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Résumé / Abstract 

 
 

Cet article modélise les différentes composantes de la distribution des rendements qui 
sont supposés être régis par un processus latent de nouvelles. La variance conditionnelle des 
rendements est une combinaison de sauts et de composantes qui varient continûment. Ce 
mélange permet de capter les grands changements occasionnels de prix qui sont dus à l'impact 
des nouvelles, telles que des surprises dans les revenus d'une compagnie, aussi bien que des 
changements plus lisses des prix qui peuvent résulter de transactions de liquidité ou de 
transactions stratégiques au fur et à mesure que l'information est disséminée. À la différence 
des modèles classique de sauts SV, les réalisations précédentes des sauts et des innovations 
normales peuvent intervenir asymétriquement dans la volatilité espérée. Il s'agit d'une 
nouvelle source d'asymétrie qui améliore les prévisions de volatilité, en particulier après de 
grands mouvements tels que le crash de 87. Un processus de Poisson hétérogène régit la 
probabilité des sauts et est représenté par un paramètre d'intensité conditionnelle qui varie 
dans le temps. Le modèle est appliqué aux rendements de différentes compagnies et à trois 
indices. Nous montrons ainsi empiriquement l'impact et les effets de rétroaction des sauts par 
rapport aux innovations normales, les effets de leviers simultanés et décalés, la dynamique de 
série temporelle du groupement des sauts, et l'importance de modéliser la dynamique des sauts 
dans les périodes de volatilité élevée. 
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This paper models different components of the return distribution which are assumed to 
be directed by a latent news process. The conditional variance of returns is a combination of 
jumps and smoothly changing components. This mixture captures occasional large changes in 
price, due to the impact of news innovations such as earnings surprises, as well as smoother 
changes in prices which can result from liquidity trading or strategic trading as information 
disseminates. Unlike typical SV-jump models, previous realizations of both jump and normal 
innovations can feedback asymmetrically into expected volatility. This is a new source of 
asymmetry (in addition to good versus bad news) that improves forecasts of volatility 
particularly after large moves such as the ’87 crash. A heterogeneous Poisson process 
governs the likelihood of jumps and is summarized by a time varying conditional intensity 
parameter. The model is applied to returns from individual companies and three indices. We 
provide empirical evidence of the impact and feedback effects of jump versus normal return 
innovations, contemporaneous and lagged leverage effects, the time-series dynamics of jump 
clustering, and the importance of modeling the dynamics of jumps around high volatility 
episodes. 

 
Keywords: volatility components, news impacts, conditional jump intensity, 
jump size, leverage effects, filter. 



I. Introduction

There is a wide-spread perception in the financial press that volatility of asset returns
has been changing.

The new economy is introducing more uncertainty. Indeed, it can be argued
that volatility is being transferred from the economy at large into the financial
markets, which bear the necessary adjustment shocks.1

Given the impact of changes in volatility dynamics on many important financial and
economic decisions (such as, portfolio re-balancing, derivative pricing, risk measurement
and management), it is important to assess the empirical validity of this perception and
to investigate the sources and characteristics of changing volatility dynamics.

Volatility2 and risk can be linked to the quantity and quality of information pertaining
to a stock’s expected future earnings and cash flows. For example, information that
results in a resolution of uncertainty about a firm’s future prospects can result in a large
revision in current prices. According to this view, the most important process affecting
price movements is the news arrival process. In Ross (1989) and Andersen (1996) the
volatility of stock price changes is directly related to the rate of flow of information to
the market.

For individual securities, news about anticipated cash flows and the appropriate dis-
count rate are particularly relevant. A noteworthy contribution in this vein is a recent
study by Campbell, Lettau, Malkiel, and Xu (2001) who report that firm-level variance
has more than doubled between 1962 and 1997 whereas market and industry variances
have remained fairly stable over that period.3 They analyze the dynamics of idiosyn-
cratic, industry and market components of the volatility of individual stock returns.
We study the distributional components, in particular, large versus small changes of
stock returns; and how these components contribute to the dynamics of volatility and
higher-order moments of returns.

In this paper we do not model the latent news process directly but rather propose a
model of the conditional variance of returns implied by the impact of different types of
news. We interpret the innovation to returns, which is directly measurable from price
data, as the news impact from latent news innovations. The latent news process is pos-
tulated to have two separate components, normal news and unusual news events, which
have different impacts on returns and expected volatility for individual stocks.4 Normal
news innovations are assumed to cause smoothly evolving changes in the conditional

1”Coping with the market’s mood swings”, Financial Times, London, Sept. 27, 2000.
2In this paper we use the term volatility to refer generically to information on the second moment

of returns.
3Although systematic market risk is an important part of many financial decisions, Campbell, Let-

tau, Malkiel, and Xu (2001) emphasize that the total volatility of a firm’s return is also relevant (for
arbitrageurs, for derivative pricing, for hedge funds, etc.).

4Clark (1973) and Tauchen and Pitts (1983) use information flows to motivate price movements
and trading activity. Andersen (1996) concludes that ”it is natural to hypothesize that there are two
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variance of returns. The second component of the latent news process causes infrequent
large moves in returns. The impacts of these unusual news events are labelled jumps.
Therefore, the news process induces two components in returns which are identified by
their volatility dynamics and higher order moments. We model these components as
normal innovations, and abnormal or jump innovations.

A potential source of jump innovations to returns can be important news events,
such as earnings surprises. For example, in January 2000, Intel Corporation announced
earnings that were 8.83% higher than the mean IBES forecast. This earnings surprise
resulted in a 12.4% increase in price on January 14, 2000. In October 2000 IBM’s
negative earnings surprise of -0.18% led to a price change of -16.9% on October 18,
2000. On November 13th, 2000, an earnings surprise of -19.76% for Hewlett-Packard
resulted in a price change of -13.67%. These news surprises concerning expected future
cash flows resulted in price changes well above normal and might be better captured
by jumps rather than Brownian motion or normal innovations. On the other hand, less
extreme movements in price (modeled as normal innovations) can be due to typical news
events as well as liquidity trading and strategic trading as information disseminates.5

To augment Brownian motion in an attempt to better capture the empirical dis-
tribution of returns, Press (1967) introduced a jump-diffusion model which assumes
information arrivals are independently and identically distributed as a Poisson process.
Over an interval (t-1,t) a random number of news events arrive. In this compound events
model, the Poisson distribution directs the number of jump events occurring in the fixed
interval. The expected number of events per interval is defined as the intensity (jump
frequency) of the Poisson process. Associated with each of these news events is a jump
size which is assumed to be stochastic. This basic jump-diffusion model and its many
extensions can be applied to the effect of news flows on price changes. Of particular
relevance to our application are those that also incorporate autoregressive stochastic
volatility (SV).

Traditional SV-jump-diffusion specifications assume a temporally independent arrival
rate of jump events. There is evidence that, like the information process itself, jumps
tend to be clustered together. Not only do we observe sustained episodes of extreme
volatility (for example, the SE Asian currency crisis), but even market crashes can be
realized in a series of jumps over a short period of time. Allowing for time variation and
clustering in the process governing jumps may be important. For example, Bates (1991)
finds systematic behavior in the expected number of jumps around the 1987 crash using
options data. Recent examples of SV-jump-diffusion specifications with time-varying
jump intensities include Andersen, Benzoni, and Lund (2002), Bates (2000), Chernov,

or more types of information arrival processes that have different implications for volume and return
volatility persistence”.

5Glosten and Milgrom (1985) and Andersen (1996) develop a market microstructure model in which
asymmetric information and liquidity requirements induce trades in response to information arrivals.
They outline how a news event that causes a large price change can be associated with quite different
volatility effects than one with less information content. Bates (2001) provides a theoretical model in
which investor heterogeneity affects the impact of news events on asset prices.

2



Gallant, Ghysels, and Tauchen (2003), and Pan (2002).6 Eraker, Johannes, and Polson
(2003) allow for jumps in both returns and volatility.

We explore dependence in the arrival process governing jump events in a discrete-
time setting and extend the work of Jorion (1988) and Vlaar and Palm (1993), among
others.7 Bates and Craine (1999) allow a volatility factor to drive the intensity. Bekaert
and Gray (1998), Das (2002), and Neely (1999) allow financial and macroeconomic vari-
ables to affect the jump intensity. Johannes, Kumar, and Polson (1999) consider a state
dependent jump model which allows past jumps and observables to affect the jump
probability. We develop a mixed GARCH-jump model incorporating the autoregres-
sive conditional jump intensity parameterization proposed by Chan and Maheu (2002).
Maintaining distributional assumptions at the relevant discrete-time frequency allows us
to use maximum likelihood estimation and the associated filter to infer the distribution
of the unobservable jumps. The conditional intensity process allows the expected arrival
rate of jumps to vary over time and allows jumps to cluster. The time variation in
the conditional intensity implies all high order conditional moments of returns are time
varying. Similar to a Peso problem, jumps need not occur to have important effects on
the conditional higher-order moments.

Linked to a particular jump event is the news impact that the jump has on price
changes. Depending on the type and the importance of the information revealed by the
news, the stochastic jump size may be negative, positive, big or small. For example,
jumps can reflect good or bad news events and affect the conditional and unconditional
skewness of the return distribution through the magnitude and the sign of the mean of
the jump size distribution.

Therefore, the dynamics of volatility are affected by a time-varying rate of jump
arrival, stochastic jump size, and volatility clustering. The conditional variance in our
model is a combination of a smoothly evolving continuous-state GARCH component
and a discrete jump component. In addition, unlike conventional parameterizations of
SV-jump-diffusions, previous realizations of both normal and jump innovations affect
expected volatility through the GARCH component of the conditional variance.8 This
feedback can be important because once return innovations are realized, there may be
strategic trading related to the propagation of the news, liquidity trading, etc. These
activities are further sources of volatility clustering – in addition to clustering of jump
arrivals.

We allow for several asymmetric responses to past return innovations. Firstly, the
news impact resulting in jump innovations can have a different feedback on expected

6Yu (1999) has proposed a pure jump diffusion with a time-varying intensity.
7For example, Baillie and Han (2001), Pan (1997), Nieuwland, Vershchoor, and Wolff (1994), Fe-

instone (1987), and Ball and Torous (1983). Oomen (2002) discusses various extensions including a
multiple component compound Poisson model for high and low frequency jumps.

8GARCH specifications allow past (squared) return innovations to feedback into expected volatility.
Engle and Ng (1993) interpret the return innovation as the impact of news events. Their news impact
curve summarizes the possibly asymmetric impact of good and bad news on the conditional variance of
next period’s return.
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volatility than the news impact associated with normal innovations. For instance, im-
portant news innovations that result in a jump may be quickly incorporated into current
prices and have a smaller effect on expected volatility; or the reverse, news that results
in jumps may cause future volatility. Secondly, we allow for asymmetric responses to
good versus bad news in the GARCH component of volatility.9 A further flexibility is
that the asymmetric effect of good vs bad news can be different for jump versus normal
innovations. These novel features allow a richer characterization of volatility dynamics,
particularly with respect to events in the tail of the distribution.

We initially apply our model to equity returns from eleven U.S. stocks. To show
that jumps may be associated with significant news innovations, we have computed
the probability of jumps (inferred from our model) around days that earnings surprises
were announced. We find empirical support for our conjecture that large innovations to
returns are associated with significant news events. For the examples discussed above,
the ex post probability of a jump for Intel is .94 (January 14, 2000), IBM .99 (October
18, 2000) and Hewlett-Packard .74 (November 13, 2000).

Consistent with previous studies we find that the unconditional jump intensity is
low. However, since the conditional jump intensity is autoregressive, jumps are likely to
cluster. Therefore, IBM may have 3 jumps within a week but no jumps for the next 3
months. On average, jumps account for about 25% of daily volatility. Yet, when jumps
occur, their proportion of the conditional variance can shoot up to 90%.

Statistical tests strongly reject a constant intensity version of the model in favor of
autocorrelation in the jump intensity. This time variation is very important in capturing
return dynamics. For example, by correctly predicting the jumps following the 1987
crash, the model’s predictions of IBM daily volatility closely match the quick return of
realized volatility to normal levels. In contrast, we show that a benchmark asymmetric
GARCH model with t-distributed innovations but no jumps takes a significant period
of time to return to normal levels of volatility.

Jumps affect forecasts of future volatility directly through the time-varying Poisson
arrival process. In addition, the effect of jumps on the conditional variance through
GARCH feedback effects is also statistically significant. However, jump innovations
tend to have a smaller feedback coefficient than normal innovations. This evidence is
consistent with the stylized fact10 that the persistence effect on expected volatility from
large shocks to returns is often smaller than normal innovations. Although we find
the traditional good and bad news asymmetry associated with the GARCH volatility
component, this appears to operate mostly when no jumps occur. In contrast, in the
presence of jumps the news impact curve displays less asymmetry.

9Asymmetric GARCH models include Engle and Ng (1993), Glosten, Jagannathan, and Runkle
(1993) and the Nelson (1991) EGARCH specification. The empirical stylized fact that negative return
(bad news) innovations are associated with increases in volatility has become known as the leverage
effect. Cho and Engle (1999) and Campbell and Hentschel (1992) provide an economic interpretation
of news effects through asymmetric volatility and its effect on the required rate of return from stocks.

10For example, Schwert (1990) and Engle and Mustafa (1992).
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It is interesting to note that the effects of jumps appear to be different for new versus
traditional economy stocks. To investigate further, we apply our model to three indices
of different types of firms: the DJIA, the NASDAQ 100, and the CBOE Technology
index (TXX). The more volatile indices have more frequent jumps and these jumps have
a larger impact on the return distribution. All indices display significant jump clustering.
This result is consistent with evidence reported in Johannes, Kumar, and Polson (1999).

The jump size mean is significantly negative for all three indices. This implies a neg-
ative conditional correlation between jump innovations and squared return innovations.
In other words, large negative return realizations are associated with an immediate in-
crease in the variance. We call this a contemporaneous leverage effect. Note that this
leverage effect is time varying due to the time-varying correlation. This result of a sig-
nificant contemporaneous asymmetry is associated with a somewhat weaker asymmetry
between the sign of lagged innovations and the GARCH variance component. For our
samples of indices, a contemporaneous leverage effect which is captured directly by jumps
is more important than the lagged leverage effect which is captured by the GARCH feed-
back structure. These results extend the evidence obtained from traditional GARCH
models.

The structure of our model is such that the mixture of components can adapt flex-
ibly to capture different features of the conditional distribution of returns. However,
introducing more parameters involves the danger of over fitting in sample. Therefore, it
is important to determine whether or not the improved in-sample fit is useful for fore-
casting out of sample. Using a range-based measure for ex post or realized volatility, we
demonstrate that for ten of eleven firms our model has superior out-of-sample forecasts
relative to a benchmark asymmetric GARCH model with fat-tailed innovations. In ad-
dition, we provide evidence of superior out-of-sample forecasts for high volatility periods
and for conditional forecasts following large negative moves in the market. The latter
two tests are designed to evaluate the dynamics in the tails of the return distribution.

In summary, our paper provides evidence of time dependence in jump intensities for
both individual stocks and indices using an autoregressive conditional jump intensity
parameterization; allows both normal and jump innovations to feedback into expected
volatility; and provides new results on asymmetric effects of return innovations on volatil-
ity. Conditional skewness and kurtosis are functions of both volatility components. The
conditional skewness result can be interpreted as a time-varying contemporaneous lever-
age effect. This is modeled jointly with the possibility of lagged leverage effects through
the GARCH feedback structure. These novel features allow the model to perform better
around crash periods and other events in the tail of the distribution. With regard to the
indices studied in this paper, we document several differences between volatility com-
ponents associated with ’old’ versus ’new economy’ stocks. Finally, our model provides
superior out-of-sample conditional variance forecasts relative to a popular benchmark
model, even when the latter is allowed to have fat-tailed innovations. These superior
out-of-sample forecasts should result in improvements in financial management.
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This paper is organized as follows. Section II gives a detailed account of the two
stochastic components affecting returns, construction of the likelihood, and conditional
moments. The data used in this study is presented in Section III. A discussion of
the empirical results is presented in Section IV, out-of-sample forecasts are evaluated
in Section V, while Section VI summarizes the results. An appendix contains some
theoretical calculations for the model.

II. A GARCH-Jump Model for Returns

In this section we present a mixed GARCH-jump model for individual security returns.
In our model of return volatility, we maintain an unobserved news process that directs
movements in prices. News events, together with investors’ expectations of these events,
may result in price changes. In this paper we do not model the latent news process
directly but rather propose a model of the conditional variance of returns implied by the
impact of different types of news. We label the innovation to returns, which is directly
measurable from price data, as the news impact from latent news innovations.

The latent news process is postulated to have two separate components, normal and
unusual news events. These news innovations are identified through their impact on
return volatility. In particular, the impact of unobservable normal news innovations
is assumed to be captured by the return innovation component, ε1,t. This component
of the news process causes smoothly evolving changes in the conditional variance of
returns. The second component of the latent news process causes infrequent large moves
in returns, ε2,t. The impact of these unusual news events are labelled jumps.

We begin by specifying the components of returns. Given an information set at time
t − 1, which consists of the history of returns Φt−1 = {rt−1, ..., r1}, the two stochastic
innovations, ε1,t and ε2,t, drive returns,

rt = µ + ε1,t + ε2,t. (1)

ε1,t is a mean-zero innovation (E[ε1,t|Φt−1] = 0) with a Normal stochastic forcing process,

ε1,t = σtzt, zt ∼ NID(0, 1), (2)

ε2,t is a jump innovation specified so that it is also conditionally mean zero (E[ε2,t|Φt−1] =
0), and ε1,t is contemporaneously independent of ε2,t.

The subsections that follow describe our parameterization of these two stochastic
components of returns. In particular, we begin by specifying the process governing jumps
and the distribution of jump sizes. Then we describe in some detail the components
of time-varying volatility. These parametric assumptions allow us to optimally infer
when jumps arrive through the use of Bayes rule. The next subsections summarize
the conditional moments of returns and the construction of the loglikelihood and the
filter. Henceforth, we refer to the mixed GARCH-jump model with autoregressive jump
intensity as GARJI.
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A. Autoregressive conditional jump intensity (ARJI)

Unlike the previously cited GARCH-jump mixture models, we explicitly incorporate
an autoregressive conditional intensity that governs the likelihood of jumps occurring
between time t − 1 and t. The distribution of jumps is assumed to be Poisson with a
time-varying conditional intensity parameter. In particular, a Poisson distribution with
parameter λt conditional on Φt−1 is assumed to describe the arrival of a discrete-valued
number of jumps, nt ∈ {0, 1, 2, ...}, over the interval (t − 1, t). The conditional density
of nt is,

P (nt = j|Φt−1) =
exp(−λt)λ

j
t

j!
j = 0, 1, 2, . . . (3)

The conditional jump intensity, λt ≡ E[nt|Φt−1], is the expected number of jumps con-
ditional on the information set Φt−1. The dynamics governing λt are parameterized
as

λt = λ0 + ρλt−1 + γξt−1, (4)

defined as an autoregressive conditional jump intensity (ARJI) model in Chan and Ma-
heu (2002). In this model the conditional jump intensity λt is assumed to be autoregres-
sive and related to last period’s conditional intensity as well as to an intensity residual
ξt−1. It seems likely that the probability of jumps will vary over time, and may be
sensitive to economic conditions, such as the business cycle, bull and bear markets and
monetary policy. The specification in Equation 4 is a time-series approach to studying
the arrival process of jumps.11 A natural measure of the persistence of this process is ρ.
The restrictions ρ = γ = 0 yield a constant jump intensity as in Jorion (1988).

The jump intensity residual is defined as,

ξt−1 ≡ E[nt−1|Φt−1]− λt−1

=
∞∑

j=0

jP (nt−1 = j|Φt−1)− λt−1. (5)

P (nt−1 = j|Φt−1) is called the filter and is the ex post inference on nt−1 given time t− 1
information. More details on the filter and construction of the loglikelihood are detailed
in a subsection below. E[nt−1|Φt−1] is our ex post assessment of the expected number
of jumps that occurred from t − 2 to t − 1, while λt−1 is by definition the conditional
expectation of nt−1 given the information set Φt−2. Therefore, ξt−1 represents the change
in the econometrician’s conditional forecast of nt−1 as the information set is updated
(ξt−1 = E[nt−1|Φt−1] − E[nt−1|Φt−2]). Note from this definition that ξt is a martingale
difference sequence with respect to Φt−1,

E[ξt|Φt−1] = 0 (6)

11An alternative model of the conditional intensity would be a structural model in which economic
variables affect the jump likelihood.
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and therefore E[ξt] = 0 and Cov(ξt, ξt−i) = 0, i > 0. Hence, the intensity residuals in a
well specified model should display no autocorrelation.

There are several important features of this conditional intensity model. First, if
the ARJI specification is stationary, (|ρ| < 1), then the unconditional jump intensity is
equal to

E[λt] =
λ0

1− ρ
. (7)

Second, forecasts of λt+i, and therefore the conditional variance of ε2,t+i, are straightfor-
ward to calculate. For example, multiperiod forecasts of the expected number of future
jumps are

E[λt+i|Φt−1] =

{
λt i = 0
λ0(1 + ρ + · · ·+ ρi−1) + ρiλt i ≥ 1

(8)

Notice that the ARJI model can be re-expressed as,

λt = λ0 + (ρ− γ)λt−1 + γE[nt−1|Φt−1]. (9)

Therefore, subject to reasonable startup conditions that ensure λ1 > 0, a sufficient
condition for λt > 0 for all t is λ0 > 0, ρ ≥ γ, and γ ≥ 0.12 To estimate the ARJI
model, startup values of λt, ξt, t = 0 must be set. We set startup values of the jump
intensity to the unconditional value in Equation 7, and ξ0 = 0.

B. The jump innovation and jump-size distribution

The jump size Yt,k is assumed to be independently drawn from a Normal distribution.
The jump-size distribution is

Yt,k ∼ NID(θ, δ2), (10)

and the jump component affecting returns from t− 1 to t (period t) is

Jt =
nt∑

k=1

Yt,k. (11)

Therefore, the jump innovation associated with period t is expressed as

ε2,t = Jt − E[Jt|Φt−1] =
nt∑

k=1

Yt,k − θλt, (12)

which is the sum of the stochastic nt jumps which arrived over the time interval (t−1, t)
adjusted by E[Jt|Φt−1] = θλt, so that ε2,t is conditionally mean zero.

12Note that if ρ < γ, additional restrictions on the model may be available to ensure λt > 0 for all t.
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C. Time-varying volatility components

The conditional variance of returns is decomposed into two separate components: a
smoothly evolving conditional variance component related to the diffusion of past news
impacts; and the conditional variance component associated with the heterogeneous
information arrival process which generates jumps. The conditional variance of returns
is,

Var(rt|Φt−1) = Var(ε1,t|Φt−1) + Var(ε2,t|Φt−1). (13)

The first component of the conditional variance, σ2
t ≡ Var(ε1,t|Φt−1), is parameterized

as a GARCH function of past return innovations,

σ2
t = ω + g(Λ, Φt−1)ε

2
t−1 + βσ2

t−1, (14)

where g(·) is a function of the parameter vector Λ, and the information set and

εt−1 = ε1,t−1 + ε2,t−1, (15)

is the total return innovation observable at time t − 1. We label g(·) the feedback co-
efficient from past return innovations. The GARCH volatility component allows past
shocks affecting returns to affect expected volatility, and captures the smooth autore-
gressive changes in the conditional variance that are predictable based on past news
impacts.

Following Engle and Ng (1993), we associate good news with a positive impact on
returns, (εt−1 > 0) and bad news with a negative impact on returns, (εt−1 < 0). The
g(·) function detailed below allows for asymmetric effects with respect to the impact of
past good and bad news and also with respect to feedback effects from past jump versus
normal innovations.

Ideally we want each component of εt−1 to affect future expected volatility differ-
ently.13 However, we cannot perfectly separate these two stochastic components based
on observed returns.14 Instead, our GARCH specification allows the feedback from εt−1

to flexibly respond to the composition of εt−1 through the parameter function g(Λ, Φt−1).
Volatility may be sensitive to good news vs bad news effects or whether a jump occurred
last period. For instance, important news events that result in a jump may be quickly
incorporated into current prices and have a smaller effect on future volatility; or the
reverse, news that causes jumps may cause future volatility.15 To investigate this hy-
pothesis we estimate the number of jumps that occurred during period t-1 and allow it

13Note that measurable shocks to the conditional intensity do propagate and affect future jump
probability (and therefore expected volatility) separately from the GARCH specification.

14We can calculate E[ε2,t−1|Φt−1], but this is likely to seriously understate the variability from the
realized ε2,t−1.

15Important news events may cause future volatility as investors absorb the importance of the news
and its effect on future cash flows and the profitability of the firm. Often important news events stay
in the headlines for several days forcing investors to reevaluate their expectations.
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to directly affect the feedback that εt−1 has on the GARCH variance process. We allow
for all of these responses using the following parameterization:16

g(Λ, Φt−1) = exp(α + αjE[nt−1|Φt−1] + I(εt−1)(αa + αa,jE[nt−1|Φt−1])), (16)

where the model parameters are collected in the vector Λ = {α, αj, αa, αa,j}, I(εt−1)
is an indicator function which takes the value 1 when εt−1 < 0 and 0 otherwise, and
E[nt−1|Φt−1] is an ex post assessment of the expected number of jumps that occurred
between t− 2 and t− 1, using t− 1 information.

Firstly, this parameterization of σ2
t allows asymmetric responses to bad versus good

news. In particular, observed negative innovations to returns (bad news) are allowed to
have a different feedback on σ2

t through the extra contribution of the parameters αa and
αa,j.

Recall that the GARCH parameterization includes the effects of both past normal
innovations and past jump innovations to returns, as indicated by (15). Our parameter-
ization allows for a difference in the propagation of previous news effects which result in
jumps (ε2,t−1) versus news events that cause normal innovations (ε1,t−1). Therefore, the
parameter αj, scaled by the most recently inferred number of jumps, allows the feedback
on σ2

t from news events causing jumps to be different than the feedback associated with
normal news events. In addition, we allow the news feedback on σ2

t from the inferred
number of jumps to be different when the past news was good or bad. To illustrate:
if last period’s news was good and no jumps occurred, the feedback coefficient to σ2

t is
g(Λ, Φt−1) = exp(α) while if news was good and one jump occurred, the coefficient is
g(·) = exp(α + αj); if last periods news was bad and no jump occurred, the feedback
coefficient to σ2

t is g(·) = exp(α+αa); and finally, if the news was bad and was associated
with one jump it is g(·) = exp(α + αa + αj + αa,j).

Given our development of the conditional jump intensity and the jump-size distribu-
tion, the conditional variance component associated with the jump innovation is,

Var(ε2,t|Φt−1) = (θ2 + δ2)λt. (17)

This contribution to the conditional variance from jumps will vary over time as the
conditional intensity λt varies. In other words, this component can range from being
small to large as the expected number of jumps changes through time.

One interpretation of the decomposition of the conditional variance into the two
components is that the GARCH component σ2

t captures the normal time-variation of
volatility associated with the predictable decay of the impact, on expected volatility,
from past news innovations to returns. We interpret this time-series effect to be related
to the dissemination and diffusion of information, liquidity trading, etc. In contrast
to the GARCH specification of volatility, jumps occur when a significant news event
arrives which causes an unusual abrupt change in returns. For instance, a jump is

16Along with non-negative constraints on ω and β, the exponential function ensures that the condi-
tional variance is positive.
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likely to have occurred when an extreme tail realization occurs in the returns process.
Statistically, jumps are identified by observations that are inconsistent with the first
stochastic component of returns, ε1,t. In this case, the GARCH volatility component
is unable to accommodate the abrupt change in volatility and such observations are
identified as a jump. Modeling jumps and their arrival process may be a particularly
important feature for capturing events which lead to episodes of high volatility as well
as for incorporating higher-order conditional moment dynamics, such as time-varying
skewness and kurtosis of stock returns.

D. Moments of returns

The first four conditional moments of returns for our model are,

E[rt|Φt−1] = µ (18)

Var(rt|Φt−1) = σ2
t + (θ2 + δ2)λt (19)

Sk(rt|Φt−1) =
λt(θ

3 + 3θδ2)

(σ2
t + λtδ2 + λtθ2)3/2

(20)

Ku(rt|Φt−1) = 3 +
λt(θ

4 + 6θ2δ2 + 3δ4)

(σ2
t + λtδ2 + λtθ2)2

. (21)

Sk(rt|Φt−1) is the conditional skewness of returns, and Ku(rt|Φt−1) is the conditional
kurtosis. The derivation of these moments can be found in Das and Sundaram (1997).
The sign of conditional skewness depends on the sign of the jump size mean, θ. With
jumps in the model, all high order conditional moments are effected by the conditional
jump intensity λt and σ2

t .
17

In general, the g(·) function in the GARCH specification does not permit a closed
form solution for the unconditional variance. However, the unconditional variance of
returns can be calculated for the special case of αj = αa = αa,j = 0,18

Var(rt) =
ω

(1− α− β)
+

α(θ2 + δ2)

(1− α− β)

λ0

(1− ρ)
+ (θ2 + δ2)

λ0

(1− ρ)
. (22)

The first term in (22) is the usual unconditional variance from a GARCH(1,1) model,
the last term is the unconditional variance from the jump innovation ε2,t, and the middle
term is the result of the interaction of the total news impact εt−1 = ε1,t−1+ε2,t−1 entering
in the GARCH function. Details on this calculation can be found in the appendix.

17Alternative parametric approaches to modeling time-varying higher order conditional moments in-
clude Hansen (1994), Premaratne and Bera (2001), Perez-Quiros and Timmermann (2001), and Harvey
and Siddique (1999).

18Here the GARCH is parameterized as σ2
t = ω + αε2t−1 + βσ2

t−1.
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E. Likelihood Function

Construction of the likelihood function follows. Conditional on j jumps occurring the
conditional density of returns is Normal,

f(rt|nt = j, Φt−1) =
1√

2π(σ2
t + jδ2)

exp

(
−(rt − µ + θλt − θj)2

2(σ2
t + jδ2)

)
.

Integrating out the number of jumps gives the conditional density in terms of observables,

f(rt|Φt−1) =
∞∑

j=0

f(rt|nt = j, Φt−1)P (nt = j|Φt−1). (23)

The filter is then constructed as,

P (nt = j|Φt) =
f(rt|nt = j, Φt−1)P (nt = j|Φt−1)

f(rt|Φt−1)
j = 0, 1, 2, . . . (24)

and provides an ex post distribution for the number of jumps, nt. The filter is also
applicable and useful in studying jump dynamics in simpler jump specifications such as
Jorion (1988). One method to assess if a jump occurred would be to use the filter to find
the probability that at least 1 jump occurred. This is, P (nt ≥ 1|Φt) = 1−P (nt = 0|Φt),
which is directly available from model estimation.

Finally, it should be noted that these terms in the likelihood and filter involve an
infinite summation. To make estimation feasible we truncated this summation at 25.
In practice, for our model estimates, we found that the conditional Poisson distribution
had 0 probability in the tail for values of nt ≥ 10.

III. Data

Due to the infrequent nature of jumps and our desire to obtain accurate estimates of the
jump dynamics we focused on firms with medium to long spans of available data. Daily
price data for the randomly chosen firms that fit this criteria were obtained from the
Center for Research in Security Prices (CRSP) database with samples ending on Dec.
29, 2000. These firms (start dates) are: Amgen (June 2, 1983); Apple (Dec. 15, 1980);
Coca Cola or KO (July 3, 1962); General Motors or GM (July 3, 1962); Home Depot
or HD (Jan. 3, 1983); Hewlett-Packard or HWP (July 3, 1962); Intel (Jan. 4, 1982);
Johnson & Johnson or J&J (July 3, 1962); Motorola or MOT (July 3, 1962); and Texaco
(July 3, 1962). In order to evaluate out-of-sample forecasts, a range-based estimate of
realized or ex post volatility was constructed from intraday high and low price data
obtained from Commodity Systems Inc (CSI). Since this range-based measure was also
used to evaluate IBM forecasts around the 1987 crash, we obtained the IBM data from
the same source for the period July 3, 1962 to March 1, 2001. Finally, 3 indices were
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studied with samples to the end of 2001. These indices (start dates) are the Dow Jones
Industrial Average or DJIA (Jan. 4, 1960); NASDAQ 100 (Feb. 1, 1985); and the CBOE
Technology Index or TXX (May 16, 1995).

Table I provides summary statistics for daily continuously compounded returns for
these firms. Percent returns were computed based on daily closing prices which have
been adjusted for all applicable splits and dividend distributions.

IV. Results for the GARJI model

A. Individual Firms

This subsection discusses estimation results for our GARCH-jump model with autore-
gressive jump intensity (GARJI) applied to individual firms. Table II reports some
empirical evidence supporting the conjecture that important news events, such as earn-
ings surprises, can be a source of jumps. Choosing Intel and IBM as examples, and
using the last six quarters of our sample, Table II reports earnings surprises19, daily
price changes, and the probability that at least one jump occurred. For example, the
large price drop for IBM on Oct. 18th, 2000 was associated with a .99 probability of
at least one jump and a negative earnings surprise reported the night before. Another
interesting example was April 2000 for Intel. Our model inferred that a jump occurred
on April 17. The 10.72% return that day may have been in anticipation of the positive
earnings surprise reported the next day after the market closed. However, following the
earnings announcement, there was another jump associated with a return of −8.02%.
One possible interpretation was that the positive earnings surprise was not as large as
the market had anticipated. This example illustrates how jumps can be clustered around
significant news events. Of course earnings surprises are only one source of news innova-
tions that are associated with jumps. As discussed further below, another source which
often results in a cluster of jumps is a market crash such as October 1987.

Table III reports parameter estimates for our GARJI model applied to individual
firms. The residual-based diagnostic test results reported in Table IV indicate that there
is no remaining serial correlation in either the squared standardized residuals or the jump
intensity residuals. It is useful to note that the latter test indicated misspecification for
the case of a constant intensity parameter (λt = λ). Also, a likelihood ratio (LR) test
for the ARJI vs a constant jump intensity model strongly favors the ARJI dynamics for
all models. The LR tests are discussed in more detail in the next section.

There are several common features for all companies evident in the Table III results.
First, there is very significant evidence of time-variation in the arrival of jump events (ρ
and γ are both significant different from zero) for all firms. Note that the persistence
parameter ρ for the arrival of jump events (jump clustering) is quite high, although it

19Earnings surprises were obtained from Bloomberg; they are based on the average of analysts’
forecasts reported by IBES.
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is considerably lower for J&J, HD and KO than for all of the other firms. Secondly,
the parameter γ which measures the effect of the most recent intensity residual (the
change in the conditional forecast of nt−1 due to last day’s information innovation)
ranges from .185 to .892. This statistical significance of both the lagged intensity residual
and jump clustering suggests that the arrival process can systematically deviate from
its unconditional mean. Panels A-E in Figure 1 display several features of the model
for IBM over the recent period 1998-2001. For example, pertaining to jump arrival,
Panels B and C display the time-series of the conditional jump intensity and the ex post
probability of a jump.

On the other hand, there are some differences in the jump dynamics across firms
reported in Table III. For example, the unconditional jump intensity, computed as in
Equation 7, is .046 for Intel and IBM, .167 for GM and .172 for KO. This implies that
for Intel (and IBM) jumps to returns arrive on average less frequently than once per
month but as often as once every 6 business days for GM. However, the average time
between jumps is misleading since the ARJI specification shows that jumps are likely
to cluster. Therefore, IBM may have 3 jumps within a week but no jumps for the next
3 months. Note that the jump intensity is only one aspect of the jump dynamics. A
better summary measure of the effect of jumps on returns is the average variance due to
jumps which is 2.96, 4.09, and 1.62 for Amgen, Apple and Intel respectively.20 On the
other hand, it is .65 for both GM and KO.

In addition, the jump-size mean θ is positive for KO, GM, HWP, J&J and Texaco but
negative for the remaining firms. The fact that the impact of jumps on the conditional
mean of returns tends to be centered around zero on average (the mean of θ is only
significantly different from zero for Texaco), does not imply that jumps do not affect the
distribution of returns. As is clear from Section D, even with θ = 0 jump dynamics affect
the conditional variance, as well as the conditional kurtosis and hence tail realizations.
The jump-size standard deviation δ is larger for Intel, Apple and Amgen. Results in
Section B will investigate whether there is a general difference between new economy
and traditional economy stocks with respect to size and average jump direction (sign of
the jump-size mean).

Table V reports some descriptive statistics for the jump components. The sample
averages of λt for the firms are almost identical to the implied unconditional number of
jumps (Equation 7) discussed above. The average realized number of jumps per period
(mean of E[nt|Φt]) is very close to the average expected number of jumps (mean of λt)
for each firm indicating that the λt are unbiased forecasts for E[nt|Φt]. As expected, the
ex post measure of the number of jumps E[nt|Φt], has a higher standard deviation than
its ex ante component, λt.

The total conditional variance given in Equation 19, which is a combination of the
GARCH and jump variance components, is shown in panel D in Figure 1 for IBM,
while Panel E from this figure displays the individual volatility components. Clearly,

20The calculations in the Appendix show that the unconditional variance of jump innovations is
Eε22,t = (θ2 + δ2)λ0/(1− ρ).
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the GARCH variance factor provides the main description of the smooth changes in
daily volatility while jumps capture unusual episodes of volatility. This observation is
born out in the descriptive statistics in Table V. Of particular interest is the average
proportion of the conditional variance explained by the jumps which is about 20% for
both IBM and Intel but 30% for Texaco and 40% for J&J. However, at times as much
as 90% of the conditional variance for Amgen is due to the jump component.21

As previously noted, jumps will contribute to conditional skewness and kurtosis.
Table V reports the average conditional skewness and kurtosis implied by the model.
Even in the case of companies that have a relatively low number of jumps, the effects on
higher conditional moments can be substantial. For instance, over the period 1990-1992
there is considerable variation in conditional kurtosis for Intel, reaching as high as 13
and spending most of the time in the range of 5 to 9. Equation 21 indicates that when
λt > 0 the GARCH variance component will have an effect on conditional kurtosis, in
contrast to a model without jumps which has a constant conditional kurtosis.

A.1. The effect of jumps on expected volatility

Traditional jump diffusion models assume the process governing jump arrivals is inde-
pendently and identically distributed and do not allow jumps to affect the dynamics of
diffusion volatility. In our case, jumps can affect expected volatility through two chan-
nels. Firstly, jumps affect the conditional variance directly through the time-varying
Poisson arrival process and contribute to time variation in the second and higher-order
moments. Secondly, the GARCH component of the conditional variance includes the
propagation effects of previously realized jumps.

Table VI summarizes statistical tests of whether or not jumps affect volatility dy-
namics. The first column of Table VI reports LR test statistics associated with the
hypothesis that ρ = γ = 0. This test is designed to detect whether or not time-variation
in the jump intensity contributes to expected volatility. As expected from the t-statistics
associated with these parameter estimates in Table III, these LR test results strongly
reject ρ = γ = 0 so that jump clustering affects the conditional variance through this
channel.

The results in the second column of Table VI refer to a LR test for the effect of jumps
on conditional variance through GARCH feedback effects, that is, the propagation of
previously realized jump innovations to expected volatility. If the parameters αj = αa,j =
0, then past jump innovations have the same effect on expected volatility as normal
innovations. For all firms we reject this null hypothesis and conclude that jumps affect
expected volatility differently than normal innovations. Therefore, jumps do affect the
conditional variance through this channel, and as shown in columns 2 and 4 of Table VIII,
tend to have a smaller positive feedback coefficient than do normal innovations.

Recall that εt−1 contains both normal and jump innovations that feedback into the
GARCH component of volatility. The feedback coefficient g(·), associated with ε2

t−1 in

21Results available from the authors upon request.

15



the GARCH function, includes the extra term αj when good news and at least one jump
occurs, and the extra terms αj + αa,j when a jump and bad news occurs. As reported
in Table III, in 9 out of the 11 firms, αj < 0 reducing g(·) when a jump and good news
occurs. Furthermore, when the news was bad and a jump occured, all firms experience
a reduction in g(·) since αj + αa,j < 0. The implications for the size of g(·), which
depends on the sign of the return innovation and also whether a jump was identified, are
summarized in Table VIII. Although ε2

t−1 is typically large after a jump, jumps result in
a smaller g(·) than do normal innovations. This implies that news associated with jump
innovations is incorporated more quickly into current prices.

A.2. Asymmetries in the conditional variance

Table VII evaluates the importance of asymmetric feedback from jump innovations in
the presence of positive and negative return innovations. Except for Intel and Texaco,
there is very little evidence (αa,j = 0) to suggest that the feedback from jump innovations
to expected volatility is different in response to negative as opposed to positive return
innovations (bad versus good news). This does not mean that jumps have no impact on
expected volatility but instead tend to have a symmetric effect with respect to the type
of news. The second set of test results in this table evaluate the hypothesis of no good vs
bad news asymmetries when both jump and normal innovations are considered, that is,
αa = αa,j = 0. Except for Amgen and Apple (p-values of .0289 and .624 respectively),
we find asymmetry with respect to good and bad news measured by the total return
innovation. These tests indicate that the traditional good vs bad news asymmetry is
present when no jumps occur.

Consider the IBM results as an example. The news impact curve for IBM is displayed
in Figure 2. When no jumps occur, there is a clear asymmetry between good (εt−1 > 0)
and bad (εt−1 < 0) news. However, when a jump occurs the news impact curve tends to
flatten and become more symmetric. In terms of the parameter estimates in Table III,
in the absence of a jump the coefficient associated with feedback from good news to
to σ2

t is exp(α) = .022, while the coefficient for bad news is greater, exp(α + αa) =
.063. When 1 jump occurred last period,22 the coefficient associated with good news is
exp(α + αj) = .014; while it is exp(α + αj + αa + αa,j) = .016 for bad news. Table VIII
reports the size of g(·) associated with these four cases for all firms.

In summary, we find the traditional good and bad news asymmetry, but this appears
to operate mostly when no jumps occur. In contrast, when jumps occur the usual good
vs bad news effect diminishes in favor of a more symmetric effect on expected volatility.
In addition, past jumps affect the conditional variance but they tend to have a smaller
positive feedback coefficient than normal innovations. This evidence is consistent with
the stylized fact that the persistence effect on expected volatility from large shocks to
returns is often smaller than from normal innovations.

22As inferred from the time t− 1 filter, E[nt−1|Φt−1].
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A.3. Jump clustering around the 1987 crash

Figure 3 focuses on the model for IBM around the 1987 crash. Panel B displays the
conditional variance components of the model and indicates that it is the jump variance
component that accounts for the effects on conditional variance after the crash. Notice
that the smooth GARCH component of volatility shows very little increase after the
crash. This is an important feature of jumps which is discussed in more detail below.
Comparing panels C and D shows how poorly a constant jump intensity (λt = λ) version
of the model does in capturing the jump dynamics for this period.

Further evidence of the ability of the ARJI model to correctly identify and forecast
jumps is seen in Table IX. This table compares the returns before and after the 1987
crash with the ex ante forecast of a jump from both the ARJI specification and the
constant jump intensity version. The last column of this table reports the ex post
probability of a jump.23 Using a criterion that a jump occurred if P (nt ≥ 1|Φt) ≥ .5,
we see that the ARJI specification provides a vast improvement over the constant jump
intensity model in predicting jumps for this period. For example, the ARJI model
identifies (ex post) the crash on Oct. 19 as a jump and forecasts (ex ante) the jumps
that occur in the 3 days immediately following the crash, while the constant intensity
probability of a jump is constant at .03 over the entire sample.

To further investigate the ability of the GARJI specification to capture the volatility
structure for IBM around the 1987 crash, Figure 4 presents a comparison of two condi-
tional standard deviation forecasts (produced by alternative models) with a range-based
measure of ex post volatility. Following Parkinson (1980),24 our estimate of the ex post
daily standard deviation is

ranget =
√

κ log(Pt,h/Pt,l) (25)

where Pt,h and Pt,l are the intraday high and intraday low prices respectively, and κ is
a parameter that was calibrated to the data to make the range estimate of the uncon-
ditional variance equal to the unconditional variance of daily returns.25 Figure 4 shows
the standard deviation forecasts from our GARJI model, as well as those produced by
a fat-tailed asymmetric GARCH model with no jumps. For the latter we use a GJR-
GARCH model with t-distributed innovations (GJR-GARCH-t). After the crash, the
GJR-GARCH-t forecast completely overshoots realized volatility and persists at high
levels for some time.26 In contrast, the GARJI reverts back to the lower actual levels
of volatility much more quickly, and provides a superior forecast of daily volatility after
the 1987 crash.

23P (nt ≥ 1|Φt) = 1− P (nt = 0|Φt).
24The estimator in Parkinson (1980) provides an efficient unbiased estimate of the volatility parameter

from a geometric Brownian motion, but may be biased for other stochastic processes.
25Parkinson (1980) set

√
κ = .6 while we estimate it to be .74 for our sample.

26The problem with the basic GJR-GARCH-t model is even clearer from Panel B of Figure 3 which
shows the volatility components from the GARJI model. The GARCH variance component increases
very little after the crash while most of the volatility dynamics are accounted for by the jump dynamics.
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A.4. Prescheduled earnings announcements

Andersen and Bollerslev (1998b) showed that macroeconomic announcements which
occur on predetermined dates are associated with a volatility component for exchange
rates that can have large but generally short-lived effects. In our context, although
earnings surprises are only one source of jumps, it might be important to differentiate
between jumps on prescheduled earnings announcement days versus jumps on days when
there was unscheduled news.

For our historical samples for IBM and Intel, approximately 16% and 23% of jumps
were associated with prescheduled earnings announcement days. That is, using our
model’s filter and the criterion that at least one jump occurred on day t if P (nt ≥ 1|Φt) ≥
.5, for Intel we identify jumps on 62 days, of which 14 coincide with days when there was
an earnings announcement (or the day after if the announcement was after the market
closed). For IBM, jumps occurred on 145 days, 24 of which were earnings announcement
days.27 On the other hand, only 20% of scheduled earnings announcements result in
jumps.

To investigate whether or not prescheduled earnings announcements have different
effects than other sources of jumps, we explored a parameterization which allows an
earnings announcement day dummy variable to affect the jump intensity as well as the
GARCH conditional variance. We tried several specifications, including allowing the
effect of the dummy to propagate versus allowing for a one-time only effect on the
conditional intensity and GARCH variance. We found that the one-time effect provided
the best loglikelihood value. Note that the earnings announcement dummy variable was
turned on for both the day of the announcement and the day after due to the fact that
many announcements occur after the market closes.

The results for this richer model are very comparable to our main results which were
discussed above and reported in Table III. In particular, all of our conclusions, such
as jump clustering and volatility asymmetries, are robust to the addition of presched-
uled announcement dummies. The effect of announcement dummies was imprecisely
estimated for our data. As noted above, the relatively infrequent occurrence of an-
nouncements that result in jumps, mean that long samples are needed to accurately
identify different types of jump dynamics.

B. Indices

During discussion of the results for individual firms, it appeared as if there might be
differences between traditional firms and new economy firms. Given that available time-
series are too short for many internet stocks, and also that it is difficult to classify some
firms as traditional versus high-tech, this section reports results for our GARJI model
applied to three different indices which cover different types of firms. Table X reports

27We have IBES data on earnings announcement days starting in the third quarter of 1971 which
covers three quarters of our total sample for IBM.
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parameter estimates for the GARJI model for the DJIA, NASDAQ 100 and the CBOE
Technology Index (TXX). The specification of the GARJI model in this table includes an
AR(1) term to account for the autocorrelation found in the conditional mean of returns
for the indices.28

The three indices cover the spectrum of volatility levels from low to high, ordered
as DJIA, NASDAQ 100, and TXX. Unconditional standard deviations are .948, 1.815
and 2.429 for the DJIA, NASDAQ and TXX respectively. Consistent with this ordering
is an increased likelihood of jumps for the more volatile indices. For instance, the
implied unconditional jump intensities are .135, .136 and 1.429 for the DJIA, NASDAQ
100 and TXX, respectively. The average variance due to jumps is .224 (DJIA), .443
(NASDAQ 100), and 5.073 (TXX). The more volatile the index the larger the jump
variance, although the proportion of the conditional variance explained by jumps is still
quite low overall, .166 for the DJIA, .144 for the NASDAQ 100, and .228 for the TXX
index. These results suggest that jumps in the DJIA are less frequent and have a smaller
effect on returns than the other indices. Conversely, returns from the volatile TXX index
display frequent large jumps.

There are several features that are common for individual firm and index dynamics.
For both, the addition of the ARJI jump dynamics provides a strong statistical improve-
ment over a constant jump intensity specification (see estimates for ρ and γ in Table X
and column 1 of Table VI). The process governing the arrival of jumps is serially corre-
lated which implies jump clustering for the indices as well. One difference between the
individual firm results and those for the two most volatile indices is that revisions to
the conditional jump intensity, ξt−1, are more important for the latter. For example, γ
is .936 and .974 for the NASDAQ 100 and TXX respectively, which is larger than the
value for the DJIA and all the individual firms.

The final 3 rows in Table VI and Table VII report the LR test results for the effect
of jumps on expected volatility for the indices. In each case, jump effects on conditional
variance are important. The first column of Table VI shows that the time-varying
jump intensity will affect expected volatility for all indices. The second column shows
that jump innovations have a different feedback on expected volatility than do normal
innovations (this differential is weakest for the TXX which is the smallest dataset and
may not contain sufficient information to identify this aspect of the model). Like the
individual firm results, the feedback coefficient, g(·), tends to be smaller when a jump
innovation is part of the return innovation. For instance, for the DJIA, the feedback
coefficient associated with good news and no jumps is g(·) = exp(α) = .014, but exp(α+
αj) = .007, when one jump occurred. Also, in common with the results for individual
firms, the last three rows of the first column of Table VII show that there is no evidence
of asymmetric jump feedback (ie. αa,j = 0) with respect to good or bad news. However,
at least for the DJIA index, the final column of Table VII indicates that bad news
asymmetries are still important for normal innovations in the absence of a jump.

28Market microstructure effects such as stale prices can cause low-order autocorrelation in index
returns.
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A direct result of jumps is that they can cause significant conditional and uncondi-
tional skewness (see Equation 20). Conditional skewness is affected by the magnitude
and sign of θ. The jump size mean, θ, is significantly negative for all three indices while
it is centered around zero for most firms (the exception is Texaco). This indicates that
a negative time-varying conditional correlation between jump innovations (consequently
return innovations) and squared return innovations is an important feature of the in-
dices.29 These results are consistent with a time-varying leverage effect in which large
negative return realizations, in this case due to jumps, are associated with an immedi-
ate increase in the variance. This result of a significant contemporaneous asymmetry
is associated with a weaker asymmetry between the sign of lagged innovations and the
GARCH variance component for the indices as compared to the individual firms.30 This
is consistent with Duffee (1995) who reports a significant negative contemporaneous
correlation between aggregate stock returns and volatility but a weaker contempora-
neous correlation for individual stock returns and volatility. Duffee (1995) speculates
that there is a negatively skewed market factor and an idiosyncratic firm factor which
is positively skewed. We conclude that for the indices a time-varying contemporaneous
leverage effect which is captured by jumps is more important than the lagged leverage
effect which is identified in the GARCH structure.

V. Evaluation of Variance Forecasts

This section summarizes results from our evaluation of the out-of-sample forecasts from
our GARJI model as compared to a benchmark GJR-GARCH-t model. In all cases,
we re-estimated the models reserving 1500 observations for the out-of-sample analyses.
Conditional variance forecasts were based on these estimates and the parameters were
updated (re-estimated) every 50 observations.

One frequently used method to evaluate forecasts is to run a linear regression of the
realized variable on its forecast. Then the coefficient of determination, R2, provides a
measure of the value of the forecasts. In the case of volatility this is complicated by
the fact that the target is unobservable. Traditional proxies for ex post volatility, such
as squared daily returns, are noisy and relatively ineffective for discriminating among
forecasting models. Andersen and Bollerslev (1998a) show that the use of intraday
prices can provide improved ex post estimates of latent volatility. One such estimator
is the range, Equation 25, which was used in the previous section to compare volatility
forecasts for IBM around the 1987 crash.

Therefore, we evaluate our out-of-sample volatility forecasts using the R2 from the
following regression,

ranget = a + bVart−1(rt)
1/2 + errort (26)

29Covt−1(εt, ε
2
t ) = Et−1ε

3
t < 0 if θ < 0.

30Applying the benchmark GJR-GARCH-t model to the indices revealed significant asymmetries but
in the GARJI model these feedback asymmetries are diminished. Results are available on request.
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where ranget is the estimate of the ex post standard deviation on day t, and Vart−1(rt)
1/2

is the square root of the out-of-sample conditional variance forecast for day t from a
particular model.31 A higher R2 implies a better forecasting model in the sense that
a larger percentage of the variability of realized volatility is explained by that model’s
forecasts.

The first row of results in Table XI reports the R2 from the forecast evaluation
regression (26) for the GJR-GARCH-t and the GARJI models applied to all firms.32

With the exception of Texaco, the GARJI produces a higher out-of-sample R2 for all
firms, although the models are about equal for Amgen. In some cases, the improvement
in the R2 from the GARJI model is substantial (Apple, HD, HWP, IBM, and MOT).
The Texaco exception is interesting since we found that case to be different from other
firms in several respects, notably a higher average intensity of jumps and a significantly
positive jump-size mean. Although the GARJI model appears to add little to volatility
forecasts for Texaco, the strong rejection of a constant intensity specification reported
in Table VI suggests the GARJI dynamics may improve other features of the return
distribution, such as density forecasts.

The second panel of results conditions on the observations of higher than normal
volatility, that is, including observations in (26) only when the ranget is greater than
its mean plus one standard deviation. The ranking of the models is consistent with the
results reported in the first panel which used all of the out-of-sample data.

The GJR-GARCH-t benchmark model can capture volatility clustering and fat-tails.
However, since that model is from the location-scale family of distributions, the shape
of the tails of the return distribution remain constant over time.33 On the other hand,
the GARJI model is an example of a time-varying mixture of distributions which allows
the shape of the tails of the return distribution to change over time. Therefore, the
more flexible GARJI model should be able to capture dynamics in the tails of the return
distribution, particularly after a large price move. In Section IVA.3 we illustrated the
improved forecasts of the GARJI model after the 1987 crash for IBM. This suggested
that the addition of jump dynamics plays an important role in improving forecasts
after a large negative move in the market. Again, the important question is whether
our richer specification also performs better for out-of-sample forecasts. To investigate
this for all firms, we consider another conditional regression evaluating out-of-sample
forecasts using data around large negative returns. In particular, we condition on the
daily return being less than -2% and include the 10 days immediately following this

31We also evaluate conditional variance forecasts using the square of the range as our target value.
The ranking of the models is identical to the results based on Equation (26).

32As noted in Section IVA.3, the unadjusted range statistic is a biased measure of the ex post
standard deviation and also, due to Jensen’s inequality, the square root of the variance forecast will be
a biased measure of the conditional standard deviation forecast. Our focus is not on potential bias of
the model forecasts but on their ability to explain changes in the volatility as measured by the R2 from
regression (26).

33For example, the conditional skewness and kurtosis are constant over time for the GJR-GARCH-t
model.
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downward move in the market. The R2s from the regression (26) associated with the
out-of-sample forecasts for these episodes in our sample are reported in the bottom panel
of Table XI. As expected, the predictive ability of both models declines compared to the
top row which includes all of the data, but the GARJI specification continues to provide
superior forecasts compared to the GJR-GARCH-t alternative for 10 out of 11 firms.

In summary, the results in the three panels of Table XI show that the GARJI model
produces superior forecasts relative to a benchmark GJR-GARCH-t model. These results
include out-of-sample forecasts for average volatility, above average volatility and the
volatility just after large negative moves in the stock price. These substantial improve-
ments in the out-of-sample forecasts, relative to a popular benchmark model, should
facilitate improved financial management decisions.

VI. Summary

In this paper we have developed a model of the components of the return distribution
implied by the impact of different types of news. We interpret the innovation to returns,
which is directly measurable from price data, as the news impact from latent news
innovations. The latent news process is postulated to have two separate components,
normal and unusual news events, which have different impacts on returns, expected
volatility, and higher-order moments of the return distribution. Normal news innovations
are assumed to cause smoothly evolving changes. The second component of the latent
news process causes infrequent large moves in returns which we label jumps. Therefore,
the latent news process induces two separate components governing the distribution of
returns.

The volatility process is affected by both components driving returns. The condi-
tional variance of the normal innovation captures the smooth autoregressive component
in volatility; whereas the conditional variance of the jump innovation captures unusual
and often extreme price movements from significant information events. The intensity
of the jump process is explicitly modeled as a serially correlated conditional Poisson
process. This time-varying intensity affects volatility dynamics directly. In addition,
previous jump innovations feedback into expected volatility through the GARCH com-
ponent of conditional variance. Furthermore, normal and jump innovations have po-
tentially asymmetric effects on volatility dynamics. This rich specification allows for
conditional contemporaneous leverage effects and lagged leverage effects. These features
extend traditional models that combine GARCH and SV with jumps.

In summary, we find evidence of time dependence in jump intensities for both indi-
vidual stocks and indices using an autoregressive conditional jump intensity parameteri-
zation; allow jump innovations to feedback to expected volatility; provide new results on
asymmetric effects of return innovations on volatility; and find evidence of a time-varying
contemporaneous leverage effect. These novel features allow jumps to have different im-
pacts, feedbacks and decay rates as compared to normal innovations allowing the model
to perform better around crash periods and other events in the tail of the distribution.
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The structure of our model is such that the mixture of components can adapt flexibly
to capture different features of the conditional distribution of returns. Importantly, our
GARCH-jump mixture model also provides superior out-of-sample conditional variance
forecasts relative to a benchmark asymmetric GARCH model with fat-tailed innova-
tions. These superior out-of-sample forecasts should result in improvements in financial
management.

Finally, the process governing the arrival of jumps may be heterogeneous with respect
to the type of news. For example, some macro and firm-specific announcement dates are
known ex ante and may result in deterministic volatility that is identified as a jump. In
other words, jumps dynamics may differ across different types of news events. However,
the infrequent occurrence of jumps makes this identification of different jump dynamics
a challenging area for future study.

Appendix

For notational convenience let E[·|Φt−1] = Et−1. The conditional intensity can be rewrit-
ten as,

λt = λ0

∞∑
i=0

ρi + γ

∞∑
i=1

ρi−1ξt−i + lim
k→∞

ρkλt−k.

Now for |ρ| < 1 and, limk→∞ ρkEλt−k = 0

Eλt =
λ0

1− ρ
,

The further restrictions of ρ ≥ γ ≥ 0, and λ0 > 0 ensures that λt > 0 for all t. For the
GARCH-jump model with the following restrictions, αj = αa = αa,j = 0, and with the
GARCH function parameterized as,

σ2
t = ω + αε2

t−1 + βσ2
t−1,

the unconditional variance is composed of the two components,

E(rt − µ)2 = E(ε2
1,t + 2ε1,tε2,t + ε2

2,t)

= Eσ2
t + Eε2

2,t.

To solve for Eε2
2,t, first note that Vart−1(ε2,t) = Et−1ε

2
2,t = (θ2 + δ2)λt, since by construc-

tion Et−1ε2,t = 0. Therefore,

Eε2
2,t = EEt−1ε

2
2,t = (θ2 + δ2)E(λt)

= (θ2 + δ2)
λ0

1− ρ
.
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To find Eσ2
t we have,

Et−2σ
2
t = ω + (α + β)σ2

t−1 + αEt−2ε
2
2,t−1,

or in general,

Et−kσ
2
t = ω(1 + (α + β) + · · ·+ (α + β)k−2) + (α + β)k−1σ2

t−k+1

+α(Et−kε
2
2,t−1 + (α + β)Et−kε

2
2,t−2 + · · ·+ (α + β)k−2Et−kε

2
2,t−k+1)

Under the above conditions that ensure Eλt exists and α + β < 1,

lim
k→∞

Et−kσ
2
t =

ω

(1− α− β)
+

α

(1− α− β)
(θ2 + δ2)

λ0

1− ρ

and therefore,

Var(rt) =
ω

(1− α− β)
+

α(θ2 + δ2)

(1− α− β)

λ0

(1− ρ)
+ (θ2 + δ2)

λ0

(1− ρ)
.
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Table II
Earnings Surprises and Jumps

P (nt ≥ 1|Φt) is the ex post probability of at least one jump. Earnings surprises are recorded on the
first day the market is open following an earnings announcement.

Company Date Price Change (%) P (nt ≥ 1|Φt) Earnings Surprise (%)

Intel 11-Oct-99 1.07 0.01
12-Oct-99 0.24 0.01
13-Oct-99 -6.13 0.23 -3.67
14-Oct-99 1.68 0.04

12-Jan-00 1.73 0.03
13-Jan-00 -0.21 0.02
14-Jan-00 12.38 0.94 8.83
15-Jan-00 -0.91 0.16

17-Apr-00 10.72 0.85
18-Apr-00 4.76 0.28
19-Apr-00 -8.02 0.65 2.89
20-Apr-00 -3.15 0.25

IBM 18-Jul-00 -2.10 0.02
19-Jul-00 5.17 0.07
20-Jul-00 7.53 0.35 5.78
21-Jul-00 -2.16 0.11

16-Oct-00 1.87 0.22
17-Oct-00 1.68 0.14
18-Oct-00 -16.89 0.99 -0.18
19-Oct-00 1.04 0.36

16-Jan-01 -1.14 0.02
17-Jan-01 4.16 0.04
18-Jan-01 11.35 0.65 1.78
19-Jan-01 2.68 0.20
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Table VI
Likelihood Ratio Tests of Jump Effects on Expected Volatility

ρ = γ = 0 is a test of constant jump intensity and therefore no effect of time-varying jump
intensity on conditional variance of returns.
αj = αa,j = 0 is a test of no additional feedback to conditional variance of returns from
jump innovations as compared to normal innovations.
p-values are reported in square brackets.

Firms ρ = γ = 0 αj = αa,j = 0

Amgen
52.282

[.443e-11]
22.328

[.142e-4]

Apple
42.370

[.630e-9]
29.306

[.433e-6]

KO
78.020

[.114e-16]
25.780

[.252e-5]

GM
87.698

[.905e-19]
28.086

[.796e-6]

HD
21.374

[.228e-4]
13.846

[.985e-3]

HWP
56.624

[.506e-12]
19.970

[.461e-4]

IBM
45.038

[.166e-9]
60.176

[.857e-13]

Intel
7.678

[.215e-1]
11.938

[.256e-2]

J&J
22.236

[.148e-4]
18.496

[.963e-4]

MOT
13.806

[.100e-2]
42.068

[.733e-9]

Texaco
71.578

[.286e-15]
55.010

[.113e-11]
Indices

DJIA
50.624

[.102e-10]
63.698

[.147e-13]

NASDAQ
47.266

[.545e-10]
21.046

[.269e-4]

TXX
56.136

[.646e-12]
6.280
[.043]



Table VII
Likelihood Ratio Tests of Asymmetric GARCH Feedback Effects

αa,j = 0 tests for asymmetric feedback from jumps innovations associated with bad versus good news.
αa = αa,j = 0 tests asymmetry with respect to good and bad news for normal and jump innovations.
p-values are reported in square brackets.

Firms αa,j = 0 αa = αa,j = 0

Amgen
5.260
[.022]

7.162
[.0278]

Apple
.080
[.777]

.942
[.624]

KO
2.552
[.110]

25.428
[.301e-5]

GM
2.886
[.089]

9.378
[.920e-2]

HD
2.206
[.137]

10.020
[.667e-2]

HWP
3.208
[.073]

15.266
[.484e-3]

IBM
4.118
[.042]

30.788
[.206e-6]

Intel
9.622

[.192e-2]
12.244

[.219e-2]

J&J
5.282
[.022]

30.494
[.239e-6]

MOT
1.080
[.298]

12.670
[.177e-2]

Texaco
10.680

[.108e-2]
10.698

[.475e-2]
Indices

DJIA
.018
[.893]

30.062
[.297e-6]

NASDAQ
.748
[.387]

6.260
[.044]

TXX
4.882
[.027]

6.800
[.033]



Table VIII
GARCH Feedback from Past Return Innovations

This table compares the feedback coefficient, g(Λ,Φt−1), when
good and bad news occur with 0 or 1 jump being inferred last
period.

good news bad news
no jump 1 jump no jump 1 jump

Firms
Amgen .019 .017 .063 .010
Apple .022 .007 .018 .005
KO .014 .014 .061 .028
GM .009 .008 .037 .011
HD .020 .016 .103 .025
HWP .020 .015 .072 .023
IBM .022 .014 .063 .016
Intel .010 .021 .063 .013
J&J .024 .026 .113 .064
MOT .029 .006 .045 .017
Texaco .032 .021 .051 .008

Indices
DJIA .014 .007 .048 .025
NASDAQ 100 .030 .028 .071 .040
TXX .021 .022 .077 .004



Table IX
Jump Predictions for IBM around the 1987 Crash

ARJI is the ex ante jump probability from the jump specification discussed in Section 2.1
while the constant intensity version imposes λt = λ for all t.

date Return Ex Ante Jump Probability Ex Post Jump Probability

Constant Intensity ARJI
Oct 14 -2.38 .029 .032 .032
Oct 15 -3.59 .029 .035 .090
Oct 16 -3.72 .029 .057 .120
Oct 19 -26.81 .029 .076 1.000
Oct 20 10.78 .029 .630 .999
Oct 21 6.52 .029 .669 .923
Oct 22 -2.26 .029 .618 .532
Oct 23 .62 .029 .457 .313
Oct 26 -7.52 .029 .301 .881
Oct 27 5.22 .029 .420 .624



Table X
GARJI Model Estimates for the Indices

rt = µ + φrt−1 + ε1,t + ε2,t, ε1,t = σtzt, zt ∼ NID(0, 1),

ε2,t =
nt∑

k=1

Yt,k − θλt, Yt,k ∼ N(θ, δ2), λt = λ0 + ρλt−1 + γξt−1

σ2
t = ω + g(Λ, Φt−1)ε

2
t−1 + βσ2

t−1, εt−1 = ε1,t−1 + ε2,t−1

g(Λ, Φt−1) = exp(α + αjE[nt−1|Φt−1] + I(εt−1)(αa + αa,jE[nt−1|Φt−1])),

I(εt−1) = 1 if εt−1 < 0, otherwise 0.

Parameter DJIA NASDAQ 100 TXX

µ
.019

(.007)
.047

(.019)
.058

(.048)

φ
.109

(.010)
.098

(.016)
.044

(.025)

ω
.001

(.001)
.006

(.003)
.010

(.016)

α
-4.262
(.293)

-3.511
(.193)

-3.855
(.425)

αj
-.708
(.322)

-.063
(.229)

.050
(.145)

αa
1.225
(.260)

.864
(.313)

1.297
(.691)

αa,j
.061

(.416)
-.505
(.427)

-3.032
(1.764)

β
.968

(.006)
.946

(.009)
.968

(.012)

λ0
.007

(.002)
.023

(.011)
.030

(.012)

ρ
.948

(.013)
.831

(.029)
.979

(.008)

γ
.652

(.170)
.936

(.333)
.974

(.289)

θ
-.459
(.097)

-1.460
(.595)

-1.822
(.451)

δ
1.205
(.196)

1.061
(.216)

.481
(1.221)

lgl -12601.6 -7468.0 -3687.7
Standard errors are in parenthesis. lgl is the loglikelihood.
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Figure 1. Time-series of IBM
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Figure 2. News Impact Curve for IBM
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Figure 3. IBM and the 1987 Crash
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Figure 4. Alternative Estimates of the Conditional Standard Deviation of IBM Returns
around the 1987 Stock Market Crash
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