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1 Introduction

In the context of multivariate time series, many recent papers address the problem of testing in-

dependence or non-correlation between two observed series. El Himdi and Roy (1997) generalized

the procedure developed by Haugh (1976) for univariate time series to the case of two multivariate

invertible and stationary vector autoregressive moving average (VARMA) series. They proposed a

test statistic based on the residual cross-correlation matrices R(12)
â (j), |j| ≤ M for a given M < N ,

(N being the sample size), between the two residual series {â(1)
t } and {â(2)

t } resulting from fitting

the true VARMA models to each of the original series {X(1)
t } and {X(2)

t }. Under the hypothe-

sis of non-correlation between the two series, they showed in particular that an arbitrary vector

of residual cross-correlations asymptotically follows the same multivariate normal distribution as

the corresponding vector of cross-correlations between the two innovation series. Hallin and Saidi

(2002) used that result to develop a test statistic that takes into account a possible pattern in the

signs of cross-correlations at different lags. They generalized to the multivariate case the procedure

introduced by Koch and Yang (1986). Also, in the univariate context, Hong (1996) proposed a

modification of Haugh’s procedure for stationary infinite order autoregressive (AR(∞)) series. For

a given sample size N , the true AR(∞) model of each series is approximated by a finite order AR(p)

model. To derive the statistical properties of the test statistics, it is assumed that the orders of

the autoregressions are functions of N that tend to infinity as N increases. In practice, such an

approach protects us against misspecifications of the true underlying ARMA models that may lead

to misleading conclusions because they invalidate the asymptotic theory of the test statistic. Hong’s

test statistic is a standardized version of the sum of weighted squared residual cross-correlations at

all possible lags. Bouhaddioui (2002) generalized that procedure to the multivariate case.

In this work, we adopt the semiparametric approach taken by Hong for testing non-correlation

between two AR(∞) series. We focus on the asymptotic properties of an arbitrary finite vector of

residual cross-correlations.

The main contribution of this paper is to show that in the case of two uncorrelated infinite

order vector autoregressive VAR(∞) time series, an arbitrary vector of residual cross-correlations

asymptotically follows the same multivariate normal distribution as the corresponding vector of

cross-correlations between the two innovation series. That result allows us to test the null hy-

pothesis of non-correlation against the alternative of serial cross-correlation at a particular lag as

described in El Himdi and Roy (1997). In a sense, it complements the analysis that can be done

with Hong’s global statistic.

The organization of the paper is as follows. Section 2 contains preliminary results. The main
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result and its proof are presented in Section 3. In Section 4, we describe two test procedures for

the null hypothesis of non-correlation. The first one is based, for a particular lag j, on the cross-

correlation matrix R(12)
â (j), whilst the second one is based on a global statistic that takes into

account all possible lags from −M to +M , say. The results of a small Monte Carlo experiment

investigating the finite sample properties of the tests are also presented.

2 Preliminaries

Let X = {Xt , t ∈ Z} be a multivariate second-order stationary process of dimension m. Without

loss of generality, we can assume that E(Xt) = 0. The autocovariance matrix at lag j, j ∈ Z, is

given by

ΓX(j) = E(XtXt−j)T = (γuv(j))m×m,

with ΓX(j) = ΓX(−j)T . The autocorrelation matrix at lag j, j ∈ Z, is denoted by

ρX(j) = (ρuv(j))m×m, ρuv(j) = γuv(j){γuu(0)γvv(0)}−1/2,

with ρX(j) = ρX(−j)T . If we denote by D{bi} a diagonal matrix whose elements are b1, ..., bm,

the matrix ρX(j) can be written in the following way:

ρX(j) = D{γii(0)−1/2}ΓX(j)D{γii(0)−1/2} , j ∈ Z. (2.1)

Throughout the paper, ‖A‖ = {tr(AT A)}1/2 represents the Euclidean norm of the matrix A,

⊗ stands for the Kronecker product of matrices, the symbols
p→, L→ are used for convergence in

probability and in distribution respectively, and Im denotes the identity matrix of dimension m.

In the sequel, we suppose that the stationary process X follows an infinite order autoregressive

model, VAR(∞), i.e., there exists m×m matrices Φl, l ∈ N, such that

Xt −
∞∑
l=1

ΦlXt−l = at, t ∈ Z, (2.2)

where
∑∞

l=1 ‖Φl‖ < ∞, Φ(z) = Im −
∑∞

l=1 Φlz
l and det{Φ(z)} 6= 0, |z| ≤ 1. The process

a = {at; t ∈ Z} is a strong white noise that is, a sequence of independent identically distributed

random vectors with mean 0 and regular covariance matrix Σ. The stationarity assumption ensures

that the process X also admits a causal linear representation.
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Based on a realization X1, ...,XN of length N , we fit an autoregressive model of order p,

VAR(p), whose coefficients are denoted by Φ1,p, ...,Φp,p and we write Φ(p) = (Φ1,p, ...,Φp,p). The

corresponding Yule-Walker estimator Φ̂(p) = (Φ̂1,p, ..., Φ̂p,p) is given by

Φ̂(p) = ÂT
1,pÂ

−1
p , (2.3)

where Â1,p = (N − p)−1
∑N

t=p+1 Xt(p)XT
t , Âp = (N − p)−1

∑N
t=p+1 Xt(p)XT

t (p) and Xt(p) =

(XT
t−1,X

T
t−2, ...,X

T
t−p)

T . To obtain a consistent estimator Φ̂(p), we must let p tends to infinity as

N increases but not too fast. The following assumption on the noise process is also needed.

Assumption A The m-dimensional strong white noise a = {at = (a1t, .., amt)T } is such that

E(a) = 0, its covariance matrix Σ is regular and

E|ai,taj,tak,tal,t| < γ4 < ∞ , i, j, k, l ∈ {1, ...,m} and t ∈ Z.

The following proposition that gives the consistency rate of Φ̂(p) is a multivariate generalization

of a univariate result presented in Berk (1974). It follows from Eq. (2.8) of Lewis and Reinsel (1985,

p. 397), see also Theorem 2.1 in Paparoditis (1996).

Proposition 2.1 Let {Xt} be a VAR(∞) process given by (2.2) and satisfying Assumption A.

Also, suppose that the following two conditions are verified:

(i) p is chosen as a function of N such that p →∞ and p2/N → 0 as N →∞ ;

(ii)
√

p
∑∞

j=p+1 ‖Φj‖ → 0 as N →∞.

Then, the estimator Φ̂(p) defined by (2.3) is such that

‖Φ̂(p)−Φ(p)‖ = Op(
p1/2

N1/2
). (2.4)

In this result, the condition p = o(N1/2) for the rate of increase of p ensures that asymptotically,

enough sample information is available for the estimators to have standard limiting distributions.

The condition
√

p
∑∞

j=p+1 ‖Φj‖ → 0 imposes a lower bound on the growth rate of p, which ensures

that the approximation error of the true underlying model by a finite order autoregression gets

small when the sample size increases. A more detailed discussion of these conditions is available in

Lütkepohl (1991), see also Hong (1996).

3 Asymptotic distribution of a vector of residual cross-correlations

From now, suppose that the process X is partitioned into two subprocesses X(h) = {X(h)
t , t ∈ Z},

h = 1, 2, with m1 and m2 components respectively (m1 + m2 = m), that is Xt = (X(1)T

t ,X(2)T

t )T .
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The partition of Xt induces the following partition of the autocovariance matrix ΓX(j):

ΓX(j) =

 Γ(11)
X (j) Γ(12)

X (j)

Γ(21)
X (j) Γ(22)

X (j)

 , j ∈ Z,

where Γ(hh)
X (j) is the autocovariance matrix at lag j of the process X(h), h = 1, 2, and Γ(12)

X (j) is

the cross-covariance matrix at lag j between {X(1)
t } and {X(2)

t } with Γ(21)
X (j) = Γ(12)

X (−j)T . The

autocorrelation matrix ρX(j) is also partitioned in a similar way. Given a realization of length N

of the process X , the sample cross-covariance matrix at lag j is defined by

C
(12)
X (j) = N−1

N∑
t=j+1

(
X(1)

t −X(1)
) (

X(2)
t−j −X(2)

)T
, 0 ≤ j ≤ N − 1. (3.1)

Also, for −N + 1 ≤ j ≤ 0, C
(12)
X (−j) = C

(21)
X (j)T and C

(12)
X (j) = 0 for |j| ≥ N . The sample

cross-correlation matrix at lag j is given by

R(12)
X (j) = D1C

(12)
X (j)D2 (3.2)

where Dh is a diagonal matrix whose elements are the square root of the elements on the main diago-

nal of C
(hh)
X (0), the sample autocovariance at lag j of X, h = 1, 2. We write r

(12)
X (j) = vec(R(12)

X (j))

where the symbol vec stands for the usual operator that transforms a matrix into a vector by stack-

ing its columns on top of each other.

In the sequel, we suppose that for h = 1, 2, X(h) satisfy (2.2) and Assumption A and we want

to test the null hypothesis that they are uncorrelated (or independent in the Gaussian case), that

is, ρ
(12)
X (j) = 0, j ∈ Z. As in El Himdi and Roy (1997), that hypothesis is equivalent to

H0 : ρ
(12)
a (j) = 0 , j ∈ Z. (3.3)

Each series X(h)
1 , ...,X(h)

N is described by a finite-order autoregressive model VAR(ph). The order

ph depends on N . The resulting residuals are given by

â
(h)
t =

X(h)
t −

∑ph
l=1 Φ̂l,ph

X(h)
t−l if t = ph + 1, ..., N ,

0 if t ≤ ph,
(3.4)

where the Φ̂l,ph
are the Yule-Walker estimators defined by (2.3). The residual cross-covariance

matrix C
(12)
â (j) is given by

C
(12)
â (j) =

N−1
∑N

t=j+1 â
(1)
t â

(2)T

t−j if 0 ≤ j ≤ N − 1 ,

N−1
∑N

t=−j+1 â
(1)
t+jâ

(2)T

t if −N + 1 ≤ j ≤ 0 .
(3.5)
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The residual cross-correlation matrix at lag j is given by R(12)
â (j) = D1C

(12)
â (j)D2 where D1 and

D2 are defined as in (3.2).

Let d1, ..., dL be a finite set of lags such that |di| ≤ D < N where D is independent of N .

Denote by r
(12)
â the vector

r
(12)
â =

(
vec(R(12)

â (d1))T , ..., vec(R(12)
â (dL))T

)T
, (3.6)

of dimension Lm1m2 and by r
(12)
a the corresponding vector of cross-correlations between the two

innovation series. Under some general assumptions, it follows from Roy (1989), see also El Himdi

and Roy (1997), that

√
Nr

(12)
a

L→ N(0, IL ⊗ (ρ2 ⊗ ρ1)) (3.7)

where ρh is the correlation matrix of the innovation process a(h), h = 1, 2. The asymptotic

distribution of the vector r
(12)
â is provided by the following theorem.

Theorem 3.1 Let X(1) and X(2) be two multivariate stationary processes which satisfy the mul-

tivariate infinite order autoregressive model (2.2). Suppose that the corresponding innovation pro-

cesses satisfy Assumption A and that all their fourth-order cumulants are zero. Let ph, h = 1, 2,

satisfy the following conditions

(i) ph, h = 1, 2, are chosen as a function of N such that ph →∞ and p2
h/N → 0 as N →∞ ;

(ii)
√

N
∑∞

j=ph+1 ‖Φ
(h)
j ‖ → 0 as N →∞.

Then, under the null hypothesis of non-correlation between the two innovation processes a(1) and

a(2),

√
Nr

(12)
â

L→ N(0, IL ⊗ (ρ2 ⊗ ρ1)).

Proof

From (3.7), it suffices to prove that
√

N
(
r

(12)
â − r

(12)
a

)
p→ 0, or equivalently, that for any j ∈

{j1, .., jL},
√

N
[
R(12)

â (j)−R(12)
a (j)

]
p→ 0. (3.8)

Using (3.2), we have that R(12)
a (j) = D−1

1 C(12)
a (j)D−1

2 , where Dh is a diagonal matrix whose

elements are the square root of the elements on the main diagonal of C
(hh)
a (0), h = 1, 2. Thus, we

have

R(12)
â (j)−R(12)

a (j) = D̂−1
1

[
C(12)

â (j)−C(12)
a (j)

]
D̂−1

2 + D̂−1
1 D1R(12)

a (j)D2D̂−1
2 −R(12)

a (j).
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From Lütkepohl (1991, p. 309), we know that D̂−1
h −D−1

h = Op(N−1/2), h = 1, 2, and therefore,

D̂−1
h Dh = Imh

+ Op(N−1/2). Also, from (3.7),
√

NR(12)
a (j) converges in distribution and it follows

that

√
N

[
D̂−1

1 D1R
(12)
a (j)D2D̂−1

2 −R(12)
a (j)

]
p→ 0.

Since D̂−1
h

p→ D−1
h , h = 1, 2, to prove (3.8), it is sufficient to show that

√
N

(
C(12)

â (j)−C(12)
a (j)

)
p→ 0. (3.9)

If we note η̂t = â
(1)
t − a

(1)
t and δ̂t = â

(2)
t − a

(2)
t , we can write

√
N

(
C(12)

â (j)−C(12)
a (j)

)
= C1 + C2 + C3, (3.10)

where C1 = N−1/2
∑N

t=j+1 η̂ta
(2)T

t−j , C2 = N−1/2
∑N

t=j+1 a
(1)
t δ̂

T

t−j and C3 = N−1/2
∑N

t=j+1 η̂tδ̂
T

t−j

and it remains to show that Ci
p→ 0 for i = 1, 2, 3.

From (2.3), we have

η̂t =
{
Φ(p1)− Φ̂(p1)

}
X(1)

t (p1) + ξt,p1
, (3.11)

where ξt,p1
=

∑∞
l=p1+1 Φ(1)

l X(1)
t−l represents the bias of the VAR(p1) approximation of {X(1)

t } and

we can write,

‖C1‖ = ‖N−1/2
N∑

t=j+1

{Φ(p1)− Φ̂(p1)}X(1)
t (p1)a

(2)T

t−j + N−1/2
N∑

t=j+1

ξt(p1)a
(2)T

t−j ‖

Using the triangular inequality and the property ‖AB‖ ≤ ‖A‖‖B‖, we have

‖C1‖ ≤ ‖Φ(p1)− Φ̂(p1)‖‖N−1/2
N∑

t=j+1

X(1)
t (p1)a

(2)T

t−j ‖+ ‖N−1/2
N∑

t=j+1

ξt(p1)a
(2)T

t−j ‖. (3.12)

If we denote by C11 = E‖N−1/2
∑N

t=j+1 X(1)
t (p1)a

(2)T

t−j ‖2, and C12 = E‖N−1/2
∑N

t=j+1 ξt(p1)a
(2)T

t−j ‖2,

we can write

C11 = N−1E{tr[(
N∑

t=j+1

X(1)
t (p1)a

(2)T

t−j )(
N∑

t=j+1

X(1)
t (p1)a

(2)T

t−j )T ]}

= N−1E{tr[
N∑

t=j+1

X(1)
t (p1)a

(2)T

t−j a
(2)
t−jX

(1)
t (p1)T ]}

+ N−1E{tr[
N∑

t=j+1

N∑
t1=j+1

t1 6=t

X(1)
t (p1)a

(2)T

t−j a
(2)
t1−jX

(1)
t1

(p1)T ]}

6



Using properties of the trace operator and under the hypothesis of non-correlation between the two

processes, we obtain that

C11 = N−1tr{
N∑

t=j+1

E(a(2)T

t−j a
(2)
t−j)E(X(1)

t−j(p1)T X(1)
t−j(p1))}

+ N−1tr{
N∑

t=j+1

N∑
t1=j+1

t1 6=t

E(a(2)T

t−j a
(2)
t1−j)E(X(1)

t1 (p1)T X(1)
t (p1))}.

It follows that

C11 = E‖N−1/2
N∑

t=j+1

X(1)
t (p1)a

(2)T

t−j ‖
2 ≤ ∆p1, (3.13)

since E(a(2)T

t−j a
(2)
t1−j) = 0, t1 6= t, and

E(X(1)
t (p1)TX(1)

t (p1)) = E(
p1∑
i=1

X(1)T

t−i X(1)
t−i) ≤ ∆p1. (3.14)

By a similar argument, we can write

C12 = N−1E[tr{
N∑

t=j+1

ξt(p1)T ξt(p1)a
(2)T

t−j a
(2)
t−j}],

and from the definition of ξt(p1), we have

E‖ξt(p1)‖2 =
∞∑

l=p1+1

∞∑
l1=p1+1

tr(Φ(1)
l E(X(1)

t−lX
(1)T

t−l1
)Φ(1)T

l1
).

Using the Cauchy-Schwarz inequality for tr(Φ(1)
l Φ(1)T

l1
) = 〈Φ(1)

l ,Φ(1)
l1
〉 and since ‖Γ(11)

X (l)‖ is uni-

formly bounded, we obtain

E‖ξt(p1)‖2 ≤ ∆
∞∑

l=p1+1

∞∑
l1=p1+1

‖Φ(1)
l ‖‖Φ(1)

l1
‖ ≤ ∆(

∞∑
l=p1+1

‖Φ(1)
l ‖)2. (3.15)

Under the hypothesis of non-correlation of the two processes, it follows that

C12 ≤ ∆(
∞∑

l=p1+1

‖Φ(1)
l ‖)2 = O(

1
N

). (3.16)

From the assumptions (i) and (ii) and using (3.12), (2.4), (3.13) and (3.16), we finally obtain that

‖C1‖ = Op(
p
1/2
1

N1/2
)Op(p

1/2
1 ) + Op(N−1/2) = Op(

p1

N1/2
), (3.17)

and consequently ‖C1‖
p→ 0. By symmetry, we obtain a similar result for C2.
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For the third term C3 of (3.10), we have

‖C3‖ = ‖N−1/2
N∑

t=j+1

η̂tδ̂
T

t−j‖

≤ ‖Φ(p1)− Φ̂(p1)‖‖Φ(p2)− Φ̂(p2)‖‖N−1/2
N∑

t=j+1

X(1)
t (p1)X

(2)
t−j(p2)

T
‖

+ ‖Φ(p1)− Φ̂(p1)‖‖N−1/2
N∑

t=j+1

X(1)
t (p1)ξt−j(p2)

T ‖

+ ‖Φ(p2)− Φ̂(p2)‖‖N−1/2
N∑

t=j+1

ξt(p1)X
(2)
t−j(p2)

T
‖

+ ‖N−1/2
N∑

t=j+1

ξt(p1)ξt−j(p2)T ‖. (3.18)

Let us denote C31 = ‖N−1/2
∑N

t=j+1 X(1)
t (p1)X

(2)
t−j(p2)

T
‖2, C32 = ‖N−1/2

∑N
t=j+1 X(1)

t (p1)ξt−j(p2)
T ‖2,

C33 = ‖N−1/2
∑N

t=j+1 ξt(p1)X
(2)
t−j(p2)

T
‖2 and C34 = ‖N−1/2

∑N
t=j+1 ξt(p1)ξt−j(p2)T ‖2. Arguing as

in the proof of Theorem 1 of Lewis and Reinsel (1985), we can show that

C31 = E‖N−1/2
N∑

t=j+1

X(1)
t (p1)X

(2)
t−j(p2)

T
‖2 ≤ ∆p1p2. (3.19)

For the second term C32, define Y t = X(1)
t (p1)ξt−j(p2)

T . Under the hypothesis of non-correlation

of the two processes, we have that

tr(E(Y tY
T
t )) = tr(E(X(1)

t (p1)ξt−j(p2)
T ξt−j(p2)X

(1)
t (p1)T ))

= E(‖X(1)
t (p1)‖2)E(‖ξt−j(p2)‖2).

Using (3.14) and (3.15), we have that E(Y tY
T
t ) ≤ ∆p1(

∑∞
l=p2+1 ‖Φ

(2)
l ‖)2. By a similar argument

to the one made to bound C11, we obtain that

C32 = N−1E{tr[(
N∑

t=j+1

Y t)(
N∑

t=j+1

Y T
t )]} ≤ ∆p1(

∞∑
l=p2+1

‖Φ(2)
l ‖)2. (3.20)

By symmetry, we also get

C33 ≤ ∆p2(
∞∑

l=p1+1

‖Φ(1)
l ‖)2. (3.21)

Finally, under the non-correlation hypothesis, by a similar development to the one for C32, it follows

that

C34 ≤ ∆(
∞∑

l=p1+1

‖Φ(1)
l ‖)2(

∞∑
l=p2+1

‖Φ(2)
l ‖)2. (3.22)
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Combining the results (3.19)-(3.22), we have

‖C3‖ = Op(
p
1/2
1

N1/2
)Op(

p
1/2
2

N1/2
)Op(p

1/2
1 p

1/2
2 )

+ Op(
p
1/2
1

N1/2
)Op(p

1/2
1

∞∑
l=p2+1

‖Φ(2)
l ‖) + Op(

p
1/2
2

N1/2
)Op(p

1/2
2

∞∑
l=p1+1

‖Φ(1)
l ‖)

+ Op(
∞∑

l=p1+1

‖Φ(1)
l ‖

∞∑
l=p2+1

‖Φ(2)
l ‖),

Using once again the assumptions (i) and (ii), it follows that ‖C3‖
p→ 0 and the proof of the theorem

is completed. �

4 Application

4.1 Tests procedures for non-correlation

The null hypothesis that the two VAR(∞) processes X(1) and X(2) are uncorrelated, that is,

ρ
(12)
X (j) = 0, j ∈ Z, is equivalent under the assumptions made to

H0 : ρ
(12)
a (j) = 0 , ∀j ∈ Z.

One can now construct the test statistics in a similar way as in El Himdi and Roy (1997). Two

types of test statistics will be considered.

The first type of test is based on the residual cross-correlations at individual lags. Since ρ̂h =

R(hh)
â (0), h = 1, 2, is a consistent estimator of ρh, we define the following statistic

Q(j) = Nr(12)
â (j)

T (
ρ̂−1

2 ⊗ ρ̂−1
1

)
r(12)
â (j), (4.1)

where r(12)
â (j) = vec(R(12)

â (j)) and under H0, Q(j) is asymptotically distributed as a χ2
m1m2

vari-

able by Theorem 3.1. Thus, at a given significance level α, H0 is rejected if Q(j) > χ2
m1m2,1−α,

where χ2
m,p denotes the p-quantile of the χ2

m distribution.

In practice, we usually want to consider simultaneously many lags, for example all lags not

greater than M in absolute value. A global test based on the statistics Q(j), |j| ≤ M , consists in

rejecting H0 if for at least one j ∈ {−M, . . . , M}, Q(j) > χ2
m1m2,1−α0

. Since the statistics Q(j)

are asymptotically independent, the use of the marginal level α0 = 1− (1− α)1/(2M+1) for each j

assures us that the asymptotic global level is α.

9



The second type of test is the generalization of Haugh’s global test described in El Himdi and

Roy (1997). It is based on the statistic

QM = Nr
(12)T

â,M

(
I2M+1 ⊗ ρ̂−1

2 ⊗ ρ̂−1
1

)
r

(12)
â,M =

M∑
j=−M

Q(j), (4.2)

where r
(12)
â,M = (r(12)

â (−M)T , .., r(12)
â (M)T )T , and M ≤ N − 1 is fixed with respect to N . Under

H0, QM obeys asymptotically a χ2
(2M+1)m1m2

distribution from Theorem 3.1 and H0 is rejected for

large values of QM . This statistic can be also expressed in term of the residual autocovariances

C(hh)
â (0), h = 1, 2, and of cross-covariances C(12)

â (j), see Lemma 4.1 of El Himdi and Roy (1997).

As in El Himdi and Roy (1997), the modified statistics

Q∗(j) =
N

N − |j|
Q(j), Q∗M =

M∑
j=−M

Q∗(j), (4.3)

will be considered as they seem to be better approximated by a chi-square distribution, for small

sample sizes.

From Theorem 3.1, we can also derive the asymptotic distribution of a more general test statistic

proposed by Hallin and Saidi (2002) that takes into account a possible pattern in the sign of the

cross-correlation coefficients. Define the vector

νM =
√

NI2M+1 ⊗
(

ρ̂
− 1

2
2 ⊗ ρ̂

− 1
2

1

)
r

(12)
â,M ,

and the statistic

Qi,M =
(2M+1)m1m2−i∑

k=1

[
i∑

l=0

νM (k + l)

]2

, i = 0, 1, ..,Mm1m2 − 1,

where νM (j) denotes the jth element of the vector νM . When m1 = m2 = 1, we retrieve Koch

and Yang’s (1986) statistic for univariate series. The case i = 0 corresponds to the statistic QM

defined by (4.2). Under the assumptions of Theorem 3.1, the vector νM is asymptotically N (0, I)

and since Qi,M can be written as the following quadratic form

Qi,M = νT
MDi,MνM ,

where the matrix Di,M is defined in Proposition 2.1 of Hallin and Saidi (2002), we have the following

result.
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Proposition 4.1 Under the assumptions of Theorem 3.1 and under the null hypothesis that X(1)

and X(2) are uncorrelated, we have that

Qi,M
L→ Q(Di,M ) =

(2M+1)m1m2∑
j=1

λi,M (j)Z2
j

where the coefficients λi,M (j) are the eigenvalues of the matrix Di,M and the Zj are independent

and identically distributed N (0, 1) random variables.

The matrix Di,M is completely determined by i and M and the simulation results of Hallin

and Saidi (2002) show that in some situations, the test Qi,M with i > 0 is more powerful than

Q0,M = QM .

4.2 Simulation study

Here, we report the results of a small simulation experiment conducted in order to compare the

exact distribution of the statistics Q∗(j) and Q∗M with their corresponding asymptotic chi-square

distributions, under the null hypothesis for non-correlation. To do that, we examined the empirical

frequencies of rejection of the null hypothesis with the proposed tests at three different nominal

levels (1, 5 and 10 percent) for each of two series lengths (N = 100 and 200) and for two different

global models for {X(1)
t } and {X(2)

t }. These models are described in Table 1. The dimension of

each of the two models is four and for each one, the submodels for {X(1)
t } and {X(2)

t } are bivariate.

Also, with the considered values for the autoregressive and moving average parameters as well as

for the covariance matrices of the innovations, the subprocesses {X(1)
t } and {X(2)

t } are uncorrelated

and the corresponding submodels are stationary and invertible.

For each model, the experiment proceeded in the following way.

1. For each model and for each series length N , 5000 independent realizations were generated. First,

pseudo-random N (0, 1) variables were obtained with the S-plus pseudo-random normal generator

and were transformed into independent N (0,Σa) vectors using the Cholesky transformation. Sec-

ond, the Xt values were obtained by directly solving the difference equation that defines a VARMA

model. For the AR(1) model, the first observation X1 was generated from the exact N (0,ΓX(0))

distribution of the Xt’s. The covariance ΓX(0) was obtained with Ansley’s (1980) algorithm.

2. An autoregression was fitted to each series by conditional least squares estimation. The au-

toregressive order was obtained by minimizing the AIC criterion for p ≤ P , where P was fixed to

12. The resulting residual series {â(h)
t }, h = 1, 2, were cross-correlated by computing R(12)

â (j) as

defined by (3.2).

3. The values of the test statistic Q∗(j) were computed for j = −12, ..., 12 and those of Q∗M for
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Table 1: Time series models used in the simulation study
MODELS EQUATIONS Σa

AR(1)

 X(1)
t

X(2)
t

 =

 Φ(1) 0

0 Φ(2)

 X(1)
t−1

X(2)
t−1

 +

 a(1)
t

a(2)
t

  Σ(1)
a 0

0 Σ(2)
a



MA(1)

 X(1)
t

X(2)
t

 =

 Θ(1) 0

0 Θ(2)

 a(1)
t−1

a(2)
t−1

 +

 a(1)
t

a(2)
t

  Σ(1)
a 0

0 Σ(2)
a


PARAMETER VALUES

Φ(1) =

 1.2 −0.5

0.6 0.3

 Φ(2) =

 −0.6 0.3

0.3 0.6

 Θ(1) =

 −0.2 0.3

−0.6 1.1



Θ(2) =

 0.8 0.3

0.1 0.6

 Σ(1)
a =

 1.0 0.5

0.5 1.0

 Σ(2)
a =

 1.0 0.75

0.75 1.0



M = 1, .., 12. For each test, the value of the statistic was compared with the critical value obtained

from the corresponding chi-square distribution.

4. Finally, for each nominal level and for each series length N , we obtained from the 5000 realiza-

tions, the empirical frequencies of rejection of the null hypothesis of non-correlation. The standard

error of the empirical levels based on 5000 realizations is 0.22% for the nominal level 1%, 0.49%

for 5% and 0.67% for 10%.

The empirical levels of tests at individual lags based on Q∗(j) are presented in Table 5, for

|k| = 0, 1, 2, 4, 6, 8 and 10. We make the following observations. For the series length N = 100, the

chi-square distribution provides a relatively good approximation for all lags at the three significance

levels since almost all corresponding empirical levels lie within the 5% significant limits. With

N = 200, the approximation is very good for the three significant levels. The results for the

portmanteau test Q∗M , M = 1, .., 12, are given in the second part of Table 5 for the two models.

The chi-square approximation for all values of M is very good at the three significance levels

especially with N = 200.
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5 Conclusion

In this paper, we showed that the procedure for testing the uncorrelatedness of two multivariate

stationary ARMA time series described in El Himdi and Roy (1997) remains valid in the more

general context of two stationary VAR(∞) series. At the modeling stage, a possible high order

autoregression is fitted to each series. The autoregression modeling protects us against misspec-

ifications of the true underlying VARMA models that may invalidate the asymptotic theory and

eventually lead to wrong conclusions.

The global statistics considered in this paper are based on the lags j such that |j| ≤ M . They

lead to consistent tests only if there is no cross-correlation at lags j such that |j| > M . In order

to have a consistent test for an arbitrary cross-correlation structure (possible at lags j such that

|j| > M), we may consider a statistic that takes into account all possible lags from −N +1 to N−1

(N representing the sample size) as in Hong (1996). A version of Hong’s statistic for multivariate

time series was proposed by Bouhaddioui (2002) and it will be the subject of a forthcoming paper.
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Table 2: Empirical level of the tests at individual lags Q∗(j) and of the global test Q∗M defined by

(4.3) for the AR(1) and MA(1) models.
Q∗(j)

AR(1) MA(1)

N=100 N=200 N=100 N=200

α 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

k=-12 0.90 5.15 10.15 1.20 5.80 10.90 0.70 4.80 10.15 1.10 5.60 10.20

-10 0.95 4.90 10.60 0.90 4.80 10.50 0.85 5.05 10.60 0.80 5.20 9.90

-8 0.85 4.40 9.00 0.50 4.60 9.90 0.85 5.20 9.00 0.95 4.80 10.10

-6 0.95 5.20 10.55 1.00 5.20 10.20 0.75 4.60 10.55 1.20 5.00 10.20

-4 1.10 5.20 9.70 1.10 4.40 9.60 1.00 4.80 9.70 1.20 4.60 9.30

-2 0.85 4.20 9.15 0.90 5.20 9.70 0.65 5.10 9.15 0.70 4.40 9.80

0 1.05 5.15 11.00 1.20 5.90 10.90 1.15 5.15 11.00 0.80 5.20 10.50

2 0.80 5.10 9.55 1.10 4.90 10.00 0.90 4.90 9.55 0.80 4.40 10.00

4 0.85 5.20 10.30 1.10 6.30 11.7 0.90 4.80 10.30 1.10 5.10 10.30

6 1.00 4.75 9.75 0.90 4.20 9.70 1.20 4.75 9.75 0.90 5.30 9.70

8 0.95 4.80 10.30 0.70 4.30 9.10 0.80 5.20 10.30 0.75 5.30 9.80

10 0.75 4.95 10.75 1.40 4.90 10.60 0.70 4.95 10.75 0.80 4.90 10.50

12 0.80 4.60 10.35 0.70 4.50 11.00 0.90 4.70 10.35 0.90 4.80 10.20

Q∗M
M = 1 0.60 5.05 10.50 0.90 5.50 11.10 0.70 4.65 9.60 0.80 5.40 10.40

2 0.90 4.55 9.35 0.60 5.20 11.10 0.75 4.80 9.80 0.80 4.80 9.50

3 0.95 4.40 9.40 1.00 5.60 11.10 0.70 4.40 9.70 0.90 5.30 11.20

4 0.80 4.80 10.10 0.80 5.40 10.60 0.60 5.10 9.60 0.85 5.30 10.60

5 0.50 5.05 10.15 0.60 5.70 11.40 0.55 5.30 9.40 0.60 4.90 9.45

6 0.55 5.10 9.75 0.70 6.30 11.10 0.50 4.30 9.30 0.55 5.10 9.85

7 0.60 4.45 9.70 0.70 6.10 11.10 0.55 4.75 9.50 0.70 5.50 10.30

8 0.65 4.35 9.45 0.80 5.10 9.30 0.80 5.40 9.45 0.85 4.70 9.70

9 0.55 3.90 9.30 0.70 4.60 9.70 0.65 4.20 9.50 0.65 4.80 9.65

10 0.85 4.55 10.00 0.60 4.70 10.10 0.70 5.60 9.90 0.80 5.10 10.45

11 0.90 4.35 9.80 0.60 4.30 9.80 0.70 4.50 9.90 0.90 4.70 11.00

12 0.80 4.45 9.85 0.80 4.90 9.50 0.60 4.85 9.65 0.95 5.10 10.60
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