following strings have a recognized meaning:

String Used for

"bond yield" Series denotes the yield (annualized return) on a bond
"stock price" Series denotes a stock (or stock-like) price
"dividend history" Series denotes the history of dividends paid by a stock
"split history" Series denotes the history of splits (or reverse splits) undergone

by a stock
"option price" Series denotes an option price

observation-type is either "quote" (for quote data), "transaction" (for
transaction data), or "other" (the default, for unknown data). See
p. 2.1 for an explanation of the difference.

frequency is a rough indication of the recording frequency for the observa-
tions; the default value is "other", signifying an unknown frequency.

22

column-format is a list of XML tokens giving the meaning of each column
in the data series. See section 3.2.2 for an explanation and a list of
standard column headings. Required attribute.

uri is a text string containing a Universal Resource Identifier for locating
the physical data series (numerical matrix). The physical data repre-
sentation is currently determined from the file extension.

number-obs is an optional attribute giving the number of rows in the data
series (the number of columns can be determined from the column-format
attribute). This attribute may be specified primarily as an optimiza-
tion to allow programs to start working lazily with the data matrix
without having to completely load it beforehand.

start-date and end-date are optional attributes that give the date of the
first and last observation in the series, in "YYYY MM DD" or "YYYY MM
DD HH MM SS" format (depending on the sampling frequency). These
attributes are optional and are provided for optimization purposes:
they allow date-filtering query operations on the database without
having to explicitly refer to the uri.

4
Financial Database
Access From C++

This section describes the current interfaces for accessing financial data
from within a C++ machine-learning framework. We assume that the reader
is familiar with basic C++ ideas such as standard-library containers (lists
and vectors) and iterators, along with the PLearn machine-larning library
developed within the LISA laboratory.

4.1 BASIC ACCESS CODE

Sidebar 4.1 illustrates the basic patterns necessary for accessing the SAFIR

database from within a C++ program:

1. Include the header file SAFIR.h. All classes and declarations in SAFIR

reside in the SAFIR namespace; you can either prefix every name ref-
erence by the SAFIR:: modifier, or use a using declaration as shown
here.

2. Create a SAFIR::FinanceDB object, which provides the main interface
to the SAFIR database. A path to the XML top-level file must be pro-
vided upon construction.

3. Formulate a query for the financial information you want. Finan-
cial queries have a type PFinanceConstraint, and are written using
familiar-looking C++ operators. In this example, we make a query
for all time series within the USA (country id="us"), and that satisfy
either of the following criteria:

• The time series is associated to the stock of a public corporation
trading on the New York Stock Exchange (<stock exchange="NYSE">).
This means that all series associated with the stock are returned
(i.e. price series, dividend history, and split history if applica-
ble). Additional constraints could be specified to return only the
price series, for example.

• All time series associated with stock indexes within the USA, in-
cluding stock-index-price series, and option-price series. Again,
additional constraints could be specified to return, for instance,
only the stock-index prices and omit the options.

24

Sidebar 4.1 Accessing a SAFIR Database from C++

#include <iterator> // From standard C++ library
#include "SAFIR.h"
using namespace SAFIR;

int main()
{
FinanceDB mydb("/u/lisa/Database/finance/option/xml/TestData.xml");

PFinanceConstraint c =
Country().id("us")
&& ((FinancialEntity().type("public-corporation") &&

Stock().exchange("NYSE"))
|| FinancialEntity().type("stock-index"));

list<TimeSeries> ts = mydb.queryTimeSeries(c);
for (list<TimeSeries>::iterator it = ts.begin(), end = ts.end() ;

it != end ; ++it)
cout << (*it)->attr("uri") << endl;

cout << endl << "The risk free rate for the USA is at uri" << endl
<< mydb.queryRiskFreeRate("us")->attr("uri") << endl;

}

4. The query itself is made by calling the queryTimeSeries member
function. It returns a list of SAFIR::TimeSeries objects, which are
the C++ view of the corresponding <time-series> XML elements.
Exactly one C++ object appears in the list for every <time-series>
element that satisfies the given constraints.

5. The example code iterates over the list and prints the physical loca-
tion (uri attribute) of the data file for each series. See below for more
details about SAFIR::TimeSeries objects.

6. The last line queries the risk-free rate series for the USA (country
id="us"), and prints the physical location of the data series.

4.1.1 What is a SAFIR::TimeSeries Object?

The SAFIR::TimeSeries class inherits from the PLearn VMat class, which
provides so-called “virtual matrices”. Hence, a time series can be treated
exactly like a numerical matrix of numbers, and used in all places within
PLearn where a VMat is expected (among others, model training and test-
ing algorithms).

In addition, a few other member functions are available for accessing
the contents of the XML attributes (see the online documentation for more
details), the most important being

string attr(string attribute_name) const;

which returns the (string) value of a given attribute in the corresponding
<time-series> element, or any XML ancestor to the element. Note that

25

Table 4.1. Equivalence
between XML elements
and the corresponding
C++ names. Note that all
C++ names are located in
namespace SAFIR.

XML element C++ name

<country> Country()

<financial-entity> FinancialEntity()

<stock> Stock()

<bond> Bond()

<option-class> OptionClass()

<option-series> OptionSeries()

this function must be accessed with an arrow operator from the TimeSeries
object.∗

∗This is related to the
VMat–VMatrix duality in
PLearn.

4.1.2 Allowable Queries

The query language within SAFIR is C++ itself; at the moment, queries for
<time-series> elements only can be specified. The query structure is de-
signed to be as “declarative” as possible, with a C++ expression specifying
constraints on the time series that are allowed to match. All constraints are
of type SAFIR::PFinanceConstraint. The simplest type of constraints, the
elementary constraint, takes the form of the following C++ expression:

ElementType ().attribute ("value "),

and has the following semantics: it requires that somewhere within all “an-
cestral elements”† of a matching time series, an element corresponding to †In other words, going

upwards in the XML tree,
towards the root element.

ElementType has an attribute with the specified value. The value must be
given as a string. The equivalence between XML elements and the corre-
sponding C++ names are given in table 4.1.

The attribute names are identical in the C++ code to what they are in
XML, except that all dashes (-) are replaced with underscores (_) in the C++
expression.

Several elementary constraints can be combined with the C++ opera-
tors && (logical and) and || (logical or). Parentheses can be used at will
for grouping. Note that at the moment, the negation operator (!) is not
supported.

4.2 MARGINALIZATION ACROSS TIME SERIES

It very often happens that the list of time series returned by a call to the
function FinanceDB::queryTimeSeries() is not in a format amenable to
creating a training set for a machine learning algorithm. Part of the prob-
lem‡ lies in the fact that too many separate series are returned by the query ‡Besides obvious data

preprocessing issues,
consideration of which we
defer until a later revision
of SAFIR.

operation. For example, a query for all stock options on IBM with a given
expiry date will return a separate series for each strike, for both calls and

26

puts! Assuming that 10 strikes are traded at the same time, this makes 20
series, and this is fixing the identity of the corporation, and the expiry date.

In order to make a useful training set, we would ideally require a sin-
gle matrix (or a small number), containing all the relevant conditions. This
is exactly the purpose served by marginalization. This operations lets you
specify that some XML attributes should really be transferred to the (numer-
ical) VMat object, and the time series which have an otherwise-identical set
of attributes after this transfer should then be merged into a single series.

Returning to the above example with options, we have an initial query
that returns 20 different time series, 10 for calls (one for each strike price)
and 10 for puts. If we marginalize those 20 series by the strike price at-
tribute, we end up with only two series: one for all calls and one for all puts.
In addition, each of those series has one new column, corresponding to the
original strike price variable that has been marginalized. Note that after
marginalization, the series are not necessarily in strict chronological order
any more: in the current implementation, the original subseries are simply
concatenated.

It is likewise possible to marginalize according to more than one vari-
able simultaneously. For instance, we could marginalize according to both
the strike price and the payoff type. In this case, we end up with only one
series, that has two additional columns, respectively for the strike price and
payoff type. Note that since the payoff-type attribute is string-valued, the
strings would be converted to unique serial numbers, one corresponding to
"call" and another corresponding to "put".

4.2.1 Marginalization Example

An example of marginalization appears in sidebar 4.2. The initial query
calls for all call options expiring on 2001/11/18 on the CBOE Oil Index.
This returns one different time series for each strike price, and we would
like to marginalize across strikes.

The procedure is simply to construct a SAFIR::Marginalizer object,
and set the attributes you want to marginalize over by calling the marginalizeOn()
member function, several times if necessary. It is also necessary to specify
the attributes to ignore during the marginalization operation, here ticker,
uri, and id: these attributes are known to be different across time series,
but we don’t care; they should not serve to prevent two otherwise-identical
series from being merged.

Then, you simply call the member function marginalize(), passing it
the result (list of time series) obtained from a queryTimeSeries() opera-
tion. The result is, again, a new list of time series, each with additional
columns that correspond to the attributes that have been marginalized over.

27

Sidebar 4.2 Marginalizing the Strike Attributes

#include <iterator> // From standard C++ library
#include "SAFIR.h"
using namespace SAFIR;

int main()
{
FinanceDB mydb("/u/lisa/Database/finance/option/xml/TestData.xml");

// Get all call options for the specified option expiring on 20001118.
PFinanceConstraint c =
Country().id("us")
&& (OptionClass().payoff_type("call"))
&& (OptionSeries().expiration_date("20001118"))
&& (FinancialEntity().name("CBOE Oil Index Open/Euro C"));

// This returns a list of time series, with each series representing
// the option price for a different strike.
list<TimeSeries> ts = mydb.queryTimeSeries(c);

Marginalizer test_margin(&mydb);
test_margin.marginalizeOn("strike");
test_margin.ignore("ticker");
test_margin.ignore("uri");
test_margin.ignore("id");

// Merge together otherwise-identical series having a different strike.
// The strike price is added as a new column to all time series.
list<TimeSeries> new_ts = test_margin.marginalize(ts);

typedef list<TimeSeries>::iterator lst_iterator;
for (lst_iterator it = new_ts.begin(), end = new_ts.end() ;

it != end ; ++it)
{
int l = it->length();
int w = it->width();
cout << (*it)->attr("uri")

<< " (" << l << " X " << w << ")" << endl;
}

}

28

5 Future Work

It must be emphasized that SAFIR remains a work in progress, and is be-
ing constantly developed to suit the needs of applying data mining and
machine learning algorithms to problems in finance. Although the cur-
rent version is quite functional, several important issues still need to be
addressed.

Sanity Checking A “sanity checking” procedure is nessary to ensure the
internal consistency of the database (e.g. that all XML links and all exter-
nal data series references remain valid), and the likely correctness of the
data series themselves. This includes checking for obvious errors (negative
prices, observations not in chronological order, etc.), and more complicated
ones (e.g. the option prices do not make sense, given the underlying asset
prices). Ideally, this checking should be made automatic, for instance daily,
through a cron job.

A very sophisticated sanity checker for option prices, incorporating lit-
erally dozens of verifications, has already been written by Julien Keable, an
analyst with the LISA. It is a current project to fully interface this checker
with SAFIR, and enhance its functionality for verifying the other parts of
the database.

More Data Types SAFIR needs to be extended to properly handle more
of the common financial data types, in particular macroeconomic series,
commodities, empirical term structures of interest rates, and other deriva-
tives (e.g. futures on commodities and financials). It is expected that the
current design should gracefully accomodate these extensions, both within
the XML structure (where little needs to be changed, save for new element
types within the DTD), and the C++ interface.

Moreover, the specification for fixed-income products should be made
more comprehensive, and properly handle government and corporate bonds.
Some consideration should also be given to convertible bonds.

Intra-Day Data Feeds The current physical data design makes more com-
plicated than it should to incorporate near-real-time (intraday) collected
data into the database. Although we currently have all the infrastructure to
collect and archive intra-day quotes (taken every 15 minutes), the software

30

to automatically update the database with the new data (and optionally call
a sanity checker before committing the results) is still in development.

Automatic Preprocessing Finally, extensive preprocessing operations are
a necessity before hoping to apply any realistic machine learning algorithm
to a finance problem. Examples of common preprocessing include normal-
ization operations (e.g. whitening or uniformization), up/downsampling,
passing the data through linear (ARMA-type) and non-linear (e.g. wavelets)
filters, and computing various simple technical indicators.

Part of the difficulty in writing a general-purpose preprocessing mod-
ule lies in the heterogeneity of the stored data: for instance, the observation
dates of independently-collected series need to be “aligned”, with missing
values appropriately filled in (with a zero-hold or some other extrapolation
method). Furthermore, stock price series that are not split- or dividend-
adjusted need to be before computing total return series, etc.

At the moment, the design and implementation of such a useful and
general-purpose preprocessor for financial data remains the largest open
project for the next major SAFIR version.

A

Recovering Option
Strikes from the Ticker
Symbol Alone

Many third-party options database (e.g. DialData, Prophet) suffer from
the major defect of not recording the exact option strike price along with
the rest of the data; they only save the option ticker symbol, in addition, of
course, to the option prices (typically, for daily data, the opening, closing,
day-high and day-low prices). In theory, the ticker symbol∗ reserves one ∗At least, on U.S.

exchanges.letter to indicate the option strike price modulo 100: ‘A’ denotes a strike of
either $5, $105, $205, . . .; ‘B’ denotes a strike of either $10, $110, $210, . . .;
and so forth. Then, given both put and call option prices, a simple put–call
parity relationship could be applied to recover the exact strike from among
the possible choices.

In practice, however, the picture is not so pretty. At fault are the “irregu-
lar tickers” that exchanges sometimes introduce when the underlying stock
price varies so much within a short time span that new option series must
be introduced, but with strike letters already taken by actively-traded op-
tions. In other words, new options must be introduced with ticker symbols
of options that are still being traded, with very different payoff character-
istics (strikes that differ by $100 or more). What happens in these circum-
stances is that the exchange simply uses some other free letter as the strike
code within the ticker, with this letter bearing no relationship whatsoever
to the true strike price. We are then faced with an uneasy situation whereby
a strike code letter can never entirely be relied upon, for it might be the
case that it represents an irregular ticker, and we have no a priori way of
distinguishing a regular ticker from an irregular one.

BASIC PROCEDURE

The best procedure we currently know of to recover the strike from an op-
tion series is to make use of the fact that, for both calls and puts, the same
strike code letter is used to denote the same strike price, no matter whether
the series has an irregular strike or not. From there, a put–call parity re-
lationship can be used to recover a first approximation to the strike price.
The elementary Black–Scholes put–call parity satisfies,

Ct − Pt = St −K exp(−r0τ),

32

where Ct, Pt and St are, respectively, the call, put, and underlying (stock)
prices at time t, K is the strike price, r0 is the risk-free rate, and τ is the
time to maturity. Given all other observed variables, it is a simple matter to
isolate K; hence the problem is solved (or so it seems)! We don’t even need
to make use of the strike letter to isolate back the option strike price.

REFINEMENTS

Put–call parity holds imperfectly, since most exchange-traded options are
American, whereas the parity relationship holds exactly only for European
options. In addition, market mispricings on any given day (including finite
tick-size effects) make the sequence {K̂t} of so-obtained strikes an extremely
noisy time series, even (as we observe empirically) for actively-traded op-
tions on large indexes.

An obvious possibility is simply to average the strike sequence, or to
average the individual terms in the above equation, yielding

K̂t =
∑

t Pt −Ct + St∑
t exp(−r0 tτt)

.

However, we empirically observe definite trends in the observed sequence
{K̂t} of strikes, making an unconditional mean like the above appear un-
suitable. We have found that a filtering of the strike sequence, such as a
simple exponentially-weighted moving average, gives quite acceptable re-
sults in practice.

An additional refinement goes as follows: we can compare the “can-
didate” estimated strike K̂ against the strike code letter (obtained from the
ticker symbol) and if the two are sufficiently close (implying a regular strike
price with high probability), we then take the strike to be the one given by
the ticker letter. Otherwise, we are dealing with an irregular strike, and
we round the estimated strike K̂ to the nearest $5 or $25 (depending on
the exchange rules and the exact option being traded), and return this price
instead.∗

∗Most stock options trade
in increments of $5,
whereas options on
indexes like the S&P 500
trade in increments of $25.

An example of this process is illustrated in figure A.1, which shows the
evolution of the strike deduced from the put–call parity relationship as a
function of the trading day, for a pair of put and call options whose true
strike price is believed to be $50. In addition to the high noise of individual
points, we note a clear trend towards the “real” strike as we arrive at ma-
turity. In this case, since the filtered strike at expiration ($49.72) is close to
the strike given by the ticker letter (‘J’=$50), we can be nearly certain that
the real strike is indeed $50.

The specific exponentially-weighted moving average used in this exam-
ple is:

K̄t = λK̄t−1 + (1− λ)K̂t, (A.1)

33

J Figure A.1. Example of
the evolution of the
“implied strike” process as
a function of the trading
day (for the MOX stock
index; option ticker
AMOXCJ01 for this
example). The filtered
series shows a clear trend
as the option arrives at
maturity. The real strike
(from the letter ‘J’ in the
ticker) is $50.

43

44

45

46

47

48

49

50

51

0 20 40 60 80 100 120 140 160 180 200

Retained Strike
Filtered Strikes

Observed Strikes

where K̄t is the filtered strike at time t, K̂t is the raw strike obtained from the
(extended; see below) put–call parity relationship at t, and we have taken
K̄0 = K̂0 and the decay factor λ = 0.9.

FURTHER WRINKLES

Additional tricks can be used improve the accuracy of the recovered prices.
For instance, for daily data, the opening, day-low, and closing prices are all
bid prices, whereas the day-high is an ask price. Applying the parity rela-
tionship using only bid prices biases the recovered strike by an amount
proportional to the unknown bid–ask spread; hence we should somehow
use the only ask price we have, which is the day-high price. Unfortunately,
we don’t know when during the day this high price was recorded, which
makes its proper use slightly problematic (however, we have observed em-
pirically that averaging the closing with the day-high price is sufficient to
significantly reduce the bias in the recovered strke).

However, the fact the we simultaneously have both call and put prices
saves the day: the high (ask price) for the call occurs at the same time as
the low (bid price) for the put, and vice-versa! We use this information
as follows: Let the unknown bid–ask spread be ∆C for the call, ∆P for
the put, and ∆S for the underlying stock, and assume that these spreads
remain constant within a given day.∗ Denote the high call price during day ∗But not necessarily

across days.t by C̄t, the low call price by Ct, and similarly for put and stock prices.

34

Furthermore, as explained above, we know that C̄t and P̄t are ask prices,
whereas Ct and Pt are bid prices. In addition, we know that C̄t is observed
at the same∗ as Pt, and similarly for Ct versus P̄t. Putting these prices in an
“extended” put–call parity relationship and solving for the strike, we have,
incorporating bid–ask spreads,

K̂t =
−(C̄t − ∆C

2) + (Pt + ∆P
2) + (S̄t − ∆S

2)− (Ct + ∆C
2) + (P̄t − ∆P

2) + (St + ∆S
2)

2 exp(−r0 tτt)

=
(−C̄t + Pt + S̄t) + (−Ct + P̄t + St)

2 exp(−r0 tτt)
.

We notice that the unknown spreads cancel out nicely by intelligently using
both high and low prices.

Using this information, and averaging over several days, we signifi-
cantly increase the accuracy of the recovered strike prices from only ticker
data, and are able to account for unknown occurrences of irregular strikes
as well.

∗Assuming simultaneous transactions on the call and the put; in practice, the two obser-
vations would be closely spaced in time, but not exactly contemporaneous.

