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Résumé / Abstract 
 

Les agents logiciels peuvent être utiles pour la formation de groupes d'acheteurs puisque les humains 
ont beaucoup de difficultés à trouver des transactions Pareto-optimales (aucun acheteur ne peut être 
mieux sans qu'un autre soit pire) dans les situations de négociation. Alors, quelles sont les 
performances informatiques et économiques des agents logiciels pour un problème de négociation 
particulier? Nous donnons une première réponse à cette question pour un problème de groupement 
d'acheteurs. Du point de vue de la théorie des jeux, ce problème est équivalent à la formation de 
coalitions avec gain non-transférable (le cas général). La recherche antérieure sur la formation de 
coalitions permettait le transfert de gain entre agents ce qui est un cas spécial. Nous argumentons que 
la Pareto-optimalité est un bon concept de solution pour ce problème. La formation de coalitions peut 
être décomposée en deux parties ayant une grande complexité de calcul : déterminer l'ordre de 
préférence parmi tous les groupes d'acheteurs possibles de chaque agent et trouver la meilleure 
structure de coalitions. Pour la première partie, nous avons trouvé une restriction raisonnable au 
problème permettant une réduction du nombre de groupes d'acheteurs à ordonner d'un facteur 
exponentiel à un facteur linéaire en fonction du nombre d'acheteurs. Pour la deuxième partie, nous 
cherchons à savoir par une évaluation empirique si les incitatifs à se regrouper (un gros groupe obtient 
un prix unitaire inférieur à un petit groupe) créent une structure spéciale rendant possiblement le 
problème plus facile sur le plan calculatoire. Nous évaluons un protocole de négociation pour agents 
logiciels que nous avons développé pour voir si le problème est difficile en moyenne et pourquoi. Ce 
protocole trouve assurément une solution Pareto-optimale qui minimise la pire distance à l'idéal parmi 
tous les agents étant donné des listes de préférences sans égalité. Notre évaluation démontre que la 
consommation de l'espace en mémoire et non le temps d'exécution limite les performances des agents 
logiciels dans ce problème de groupement d'acheteurs. De plus, nous cherchons à savoir si les agents 
logiciels suivant ce protocole ont le même comportement d'acheteurs que des humains dans la même 
situation. Les résultats démontrent que les agents logiciels ont un comportement plus différent (et 
meilleur car ils peuvent toujours simuler le comportement habituel des humains qui est d'acheter seul 
leur produit préféré) lorsqu'ils ont des préférences similaires dans l'espace des produits disponibles. 
Nous discutons également du type de la différence de comportement et de sa fréquence en fonction de 
la situation.  
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Software agents (SA) could be useful in forming buyers' groups since humans have considerable 
difficulty in finding Pareto-optimal deals (no buyer can be better without another being worse) in 
negotiation situations. Then what are the computational and economical performances of SA for a 
particular negotiation problem? In this article, we try to give a first answer to this question for a 
group buying problem. From the game theory point of view, the problem is equivalent to coalition 
formation (CF) with non-transferable payoff (the general case). Prior research in CF has allowed 
payoff to be transferred between agents, which is a special case. We argue that Pareto-optimality is a 
good solution concept to this problem. CF can be decomposed into two computationally difficult 
components : determining a preference ordering among all possible buying groups for each SA and 
finding the best coalition structure. For the first component, we have found a reasonable restriction to 
the group buying problem allowing the reduction of the number of possible buying groups to be 
ordered from a exponential to a linear factor in function of the number of buyers. For the second 
component, we try to investigate by an empirical evaluation if incentives to regroup (a bigger group 
pays less than a smaller one) create a special structure which possibly makes the problem 
computationally easier. We evaluate a negotiation protocol for SA that we developed to see if the 
problem is difficult on the average and why. This protocol provably finds a Pareto-optimal solution 
and furthermore, minimizes the worst distance to ideal among all SA given preference ordering 
without equality. This evaluation demonstrates that memory requirements and not execution time 
complexity limit the performance of SA in this group buying problem. Furthermore, we investigated if 
SA following the developed protocol had a different buying behaviour than the customer they 
represented would have had in the same situation. Results show that SA have a greater difference of 
behaviour (and a better behaviour since they can always simulate the obvious customer behaviour of 
buying alone their preferred product) when they have similar preferences over the space of available 
products. We also discuss the type of behaviour changes and their frequencies based on the situation. 
 

Keywords: Multiagent Systems, Coalition Formation, Group Buying. 



1 Introduction

The Internet has reduced the cost of communication, information search and
more generally, computing through meta-computing (using the computa-
tional power of idle processors connected to the Internet). This reduction
of cost has enabled the automation of some electronic commerce activities
like online auctions [Guo, 2002; Anthony and Jennings, 2003; He and Jen-
nings, 2003] and group buying negotiation that seeks a greater economical
performance by economies of scale. We mean by negotiation the “process by
which agents communicate with one another to try and come to a mutually
acceptable agreement on some matter” [Lomuscio et al., 2001]. Group buying
is a natural application domain for research on coalition formation in multi-
agent systems (MAS). Consumers have an incentive to regroup with the unit
price reduction in function of the number of units bought by the group. But
as more and more consumers become members of the same group, there is
an increase in the number of compromises that each consumer must make in
order to agree on the product bought by the group. In one extreme case, all
the consumers can regroup in the same group and buy the same product. In
the other extreme case, all the consumers could buy alone a different prod-
uct forming thus as many groups as consumers. Finding a Pareto-optimal
partition (no other partition gives more to a consumer without giving less
to another one) of the set of consumers in buying groups would be a desired
solution to this problem.

The use of software agents is required since they perform better than
humans in finding a Pareto-optimal outcome in reasonably complex negoti-
ations [Sandholm, 1999]. Not only this affirmation is a widely accepted con-
jecture, but empirical evidence tends to confirm it. Rangaswamy and Shell
[1997] have conducted an experiment where two people needed to agree on
an outcome among 256 possible outcomes based on preferences that were im-
posed to the participants. Results of this study showed that in 11.1% of the
situations, humans agreed on a Pareto-optimal outcome. With the help of a
negotiation support system, that percentage rose to 42.6%. So in both cases,
humans were not able to find a Pareto-optimal outcome in more than half
of the situations (88.9% and 57.4%). Software agents differ from negotiation
support systems because they do not help humans to negotiate. Instead, they
negotiate on their behalf.

When there is a set of consumers wishing for the same type of product,
group buying consists in partitioning the set of such consumers into buying
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groups with respect to the preferences of each consumer over all the possi-
ble buying groups. Among all the possible partitions, we would also like to
find a Pareto-optimal one. Defined in that way, the computational problem
is equivalent to the generation of exact set covers known to be NP-hard
[Garey and Johnson, 1979]. Incentives to regroup (a bigger group pays less
than a smaller one) create a special structure possibly making the problem
computationally easier. An investigation on whether this is the case or not
is conducted. It turns out that the average execution time is less than expo-
nential but the memory requirements limit the number of software agents in
the system.

We have developed a protocol and associated algorithms that software
agents can use to find a Pareto-optimal partition that minimizes the worst
distance to ideal among all agents given a preference ordering without equal-
ity for each agent. This paper presents the results of the empirical evaluation
of the computational and economical performances of the protocol for dif-
ferent quantities of agents (with random preferences from consumers) and
products. It is organized as follows. In the next section, we briefly review
related work. An argumentation follows in section 3 about the choice of
Pareto-optimality as the solution to this coalition formation problem. Then,
in section 4, we present our protocol and in section 5, we detail some results
and discuss them. Finally, we conclude in section 6.

2 Prior Work on Coalition Formation in MAS

2.1 General Research Work

Research in coalition formation in MAS [Sandholm, 1996; Sandholm et al.,
1999; Sen and Dutta, 2000; Shehory and Kraus, 1999] has mainly focused
on transferable payoff when we analyze the process from the game theory
point of view. This case, which is specific, is defined by a payoff attributed
to each possible coalition. Members of a coalition must agree on a division
of that payoff among themselves. However, the general case in cooperative
game theory uses non-transferable payoff [Osborne and Rubinstein, 1994].
Non-transferable payoff means that, for each coalition, each of its members
receives an individual payoff which does not come from the payoff of the
coalition because no such payoff exists. While in the transferable payoff case,
the sum of members’ payoff must equal the coalition payoff, in the non-
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transferable payoff case, the sum of members’ payoff can be anything. This
is the reason why it is the general case. In group buying, each consumer has
a private evaluation for each possible buying group. This evaluation depends
only on the preferences and constraints of the consumer. The evaluation
of a particular buying group by a consumer approximates the utility this
consumer receives in belonging to this buying group. One could think that
utility could be transferred from one consumer to another by an appropriate
transfer of money. But in game theory, “we say that utility is transferable
if the increment to the payoff of an agent caused by a transfer of money
is proportional to the amount of money transferred” [Aumann, 1960]. Since
humans seem to a have a utility function towards money that is of logarithmic
form [Grayson, 1960], the increment to the agent’s payoff is not proportional
to the amount of money transferred. The same amount of money transferred
could incur a different increment to the payoff of the agent based on the
current value of the payoff since the utility function towards money is not
linear. Hence, group buying as defined in this article is a non-transferable
payoff case.

From the computer science point of view, research on coalition formation
with transferable payoff has been related to optimization problems. Generally,
they have searched for the partition whose sum of its coalitions’ payoff is op-
timal. In our case, we want to generate a Pareto-optimal partition which is a
generation problem (every Pareto-optimal partition is considered a solution).
While optimization problems’ solutions could sometimes be approximated by
deterministic or non-deterministic algorithms, solution to generation prob-
lems cannot be approximated in the same way. So, less computational tools
exist for generation problems in comparison with optimization ones.

2.2 Specific Research Work for Group Buying

The use of coalition formation for buying groups has recently attracted the
attention of researchers. Thus, Tsvetovat et al. [2001] have demonstrated the
economic incentives of buying groups for consumers as well as manufacturers
and provided models of coalition formation in that context. Lerman and
Shehory [2000] have described the macroscopic behaviour of coalitions with
differential equations when agents are allowed to leave and join a coalition
to finally reach a steady state. For their part, Yamamoto and Sycara [2001]
have separated agents into coalitions and divided the profit generated by a
coalition among its members in an efficient and stable way using transferable
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payoff. Another interesting issue investigated by Ito et al. [2001], has been on
how we can allow sellers to cooperate when a coalition requires more units
than a single seller can offer. Another facet has been investigated by Lin and
Yuan [2001] and concerns the reputation in the choice of a coalition’s manager
which represents the other members of a coalition in the negotiation with
sellers. Li and Sycara [2002] have studied how to combine coalition formation
with combinatorial auctions for a more efficient marketplace. Breban and
Vassileva [2002] have studied the concept of trust in long term coalitions
of buyers and sellers over repeated transactions. However, these approaches
has studied group buying with transferable payoff and therefore, did not
empirically evaluated an implemented system with non-transferable payoff.

Recently, Sarne and Kraus [2003] have proposed a non-transferable payoff
model for group buying. In this model, each buying group is represented by
an agent who incurs a cost for searching another buying group to merge with
in addition to the cost of the internal coordination of the group’s members.
The buying groups evolve as agents must decide if they continue the search
for potential merging partners or settle. The problem we have studied is
different because it is composed of a static group of consumers of which we
want a Pareto-optimal partition into buying groups.

3 Choice of the solution concept

In game theory, even determining what should be the solution to a problem
is a valid research question beside finding it. This is because solutions in that
domain are equilibria that are more or less stable (or stable in different ways)
and there is no dominating equilibrium. Game theorists do not even commu-
nicate with the word “solution”. Instead, they use the expression “solution
concept”. Several solution concepts exist for cooperative game theory with
non-transferable payoff along with general solution concepts that could also
apply to this case. Among those which are the most useful:

Social welfare It is the summation of the utility of each consumer towards
its payoff. Since “each agent’s utility function can only be specified up
to positive affine transformation” [Mas-Colell et al., 1995] in [Sandholm,
1999], this solution concept is not applicable to the group buying prob-
lem because it sums quantities (the utilities) with an arbitrary scale of
value;
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Pareto-optimality A solution is Pareto-optimal if no other solution gives
more to a consumer without giving less to at least another one. With
this solution concept, there is no comparison of utility between con-
sumers. Instead, a payoff that a consumer can receive is compared with
the other payoffs this consumer can receive. By definition, there is al-
ways at least one Pareto-optimal solution;

Individual rationality A solution is individually rational if each consumer
receives a payoff at least as great as the payoff he would have received
had he acted alone. The partition composed of each consumer buying
alone has the vector of minimum payoffs each consumer could get. A
Pareto-optimal solution is always individually rational but the inverse
is not always true;

Core It is the most stable of all solution concepts in cooperative game theory
since no subgroup of consumers has an advantage in leaving a solution
in the core. The problem is that the set of solutions in the core can
be empty [Osborne and Rubinstein, 1994]. Even determining if it is
empty or not is an NP-complete problem [Conitzer and Sandholm,
2002]. So why design and implement a protocol that tries to find a
solution that does not always exist and futhermore, whose existence is
computationally hard to determine? Hence, this is not an appropriate
solution concept for the group buying problem;

Stable set This solution concept is a relaxation of the constraints of the
core. Every stable set has the core as a subset. Unfortunately, the sta-
ble set has the problem of the core: it can be empty [Osborne and
Rubinstein, 1994];

Bargaining set This solution concept uses objections and counterobjec-
tions. A solution belongs to the bargaining set if for every objection
against it there is a counterobjection. This set is always non-empty
and the core is always a subset of it [Sandholm, 1996]. One downside
of this solution concept is that every partition of the set of buyers has
its bargaining set. So it does not help to find a solution when the best
partition is unknown. Furthermore, consumers need to know the payoff
of the other consumers for making objections and counterobjections.
Since payoffs are private information that should remain secret, this
solution concept is not applicable to the group buying problem.
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The solution concept chosen for the group buying problem must have
some basic properties. Firstly, it must always exist (not be sometimes an
empty set) unlike the core and the stable set. Secondly, it must not require
summing utilities with an arbitrary scale of value like the social welfare or
having knowledge of other consumers’ payoff like the bargaining set. Since a
Pareto-optimal solution is also individually rational, we think that it is the
most appropriate solution concept for the group buying problem.

4 Overview of the Protocol

In the developed protocol, consumers tell their agent the type of product they
want as well as their preferences over the possible instances of the chosen
product type. Agents are then able to find a buyers’ group which suits their
consumer’s preferences.

4.1 Reduction of the possibilities space

The group buying problem can be decomposed into two computationally
difficult components : determining a preference ordering among all possible
buying groups for each software agent and finding the best coalition structure.
For the first component, we have found a reasonable restriction allowing the
reduction of the number of possible buying groups to be ordered from a
exponential to a linear factor in function of the number of buyers. For N
consumers and P products, the number of possible buying groups is (2N −
1) × P . Indeed, the number of possible groups of consumers from a set of
N consumers is in relation to the number of possible subsets of a set. There
is 2N subsets of a set of N elements including the empty set. Since we do
not consider the empty set as a valid buying group, there is 2N − 1 possible
groups of consumers. Each of them could buy one of P available products.
Hence, there is (2N − 1)× P possible buying groups.

This is a large number of possibilities even for a small number of con-
sumers and products. But if we restrict the number of units each consumer
can buy to only one, the number of possibilities is greatly reduced. Consider
a set with 10 consumers and a product named A. The number of subsets of
3 consumers buying product A is equal to

(
10
3

)
= 120. If we limit the number

of units each consumer can buy to only one, each group of the 120 groups
of 3 consumers buys 3 units. So, they all pay the same unit price since they
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all buy the same quantity of units. From the consumer’s point of view, they
are all the same because they buy the same product at the same unit price.
Consumers can now consider only one group of 3 consumers instead of 120
different groups. For N consumers there is N non-empty groups of different
cardinality. Hence, there is N × P possible buying groups when we restrict
the number of units each consumer can buy to only one. This is the number
of buying groups that an agent must consider when creating its list of possi-
ble and different buying groups of which it could be a member. It is not the
number of all buying groups that the grouping agent of Figure 1 considers
when searching for a Pareto-optimal partition (the second component of the
group buying problem) which remains equal to (2N − 1)× P .

If a consumer wants multiple units of the same product, he can dele-
gate multiple agents, one for each unit he wants. But there is a downside to
this restriction when a consumer wants multiple units. If a consumer desires
50 units of a product, then he will pay the same unit price as a consumer
desiring only 1 unit while contributing much more to its decrease than its
counterparts. Since the restriction permits a reduction of the number of pos-
sibilities from an exponential to a linear factor in function of the quantity of
consumers and that consumers wishing for multiple units are a special case,
we think the restriction is a good compromise. Furthermore, we expect group
buying to be used for high value luxury products where the gain from group
buying seems the greatest. A typical consumer usually buys only one unit of
such products.

4.2 Sequence diagram of the protocol

Figure 1 shows a sequence diagram of the developed protocol. There are two
types of agents in the protocol. The consumer agent represents a consumer
wishing for one unit of a product. The grouping agent tries to find a partition
of the set of consumer agents from buying groups that are effective. Since all
the consumer agents have the same behaviour, there is only one such agent
in Figure 1.

When the agent has received the type of product its consumer wishes
and the preferences over instances of that product type, it registers itself
to the grouping agent in charge of that type of product by the Register()
operation. After a registration time has elapsed, the grouping agent ends
the registration period (shown by the WaitForRegister() operation). It then
sends information to the registered consumer agents with the GiveMember-
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Consumer Agent Grouping Agent

WaitForRegister()Register()

GiveMemberInformation()
SortPossibilitiesList()

ReadyToPropose()

AskingForOneProposal()

GivingOneProposal()
WriteProposal()

FindSolution()

Finish()

No

Yes
SendResults()

Figure 1: Coalition formation protocol followed by all agents.
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Product#2 at 3 units

Product#2 at 1 unit

Product#2 at 2 units

Product#1 at 3 units

Product#1 at 2 units

Product#1 at 1 unit

Product#2 at 3 units

Product#2 at 2 units

Product#2 at 1 unit

Product#1 at 3 units

Product#1 at 2 units

Product#1 at 1 unit

Product#1 at 3 units

Product#1 at 2 units

Product#1 at 1 unit

Product#2 at 3 units

Product#2 at 2 units

Product#2 at 1 unit

Agent A Agent B Agent C

First choice

Last choice

Figure 2: Sorted lists of possibilities for three agents with two available prod-
ucts.

Information() operation. The transmitted information consists of the number
of registered consumer agents, the specification of available products and
their price schedules which return the unit price of the product in function
of the number of units bought by the buying group. With this information
and with the preferences of its consumer, each consumer agent can construct
and sort a possibilities list from the most preferred to the least. Figure 2
shows such lists for 3 consumer agents and 2 products. Agent A prefers to
buy Product#2 with the two other agents (which means 3 units bought).
Agent B second choice consists of buying Product#2 with one of the other
agents (which means 2 units bought). Agent C third choice consists of buying
alone Product#1 (which means 1 unit bought). The grey boxes indicate pos-
sibilities that are not individually rational. They are situations giving less
payoff than the possibility of buying alone the preferred product. For Agent
A in Figure 2, buying with another agent Product#1 (the Product#1 at 2
units grey box) is not individually rational because it is less preferred than
buying alone Product#2 (the Product#2 at 1 unit white box). Buying alone
Product#1 is also not individually rational because it is also less preferred
than buying alone Product#2. Such situations are inadmissible here since
each agent can buy a product alone.

If a consumer agent does not have an individually rational buying group
in which it is alone, it tells the grouping agent it is not ready to propose, by
the ReadyToPropose() operation with an attribute assigned to false, and it
quits the coalition formation protocol. Or else, it tells the grouping agent it

9



is ready to propose by the same operation but with an attribute assigned to
true. We impose that each consumer agent must have a buying group in its list
of possibilities in which it is alone in order to assure that a partition exists. In
this case, the partition in which each consumer agent is alone in its group is
a solution to the problem of group buying. Otherwise, consumers could wait
hours and even days for other consumers to join them to form buying groups
and at the end, no such group could be created because no partition existed
for the given set of consumers. We do not think that this restriction is limiting
because in the present situation where everybody is buying alone, someone
for whom buying alone any available products is not individually rational
has the same behaviour than the consumer agent quitting the protocol (it
does not buy the product).

When all registered consumer agents have told the grouping agent if it is
ready or not to propose, the grouping agent asks each consumer agent who
is ready for their preferred buying group with the operation AskingForOne-
Proposal(). The consumer agents answer by giving the most preferred buying
group in their list not already proposed with the operation GivingOnePro-
posal(). Having no information about the preferences of the other consumer
agents and without knowing when the grouping agent will stop asking for
proposals because it finds a partition, we cannot think of a better strategy
for each consumer agent than to propose their individually rational buying
groups in decreasing order of preferences.

When all consumer agents have given their proposal, the grouping agent
tries to find buying groups that were created with the operation WritePro-
posal(). A buying group is created when the number of consumer agents that
proposed it is at least as high as the number of members of the proposed
buying group. For a particular group of 10 consumers, if only 9 consumer
agents propose it, then it is not created. But if a tenth consumer agent
proposes that group, it becomes effective. This process is equivalent to the
generation of K-subsets of a N -set which is a combinatorial problem [Kreher
and Stinson, 1998]. It consists in giving all subsets of K elements from a set
of N elements. We used a successor algorithm [Kreher and Stinson, 1998]
that takes in input a valid subset and gives as output the next subset in the
lexicographic order as shown by algorithm 1. Having the first subset in this
order and recursively calling this algorithm, we can generate all valid subsets.
Buying groups created in a round are stored in memory for consideration in
later rounds.

Furthermore, since the number of consumers that will propose a given
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buying group is not known in advance, it would be valuable to generate in-
crementally the proposed groups. For example, if a twelfth consumer proposes
a group of 10 consumers, we would like to generate only the newly created
groups by this consumer and not regenerate also the groups created by the
tenth and eleventh consumers which are already known. In other words, we
would like an algorithm that computes solutions to partial input without
knowing future pieces of input. Such an algorithm is called an online algo-
rithm and performance comparison with a corresponding off-line algorithm
(algorithm with the full input) is named competitive analysis. It turns out
that algorithm 1 can be transformed into an online algorithm with only a
simple change in its input. Since its structure is unchanged, there is no loss
of performance between the online and the off-line version which is surpris-
ing. As an example, if a tenth consumer proposes a group of 10 buyers, then
the group created is generated with the tenth consumer and 9 (10− 1 = 9)
consumers chosen from the 9 preceding consumers. Since there is only one
way to choose 9 elements from 9 elements, there is only one group generated.
When an eleventh consumer proposes the same group of 10 buyers, then the
groups created are added to the previously generated group. These newly
created groups are generated with the eleventh consumer and 9 (10− 1 = 9)
consumers chosen from the 10 preceding consumers. Since there are 10 ways
to choose 9 elements from 10 elements, 10 new groups are created and added
to the lone group generated by the tenth consumer. The same scheme contin-
ues as more consumers propose the same group of 10 using algorithm 1 but
with preceding consumers as input. There are two exceptions to this scheme.
When a consumer has proposed a buying group in which he is alone and
when all consumers have proposed the same buying group including all of
them, then these groups are generated without algorithm 1.

If new buying groups become effective in a proposal round, the grouping
agent tries to find a partition of the set of consumer agents that were ready
to propose among all the effective buying groups created since the beginning
of the protocol with the FindSolution() operation. This problem is equivalent
to the generation of exact set covers which is known to be NP-hard [Garey
and Johnson, 1979]. We used a backtracking algorithm [Knuth, 2000] that
takes advantage of an heuristic to efficiently prune the search tree to find
and generate partitions as shown by algorithm 2.

Before giving explanations for algorithm 2, the data structures used must
be examined. Each consumer is represented with an object called “column
object” within a double-linked circular list which has a root object named
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Algorithm 1 Successor algorithm giving the next K-subset of N -set in
lexicographic order (from [Kreher and Stinson, 1998]).

Require: �T = [t1, t2, ..., tK ] (a K-subset of a N -set where tx, for 1 ≤ x ≤ k,
is an element of the N -set), K (the cardinality of the K-subset) and N
(the cardinality of the N -set).
�U ← �T
i← K
while i ≥ K and ti = N −K + i do

i← i− 1
end while
if i = 0 then

Terminate
else

for j ← i to K do
uj ← ti + 1 + j − i

end for
Return �U

end if

h. Each buying group is represented also by a double-linked circular list of
objects representing each a consumer that is a member of the buying group.
The lists of buying groups stack up as in Figure 3 and objects representing
the same consumer are double-linked circularly among themselve with the
“column object” representing that consumer. Of course, buying groups in-
cluding all customers are not represented in the data structures used to find
a partition because we already know that they form a partition in itself.

The main operations of algorithm 2 are R[x] (returns the neighbour to
the right of object x in the horizontal list), L[x] (returns the neighbour to
the left of object x in the horizontal list), D[x] (returns the neighbour under
object x in the vertical list), U [x] (returns the neighbour over object x in
the vertical list), C[x] (returns the “column object” linked to object x), S[y]
(returns the number of buying groups containing the consumer represented by
“column object” y), Cover a “column object” (remove the “column object”
from its horizontal list and the objects of the buying groups containing the
consumer corresponding to this “column object” from their vertical lists.)
and Uncover a “column object” (undo the operations of Cover for the same
“column object”).
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Algorithm 2 Recursive algorithm “Search” for the exact set cover problem
(from [Knuth, 2000]).

Require: h (the root of the list of “column objects”), Ok (an array for
keeping in memory the k − 1 buying groups already chosen) and data
structures like the ones of Figure 3. At the first call, k = 0.
if R[h] = h then

Print the solution
Return

else
s←∞ {Start of the heuristic of Golomb and Baumert}
for all j ← R[h],R[R[h]],..., while j �= h do

if S[j] < s then
c← j
s← S[j]

end if
end for{End of the heuristic of Golomb and Baumert}
Cover column c {The Cover subroutine is presented in algorithm 3}
for all r ← D[c],D[D[c]],..., while r �= c do

Ok ← r
for all j ← R[r],R[R[r]],..., while j �= r do

Cover column C[j] {The Cover subroutine is presented in algo-
rithm 3}

end for
Search(k + 1) {Recursive call to the Search routine}
r ← Ok

c← C[r]
for all j ← L[r],L[L[r]],..., while j �= r do

Uncover column C[j] {The Uncover subroutine is presented in al-
gorithm 4}

end for
end for
Uncover column c {The Uncover subroutine is presented in algorithm 4}
Return

end if
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Algorithm 3 Cover algorithm for “column object” covering (from [Knuth,
2000]).

Require: c (“column object” to cover) and data structures like the ones of
Figure 3.
L[R[c]]← L[c]
R[L[c]]← R[c]
for all i← D[c],D[D[c]],..., while i �= c do

for all j ← R[i],R[R[i]],..., while j �= i do
U [D[j]]← U [j]
D[U [j]]← D[j]
S[C[j]]← S[C[j]]− 1

end for
end for

Algorithm 4 Uncover algorithm that undoes the changes made by the Cover
algorithm to the data structures (from [Knuth, 2000]).

Require: c (“column object” to uncover) and data structures like the ones
of Figure 3.
for all i← U [c],U [U [c]],..., while i �= c do

for all j ← L[i],L[L[i]],..., while j �= i do
S[C[j]]← S[C[j]] + 1
U [D[j]]← j
D[U [j]]← j

end for
end for
L[R[c]]← c
R[L[c]]← c

14



h

one buying group

one customer

Figure 3: Data structures of an exact set cover problem with 7 consumers
and 6 buying groups (from [Knuth, 2000]).

Using algorithm 2, we generate all partitions of the set of consumers from
a set of buying groups by recursively choosing a buying group (Ok ← r) that
does not contain a consumer already in a previously chosen buying group.
If no such buying group exists and there are still consumers who are not
in a chosen buying group, we backtrack by replacing the group last chosen
(Uncover column c and Return which causes the execution to continue at
the r ← Ok statement) by another one. If we find a partition (R[h] = h
which means that all customers are in one and only one group), we print
it and return which also causes the execution to continue at the r ← Ok

statement that begins the replacement of the group last chosen by another
one to resume the search of partitions. When all cases have been tried, the
algorithm stops. Because an exhaustive search could be long, Knuth [2000]
used an heuristic [Golomb and Baumert, 1965] to make the search tree as
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narrow as possible such that the pruning of this tree eliminates as many
search paths as possible.

If no partition exists among the effective buying groups, the grouping
agent launches other rounds of proposals until it finds one. One could ask
why the consumer agents do not send their complete list of individually ra-
tional buying groups the first time the grouping agent asks for a proposal. As
a principle, private information should remain secret as long as possible to
make manipulation of the protocol to unwanted ends harder. Since the com-
munication burden of the entire protocol (see table 1) is negligible compared
to the computational burden of the grouping agent (one combinatorial prob-
lem and one NP-hard problem), we do not think that the multiple rounds
of proposals add significantly much to the execution time of the protocol.

The protocol always terminates since there is always a partition com-
posed of all the buying groups in which each consumer agent is alone. It is
also sound and complete since it searches exhaustively the partitions. If the
grouping agent finds at least one partition, it terminates the protocol (Finish()
operation) and sends to each consumer agent that was ready to propose the
buying group in which it belongs in the partition among all the ones found
that minimizes the worst distance to ideal among all agents (SendResults()
operation).

Here are some definitions and analytical results about the developed pro-
tocol:

Definition 1. A partition p is dominated by a partition p′ if no consumer
prefers p to p′ and there exists at least one consumer that prefers p′ to p.

Definition 2. A partition is feasible if each consumer is willing to propose
the buying group containing him in this partition.

Definition 3. A feasible partition p is Pareto-optimal if no other feasible
partition dominates it.

Definition 4. The distance to ideal for a consumer agent A in relation to
a partition p is defined as the number of buying groups that were proposed
by agent A before the one that includes that agent in the partition p. As an
example, for Agent A in Figure 2, the group that buys 2 units of Product#2
has a distance to ideal of 2 since 2 buying groups were proposed before it by
Agent A.
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Proposition 1. A partition p found in the first round where such partition
exists and that minimizes the sum of the distance to ideal of the agents in
comparison with other partitions found in that round is Pareto-optimal given
that the lists of possibilities do not have buying groups which are equally
preferred by a consumer.

The proof of proposition 1 will be conducted in three steps: two lemmas
and the proposition.

Lemma 1. All the partitions that are found in a later round than the first
round where we find a partition cannot dominate a partition found in this first
round given that the lists of possibilities do not have buying groups which are
equally preferred by a consumer.

Proof of Lemma 1. If a partition is found in such a later round, there exists
an agent that proposed its buying group in this partition in that later round.
Clearly, it would prefer to be in its buying group of the partition found first
than in the group it proposed later which is part of the partition found in
the later round. Since the first condition of definition 1 is not met because
at least one agent prefers the first partition found to the one found in a later
round, then the first partition is not dominated by partitions found in a later
round.

Lemma 2. A partition p found in the first round where such partition exists
and that minimizes the sum of the distance to ideal of the agents among
partitions found in that round cannot be dominated by such partitions given
that the lists of possibilities do not have buying groups which are equally
preferred by a consumer.

Proof of Lemma 2. Suppose the existence of a partition p′ which dominates
the partition p. This means that there exists at least an agent A whose
distance to ideal is shorter in p′ than in p. All the other agents do not have a
greater distance to ideal in p′ than in p. So the sum of the distance to ideal
of the agents in p′ should be less than the same sum in p. Thus, there exists
a sum which is less than the minimal sum of p. By this contradiction, we
prove that what we supposed true is false. No such partition p′ dominates
the partition p.

Proof of Proposition 1. Such a partition p is not dominated by partitions
found in the later rounds by lemma 1. Furthermore, such a partition p is
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not dominated by partitions found in the same round by lemma 2. Since
no partition exists in preceding rounds of the round when we first found a
partition, we can say that a partition p is dominated by no other feasible
partition. By definition 3, we have proven that the partition p is Pareto-
optimal.

The protocol finds a Pareto-optimal solution given that the lists of possi-
bilities do not have buying groups which are equally preferred by a consumer.
If sellers reduce the unit price, although minimally, for each additional mem-
ber in the buying group to incite regrouping, then we suppose that equalities
will be rare because groups will be differentiated by the unit price. The
consumer agent could be given a set of rules or ask its consumer to settle
equalities. Further research will include the study of the burden equalities
impose on agents, consumers and sellers.

Proposition 2. The partition found by the proposed protocol and its asso-
ciated algorithms minimizes the worst distance to ideal among all consumer
agents that were ready to propose in comparison with all other feasible parti-
tions given that the lists of possibilities do not have buying groups which are
equally preferred by a consumer.

Proof of Proposition 2. The worst distance to ideal among all consumer agents
in a partition is always related to the round where we find that partition.
It is the distance to ideal of one of the consumer agents that proposed a
buying group that became effective with its proposal and that permitted the
partition to exist. Since no partition exists before the first round where we
find one and partitions found in later rounds return a greater worst distance
to ideal, then the worst distance to ideal is minimized when we choose a par-
tition that is found in the first round where a partition exists. The protocol
returns such a partition as a solution to the problem of group buying.

5 Results and Discussion

To the best of our knowledge, this is one of the first multiagent coalition
formation protocols with non-transferable payoff which is the general case.
The problem of group buying with non-transferable payoff belongs to this
case and this is the main reason why we studied it. Prior research has devel-
oped specific protocols for the transferable payoff case. Unfortunately, these
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Attributes Proposed protocol

Efficiency Pareto-optimal and minimizes worst distance to ideal
Stability Pareto-optimal
Simplicity Θ(PN2) messages

Distribution Centralized
Symmetry Yes

Money transfer No

Table 1: Qualitative evaluation of the proposed protocol.

protocols cannot be used in group buying as it is defined in this article be-
cause they solve an optimization problem while we have a generation problem
(of exact set covers). An optimization problem is defined as the search for
the feasible solution that optimizes the objective function of the problem
while a generation problem wants to search all feasible solutions [Kreher
and Stinson, 1998]. For the same reason, we cannot use our protocol (and
associated algorithms) to solve their optimization problems. Therefore, com-
parison with other protocols loses its relevance. Instead, this research is an
evaluation of the performance of software agents in coalition formation with
non-transferable payoff studied in the context of a real world application:
group buying.

5.1 Qualitative Results

Rosenschein and Zlotkin [1994] have elaborated attributes for negotiation
mechanisms which were slightly extended by Kraus [2001]. Table 1 summa-
rizes those attributes as well as the value they have in the proposed protocol.
The efficiency attribute evaluates whether or not the mechanism squanders
payoff in the solution returned. The proposed protocol returns a Pareto-
optimal solution, hence it does not squander payoff because no consumer
could have more without another consumer having less. Furthermore, the so-
lution minimizes the worst distance to ideal among all software agents such
that an individual agent does not get a really bad payoff from the solution.

The stability attribute refers to the ways an agent or a group of agents
could prefer another solution and abandons the proposed solution. Pareto-
optimality is not the most stable solution among all the solution concepts
from cooperative game theory as seen in section 3 but it is the most ap-
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propriate since it always exists, does not require summing utilities with an
arbitrary scale of value and having knowledge of other consumers’ payoff.

The simplicity of a mechanism refers to its communication and compu-
tational complexity.

Proposition 3. The number of messages exchanged in the theoretical worst
case is in Θ(PN2) for P products and N consumer agents.

Proof of Proposition 3. Considering Figure 1, for N consumer agents, there
are N messages for Register(). The grouping agent responds with N messages
for GiveMemberInformation(). N messages come from the ReadyToPropose()
operation. In the worst case, there is 2N messages for each proposal round, an
AskingForOneProposal() and a GivingOneProposal() for each consumer agent.
The number of proposal rounds is bounded by the longest list of possibilities
among all consumer agents. Since there are P groups where the agent buys
alone a product, then at least P −1 buying groups are not individually ratio-
nal because one of the P product is preferred to the P −1. Thus, subtracting
those P − 1 groups from the N ×P possible ones gives at most PN − P + 1
individually rational groups and consequently, the same number of proposal
rounds. Adding the N messages from the SendResults() operation, we now
have 2PN2−2PN +6N (= N +N +N +2N(PN−P +1)+N) messages ex-
changed in the theoretical worst case. Thus, the communication complexity
is Θ(PN2).

The exact set cover generation problem makes the worst case execution
time complexity of the whole protocol to be more than polynomial. But sim-
ulation results presented in section 5.3 tend to indicate that in practice, the
average execution time is polynomial at least for 15 software agents or less.
The generation of K-subsets of a N -set problem makes the worst case mem-
ory requirement complexity of the whole protocol to be more than polynomial
because the number of K-subsets of a N -set increases exponentially with N
increasing for a constant K. The simulation results of section 5.3 indicates
that in practice, the average memory requirement complexity of the whole
protocol is at least polynomial for 15 software agents or less. So, incentives
to regroup (a bigger group pays less than a smaller one) could have created
a special structure making the group buying problem computationally easier
from the execution time complexity point of view but not from the memory
requirement complexity point of view.
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The distribution attribute indicates if the solution is computed in a dis-
tributed way or not. A distributed computation is preferred to a centralized
one since it avoids bottleneck and is more robust to failure. The solution in
the proposed protocol is computed in a centralized way because of the inher-
ent computational complexity of the problem. While on some occasions we
could benefit from the parallelism of distribution, it is much more difficult
to design a computationally efficient distributed system than a centralized
one because we need to consider the additional communication burden of the
distributed system.

Symmetry refers to the property of a mechanism to treat its participants
with impartiality. The grouping agent interacts with all the consumer agents
in the same way and in this sense, we could say that the proposed protocol
has the symmetry property.

Finally, the money transfer attribute which was added by Kraus [2001]
indicates if money is transferred to resolve conflicts between agents. Since
money transfer demands resources and can be manipulated, one would pre-
fer not to be obligated to have it. Because the studied problem is a non-
transferable payoff case, the proposed protocol does not use money transfer.

5.2 Parameters of the evaluation

Multiple parameters have to be randomly generated for the empirical evalu-
ation of the proposed protocol. Here is a list of them.

• number of consumers;

• quantity of available products;

• specifications of available products;

• preferences of consumers over available products specifications.

The proposed protocol has been evaluated for several numbers of consumer
agents (2, 3, 4, 5, 10, 15 and 20) and quantities of products (2, 10, 100
and 1000). The specifications of available products were represented with 10
attribute-value couples. This kind of representation has already been used
by RosettaNet [2003] for electronic components selling and buying. Each at-
tribute could be assigned one of 10 discrete values. The price of each available
product was set by a randomly generated price schedule which returned a
reduced price with an increase of the quantity of units bought. Preferences
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of consumers were generated by allocating a weight to each attribute and
the price (based on an uniform distribution) determining its relevance. The
possible values for each attribute were divided into two sets: the acceptable
ones and the inacceptable ones. Acceptable values got a weight in relation
with its rank in the preference order among acceptable values for the related
attribute. The reserve price of each consumer was chosen from a uniform
distribution such that no consumer agent would not be ready to propose to
the grouping agent. We did that to assure that results for N agents were
actually computed for N agents and not N minus the number of consumer
agents that were not ready.

5.3 Quantitative Results

We tested the previous protocol on a Pentium 4 with 1.4 GHz processor,
256 Meg of RAM of which 130 Meg was dedicated to the execution of the
protocol. Our protocol was developed using Java JDK 1.4 and JACK Intel-
ligent AgentsTM 3.5 [Agent Oriented Software Pty. Ltd., 2002], a framework
for programming software agents. We have precisely executed the protocol
a thousand times for each number of agents – quantity of products couple
(a thousand times of 2 agents with 2 available products for example) with
random preferences for the agents and always the same list of available prod-
ucts with their price schedule. Each of the 5 times we executed the protocol
for the case of 20 agents and 2 products, the program went out of memory
(even with 130 Meg of available memory). So we consider the case with 20
agents to be the limit of the protocol on the aforementioned computer plat-
form and focus our attention on the cases with 15 agents or less. After the
evaluation was completed, we ran the protocol on a different platform having
more memory but less processing speed. With 450 Meg of dedicated memory
this time, we had enough memory for 20 agents but not for 25 agents.

Figure 4 demonstrates the mean time (in milliseconds) of the 1000 ex-
ecutions of the protocol for each couple between the moment the grouping
agent sends information to registered consumer agents to the time it sends
the solution to them. As expected, the execution time increases with the
quantity of available products but it remains sublinear on a logarithmic scale
meaning that the complexity is less than exponential for the studied range
(2 to 15 agents). This result is a little surprising due to the presence of two
combinatorial problems (generation of K-subsets of a N -set and generation
of exact set covers). We can explain this by the incentive of being several
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Figure 4: Mean time of execution versus the number of consumers’ agents in
the protocol for different quantities of available products.

in a buying group in order to benefit from a price reduction which pushes
agents to aggregate quickly and by the fact that the list of possibilities of each
agent is bound by individually rational buying groups thus limiting greatly
the number of proposal rounds.

Figure 5 demonstrates the mean quantity of memory used (in nodes which
are the data structure representing an agent in an effective buying group) of
the 1000 executions of the protocol for each agents-products couple. Surpris-
ingly, a greater quantity of available products leads to less used memory. This
comes from the ratio of agents to products. The greater this ratio is, the more
dense the agents are in the products space. With an increased density, agents
are more likely to form effective buying groups stored in the implementation
of the protocol as linked nodes which take memory space. This is the reason
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why the case of 20 agents and 2 products (a ratio of 20/2 = 10) exceeds the
memory capacity of the test platform. The case of 20 agents and 100 products
used much less memory but we cannot assure that it would not become a case
of 20 agents and 2 products if all the agents decide that the same 98 products
of the 100 are inadmissible (reserve price exceeded or inadmissible value for
an attribute). If this ratio is low, the agents are most sparse in the product
space and they form less effective buying groups (resulting in less memory
space used) because their preferences are farther from one another. The cases
with 2 products and a number of agents between 2 and 5 used practically
no memory because the formed buying groups were already partitions of the
set of consumers and therefore, included all consumers. The protocol did not
store these groups in memory for later use because it terminated after finding
these partitions.

If we consider a computer with 450 Mega-bytes of memory space allocated
to the protocol, we can compute cases with 20 agents. With more memory
space, we can compute cases with more than 20 agents but not much more
than this number of agents since the memory consumption grows rapidly in
function of the number of agents as Figure 5 shows. If more than 20 agents
wish to form buying groups, the grouping agent could divide the set of con-
sumers into subsets containing 20 agents or less. The division could be based
on the first few buying groups in the preferences list of each consumer agent.
Subsets would then contain consumer agents with similar preferences. After
finding a Pareto-optimal partition for each subset, the grouping agent could
merge buying groups with the same product. It would result in a partition
of the initial set of consumer agents. We cannot assure that this partition is
Pareto-optimal among the set of all feasible partitions. The quality of this
partition will be investigated in future work.

Figure 6 shows the percentage (over a thousand executions for each “num-
ber of agents – quantity of available products” couple) of change in the be-
haviour of the consumers participating in the protocol in relation to the
normal habit of buying the most preferred product alone at the local store.
A change of behaviour occurs in two situations:

• the consumer buys his preferred product at a lower price than the one
paid for one unit;

• he buys another product.

We can see in Figure 6 that with fewer products, the proposed protocol
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Figure 6: Mean percentage of behaviour change versus the number of con-
sumers’ agents in the protocol for different quantities of available products.

has a better chance of changing the behaviour of the consumers. With a
fixed number of products, Figure 6 shows also that with more consumer
agents, there is an increase in the percentage of consumers changing their
behaviour for three of the four different quantities of products. The cases
with 2 products already had the maximum (100%) of behaviour change. We
explain both observations by the fact that consumers agents are more dense
in the space of possible products and it is easier to aggregate into buying
groups and to change their behaviour in that way. The 99.9% of behaviour
changes for the 10 agents and 2 products case was caused by one execution
where 9 of the 10 agents desired a product and not the second and the other
agent wanted the second product and not the first so it ended up buying its
preferred product alone (and only one acceptable).

There are only two types of change of behaviour and therefore, their per-
centages complement themselves to 100%. So we only show the percentage
of consumers that change behaviour by buying the same product they would
have bought alone but at a lower price in Figure 7. This figure shows that
only the number of available products influences the type of change of con-
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Figure 7: Mean percentage of agents paying less the same product they would
have bought alone versus the number of consumers’ agents in the protocol
for different quantities of available products.

sumers’ behaviour. The percentage is relatively the same for a fixed number
of products as the four cases with different numbers of products indicate. This
percentage changes for different numbers of available products although the
cases with 10 and 100 products show similar percentages. When there is little
choice of products, few products will be in the preferences list of consumers
because some of the buying groups for those products will be considered
non-individually rationals and not proposed by the consumer agents. So con-
sumer agents will regroup with others having the same preferred product.
But if there is a huge choice of products, although some buying groups will
still be non-individually rationals, there will be enough buying groups with
different products left to create a margin for consumer agents to join groups
buying another product than the one their consumer would have bought
alone.
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6 Conclusions and Future Work

In this paper, we have presented a centralized symmetric protocol without
money transfer for group buying that returns a Pareto optimal solution that
minimizes the worst distance to ideal among all agents given that the lists of
possibilities do not have buying groups which are equally preferred by a con-
sumer. We have found that limiting to one the number of units of a product
each agent can buy allows the reduction of the number of possible buying
groups to be ordered from an exponential to a linear factor in function of the
number of buyers. The protocol changes the buying behaviour of consumers
from the normal habit of buying the most preferred product alone at the
local store. More changes of buying behaviour occur as the agents become
more dense in the space of available products. If few products are available,
consumer agents buy the same product as they would have bought alone but
at a reduced price. When there is a huge choice of products, consumer agents
take the opportunity to join a group that buys another product than the one
they would have bought alone. Its execution time complexity is less than ex-
ponential on average for the studied range (15 agents or fewer) meaning that
incentives to regroup could have created a special structure making the group
buying problem computationally easier from the execution time complexity
point of view. But its memory requirements limit its use to no more than 15
agents for 130 Meg of RAM allocated (no more than 20 agents for 450 Meg
of RAM) to the protocol in cases of a high ratio (around 10) of number of
agents to quantity of products on the computer platform used for evaluation.
Its communication complexity is Θ(PN2) messages for P products and N
consumers agents in the theoretical worst case.

Future work includes research on the quality of the partition of the set
of consumer agents obtained by merging together buying groups with the
same product from partitions of the subsets limited to 20 consumer agents.
We will also do research on the burden imposed by possible equalities in the
preferences list of consumer agent on agents, consumers and sellers. Finally,
further evaluation of the protocol will be conducted with different statisti-
cal distributions of agents’ preferences on products, of available products’
specifications and of price schedules.
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