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Design for Optimized Multi-Lateral Multi-
Commodity Markets 

Benoît Bourbeau*, Teodor Gabriel Crainic†, Michel Gendreau‡, Jacques Robert§ 
 

 
 

Résumé / Abstract 
 
Nous présentons un concept de marché optimisé, centralisé, multilatéral et périodique pour 
l’acquisition de produits qui traite explicitement les trois aspects suivants: (i) des coûts de 
transport importants des vendeurs vers les acheteurs; (ii) des produits non homogènes en 
valeur et qualité; des complémentarités entre les divers produits qui doivent donc être 
négociés simultanément. Le modèle permet aux vendeurs d’offrir leurs produits groupés en 
lots et aux acheteurs de quantifier explicitement leur évaluation des lots mis sur le marché par 
chaque vendeur. Le modèle ne suppose pas que les produits doivent être expédiés par un 
centre avant d’être livrés. Nous proposons également un mécanisme de tâtonnement à rondes 
multiples qui approxime le comportement du marché direct optimisé et qui permet de mettre 
ce dernier en oeuvre. Le processus de tâtonnement permet aux vendeurs et aux acheteurs de 
modifier leurs mises initiales, incluant les contraintes technologiques. Les concepts proposés 
sont particulièrement adaptés aux industries reliées aux matières premières. Nous présentons 
les modèles et algorithmes requis à la mise en oeuvre du marché multi-latéral optimisé, nous 
décrivons le fonctionnement du processus de tâtonnement, et nous discutons les applications 
et perspectives reliées à ces mécanismes de marché. 
 

Mots clés : Design de marché, marché multi-latéraux optimisés, processus de 
tâtonnement. 
 
 
 

In this paper, we propose a design for an an economically efficient, optimized, centralized, 
multi-lateral, periodic commodity market that addresses explicitly three issues: (i) substantial 
transportation costs between sellers and buyers; (ii) non homogeneous, in quality and nature, 
commodities; (iii) complementary commodities that have to be traded simultaneously. The 
model allows sellers to offer their commodities in lots and buyers to explicitly quantify the 
differences in quality of the goods produced by each individual seller. The model does not 
presume that products must be shipped through a market hub. We also propose a multi-round 
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auction that enables the implementation of the direct optimized market and approximates the 
behaviour of the “ideal” direct optimized mechanism. The process allows buyers and sellers 
to modify their initial bids, including the technological constraints. The proposed market 
designs are particularly relevant for industries related to natural resources. We present the 
models and algorithms required to implement the optimized market mechanisms, describe the 
operations of the multi-round auction, and discuss applications and perspectives. 

  
Keywords: Market design, optimized multi-lateral multi-commodity markets, 
multi-round auctions. 



1 Introduction

Until very recently markets were not designed, they just existed. Markets emerged out of
uncoordinated private initiatives and, in most cases, there are still no explicit rules that
determine how equilibrium prices are discovered and set. In most markets, prices are posted
by sellers or negotiated bilaterally according to informal rules. Recently, however, the design
of market rules has emerged as a very important issue due to three main factors: (i) The
creation by government agencies, private firms or industrial associations of a number of
markets to privatize public assets, restructure deregulated industries, or enhance inter-firm
relations; (ii) A renewed focus on strategic analysis and game theory that together with the
emergence of experimental economics contributed to the establishment of market design as
a serious research field in economics; (iii) And, most importantly, the explosive development
of electronic business, e-business tools that can embed the most complex market rules and
facilitate their deployment.

This paper examines the problem of designing optimized or smart markets. An optimized
or smart market is an advanced exchange mechanism. It is a competitive environment where
buyers and sellers interact and is designed to solve possibly complex allocation problems.
According to Miller (1996), “the distinctive characteristic of a smart market is that it can
manage complex contingencies embedded within orders in a consistent and effective manner.”
A smart market would generally require an optimization device in order to clear the market
while taking into account the implicit or explicit constraints and contingencies submitted to
the market marker. There are typically two types of constraints: complex order requirements
as submitted by the participants and feasibility requirements as some orders may not be
jointly fulfilled. A number of smart market mechanisms have been proposed for pricing the
Internet (MacKie-Mason and Varian 1995; MacKie-Mason 1997) and for allocating accesses
to a railway network (Brewer and Plott 1996), airport take-off and landing slots (Rassenti,
Smith, and Bulfin 1982; Grether, Isaac, and Plott 1989), and pollution permits (Marron and
Bartels 1996), as well as for the scheduling of the Space station resources (Ledyard, Porter,
and Rangel 1994), the distribution of electricity within a grid (Rothkopf, Kahn, Teisberg,
Eto, and Nataf 1990), and the matching of supply and demand in financial markets (Fan,
Stallaert, and Whinston 1999). A number of authors have also addressed issues related to the
optimization formulations of market clearance mechanisms, in particular in combinatorial
auctions (e.g., Rothkopf, Pekeč, and Harstad 1998; Sandholm 1999; De Vries and Vohra
2001; Kalagnanam, Davenport, and Le 2001; DeMartini, Kwasnica, Ledyard, and Porter
1999) where participants may submit “all-or-nothing” package bids.

Yet, relatively few actual implementations of smart markets have been observed up to
now. Furthermore, very limited efforts have been dedicated to the design of the whole market
mechanism (Abrache, Crainic, and Gendreau 2001). With a growing interest on the use of
combinatorial auctions for spectrum rights, the trend seems to be changing, however, and
a consensus appears to emerge that optimized markets can be profitably used in complex
environments where global efficiency is highly desirable. Therefore, the general objective of
this paper is to contribute to the development of the basic methodology leading to the design
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and practical implementations of optimized markets.

A market design must specify clear negotiation rules. These include two main elements.
First, one must specify an explicit mathematical representation for the market-clearing pro-
cedure that identifies, given the submitted bids, the market allocation, who produces what
and sells to whom and in what quantities, and prices, who pays what to whom. Formally,
under certain conditions, a market-clearing mechanism can be represented as a constrained
optimization problem. The bids define the parameters of the constrained optimization prob-
lem, while the solution of the problem yields the quantity allocation (the primal) and the
corresponding prices (usually based on dual information). Second, the market design must
specify how negotiations will proceed.

It is well known, in effect, that participants often are unwilling or unable to disclose
all the pertinent but very personal and proprietary information required for an optimized
market. Moreover, formal incentive mechanisms cannot be defined for many important mar-
ket cases, including the multi-lateral type of market considered in this paper (Myerson and
Satterthwaite 1983). Open, multi-round negotiations are therefore increasingly considered.
Such multi-round auctions require significantly less a priori information and allow partic-
ipants to alter their selling or buying offers in light of the market information and their
own assessment of the market. At each round, the auction makes use of the optimization
procedure to produce a temporary set of allocations and prices. The process continues until
no one wishes to alter its bid and the bilateral exchanges then become official. In order to
prevent the negotiation from lasting for ever, the rules must specify not only the stopping
rule, however, but also eligibility and activity rules whose function is to give impetus to the
market by prompting participants to be active and progressively commit themselfs.

We focus on the design of optimized multi-lateral markets for geographically dispersed
heterogeneous commodities and technological constraints. Based on well-known economic
principles, we define an economically efficient optimized multi-lateral market that addresses
explicitly four issues: (i) the non homogeneity in quality and nature of the commodities
traded, (ii) the buyers’ qualification of the differences in quality of the goods produced
by each individual seller, (iii) the existence of complementarities between commodities and
the need to negotiate these simultaneously, (iv) the presence of substantial transportation
costs between sellers and buyers. We strongly believe that when transportation costs are
significant, they should be explicitly accounted for in the optimization of the market. How
this can be achieved in practice is one of the main contributions of the paper. We present
the appropriate optimization formulations and algorithms, and define an open, multi-round
auction mechanism that enables the implementation of the optimized multi-lateral market
and approximates its behaviour under “ideal” information conditions. We show how such a
mechanism may be operationalized and present simulation results that illustrate some of the
gains that can be obtained by using smart market mechanisms. Finally, we report on some
of the difficulties encountered in “selling” the proposal to industrial actors.

The paper is organized as follows. Section 2 presents the optimization formulation we
propose to model the operations of the centralized market mechanism. We introduce the
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main concepts and notation, present the model, and derive the market equilibrium conditions.
Section 3 describes the optimization algorithms used to determine the optimal allocation and
prices. Section 4 is dedicated to the presentation and analysis of the multi-round auction
mechanism and the description of how negotiations are conducted. Section 5 briefly describes
the Québec wood chip industry, which prompted the work presented in this paper, and
presents the simulation results. Double-sided markets of the type studied in this paper are
hard to analyze from a formal point of view. In particular, there is no theory describing
how participants interact in such a market and classical incentive mechanisms do not apply.
Therefore, Section 5 also presents a strategic analysis of the proposed market mechanism
and addresses the issue of applying it, both in general and in the particular context of the
wood chip market. We conclude in Section 6.

2 Allocation Mechanisms for Optimized Multi-lateral

Multi-commodity Markets

We propose a design for an optimized, centralized, multi-lateral, periodic commodity mar-
ket. The market opens up periodically (once a day, once a week) and the agents in the
corresponding economic sector negotiate using the centralized and optimized market. All
possible multi-lateral trades are thus solved simultaneously. Commodities are classified by
type or quality. Sellers may offer several commodity types separately or mixed up in lots.
Buyers need to combine different grades and qualities, while technological constraints limit
the quantities of each type of commodity they may acquire. Transportation costs are sig-
nificant. The objective of this type of markets is to explicitly optimize both the production
and transportation of resources in the industry.

At the core of the market lies a market-clearing mechanism: a formal procedure that
determines the “optimal” allocation - who sells what (how much) to whom and at what price
- of goods given the participants and the market state. Participants are asked to communicate
to the central market their production cost or demand functions (their willingness to pay),
together with all relevant technical information: transportation costs, technical constraints,
etc. The market then maximizes buyers’ surplus minus the production and transportation
costs subject to all technological constraints. The output of the allocation mechanism are
prices and quantities that equilibrate supply and demand, and that are the solution (dual
and primal) of an optimization (maximization) formulation. This approach applies for a
market with a simple structure as well as for more complex markets.

To fix ideas, consider first a simple market where a unique homogeneous commodity
is traded between one buyer and one seller. Assume no transportation costs are involved.
Assuming the buyer and seller have quasi-linear utilities in money, their preferences are given
by U(q) − S and S − C(q), respectively, where q is the quantity sold by the seller against
a payment of S. In such a market, total profit is maximized and efficiency is obtained by
solving the optimization problem maxq{U(q)− C(q)}.
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At the optimum allocation, q∗, the marginal willingness to pay, U 0(q∗), equals the marginal
production cost, C 0(q∗). Following the Marshallian partial equilibrium tradition, this is no
different from equalizing supply and demand, where the demand and supply functions cor-
respond to the marginal utility and cost curves, respectively. The equilibrium price is given
by p∗ = U 0(q∗) = C 0(q∗). Transportation costs may be considered by explicitly introducing
them into the optimization problem. For a constant transportation unit cost t, one needs to
solve maxq{U(q)− C(q)− tq}. The buyer then pays p∗ = U 0(q∗) = C 0(q∗) + t per unit pur-
chased, the seller receives p∗− t = C 0(q∗), and the carrier receives t per unit. This approach
may be generalized to more complex environments as described in the following subsection.

2.1 The Optimized Allocation Mechanism

The objective is to formulate a model to represent the products on sale in the market,
the preferences of buyers and sellers regarding these products, the technological constraints
buyers face, the transportation costs associated to delivering the products to the buyers. The
goal is to maximize the buyers’ surplus, to obtain a so-called efficient market. The model is
to be solved by mathematical programming techniques: the primal solution corresponds to
the optimal quantities bought, while the dual yields the optimal prices.

Let K be the set of products. The definition of a product is domain specific. Generally
speaking, however, a product is a generic classification reference, such as a quality of ore,
a wood species, a type of grain, etc. It is a commodity differentiated by type and quality.
Even though the number of products in a market may be limited, products can be variously
combined in different lots that sellers and buyers may trade. To simplify the presentation
(but with no loss of generality), a lot l ∈ L is sold by one and only one seller. It is attached
to a specific location and has its own idiosyncratic quality. Since a producer may sell more
than one lot, the number of lots may exceed the number of producers. More importantly,
a lot has its own composition of various products. For example, a stack of wood chips may
contains 60% of high density fiber, 35% of low density fiber, and 5% of grey pine. Before
refinement, a stack of ore or a barrel of petroleum may contain different types of ores or oils
and, in practice, it may be sold before the different types of oils or ores are separated. Let
bkl denote the proportion of product k ∈ K in lot l , where

P
k b
k
l = 1. A maximum quantity

of Ql is available for lot l.

Let J be the set of buyers. Buyers face technological constraints and use proprietary
recipes. We thus assume that a buyer desires to acquire a certain mix of products (firms
desiring more then one mix are represented as more than one buyer). On the other hand,
lots may display very different product characteristics, even when the same product types
are involved. Consequently, to ensure maximum flexibility and adaptability, the market
design we propose allows buyers to express preferences for the lots offered for sale. Buyer
preferences are modeled as two (quality) adjustment coefficients: one multiplicative, rlj, and
one additive, slj, for buyer j ∈ J and lot l ∈ L. The former may be interpreted as follows:
for buyer j, one unit of lot l is equivalent to rlj units of a standard lot. If r

l
j > 1 (r

l
j < 1),
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then one unit of lot l is more (less) valuable than a standard unit. On the other hand, slj
means that for buyer j one unit of lot l is worth slj dollars more than a standard unit. Let
Mk
j (m

k
j ) denote the maximum (minimum) proportion of product k ∈ K that buyer j is

ready to accept in the mix it purchases, while Qj indicates the maximum total quantity of
all products the buyer requires. Unit transportation costs between the seller of lot l and
buyer j are denoted tlj.

Buyer and seller preferences are represented by utility and cost functions, respectively.
Denote by Uj(·) the utility function of buyer j ∈ J , and by Cl(·) the cost or production
function of lot l ∈ L. According to classical economic theory, the utility function corresponds
to the integral below the demand curve, U 0j(q), of buyer j that stands for the marginal benefit
for buyer j to acquire the qth unit. It is usually assumed that U 0j(q) is continuous, piece-wise
linear, and strictly decreasing (see Figure 1). Hence, Uj(·) is concave. Symmetrically, the
cost function Cl(q) corresponds to the integral of the supply curve C

0
l(·) for lot l ∈ L that

stands for the marginal cost of producing the qth unit of lot l. We assume that C 0l(q) is
continuous, piece-wise linear, and strictly increasing (see Figure 2) and, consequently, Cl(·)
is convex.

The “decision” variables of the optimized multi-lateral allocation mechanism, qlj, j ∈
J , l ∈ L, indicate how much each buyer j buys of lot l. The corresponding optimization
formulation is

maxZ(q) =
X
j∈J

Uj(
X
l∈L
rljq

l
j)−

X
l∈L
Cl(
X
j∈J

qlj)−
X
j∈J

X
l∈L
(tlj − slj)qlj (1)

s.t.
X
l∈L
qlj ≤ Qj, ∀j ∈ J (2)X

j∈J
rljq

l
j ≤ Ql, ∀l ∈ L (3)X

l∈L
bkl r

l
jq
l
j ≤Mk

j

X
l∈L
rljq

l
j, ∀j ∈ J , k ∈ K (4)X

l∈L
bkl r

l
jq
l
j ≥ mk

j

X
l∈L
rljq

l
j, ∀j ∈ J , k ∈ K (5)

qlj ≥ 0, ∀j ∈ J , l ∈ L (6)

The objective function maximizes the total profit computed as the difference between the
total utility of all buyers and the total production cost of all lots plus the transportation costs
of the quantities bought. Relations 2 and 3 constrain the total quantities bought by the max-
imum volumes available on the market and looked after by buyers, respectively. Constraints
4 and 5 correspond to the product mix requirements of each buyer. The representation of
the supply and demand functions completes the characterization of the formulation.
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I I I I = Q
j0 1
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2
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3

j

Figure 1: Marginal Utility Function

2.2 Supply and Demand Representation

A central issue in market design, as well as in the formulation of the corresponding optimiza-
tion model, addresses the representation of the preferences of buyers and sellers, that is, the
representation of their utility and production cost functions. In the market design presented
in this paper, it is assumed that the utility and production cost functions correspond to the
integral of the demand and supply functions, respectively. It is further assumed that these
demand and supply functions may be represented by piece-wise linear, strictly monotone
curves.

Buyers are assumed to submit demand curves that take the formDj = {(Inj , Uj 0(Inj ))}Njn=0,
j ∈ J . Figure 1 illustrates such a demand curve. Each of the Nj pairs corresponds to a
point on the curve. Inj denotes a quantity and Uj

0(Inj ) the price buyer j is willing to be pay
for the Inj -th unit. For a submission to be admissible, we must have 0 = I

0
j < I

1
j < . . . <

I
Nj
j = Qj and Uj

0(I0j ) > Uj
0(I1j ) > . . . > Uj

0(INjj ) = 0. Between these points, we assume the
demand curve is linear. Since no restriction is imposed a priori on the number of segments,
this representation is sufficiently general to represent a decreasing piece-wise linear demand
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l
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l

0

l
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l
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l

Figure 2: Marginal Production Cost Function

curves. Given Dj, the utility function Uj(q) can be expressed as

Uj(q) =

Z
Uj

0(q) =
Nj−1X
n=1

µ
1

2
anj (I

n
j − In−1j )2 + bnj (I

n
j − In−1j )

¶
+
1

2
a
Nj
j (q − I(Nj−1)j )2 + b

Nj
j (q − INj−1)j ), j ∈ J ,

(7)

where anj and b
n
j are coefficients associated with interval n = 1, . . . , Nj, and I

n
j is the upper

bound of the same interval. The utility function Uj(q) is continuous, piece-wise quadratic
and strictly concave. The coefficients anj and b

n
j are defined according to

anj =
Uj

0(Inj )− Uj 0(In−1j )

Inj − In−1j

, ∀j ∈ J , n = 1, . . . , Nj, (8)

bnj = Uj
0(In−1j ), ∀j ∈ J , n = 1, . . . , Nj. (9)

Note that Uj
0(INjj ) = 0. This restriction guarantees that the function Uj(q) is well-defined.

Similar assumptions and developments may be applied to the production cost functions
Cl(q) for lots l ∈ L. The function Cl(q) corresponds to the integral of the supply curve.
In the design proposed in this paper, sellers submit supply curves that take the form Sl =
{(Inl , Cl0(Inl ))}Nln=0, l ∈ L. Each of these Nl pairs corresponds to a point on the supply curve.
Inl denotes a given produced quantity, while Cl

0(Inl ) stands for the price of producing the
Inj -th unit of lot l. For a submission to be admissible, one must have that 0 = I

0
l < I

1
l <

7



. . . < INll = Ql and Cl
0(I0l ) < Cl

0(I1l ) < . . . < Cl
0(INll ). Between these intervals, we presume

that the supply curve is linear. Hence, the cost function is piece-wise quadratic and strictly
convex. Given Sl, the cost function Cl(q) can be written as equation (10), where a

n
l are b

n
l

positive coefficients associated with interval n (n = 1, . . . , Nl), and I
n
l is the upper bound of

the interval n.

Cl(q) =

Z
Cl
0(q) =

Nl−1X
n=1

µ
1

2
anl (I

n
l − In−1l )2 + bnl (I

n
l − In−1l )

¶
+
1

2
aNll (q − I(Nl−1)l )2 + bNll (q − I(Nl−1)l ), l ∈ L

(10)

The constants anl are b
n
l are defined according to

anl =
Cl
0(Inl )− Cl0(In−1l )

Inl − In−1l

, ∀l ∈ L, n = 1, . . . , Nl, (11)

bnl = Cl
0(In−1l ) ∀l ∈ L, n = 1, . . . , Nl. (12)

2.3 Model Transformation

The explicit capacity constraints on the total quantities available of each lot combined to the
those on the total quantities each buyer may acquire of each lot, may preclude the existence
of an equilibrium solution. That is, one may not find quantities for which the utility and
production cost functions intersect. Figure 3 illustrates such a case.

To address this issue and ensure the functions, and the model, are well-defined, the
formulation (1) - (6) is modified to remove constraints (2) and (3). Then, to account for the
capacity restrictions, new terms are added to the utility and production cost functions to
penalize whenever the quantities bought exceed the selling or buying limits. These penalties
take the form of extra (N j +1) and (N l+1) intervals that define the utility and production
cost functions, respectively, beyond the limits imposed on the maximum quantities that may
be bought or sold. For all buyers j and lots l, the penalty segments are set to arbitrarily
high slopes −Pmax and Pmax, respectively. The aN l+1

j , bN
l+1

j , aN
l+1

l , and bN
l+1

l constants
are then set accordingly. Using the same slopes −Pmax and Pmax for all buyers and lots,
respectively, ensures their equitable treatment. Figure 4 illustrates the modified utility and
cost functions.

Penalties should be sufficiently high to forbid trading infeasible quantities. Yet, the
values these penalties may take also depend upon the numerical precision of the computer
(and software) used. To minimize numerical errors, the penalty values thus have to be
determined experimentally (see Section 3).

Introducing the penalty intervals has the double benefit of addressing the equilibrium
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Figure 3: Supply and Demand Marginal Curves with Capacity Constraints
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Figure 4: Supply and Demand Marginal Curves with Penalties
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existence issue and of simplifying the formulation. The model may now be written as:

maxZ(q) =
X
j∈J

Uj(
X
l∈L
rljq

l
j)−

X
l∈L
Cl(
X
j∈J

qlj)−
X
j∈J

X
l∈L
(tlj − slj)qlj (13)

s.t.
X
l∈L
bkl r

l
jq
l
j ≤Mk

j

X
l∈L
rljq

l
j, ∀j ∈ J , k ∈ K (14)X

l∈L
bkl r

l
jq
l
j ≥ mk

j

X
l∈L
rljq

l
j, ∀j ∈ J , k ∈ K (15)

qlj ≥ 0, ∀j ∈ J , l ∈ L (16)

with λkj and δkj , ∀j ∈ J , k ∈ K, the corresponding Lagrangian multiplier sets that may be
used to determine the equilibrium prices.

2.4 The Pricing Rule

The solution method described in Section 3 yields the optimal allocated quantities ql∗j for
all buyers j ∈ J and lots l ∈ L. The associated equilibrium prices, pl∗j , may be found
from the dual formulation by using the first-order optimality conditions and the λkj and δkj
Lagrangian multipliers associated with constraints (14) and (15), respectively. (To simplify
the presentation, the optimality indicator ∗ is omitted in the development of this subsection.)
The first order optimality conditions associated with formulation (13) - (16) are

For all j ∈ J and l ∈ L, if qlj > 0 then

Uj
0(
X
l∈L
rljq

l
j)r

l
j − Cl0(

X
j∈J

qlj)− tlj + slj +
X
k∈K

rlj
£
λkj (b

k
l −Mk

j ) + δkj (b
k
l −mk

j )
¤
= 0 (17)

λkj ≤ 0 and λkj

"X
l∈L
(bkl −Mk

j )r
l
jq
l
j

#
= 0, ∀j ∈ J , k ∈ K (18)

δkj ≥ 0 and δkj

"X
l∈L
(bkl −mk

j )r
l
jq
l
j

#
= 0, ∀j ∈ J , k ∈ K (19)

From the first-order conditions (17) - (19), we can calculate the equilibrium prices. Let
plj be the price paid by buyer j ∈ J (including transportation) for every unit of lot l ∈ L. If
qlj > 0, then

plj ≡ U 0j(
X
l∈L
rljq

l
j)r

l
j +

X
k∈K

rlj
£
λkj (b

k
l −Mk

j )+ δkj (b
k
l −mk

j )
¤
+ slj = C

0
l(
X
j∈J

qlj) + t
l
j (20)

Given the above definition of plj, we can state the following result.

10



Theorem 1 The vectors of prices
©
plj
ª
l∈L,j∈J and of quantities

©
qlj
ª
l∈L,j∈J solving the first-

order conditions (17) - (19), form a competitive equilibrium of the market and satisfy the
market-clearing conditions. That is:

(i) A seller receives from all of his buyers, net of transportation cost, exactly his marginal
cost of production; i.e. the price he receives lies on its supply curve:

plj − tlj = C 0l(
X
j∈J

qlj); for all j such that q
l
j > 0.

(ii) The average price paid by a buyer j, adjusted for the quality factors, is equal to its
marginal utility, i.e., the average price he pays lies on his demand curve:

p̄j ≡
P

l∈L
¡
plj − slj

¢
qljP

l∈L r
l
jq
l
j

= U 0j(
X
l∈L
rljq

l
j) (21)

Proof. The proposition (i) of the theorem follows immediately from equation (20). In
order to prove the proposition (ii) of the theorem, we have from equation (20) and for every
buyer j ∈ J ,

plj − slj = U 0j(
X
l∈L
rljq

l
j)r

l
j +

X
k∈K

rlj
£
λkj (b

k
l −Mk

j )+ δkj (b
k
l −mk

j )
¤
, for all l ∈ L such that qlj > 0.

and then X
l∈L

¡
plj − slj

¢
qlj =

"X
l∈L
rljq

l
jU

0
j(
X
l∈L
qljr

l
j)

#
+

"X
l∈L

λkj (b
k
l −Mk

j )r
l
jq
l
j

#

+

"X
l∈L

δkj (b
k
l −mk

j )r
l
jq
l
j

# (22)

From conditions (18) and (19), one obtains

λkj
X
l∈L
rlj(b

k
l −Mk

j )q
l
j = δkj

X
l∈L
rlj(b

k
l −mk

j )q
l
j = 0

which, combined to equation (21), yields the desired result:X
l∈L

¡
plj − slj

¢
qlj =

X
l∈L
rljq

l
jU

0
j(
X
l∈L
qljr

l
j) = U

0
j(
X
l∈L
rljq

l
j) ·
X
l∈L
rljq

l
j.

Q.E.D.
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2.5 Existence and Uniqueness of the Optimal Allocation

A market design must clearly identify an allocation mechanism and pricing rules that gen-
erate a unique allocation and set of prices. Otherwise the market design is flawed and may
be legally contested. Consequently, a key characteristic of the optimization formulation is
that it has one and only one solution, both in prices and quantities.

Existence is guaranteed by the transformation of the model following the introduction
of penalties on supply and demand capacities and by the fact that “no trade” is always a
feasible option. Given the assumption of the model, linear constraints, linear transportation
cost functions, strictly convex supply and demand functions, there exists a unique allocation
solution and, whenever qji > 0, there is a unique equilibrium price pji . The proof follows
directly from standard mathematical programming theory and is omitted. The consequences
of these simplifying hypotheses on the applicability of the methodology are discussed in
Section 5.

3 Solving the Optimized Market Clearance Formula-

tion

In this section, we first describe how to efficiently solve the optimized market clearance mech-
anism proposed in the previous section by means of standard methodologies and commercially-
available software. We then turn to two special cases involving buyers or lots that do not
participate to the market equilibrium. The tools, models and methods, developed for these
cases may provide valuable information to buyers and sellers, as well as prove quite useful
for the multi-round, tatônement market clearance mechanism described in Section 4.

3.1 The Algorithm

The buyer utility and seller production cost functions are assumed to be piece-wise linear,
strictly concave and convex, respectively. One may then transform the formulation (13) - (16)
into pure quadratic optimization model, which may then efficiently be solved by standard
methods.

Define two sets of auxiliary variables:

• µnj : total quantity acquired by buyer j in interval n, j ∈ J , n = 1, · · · , Nj + 1;
• µnl : total quantity sold of lot l in interval n, l ∈ L, n = 1, · · · , Nl + 1.
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The supply cost functions and the demand utility functions then become

Cnl (µ
n
l ) =

1

2
anl (µ

n
l )
2 + bnl µ

n
l , ∀l ∈ L, n = 1, · · · , Nl + 1 (23)

Unj (µ
n
j ) =

1

2
anj (µ

n
j )
2 + bnj µ

n
j , ∀j ∈ J , n = 1, · · · , Nj + 1, (24)

where the anl , b
n
l , a

n
j , and b

n
j constants are computed according to equations (11), (12), (8),

and (9), respectively. Cnl (µ
n
l ) is then continuous, strictly increasing, and purely quadratic

(convex) function on interval n, for all l ∈ L and n = 1, · · · , Nl+1, while function Unj (µnj ) is
also continuous, but monotonely decreasing and purely quadratic (concave) on interval n, for
all j ∈ J and n = 1, · · · , Nj +1. The optimized multi-lateral market allocation formulation
then becomes

maxZ(q, µ) =
X
j∈J

Nj+1X
n=1

Unj (µ
n
j )−

X
l∈L

Nl+1X
n=1

Cnl (µ
n
l )−

X
l∈L

X
j∈J
(tlj + s

l
j)q

l
j (25)

s.t.

Nl+1X
n=1

µnl −
X
j∈J

qlj = 0, ∀l ∈ L (26)

Nj+1X
n=1

µnj −
X
l∈L
rljq

l
j = 0, ∀j ∈ J (27)X

l∈L
(bkl −Mk

j )r
l
jq
l
j ≤ 0, ∀j ∈ J , k ∈ K (28)X

l∈L
(bkl −mk

j )r
l
jq
l
j ≥ 0, ∀j ∈ J , k ∈ K (29)

0 ≤ µnl ≤ (Inl − In−1l ), ∀l ∈ L, n = 1, · · · , Nl (30)

0 ≤ µnj ≤ (Inj − In−1j ), ∀j ∈ J , n = 1, · · · , Nj (31)

µ
Nj+1
j ≥ 0, ∀j ∈ J and µNl+1l ≥ 0, ∀l ∈ L (32)

Note that the marginal cost of the cost function Cl(q) due to the production of one extra
unit in interval n equals anl µ

n
l + b

n
l . Given that by construction a

n
l (I

n
l − In−1l ) + bnl = b

n+1
l ,

one obtains anl µ
n
l + b

n
l < a

n+1
l µnl + b

n+1
l , for n = 1, · · · , Nl, l ∈ L. By a similar argument,

anj µ
n
j + b

n
j > a

n+1
j µnj + b

n+1
j , for all n = 1, · · · , Nj, j ∈ J . Thus, for any solution to problem

(25) - (32), one has

µnl < (I
n
l − In−1l ) ⇒ µn+1l = 0, ∀l ∈ L, n = 1, · · · , Nl (33)

µn+1l > 0 ⇒ µnl = (I
n
l − In−1l ), ∀l ∈ L, n = 1, · · · , Nl (34)

µnj < (I
n
j − In−1j ) ⇒ µn+1j = 0, ∀j ∈ J , n = 1, · · · , Nj (35)

µn+1j > 0 ⇒ µnj = (I
n
j − In−1j ), ∀j ∈ J , n = 1, · · · , Nj (36)

Therefore, since one maximizes, the linear pieces making up the sellers’ production cost and
the buyers’ utility functions will fill up in increasing order of the respective intervals.
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Finally, let αl, l ∈ L and αj, j ∈ J be the multipliers of constraints (26) and (27),
respectively. Applying the first order optimality conditions, one then gets

αl = C
0
l(
X
j∈J

qlj), ∀l ∈ L and αj = U
0
j(
X
l∈L
rlqq

l
j), ∀j ∈ J ,

and the equlibrium prices may be computed as

plj = αl + t
l
j − slj, ∀l ∈ L, j ∈ J . (37)

The optimized multi-lateral market clearance mechanism may thus be efficiently solved
by mathematical programming software that includes quadratic optimization procedures.
To illustrate, Table 1 displays typical computational performances for various problem di-
mensions on a SUN Sparc Ultra-1 workstation with a 167 MHz processor and 132 Mb of
RAM memory. The first three columns indicate the number of lots, buyers, and products,
respectively. The following two columns indicate the number of constraints and variables
of the corresponding quadratic formulation. The slope of the penalty terms have been ex-
perimentally calibrated for this computer and equals 5000 (Bourbeau 1998). The quadratic
model has been solved by using the callable library of cplex. The last column presents the
CPU times on a SUN Sparc Ultra1 workstation (32 bits, 167 MHz processor, 132 MG RAM
memory).

|L| |J | |K| con var cpu
500 100 1 800 50000 37.5
500 100 2 1000 50000 128.53
500 100 3 1200 50000 510.9
500 100 4 1400 50000 476.68

Table 1: Examples of Computational Performance

3.2 Postoptimal Analysis

Sometimes, not all buyers or lots are part to the equilibrium allocation. It may then be
interesting to determine what caused the situation and to provide the buyer or seller with
the appropriate information. To achieve this goal, we develop particular optimization models
that start from the optimal solution ql∗j and p

l∗
j , j ∈ J , l ∈ L, of the allocation mechanism.

A buyer j is declared non-participant if the total quantity it acquires equals zero. To
avoid numerical errors, this conditions translates into

P
l∈L q

l
j ≤ ε, with ε a very small,

machine-dependent value. A buyer may not receive any allocation because its offered prices
are too low (not covering transportation costs, in particular) or because its technological
constrains are incompatible with the lots offered. We goal therefore is to build a model that
would indicate to a non-participating buyer either that its technological requirements are
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incompatible with the lots on sale, or the minimum price that would allow it to acquire ε of
goods, given the current optimal allocation to the other buyers.

Let j0 denote a non-participating buyer. The model may then be written as follows:

minZj0(xj0) =
X
l∈L

Ã
Cl(
X
j∈J

ql∗j + x
l
j0
)− Cl(

X
j∈J

ql∗j )

!
+
X
l∈L
(tlj0 + s

l
j0
)xlj0 (38)

s.t.
X
l∈L
xlj0 = ε (39)X

l∈L
rlj(b

k
l −Mk

j0
)xlj0 ≤ 0, ∀k ∈ K (40)X

l∈L
rlj(m

k
j0
− bkl )xlj0 ≤ 0, ∀k ∈ K (41)

xlj0 ≥ 0, ∀l ∈ L (42)

ε is arbitrarily small. It is then possible to simplify the formulation by replacing the objective
function (38) by its linear approximation given by its expansion in a Taylor series. Thus,
when xlj0 is sufficiently small, Cl(

P
j∈J q

l∗
j +x

l
j0
)−Cl(

P
j∈J q

l∗
j ) ≈ Cl0(

P
j∈J q

l∗
j )x

l
j0
, and the

objective (38) may be replaced by (43):

minZj0(xj0) =
X
l∈L

"
Cl
0(
X
j∈J

ql∗j ) + (t
l
j0
+ slj0)

#
xlj0 (43)

Model (43) and (39) - (42) is a linear programming formulation that may easily solved.
If the problem has an optimal feasible solution, the buyer will receive the unit cost of a ε
volume of goods. This price corresponds to the dual variable associated to constraint (39).
When a feasible solution cannot be found, it signals a conflict between the lots on sale and
the technological constraints of the buyer.

A similar analysis may be performed for non-participating lots, that is for unsold lotsP
j q
l
j < ε. A lot l0 may end up unsold because either the price asked was too high, or its

composition bkl0 in terms of the commodities in K does not correspond to the requirements of
the buyers currently in the market. Therefore, the objective is to develop a model that, as
for non-participating buyers, may yield the appropriate information for the seller to correct
its offer.

The situation is somewhat less simple than in the buyers’ case, however. This follows
from the fact that commodities are sold in lots. Thus, selling a ε quantity of lot l0 may impact
on the quantities already allocated of other lots. Then, in order to be able to determine the
price at which a quantity ε of lot l0 may be sold, one has to allow the optimal allocations q

l∗
j

to vary by a ε quantity. Let xlj represent these variations for all buyers j ∈ J and lots l ∈ L.
The non-participating lot formulation takes then the form of a variation of the allocation
mechanism model (25) - (32):
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maxZl0(x) =
X
j∈J

Nj+1X
n=1

Unj (µ
n
j )−

X
l∈L

Nl+1X
n=1

Cnl (µ
n
l )−

X
l∈L

X
j∈J
(tlj + s

l
j)(q

l∗
j + x

l
j) (44)

s.t.
X
j∈J

xl0j ≥ ε (45)

Nl+1X
n=1

µnl −
X
j∈J

xlj =
X
j∈J

rljq
l∗
j , ∀l ∈ L (46)

Nj+1X
n=1

µnj −
X
l∈L
rljx

l
j =

X
l∈L
rljq

l∗
j , ∀j ∈ J (47)X

l∈L
rlj(b

k
l −Mk

j )x
l
j ≤ rlj(Mk

j − bkl )ql∗j , ∀j ∈ J , k ∈ K (48)X
l∈L
rlj(b

k
l −mk

j )x
l
j ≥ rlj(mk

j − bkl )ql∗j , ∀j ∈ J , k ∈ K (49)

0 ≤ µnl ≤ (Inl − In−1l ), ∀l ∈ L, n = 1, · · · , (Nl + 1) (50)

µNl+1l ≥ 0, ∀l ∈ L (51)

0 ≤ µnj ≤ (Inj − In−1j ), ∀j ∈ J , n = 1, · · · , (Nl + 1) (52)

µ
Nj+1
j ≥ 0, ∀j ∈ J (53)

max(−ε,−ql∗j ) ≤ xlj ≤ ε, ∀j ∈ J , l ∈ L (54)

By Taylor series arguments similar to those used for non-participating buyers, the objec-
tive function (44) may be replaced by a linear approximation:

Zl0(x) =

"X
j∈J

Uj(
X
l∈L
rljq

l∗
j + x

l
j)−

X
l∈L
Cl(
X
j∈J

ql∗j + x
l
j)−

X
j∈J

X
l∈L
(tlj + s

l
j)(q

l∗
j + x

l
j)

#

−
"X
j∈J

Uj(
X
l∈L
rljq

l∗
j )−

X
l∈L
Cl(
X
j∈J

ql∗j )−
X
j∈J

X
l∈L
(tlj + s

l
j)q

l∗
j

#
≈

X
j∈J

Uj
0(
X
l∈L
rljq

l∗
j )
X
l∈L
xlj −

X
l∈L
Cl
0(
X
j∈J

ql∗j )
X
j∈J

xlj −
X
j∈J

X
l∈L
(tlj + s

l
j)x

l
j

=
X
j∈J

X
l∈L

Ã
Uj

0(
X
l∈L
ql∗j )− Cl0(

X
j∈J

ql∗j )− (tlj + slj)
!
xlj

and the non-participating lot model becomes
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maxZl0(x) =
X
j∈J

X
l∈L

Ã
Uj

0(
X
l∈L
ql∗j )− Cl0(

X
j∈J

ql∗j )− (tlj + slj)
!
xlj (55)

s.t.
X
j∈J

xl0j ≥ ε (56)X
l∈L
rlj(b

k
l −Mk

j )x
l
j ≤ rlj(Mk

j − bkl )ql∗j , ∀j ∈ J , k ∈ K (57)X
l∈L
rlj(m

k
j − bkl )xlj ≤ rlj(bkl −mk

j )q
l∗
j , ∀j ∈ J , k ∈ K (58)

max(−ε,−ql∗j ) ≤ xlj ≤ ε, ∀j ∈ J , l ∈ L (59)

Model (55) - (59) is also a linear programming formulation that may be easily solved.
If the problem has an optimal feasible solution, the seller of lot l0 receives the unit price
that would allow to sell a ε quantity of lot l0. This price corresponds to the dual variable
associated to constraint (55). When the problem displays no feasible solution, the seller may
be notified that the composition of lot l0 is incompatible with the requirements of the buyers
currently in the market.

4 Operation of the Optimized Market

We propose, in this paper, an optimized, multi-lateral periodic market mechanisms, where all
possible multi-lateral trades are solved simultaneously. According to the direct mechanism
proposed in the previous sections, agents in an economy periodically negotiate using the cen-
tralized and optimized market. The market opens up, technical information is exchanged,
seller production cost and buyer utility functions are communicated to the auctioneer, the
market clearance model is solved by the auctioneer based on this complete received infor-
mation, and the optimal allocation, quantities and prices, is then communicated back to
participants that may now perform the deals.

Unfortunately, it is very unlikely that such a mechanism will operate ever. The major
stumbling block is the willingness of participants to disclose all their data, especially full
supply and demand functions (assuming buyers and sellers do know these data) to even
the most secure auctioning system. Consequently, we propose an open, multi-round auction
mechanism that aims to have participants gradually reveal information, such that the final
allocation approaches as much as possible the optimal allocation of the direct mechanism.

Open, multi-round market mechanisms are what most people define as “auctions”. Con-
sider, for example, the ascending auction for a single item (the so-called “English auction”).
In each round, the auctioneer identifies the participant offering the best price and announces
to all other participants the best tendered price and the minimal acceptable counter-offer,
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usually the best tendered price plus a minimal increment ∆. In each successive round, the
price increases by at less ∆. The auction ends when for a number of rounds or for a period of
time no better offer has been submitted. Open-exit auctions are another example of multi-
round auctions. Here, the auctioneer calls a price. Those willing to purchase the item at the
announced price declare so. The unwilling drop out and are not allowed to come back into
the auction. If more then one participant accept the proposed price, the auctioneer continues
to increase the price by some increment ∆ until all but one drop out. Thus, conceptually,
in each round of an auction, participants submit bids: a set of well-defined information re-
quired by the auctioneer. Given the bids, the auctioneer proposes a temporary allocation
and provides the participants with updated information about the state of the market. The
mechanism ends according to some stopping rule, when presumably the multi-round auction
has converged.

Much has been said about the value of open auctions (Cramton, 1998). In an open auction
or negotiation mechanism, participants are able to acquire information about competitors
and the degree of competition. As they acquire this information, they can change and
adapt their behavior accordingly. Open negotiation processes allow to mitigate the impact
of the “winner-curse”, participants can have backup strategies, they need to reveal critical
information only when necessary, and may obtain the quantities desired even if initially they
do not know how much to bid in order to obtain those quantities. The difficulty is to design
the open auction mechanism to ensure that the required information is revealed when needed
and that the process converges toward the desired state. Generally speaking, a multi-round
auction process must specify:

1. The bid definition and the set of messages to and from the auctioneer in each round;

2. Admissibility or activity rules. Their role is to give impetus to the market, prompt
participants to be active and reveal their real needs as early as possible, and make sure
that the auction does converge.

3. A stopping rule that specify when the negotiation process is definitively closed.

The specification of activity rules was simple in the case of the two mechanisms just
mentioned. It is a significantly more complex task for a double-sided negotiation mechanism
that also involves technological constraints. In a one-sided market, rules are set up so that
prices move monotonically. They always either decrease or increase. In a double-sided
market, if both buyers and sellers are allowed to change their bids, prices can move either
up or down. Thus, the multi-round auction process must allow for a certain flexibility,
while still preventing quantities and prices be modified for ever. Therefore, we propose a
multi-round auction that, over several successive rounds of negotiation, incites participants
to progressively commit themselves and that, given a minimal increment ∆, ends in a finite
time and a relatively low number of rounds. At each round of the auction, the submission of
bids determines the input of the market clearance optimization formulation (Section 2). The
algorithms presented in Section 3 are used to determine a temporary allocation and, when
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required, to determine the appropriate information for non-participating buyers and lots.
This allocation is communicated to participants and, in light of these results, another round
is triggered during which the participants, in line with the eligibility rule, can re-evaluate their
supply, demand, or technological constraints. The negotiation process is better described in
terms of two phases and multiple rounds:

Initialization Phase. The participants communicate technical information: product and
lot descriptions, buyer technical evaluations of lots, information about transportation
costs.

Negotiation Phase. It is the multi-round auction per se.

Initial Round. Initial seller and buyer bids.

• Buyers bid demand schedules : Ordered lists of <price, quantity> couples
for the total volume of products desired, together with initial minimum and
maximum proportions of each product they wish to acquire. Prices must
be sorted in descending order, while the associated quantities must be in
ascending order. In particular, buyers must indicate the highest quantity on
their schedule and the highest price they are ready to pay. These will not be
allowed to change later in the auction. It is thus assumed that, within their
technical constraints, buyers are essentially interested in the total quantity of
goods acquired and the associated average price.

• Sellers bid supply schedules: Ordered lists of <price, quantity> couples for
each lot on sale. Both prices and quantities are ordered in ascending order.
The point with the highest price and quantity will remain fixed in the later
rounds of the auction. It should thus correspond to the maximum production
level that a seller is capable (or willing) to achieve.

• When all the bids have been submitted, the system (the “auctioneer”) gener-
ates the quantities traded and the equilibrium prices paid or received by each
participant by using the optimization methodology presented in the previous
sections.

Following Rounds. Buyers and sellers may modify their bids according to the eligi-
bility rule:

• A participant may only raise its bid. That is, at any given price, a buyer or
seller may only increase the quantities submitted previously.

• Demand schedules must continue to be strictly decreasing in price and in-
creasing in quantity, while supply schedules are strictly increasing in both
price and quantity.

• A new point on each demand (supply) schedule is fixed in each subsequent
round. This is the point associated with (or around) the ongoing equilibrium
price that will remain fixed for the rest of the negotiation. To accelerate
convergence, the demand and supply schedules are fixed over a suitable range
∆ around the (interim) equilibrium price. Note that fixing the schedule at

19



a given price means that participants will have a last chance to update their
demand (supply) schedules for prices in the range [p∗ − ∆, p∗ + ∆], where
p∗ is the ongoing equilibrium price they were assigned in the immediately
upcoming round.

• The new minimum proportion indicated by a buyer must be smaller than or
equal to the former minimum specified for the product.

• The new buyer maximum proportion must be greater than or equal to the
corresponding former maximum plus a fixed value δ.

• The system is re-optimized and the temporary allocation information is com-
municated to each participant.

Stopping criteria. The negotiation terminates when either the equilibrium prices
assigned to each participant have not changed by more than ∆ or when no par-
ticipant chooses, or is able to modify its bid. The temporary allocation then
becomes permanent and the various trades may be realized.

The multi-round auction is thus constructed so that participants must progressively com-
mit themselves and, as the negotiation proceeds, the options available to buyers and sellers
become more and more restricted. At some point, the buyers cannot or do not want to
change their demand schedules and sellers cannot or do not want to change their supply
schedules. The market then closes. If the size of the range ∆ that controls the fixation of
the supply and demand schedules around the (interim) equilibrium price is large enough, the
process converges quickly. The advantage of the above system is that a participant needs
to reveal its true demand or supply only over a small range of prices, and the impact of
mistakes outside this range is nil. The Appendix details and illustrates these concepts and
the operation of the multi-round auction.

The allocation that is identified by the auction specifies the bi-lateral contracts (prices
and quantities) between individual buyers and sellers. In practice, further discussions be-
tween parties will be necessary to fix the final terms of these contracts. These will include
adjustments to integer quantities (if necessary), schedules of delivery, modes of payment,
etc.

To complete the analysis, we prove that

Theorem 2 The open multi-round auction process terminates in a finite number of rounds.

Proof. The proof relies on the fact that, in order for the auction to continue one more
round, at least one participant must modify its bid. Buyers can modify either their demand
schedule or the proportions specified for the various products, while sellers can only modify
their supply schedule. The key point is that each participant can modify significantly its bid
a finite number of times only, thus ensuring finite termination of the auction.
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Regarding product proportions, these range between 0 and 1 and must always be modified
in a monotonous fashion by at least a fixed amount δ. There can thus be only a limited
number of such changes.

As for schedules, the schedule for buyer j is fixed in the initial round outside the range
[0, c̃0j(0)], where c̃

0
j(0)] denotes the maximum price declared by this buyer. In subsequent

rounds, the demand schedule becomes fixed for intervals [p∗j −∆, [p∗j +∆], where p∗ stands
for the ongoing equilibrium price assigned to buyer j. At a given iteration, a buyer can
change its schedule around p∗ or for other prices. If the change made is not for p∗ and no
other participant changes its bid, this change will be unsignificant and the same equilibrium
solution will be obtained in the next round. This would precipitate the termination of the
auction process under the first termination criterion. On the other hand, the buyer can
change its bid quantity for p∗ only if it falls outside a previously fixed range of the schedule,
i.e., if it falls in the range [0, c̃0j(0)] and it differs from previously assigned equilibrium prices
by at least ∆. It is easily remarked that this situation can occur at most (bc̃0j(0)/∆c + 1)
times, since one can place at most (bL/∆c + 1) points spaced ∆ units away in an interval
of length L. Each buyer can therefore make only a limited number of significant changes to
its demand schedule.

The reasoning for supply schedules is the same, given the fact that, in the initial round the
supply schedule for lot l is fixed outside the range [0, c̃0l(Q̃

l)], where c̃0l(Q̃
l)] is the maximum

price declared by for lot l. Q.E.D.

It is important to note that the proof above does not depend on whether or not the
participants declare truthfully their bids. The rules defined above for the multi-round auction
will always lead to a finite auction process.

5 Applications and Discussion

Wood chip trading in the Province of Québec is an example of a multi-lateral market with
strong product complementarities, proprietary recipes, geographically dispersed sellers and
buyers, and high transportation costs. It offered us the initial motivation for the work
presented in this paper. Using confidential data on the actual exchanges among wood chip
producers and buyers, we have run simulations in order to estimate the potential cost savings
attainable through the use of an optimized market. In the following, we present and discuss
the results of these simulations, examine the issue of the strategic analysis of the associated
market game, and examine challenges related to the implementation of optimized markets.
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5.1 Simulation Analyses

Wood chips are a by-product of the production of lumber wood and the major input in
the production of paper pulp. The annual sales of wood chips from saw mills to paper mills
amounts to some 600M$CND in the Province of Québec alone. Transportation costs account
for some 20% of the final wood chip cost. The wood chip market is a multi-product market.
Saw mills harvest trees, often of different species. Trees are transformed into lumber wood.
The excess wood (wood chips) is retrieved and shipped to paper mills. In a given shipment,
wood chips from different species are usually mixed up. On arrival at paper mills, wood chips
are weighted and controlled for quality and humidity, and are then stocked according to their
fiber content. It is important to note that most (but not all) buyers need to combine the
right proportion of high-density and low-density fibers to respect their specific pulp paper
recipes. Variations in the proportion of high and low-density fibers reduce the quality of the
paper produced. Since buyers typically do not get their wood chips from one source only,
they usually combine chips and fibers from different sources for each type of paper produced.
There is thus a clear benefit to design auctions that allow bidders to put together efficient
combinations of products at the lowest total acquisition and transportation cost.

We have used 1997 data provided by the Quebec Department of Natural Resources for
the simulations presented herein. The data includes the exact trades in ton between each
pair of buyer and seller. In order to calculate the transportation cost between each seller
and each producer, we have used a matrix containing the distance in kilometers between
each paper mills and saw mills and applied the ongoing market price of 0.11$CND per ton
per kilometer. Overall 5,79 million tons were traded betweeen 156 saw mills and 33 paper
mills. The total cost for transporting these tons (based on the assumption of an average cost
of 0.11$ per ton per kilometer) was 119,4M$CND or an average of 20,63$ per ton, each ton
travelling an average of 187,5 kilometers.

Simulations are conducted assuming all necessary information is available and that no
multi-round auction is required. For each simulation, we generate for each seller and buyer a
supply or demand curve. The individual supply curves for each saw mill are generated so that
the quantity supplied at price 100$ corresponds to the actual purchased quantity. Similarly,
the individual demand curves for each paper mill are generated so that the quantity asked
for at price 100$ plus their average transportation cost corresponds to the actual purchased
quantity. Hence, the actual trades lie on the respective demand and supply curves. Some
assumptions were made for the demand and supply elasticities. However, the elasticity
assumptions had little effects on the results of the simulations.

For the first set of simulations, we assumed that all units are equivalent and that the
paper mills are indifferent over the sources of their fibre. These simultations yielded an
upper bound on the savings that can be acheived by reallocating trades in the absence of
constraints on the particular mixtures of wood chips required by buyers. For the second
set of simulations, we assumed that each buyer desires to maintain the same proportions of
fibres as currently. Estimates of the proportions of high-density, low-density fibers, and grey
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pine fiber sold by each saw mill depend of the origin region of the lumber and were available.
Hence, we could estimate the proportion high-density, low-density fibers, and grey pine fiber
purchased by each paper mill. We imposed that these proportions be preserved. Since, in
practice, paper mills are somewhat more flexible, these simultations establish a lower bound
on the savings that can be acheived by reallocating trade. The results of the simulations
for the entire Qub́ec market are presented in the Table 2. Quantities are in tons, prices in
Canadian dollars.

Québec Actual trade Simulation I Simulation II
(1997) 1 fibre type 3 fibre types

Traded Quantities 5 788 459 5 790 828 5 789 938
Average price / ton 100 101,04 100,13
Total transportation cost 119 431 175 99 989 592 100 249 121
Transportation cost / ton 20,63 17,27 17,31

Table 2: Simulations of Entire Market

Results show overall savings of around 16% in transportation costs per ton. These savings
correspond to around 19M$. Results do not vary significantly from Simulation I to Simulation
II. The average price per ton displayed in the table corresponds to the price received by the
producers. Consequently, compared to the actual trade, producers receive a marginaly higher
price, while buyers pay on average somewhat lower prices as transportation costs go down.
The results show that savings are shared by producers and buyers, the buyers receiving most
of the saving in Simulation II.

It is not unreasonable to envision that it could be difficult to bring all the mills of Qub́ec
into a unique market. Therefore, we have simulated a smaller region and number of firms and
explored the potential savings in this case. We used data from the five paper mills and their
suppliers within the region of Gaspesia, a remote region in Eastern Qub́ec. We have fixed
the trade flows among these firms and those outside the region and considered exclusivelly
the reallocation of trade within the region. Table 3 presents the results of these simulations.
Only the data related to the trade within the region is presented. Similar results to the
previous experiment are observed. Savings around 18% to 19% in transportation cost per
ton are observed. Compared to the benchmark, producers receive a higher price. Buyers
pay on average lower prices in Simulation I but higher prices in Simulation II as savings in
transportation costs are upset by the increase in the price paid to producers.

5.2 Strategic Analysis of the Market Game

From a game-theoretical point of view, the process defined by the rules presented in this
paper is hard to analyze. Actually, there is no formal theory about how players interact in a
double-sided market with decreasing demand curves and increasing supply curves. However,
there are a few known things about this type of games that allow us to address a number
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Gaspesia region Actual trade Simulation I Simulation II
(1997) 1 fibre type 3 fibre types

Traded Quantities 462 072 462 476 462 478
Average price/ton 100 102,15 104,3
Total transportation costs 6 921 387 5 579 154 5 694 075
Transportation costs / ton 14,97 12,06 12,31

Table 3: Simulations of Restricted Market

of design issues. The main issue is whether the proposed design indeed leads to an efficient
allocation of resources and, if not, whether there exist alternative designs that are preferable.

The mechanism proposed in this paper leads to the efficient allocation, if the following
conditions hold: (i) participants truthfully reveal their preferences (cost and demand func-
tions, transportations costs, quality evaluation) and (ii) their preferences can be represented
within the restrictions imposed by our design. Regarding the latter, we believe that for most
commodity markets, marginal costs are increasing while marginal user values are decreasing.
When the representation of preferences and cost structures does not match what is proposed
in this paper, the design can be modified. An extreme example is offered by the electricity
market where significant non-convexities exist in the production functions. In this case, we
would have to modify both the operations research methodology used to optimize the market
and the rules defining how bids may be modified. Most markets do not present such extreme
conditions, however, and the required design modifications, if any, are much more benign.

The first condition is more troublesome and, in general, one cannot assume it. In partic-
ular, when participants are strategic and large enough to have an impact on the equilibrium
prices, then revealing one’s true demand or supply schedule is a dominated strategy. It is
well known that demand (or supply) reduction is a best response against a downward slop-
ping excess demand curve (Ausubel and Cramton 1996). If one reduces its demand at the
margin, it reduces the price one needs to pay on all sub-marginal units. At the margin, the
benefit of lowering the price outweighs the cost of buying fewer marginal units. Demand
reduction and supply reduction leads to fewer trade than what will be socially optimal and,
clearly, there will be unexhausted trade gains in the market.

This discussion raises two new questions: (i) to what extent the welfare loss is important
and (ii) does there exist alternative mechanisms that will do better? It appears that no
definitive answers to these questions exist. The extent of the welfare loss depends on the
degree of competition. If the market is perceived as very competitive, the participants will not
be able to impact prices much and will tend to limit supply and demand reduction. Similarly,
it is hard to imagine that one alternative rule will always do better in all circumstances.
However, we know that a mechanism that always implements the efficient allocation must
generate negative expected returns to the auctioneer (Myerson and Satterthwaite 1983). In
other words, a practical mechanism that always induces efficiency simply does not exist. One
may consider alternative multi-round auction processes, different pricing rules, or sequential
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trading mechanisms, the issues of bid and market manipulation will arise still.

In the process of our study, we have run a number of market experiments. We hired eight
students who participated to market experiments over a series of sessions. Each participant
was assigned a role, buyer or seller, and was given a cost or demand function. Participants
would negotiate using the optimized marketplace and multi-round auction. After 5 rounds,
the negotiation would end and the equilibrium prices and quantities were determined. Each
participant was paid according to its gains from trade in the market game. Various ex-
periments were conducted by varying the numbers of buyers and sellers, by allowing for
communication between participants, etc. We ran no replication, so the evidence remains
not statistically valid. Nevertheless, it confirms the above strategic analysis. With a small
number of players, participants seek to manipulate prices by asking or offering less than they
would if they were non-strategic.

In conclusion, the multi-lateral optimized market design proposed in this paper will
not lead to full efficiency if participants have market power and are strategic. However,
there exists no alternative design that will induce efficiency in this context, either. On the
other hand, when competition prevents participants from seeking to manipulate the market
to alter equilibrium prices, the proposed periodic optimized multi-lateral multi-commodity
market is designed to maximize gains from trade given the transportation costs and technical
constraints of the industry.

5.3 Difficulties in Implementing an Optimized Market

The previous discussion leads to two conclusions: (i) Simulations for the wood chip industry
indicate that substantial savings could be obtained; (ii) Game theory and experiments point
to the fact that strategic bid manipulations leading to inefficiencies will occur unless the
number of participants is sufficiently large. Hence, optimized markets are worthwhile, from
an efficiency point of view, only if a large number of traders accept to participate. Our
experience with the Qub́ec wood chip market tells us that regrouping a large number of
self-interested parties around a smart market is not an easy undertaking.

A marketplace is valueless to sellers if there are no participating buyers and it is valueless
to buyers if there are no sellers. The first difficulty is to create the necessary critical mass
to make it worthwhile. If there are too few buyers and sellers the market remains illiquid
and gains from trade will not be large enough. So, how to create the critical mass? It could
be done by general consensus within the industry, it could be imposed by the regulator,
or it could be done within a large and decentralized corporation that wishes to coordinate
intra-organizational trade among its various branches.

The second difficulty is that firms in general do not care about efficient markets. They
care about being efficient in a inefficient market. When markets are inefficient, it is costly
to identify profitable gains from trade and more talented intermediaries can achieve extra
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profits. So, naturally, firms invest a lot in market knowledge that could potentially provide
them with a competitive advantage. They are unlikely then to move towards a market
environment that would render their investment obsolete. One feature of an efficient market
is that information on equilibrium prices is readily accessible, lowering bilateral negotiation
costs. In our discussion with the paper mills, they clearly stated that they did not want to
join a marketplace, optimized or not, that would provide information on prices. Accordingly,
the operator of an electronic marketplace would have a better business model, if it offers
a simple trading device (where eventually the negotiated prices remain known only to the
involved parties) and offers added value services to each individual participant that wishes
to pay an extra fee for improved marketing services. Such an offering remains far from the
so-called optimized markets.

Despite these previous comments, we believe that the concept of optimized markets will
prove fruitful in the long run. Business-to-business electronic commerce seems to move
progressively towards a more collaborative environment where firms seek to optimize their
joint efficiency and supply chain. A centralized optimized market may serve as a way to
achieve this. When markets remain decentralized, a centralized optimized market model
may serve as a useful benchmark. Decentralized optimized market mechanisms can also be
developed. But these developments are well beyond the scope of the present paper.

6 Conclusions

We presented a design for an optimized, centralized, multi-lateral, periodic commodity mar-
ket where all possible multi-lateral trades are solved simultaneously. Commodities are non
homogeneous and are classified by type or quality. Sellers may offer several commodity types
separately or mixed up in lots. Buyers need to combine different grades and qualities and,
consequently, have to trade with several buyers. Since the complementary commodities are
needed as input to the same process, these trades have to be performed simultaneously.
Technological constraints limit the quantities of each type of commodity a buyer may ac-
quire. Transportation costs are significant but commodities do not have to pass through a
hub on their way from sellers to buyers.

The market clearing mechanism includes explicit optimization tools that seek to allocate
resources efficiently, that is to optimize both the production and transportation of resources
in the industry. Given the information available, the market mechanism identifies an “opti-
mal” allocation, which indicated who sells what what to whom, as well as prices, who pays
what to whom. We have detailed the operations research models and the mathematical
programming methods required for the efficient computation of the market equilibrium

Since industry participants are usually unwilling or unable to disclose all the pertinent
but very personal and proprietary information required for such an optimized market, we also
introduced a multi-round auction process that requires significantly less a priori information
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and allows participants to alter their selling or buying offers in light of the market information
and their own assessment of the market. At each round, the auction makes use of the
optimization procedure to produce a temporary set of allocations and prices. The process
continues until no one wishes to alter its bid and the efficient bilateral exchanges then
become official. Bid changes from one round to the next are governed by eligibility rules
whose function is to give impetus to the market by prompting participants to be active in
the market and reveal their real needs as early as possible.

The work presented in this paper has shown that building optimized market mechanisms
for complex, multi-lateral, multi-commodity trade is feasible and may be very profitable.
Of course, appropriate economic conditions have to exist for firms to desire to join such
a market. We strongly believe such conditions are emerging in a continuously increasing
number of economic sectors. The methodology proposed may then become the foundation
of advanced market mechanisms for those sectors.
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University Laboratories, NSERC Canada, the Fonds FCAR of the Province of Québec, and
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Appendix

This Appendix details the multi-round auction presented in Section 4. To keep the presen-
tation simple, we do not detail the computation of the range ∆ controlling the fixation of
the demand and supply schedules at each round.

The Preliminary Phase

The preliminary phase initiates the whole process and offers the opportunity to publicly
exchange technical information and to determine the transportation costs. Sellers first an-
nounce their technical specifications and their unit transportation costs, that is, the costs
they will have to sustain if they themselves had to handle the transportation of the com-
modities sold to buyers, regardless of the transportation mode or carrier used. Buyers then
disclose their quality adjustment factors, calculated on the basis of the seller technical spec-
ifications. A second round may then be performed to make the final adjustments to the
technical specifications and evaluations. This round also offers the opportunity to buyers,
sellers, and carriers to compete to offer the best transportation costs between buyers and
sellers. As an output of this pre-negotiation phase, the market obtains three sets of infor-
mation.

1. The list of commodities K, the set of lots L, as well as the composition of each lot
l ∈ L in term of these commodities. This information is provided by sellers.

2. From each buyer j ∈ J , its quality adjustment factors rlj and slj for each lot l ∈ L.
3. The matrix of transportation costs tlj indicating the cost of moving one unit of lot l ∈ L
from the location of its seller to that of its buyer j ∈ J .

The Initial Bids

Buyers and sellers submit their initial bids that determine the backbone of the computation
of the allocation in this and all subsequent rounds.
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Each buyer must provide a demand schedule, that is, a series of <price, quantity> pairs
indicating the number of commodity units (all products) desired and the corresponding
price. Prices must be sorted in descending order, while the associated quantities must be
in ascending order. Table 4 illustrates a buyer demand schedule. Prices are the buyer’s
acquisition prices and include transportation costs, regardless of who actually pays for the
service. The initial buyer bid must also specify the minimum and maximum proportions of
each product they wish to obtain in the total quantity they plan to acquire.

Unit Price Quantity Commodity Minimum % Maximum %
130 10000 Product 1 50 70
125 20000 Product 2 20 50
120 30000 Product 3 0 20
107 48000

Table 4: Initial Buyer Bid: Demand Schedule and Recipe Table

Using the data in Table 4 as an example, a demand schedule is interpreted as follows
(the recipe table is self-explanatory):

1. At a price of 130$, the buyer asks for 10 000 units;

2. At a price between 125$ and 130$, the buyer is ready to buy a quantity between 10
000 and 20 000 units;

3. At a price of 125$, the buyer would buy 20 000 units;

4. At a price between 120$ and 125$, the buyer is ready to by between 20 000 and 30 000
units; and so on for the subsequent prices;

5. At a price below 107$, the buyer always asks for 48 000 units, which represents its
maximum demand. By convention, and without the buyer having to specify it, the
system creates the <price, quantity> pair <0, 48 001> to incorporate the information
disclosed by the buyer whereby a price below 107$ will have no significant impact on
the quantity it is ready to acquire.

Sellers provide their supply schedules, or bids, one for each lot they want to sell. A supply
schedule is made up of a number of pairs <price, quantity>, both prices and quantities being
ordered in ascending order. Table 5 illustrates a seller supply schedule. It is interpreted as
follows:

1. At a price below 80$, the seller offers nothing; by convention, and without the seller
having to specify it, the system will create the <price, quantity> pair <79, 0> to
incorporate the information disclosed by the seller whereby 80$ is the minimum price
at which it is prepared to sell;
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2. At a price of 80$, the seller offers 5 000 units;

3. At a price between 80$ and 85$, it is ready to sell between 5 000 and 7 000 units;

4. At a price of 85$, the seller offers 7 000 units;

5. At a price between 85$ and 90$, the seller offers between 7 000 and 8 000 units; and
so on for the subsequent prices;

6. At a price above 100$, the seller offers 10 000 units, its maximum supply or production
capacity. By convention, and without the seller having to specify it, the system creates
the <price, quantity> pair <P, 10 001>, where P is an arbitrarily high price, to
incorporate the information disclosed by the seller whereby raising the price above
100$ will have no significant impact on the quantity it offers.

Unit Price Quantity
80 5000
85 7000
90 8000
100 10000

Table 5: Initial Seller Bid: Supply Schedule

The first round ends when all buyer and seller bids have been received, or at a pre-
determined time. A temporary market allocation and prices are then computed by the
optimization methodology.

Market Optimization and Allocation

In each round, once bids have been submitted or modified, the system calculates optimal
allocations (prices and quantities) to maximize the efficiency of the market based on cur-
rent information. Buyer utility and seller production cost functions are derived from cur-
rent demand schedules and supply schedules, respectively, by connecting the given <price,
quantity> points by straight lines. This, plus the required ordering of the schedules ensures
the desired properties of the functional forms. This information is completed by the current
buyers’ recipes and the constant data, namely the transportation costs and the technical
requirements.

The optimized market allocated model (Section 2) is then solved by the quadratic op-
timization method of Section 3. The output of this process, the optimal quantities of lot l
sold to buyer j, ql∗j and the associated equilibrium prices p

l∗
j , make up the temporary market

allocation that will become permanent if no buyer or seller desires to modify its bid.
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The system communicates the market information to each participant, but each buyer
and sellers receives only the information that targets it directly:

Seller: Separate quantities and equilibrium prices for each lot offered;

Buyer: Quantities and equilibrium prices for each lot purchased, the weighted average of
these prices, and the sum of all quantities obtained;

Non-participating seller: For the non-participating lots, the price to sell a minimal quan-
tity, or an indication that the technical characteristics of the lot do not match the
buyers’ requirements;

Non-participating buyer: The minimum price at which it may acquire some small quan-
tity, or an indication that its technical requirements are non compatible with the lots
on sale.

Unit Price Quantity Commodity Quantity Average Price
130 10000 Product 1 17500 121.57
125 20000 Product 2 5000 128

122.5 25000 Product 3 2500 118
120 30000 Total 25000 122.5
107 48000

Table 6: Example of Information Received by the Buyer After the First Round

To illustrate, consider the case of a buyer whose initial bid is given by Table 5. If its
temporary average equilibrium price, for all commodities, is 120$, then the total quantity it
receives is 30 000 units. Obviously, most of the time, the average equilibrium price will not
coincide with a point already in the demand schedule. Then, the total quantity obtained
is computed according to the line segment of the demand schedule to which the average
price belongs. Thus, for an average equilibrium price of 122.50$, which belongs to the line
segment <120, 20 000> - <125, 30 000>, a total quantity of 25 000 units will be allocated to
the buyer. A new <price, quantity> pair is then added to the demand schedule to indicate
the price and the equilibrium quantity in this particular case (illustrated in Table 6) and
further refine the approximation of the utility curve of the buyer. Similar manipulations are
performed on seller supply schedules. Note that prices announced to buyers are not be the
same as those announced to sellers, in particular because the latter include the transportation
costs. Based on this information, buyers and sellers may modify their bids as described in
the next subsection.

Bids in Subsequent Rounds

Once the first round allocations are known, buyers and sellers may be interested in altering
their bids. Upon the announcement of the start of a new round, participants are authorized
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to alter their demand or supply schedules. Buyers may also alter their recipe tables. A
round ends when the equilibrium prices assigned to each participant have not changed by
more than ∆, at a pre-set time, when all bids have been received, or if no bid modifications
are recorded within a pre-set period. The temporary allocation then becomes permanent
and the various trades may be realized.

In an auction process involving successive rounds, it is essential to establish eligibility
rules. These rules aim to give impetus to the market. The idea is to avoid dragging out the
negotiation because “participants” merely watch the market and wait for too long before
intervening. Eligibility rules also aim to guide the way participants may modify their bids.
The goal here is to ensure that the multi-round auction will eventually “converge”. When
technological constraints are involved, as in the present case, one also desires to make sure
that modifications to these ensure that previous allocations are still feasible. We thus impose
several restrictions on bid modification for the auction mechanism we propose (these rules
are quite similar to those proposed in Wilson 1997a, 1997b)):

1. A participant may only raise its bid. That is, at any given price, a buyer or seller may
only increase the quantities submitted previously;

2. Demand schedules are strictly decreasing in price and increasing in quantity, while
supply schedules are strictly increasing in both price and quantity;

3. In each round, one new point of the demand (supply) schedule is fixed permanently.
In the initial round, it is the point of the demand (supply) schedule with the highest
quantity (the lowest price for buyers, the highest price for sellers). In all subsequent
periods, it will be the point associated with (or around) the ongoing equilibrium price
that will be fixed for the rest of the negotiation;

4. The new minimum proportion indicated by a buyer must be smaller than or equal to
the former minimum specified for the product;

5. The new buyer maximum proportion must be greater than or equal to the correspond-
ing former maximum.

The multi-round auction is thus constructed so that participants must progressively com-
mit themselves. In the initial round, for example, the last row of a buyer demand schedule
is fixed for ever. This means, the buyer will never be allowed to ask for more than the
quantity it initially requested at the lowest price. Because the demand schedule is strictly
decreasing in price and increasing in quantity, the buyer may never demand more at any
other price either. For a buyer for whom Table 5 represents the first round bid, the maxi-
mum eligibility quantity is set at 48 000, for all prices. Now, suppose that after round 1, the
auctioneer estimates an (interim) equilibrium price of 122.5$ and provides the buyer with
the information displayed in Table 6. The mechanism is thus asking the buyer to commit to
a quantity for the price 122.5$, for the rest of the negotiation. Since demand in decreasing
in price, the buyer will not be allowed to ask for a greater quantity at prices equal or below
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122.5$. In light of this allocation, the buyer may alter its bid by raising the quantity asked
for at the equilibrium price ($122.50), by lowering the minimum proportions or by raising
the maximum proportions in the recipe table (or both), or by raising the quantities to the
other prices, provided it complied with the maximum eligibility quantity for each price.

Assume the buyer has decided 1) to raise its bid at the equilibrium price ($122.50) by 5
500 units, to bring its total quantity asked for at this price to 33 500, and 2) to raise the
maximum proportion of product 1 to 80%. It is important to note that it could have bid up to
a total quantity of 48 000, its larger quantity initially requested. The new maximum eligibility
quantity is therefore 33,500 for all prices equal or above $122.50, and the buyer “lost” the
ability to purchase more than 33 500 units at those prices (unless the price falls again). At
prices below 122.50$, the maximum eligibility quantity of 48 000 remains unchanged. The
demand curve now includes the <price, quantity> pair <122.50, 33 500> and the next round
may be performed.

Suppose that after the new round, the (interim) equilibrium price moves to 117$ with an
equilibrium quantity equal to 43 153. At this price, the buyer is allowed to specify a quantity
between 43 153, the current quantity, and 48 000, the maximum eligibility quantity at that
price. Once the new quantity is set, a new point in the demand curve is fixed permanently.
And so, in every subsequent round, a new interim equilibrium price is calculated, the buyer
has to commit to a quantity at that price, and a point in the demand curve is permanently
set. The eligibility rule applies equally to sellers, but in reverse.
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