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Abstract:  
This paper proposes a new formulation of the Maximum Diversification indexation 
strategy based on Rao’s Quadratic Entropy (RQE). It clarifies the investment problem 
underlying the Most Diversified Portfolio (MDP) formed with this strategy, identifies the 
source of the MDP’s out-of-sample performance, and suggests dimensions along which 
this performance can be improved. We show that these potential improvements are 
quantitatively important and are robust to portfolio turnover, portfolio risk, estimation 
window, and covariance matrix estimation. 
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1 Introduction

Risk-based indexing has recently become a popular alternative to traditional investing strategies

based on the mean-variance model of Markowitz (1952). This approach determines portfolio allo-

cations by relying only on the risk characteristics of assets, avoiding the need to provide estimates

for expected returns and thus eliminating any loss associated with estimation errors (Chopra and

Ziemba, 1993).1

One of the most popular risk-based investment strategy stems from Choueifaty and Coignard

(2008)’s Maximum Diversification approach. It maximizes what the authors refer to as the diver-

sification ratio (DR), and the portfolio that it generates is labeled the Most Diversified Portfolio

(MDP). The MDP currently underlies the allocation choices of important managed funds world-

wide: for example, it forms the basis of TOBAM’s “Maximum Diversification index”which has

attracted funds from global players like CALPERS. In addition, the FTSE group recently launched

a new family of indices that follow this strategy.2

However, the source of the MDP’s desirable properties has not been formally established and

as a result, their validity and robustness to unforeseen shocks have often been questioned. For

example, Lee (2011, p. 15-16) argues that the diversification ratio forming the basis of the strategy

is a differential rather than an absolute diversification measure and as such cannot be used as a

measure of portfolio diversification.3 In addition, he argues that no investment objective function

is associated with the maximization of that ratio and that as a result, the investment problem

underlying the MDP is undefined. Taliaferro (2012) also stresses the lack of clear investment

objective underlying the MDP4 and suggests its success has been coincidental.

1Risk-based strategies, also known as beta smart indexing (Cazalet et al., 2014), include the minimum-variance
and equal risk contribution portfolios, in addition to Choueifaty and Coignard (2008)’s Most Diversified Portfolio,
the focus of the present paper.

2TOBAM (Think Out of the Box Asset Management) currently has 4.2 billion dollars under management (http:
//www.tobam.fr/index.php). The funds following the MDP recently launched by the FTSE group include 5 regional
and 3 single-country indices and are managed in collaboration with TOBAM.

3DR is a differential diversification measure because it maximizes the difference between the volatility of the
portfolio in an imaginary state (in which the correlation between all stocks is 1) and the volatility of the same
portfolio in a real state.

4“More curious is the MD methodology, which does not seek risk minimization, return maximization, Sharpe
ratio maximization or the optimization of any other economically grounded measurement of investment performance.
Instead, the MD methodology seeks portfolios with the greatest difference between pre- and post-formation risk,
without regard for the risk or return profile of the resulting portfolio. Consequently, an MD portfolio only has
desirable properties by accident. ”(Taliaferro, 2012, p. 127)
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The present paper contributes to this debate in two important and related ways. First, we formally

establishes the principles at play behind the Maximum Diversification approach. This is done by

showing that MDP maximizes the ratio of portfolio RQE (Rao’s Quadratic Entropy) to portfolio

variance or, alternatively, minimizes portfolio variance subject to diversification constraint, where

the diversification is measured by portfolio RQE.5 This formalization allows us to clarify the invest-

ment problem behind the MDP and helps identify the source of the MDP’s strong out-of-sample

performance relative to other diversified portfolios. Second, using this new formulation, we suggest

directions along which the out-of-sample performances of the Maximum Diversification strategies

can be improved and we show that these improvements are economically meaningful.

The remainder of this paper is organized as follows. Section 2 develops our new formulation of

the Maximum Diversification (MD) indexation based on portfolio RQE and discusses its advan-

tages over the standard formulation. Section 3 provides an empirical investigation that shows the

improvements suggested by our reformulation are economically important. Section 4 verifies the

robustness of our empirical findings and Section 5 concludes.

2 A New Formulation of Maximum Diversification Indexation

This section reformulates the problem of the Maximum Diversification indexation strategy in the

context of Rao’s Quadratic Entropy (RQE) and discusses two equivalent definitions of this formula-

tion. Before proceeding, it is useful to recall the definitions of the diversification ratio (DR), which

underlies the Maximum Diversification indexation strategy, as well as that of Rao’s Quadratic

Entropy of a portfolio.

2.1 Maximum Diversification indexation

Consider a world with N risky assets. Let Σ be the covariance matrix of returns, σ = (σ1, · · · , σN )

the vector of asset volatilities and w = (w1, · · · , wN ) a long-only asset shares vector. Choueifaty

and Coignard (2008)’s Maximum Diversification indexation strategy chooses ω so as to maximize

the diversification ratio (DR)

max
w∈W

DR(w), (1)

5Rao’s Quadratic Entropy is a unifying measure of portfolio diversification analyzed by Carmichael et al. (2015)
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where W is the set of long-only portfolios and DR is the ratio of the weighted average of asset

volatilities to portfolio volatility:

DR(w) =
w> σ√
w>Σw

, (2)

where > is the transpose operator. An intuitive interpretation can be given to problem (1) in the

special case where each asset’s volatility is proportional to its expected premium, i.e.:

E(ri)− rf = δσi, (3)

where ri is the return of asset i, σi is its volatility, rf is the risk free rate return, δ > 0 and

E(·) is the expectation operator. In that case, the DR is proportional to the portfolio’s Sharpe

ratio and, as a result, problem (1) is therefore equivalent to maximizing the portfolio Sharpe

ratio. However, note that relation (3) is not consistent with the CAPM although it can be justify

theoretically by the results of Merton (1980) and Malkiel and Yexiao (2006).6 Other authors

(Ang et al., 2006, 2009; Baker et al., 2011) report empirical evidence wherein high-volatility stocks

have long underperformed low-volatility stocks, which casts serious doubts on the validity of (3).

Furthermore, Lee (2011) stresses that (3) is not a no-arbitrage condition and, accordingly, the

MDP investment problem is not well defined. Lee (2011) and Taliaferro (2012) argue that the

MDP maximizes the distance between two volatility measures of the same portfolio. In an attempt

to answer these concerns, Choueifaty et al. (2013) offer two alternative but these are not entirely

satisfactory interpretations.7

2.2 Rao’s Quadratic Entropy

Rao’s Quadratic Entropy of a portfolio or portfolio Rao’s Quadratic Entropy (RQE) is an approach

for unifying portfolio diversification measures recently analyzed by Carmichael et al. (2015). This

measure verifies ex-ante desirable properties for diversification metrics including duplication invari-

ance. The authors also show that portfolio RQE is at the core of various existing measures of

6Martellini (2008) also reports empirical evidence which support this relation.
7For example, using empirical evidence, the authors claim that DR2 can be interpreted as the number of indepen-

dent risk factors, or degrees of freedom, present in the portfolio, but this not the case generally and such interpretation
can lead to counter-intuitive results. To illustrate, consider an universe of four assets and assume they all have the same
volatility, with the correlation matrix defined as follows: ρ12 = 1, ρ3,4 = −1 and ρij = 0, (i, j) 6= (1, 2) and (3, 4).
One can show that DR2

(
wMD

)
= +∞, a counter-intuitive result.
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portfolio diversification, including the Gini-Simpson index and the diversification returns.

Let w again denote a long only portfolio and define D = (dij)
N
i,j=1 a dissimilarity matrix between

the various assets of the portfolio. The dissimilarity dij measures the difference between assets i and

j and can therefore be defined using a distance measure. One possible example of a dissimilarity

matrix defines

dij = 1− ρij , (4)

where ρij measures the correlation between asset i and j, so that asset i and j are considered more

dissimilar the less they are correlated. Carmichael et al. (2015) define Rao’s Quadratic Entropy as

half of the mean difference between two randomly drawn (with replacement) assets from portfolio

w:

HD(w) =
1

2
w>Dw. (5)

All thing equal, the higher HD(w) is, the more portfolio w is diversified and a well-diversified

portfolio can be obtained by maximizing (5). The specification of the dissimilarity matrix D is left

to portfolio managers, a flexibility that represents a major advantage of using portfolio RQE to

measure diversification.

2.3 Maximum Diversification meets Portfolio Rao’s Quadratic Entropy

We can now reconsider the diversification ratio in the context of portfolio RQE. In that context,

note that the square of DR minus 1 gives

DR2(w)− 1 =

(
w> σ

)2
w>Σw

− 1. (6)

Since (6) preserves the preference ordering on the set of long-only portfolios, the MDP can also be

obtained by maximizing DR2 − 1. Notice further that (6) can also be written as (see Appendix

for development)

DR2(w)− 1 =
w>Γw

w>Σw
, (7)
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The numerator w>Γw is Rao’s Quadratic Entropy (RQE) of portfolio w with the dissimilarity

matrix Γ = (γij) (portfolio RQEΓ in short) and with typical element γij

γij = (1− ρij)σiσj . (8)

In this formulation, γij measures the difference in terms of correlation and volatility between assets

i and j and with (8): this difference is high when assets have high or moderate volatility, and

low correlation. Portfolio RQE based on Γ (portfolio RQEΓ) therefore selects moderate to high

volatility assets with low correlation between them. Alternatively, diversification with HΓ can be

viewed as targeted towards the subset of moderate to high volatility assets.

As a result, one can interpret the ratio (7) as a diversification-risk trade-off, with diversification (the

numerator) defined by portfolio RQEΓ and risk (the denominator) defined by portfolio variance.

Since DR2−1 and DR represent the same preference ordering on W, we can deduce that the MDP

investment problem can be rewritten as:

wMD ∈ max
w∈W

w>Γw

w>Σw
. (9)

The formulation in (9) reveals that criticisms directed at the MDP may be unjustified: contrary

to what Lee (2011) claims, MDP portfolios implicitly solve a well-specified investment problem

that aims to maximize an absolute portfolio diversification measure normalized by the portfolio

variance. As such, and contrary to arguments made in Taliaferro (2012), the MDP’s desirable

properties are probably not coincidental, but rather a result of this objective. For example, the

MDP is duplication invariant because the minimum-variance (MVP) and maximum-RQE portfolios

are both duplication invariant.8

Equation (9) also reveals that Maximum Diversification indexation (1) is a particular case of a

more general portfolio allocation problem wherein

wD ∈ max
w∈W

w>Dw

w>Σw
, (10)

8The maximum-RQE portfolio is the portfolio that maximizes RQE i.e HΓ(w). It is also known under the name of
RQE portfolios (see Carmichael et al., 2015). The duplication invariance of the MVP is proved in Choueifaty et al.
(2013) and that of RQEP in Carmichael et al. (2015) for any dissimilarity matrix D.
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where D is any dissimilarity matrix. This suggests that the out-of-sample performance of the

MDP can potentially be improved using an alternative dissimilarity matrix. Section 3 provides an

empirical illustration that shows this is indeed the case. In the remainder of this paper, we refer

to problem (10) as the Rao’s Quadratic Entropy ratio problem with dissimilarity matrix D, or

more compactly RQERD. Its optimal portfolio is itself denoted RQERPD. This implies that the

Maximum Diversification indexation strategy and RQERΓ refer to the same problem.

2.4 An Alternative formulation

This section rewrites problem (9) as one of variance minimization subject to a diversification con-

straint measured by portfolio RQE. This alternative formulation of (9) facilitates the comparison

between the MDP and other diversified portfolios such as the equal risk contribution (ERCP), the

minimum-variance (MVP) and the 2-norm constrained minimum-variance (NC2P) (see Cazalet

et al., 2014; DeMiguel et al., 2009a; Yanou, 2010) portfolios; in turn, this will serve: to better

identify the source of the out-of-sample performance of the MDP.

Consider the following optimization problem

wD (h) ∈ min
w∈W

w>Σw (11)

s.t w>Dw ≥ h, (12)

where h denotes the portfolio manager’s minimum targeted level of diversification and D is any

dissimilarity matrix. It is straightforward to show that for dissimilarity matrix Γ, problems (9) and

(11)-(12) are equivalent provided that h = HΓ(wMD): the Maximum Diversification indexation

strategy problem (Equation 1) is thus equivalent to (11)-(12) when D = Γ and h = HΓ(wMD).

Below, we refer to problem (11)-(12) as the constrained Rao’s Quadratic Entropy problem or

RQECD,h, and denote its optimal portfolio RQECPD,h. We also denote HΓ(wMD) by hΓ. This

implies that the Maximum Diversification indexation strategy, RQERΓ and RQECΓ,hΓ
all refer to

the same problem.

Formulating the Maximum Diversification strategy as RQECΓ,hΓ
has two advantages. The first is

that it helps clarify the fact that, similarly to the ERCP and the NC2P, the MDP is the solution to
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a minimum-variance problem subject to a diversification constraint. This similitude is made clear

when the different optimization problems underlying theses portfolios are compared:

NC2P: wNC2 ∈ min
w∈W

w>Σw (13)

s.t
N∑

i 6=j=1

wiwj ≥ ν (14)

MVP: wMV ∈ min
w∈W

w>Σw, (15)

ERCP: wERC ∈ min
w∈W

w>Σw (16)

s.t

N∑
i=1

1

N
ln

(
1/N

wi

)
≤ − 1

N
(c+Nln(N)) (17)

Note that the left-hand sides of the diversification constraints (14) and (17) are respectively the

portfolio Gini-Simpson index and the Kullback-Leibler divergence of the naive portfolio relative to

the portfolio w.

Comparing problems (13)-(14), (15) and (16)-(17) to RQECΓ,hΓ
, we notice that the difference lies in

the presence of RQEΓ in the diversification constraint (12). Therefore, the source of any differences

in volatility, turnover, drawdown risk, concentration and Sharpe ratio between the MDP on the

one hand and the NC2P, the MVP and the ERCP on the other originates from the portfolio RQEΓ

diversification constraint, which is characterized by the dissimilarity matrix Γ and the minimum

targeted level of diversification hΓ.9

It follows that if the diversification constraint is correctly specified, a significant portion of the

out-of-sample performance of the MDP arises from the returns to diversification as measured by

portfolio RQE. This result is consistent with Choueifaty and Coignard (2008) :

“Furthermore, if we continuously rebalance the Most-Diversified Portfolio, and because

it is a market cap-independent methodology, the Most-Diversified Portfolio should get

a significant part of the benefits from diversification returns when compared to a pure

9Generally, the MDP is less concentrated (in terms of weight), more volatile, has higher turnover and track-error
(with benchmark the Capitalization-weighted), and a lower drawdown risk than the MVP. Choueifaty and Coignard
(2008); Choueifaty et al. (2013) and Demey et al. (2010) find that the MDP is outperformed by the MVP, while
Chow et al. (2011), Leote et al. (2012) and Clarke et al. (2013) report opposite. These authors also report that the
MDP generally outperforms the ERCP, and it is most concentrated and less volatile.
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buy-and-hold strategy... ”

When the diversification constraint is incorrect, one can use (11)-(12) to show that the MDP solves

the modified minimum-variance problem

wMD ∈ min
w∈W

w>Σ̃w,

where the true covariance matrix in (15) has been replaced by the matrix Σ̃ defined as

Σ̃ = σ>
[
ρ− λ(ιι> − ρ)

]
σ,

with λ the Lagrange multiplier associated to the constraint (12), ρ the correlation matrix and ι

the unit column vector. This shows, in the spirit of Ma and Jagannathan (2003), that the imposed

RQE diversification constraint can be interpreted as a shrinking of the correlation matrix toward

−ιι>, which may help reduce potentially upward-biased estimates. This reduction in turn means

that even when the diversification constraint is incorrectly specified, the MDP has the potential to

produce better out-of-sample performances. This advantage depends on the trade-off between the

reduction in sampling errors and the specification errors generated by the diversification constraint.

The second advantage of the constrained RQECΓ,hΓ
formulation arises because it reveals that one

can potentially improve the out-of-sample performance of the MDP, not only by replacing the

dissimilarity matrix Γ by a more suitable one, but also by choosing a more appropriate level of

diversification h, different from hΓ.

In short, our new formulation reveals that the superior out-of-sample performances of the MDP

relative to the MVP, the ERCP and the NC2P are due either to the returns to diversification when

the diversification constraint that is employed is correct, or to the reduction of the upward-biased

estimates in the correlation matrix when it is not. This leads us to the general conclusion that the

funds under MD indexation management should not be considered systematically at risk. Moreover,

when the diversification constraint is incorrect and the specification errors exceed the sample errors,

our new formulation reveals that one can potentially improve the MDP’s out-of-sample performance

by changing the dissimilarity matrix Γ and the minimum targeted level of diversification hΓ behind
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the MDP.

3 Improving MDP out-of-sample performance

As demonstrated above, the Maximum Diversification indexation investment strategy represents a

special case of the more general unconstrained (RQERD, D = Γ) and constrained (RQECD,h, D =

Γ and h = hΓ) problems based on portfolio Rao’s Quadratic Entropy. This implies that the ap-

proach underlying Maximum Diversification indexation could potentially be improved through the

use of alternative specification for the dissimilarity matrix D and the minimum targeted level of

diversification h.

This section provides an empirical illustration that shows such improvements are indeed present

and economically meaningful. To do so, we compare the simulated out-of-sample performances of

five portfolios with those of the MDP. Each portfolio is obtained from problem (9) using differ-

ent dissimilarity matrix D, or from problem (11)-(12), using different dissimilarity matrix D and

minimum targeted diversification level h.

3.1 Methodology

We consider three different procedures to construct the alternative portfolios. The first (Scenario

I, top panel of Table 1) looks at the effect of changing the minimum level of diversification hΓ while

keeping the dissimilarity matrix of the MDP (Γ). Following DeMiguel et al. (2009a), we choose h to

maximize the portfolio return in the last period of the estimation window and the value of h drawn

from this procedure is denoted hr in Table 1. This scenario is implemented using the constrained

problem RQECD,h.

The second procedure (Scenario II, middle panel of Table 1) looks at the effect of changing the

dissimilarity matrix using the unconstrained problem RQERD. We consider three dissimilarity

matrices other than the benchmark Γ : Φ, Π and Ψ. First, the matrix Φ assumes that assets are

equi-dissimilar, so that the portfolio RQE based on Φ is equivalent to the Gini-Simpson index.

In turn, the problem RQERΦ reproduces the NC2 problem when τ = hΦ. Next, the matrix Π is

defined by replacing the volatility in Γ by the upside-risk. Portfolio RQEΠ thus selects moderate

to high upside-risk assets that are less correlated. Finally, the matrix Ψ uses the ratio of upside to
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downside risk to replace the volatility in Γ; portfolio RQEΨ therefore selects assets with moderate

to high ratios of upside to downside-risk which are less correlated. Portfolio RQEΠ and RQEΨ can

also be interpreted as diversification among the subset of moderate to high upside risk assets, and

on the subset of assets with moderate to high ratios of upside-risk to downside-risk i.e “targeted

diversifications”.

Finally, a third procedure (Scenario III, bottom panel of Table 1) analyzes change to dissimilarity

matrix Γ using the constrained problem RQECD,h. The dissimilarity matrices considered remain

Φ, Π and Ψ and we choose h following DeMiguel et al. (2009a) (h = hr). The difference between the

scenarios II and III thus lays in the specification of the minimum targeted level of diversification

h: for scenario II, h = HD(wD) is specified implicitly such the diversification per unity of risk

is maximized, while in scenario III, h is specified explicitly following DeMiguel et al. (2009a).

Identifying the best specification for a given dissimilarity matrix D requires comparing RQECPD,hr

with RQERPD.

Our empirical work is based on Fama and French’s twenty-five monthly portfolios returns sorted by

size and book-to-market covering the period running from July 1963 to December 2013.10 Following

DeMiguel et al. (2009a), we construct our portfolio returns using a rolling sample procedure with

estimation window length τ = 120 and monthly rebalancing. The procedure generates a time series

of T − τ − 1 monthly out-of-sample returns : rjt+1 = wj
>

t rt+1, t = τ, ..., T − 1, where rt+1 is the

vector of period t+1 asset returns and wjt the portfolio weight vector at time t for strategy j. Using

this time series, we evaluate performance by reporting each portfolio’s cumulative return (CRj),

its variance,
((
σj
)2)

its Sharpe ratio (SRj) and, finally, its turnover (TRNj). More formally, these

performances metrics are defined as follows:

CRj =

T−1∏
t=τ

(
1 + wj

>

t rt+1

)
; (18)

(
σj
)2

=
1

T − τ − 1

T−1∑
t=τ

(
wj
>

t rt+1 − µj
)2

with µj =
1

T − τ

T−1∑
t=τ

wj
>

t rt+1; (19)

10The Dataset is available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1: List of Portfolios Considered

Dissimilarity matrix (D) Target Level of Diversification (h) Portfolios

Scenario I

γij = (1− ρij)σi σj hΓ MDP†(RQECPΓ,hΓ
)

γij = (1− ρij)σi σj hr RQECPΓ,hr

Scenario II

γij = (1− ρij)σi σj - MDP†(RQERPΓ)
φij = 1− δij - RQERPΦ

πij = (1− ρij)σ+
i σ

+
j - RQERPΠ

ψij = (1− ρij)
(
σ+
i

σ−i

)(
σ+
j

σ−j

)
- RQERPΨ

Scenario III

γij = (1− ρij)σi σj hr RQECP†Γ,hr
φij = 1− δij hr RQECPΦ,hr

πij = (1− ρij)σ+
i σ

+
j hr RQECPΠ,hr

ψij = (1− ρij)
(
σ+
i

σ−i

)(
σ+
j

σ−j

)
hr RQECPΨ,hr

Notes. This table lists the various portfolios we consider. The minimum targeted level of diversification hr

is calibrated following DeMiguel et al. (2009a) to maximize the portfolio return in the last period within
the estimation window. Note that σ+

i = E(max(0, ri)
3) is the upside Risk, σ−i = E(min(0, ri)

2), δij is the
Kronecker delta (δii = 1; δij = 0 i 6= j) and the portfolio RQECPΦ,hr

is exactly the 2-norm-constrained
minimum-variance portfolio investigated by DeMiguel et al. (2009a). Recall that MDP ≡ RQECPΓ,hΓ

≡
RQERPΓ.
† : benchmark portfolio.

SRj =
µj

σj
; (20)

TRNj =
1

T − τ − 1

T−1∑
t=τ

N∑
i=1

(
|wji,t+1 − w

j
i,t+
|
)

; (21)

where wji,t is the portfolio weight in asset i chosen at time t under strategy j, wji,t+ the portfolio

weight before rebalancing at t+1, and wji,t+1 the desired portfolio weight at t+1. We also evaluate

the impact of turnover on performance metrics under non-zero transaction costs using the following

portfolio return net of transaction cost:

rjt+1 =

(
1− κ

N∑
i=1

|wi,t+1 − wi,t+|

)
(1 + wj

>

t rt+1)− 1, (22)
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where κ is the transaction cost parameter (see DeMiguel et al., 2009b). Performances metrics (18)-

(20) are computed using portfolio returns net of proportional transaction costs (22) for different

values of κ ranging from 0.0001 to 0.005.11 We set the targeted return level of the upside-risk and

downside-risk to zero, and their risk attitudes parameter equal to 3 and 2 respectively (see Notes

of Table 1). To test the out-of-sample variance and Sharpe ratio differences between two given

portfolios, we use the studentized circular block bootstrap proposed in Ledoit and Wolf (2011) and

Ledoit and Wolf (2008) respectively.12.

3.2 Results

3.2.1 Scenario I

Figure 1 depicts the out-of-sample cumulative returns of MDP and RQECPΓ,hr . It shows that

RQECPΓ,hr is never dominated by the MDP. One dollar invested in RQECPΓ,hr in July 1973

yields 190 dollars in December 2013, while the same investment in MDP yields 81 dollars.

Table 2 compares the performance of both portfolios in term of variance, Sharpe ratio and turnover.

It reveals that the MDP has essentially the same variance as RQECPΓ,hr , but significantly lower

Sharpe ratio. These evidences lead us to conclude that the implicit target level of diversification of

the MDP (hΓ) may not always be “optimal ”.

Table 2 also shows that RQECPΓ,hr implies a significant more active management policy, since

turnover is higher. Figure 2 evaluates the impact of this higher turnover for our performance

metrics when transaction costs are non zero. Only results for Sharpe ratio and cumulative returns

at the end-of-period are reported, but full results are available. The figure shows that RQECPΓ,hr

always outperforms MDP for investors facing small to moderate transaction costs, like moderate

and large funds.

11Balduzzi and Lynch (1999, pp. 63) argue that small investors probably face a proportional transaction cost closer
to the 0.005, while large investors likely face costs greater than the 0.0001.

12We set the block length equal to 5 and iterations equal to 1000 to compute the two-sided p-value. The null
hypothesis is : H0 : 2log

(
σ̂i
)
− 2log

(
σ̂j

)
= 0 for the variance test, and H0 : µ̂i/σ̂i − µ̂j/σ̂j = 0 for the Sharpe ratio

test. The code is available at http://www.econ.uzh.ch/en/faculty/wolf/publications.
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Figure 1: Scenario I: Portfolios Cumulative Returns
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Table 2: Scenario I: Portfolios Performances

Portfolios σ2 SR TRN

MDP†(RQECPΓ,hΓ
) 0.00226 0.21537 0.06337

RQECPΓ,hr 0.00227 0.25329∗ 0.75830

† : benchmark portfolio.
Significance Level: ∗= p-value ≤ 5% means that performances
of RQECPΓ,hr

is significantly different from that of the bench-
mark.
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Figure 2: Scenario I: Performance metrics depending on transaction costs parameters κ
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3.2.2 Scenario II

Figure 3 depicts the cumulative returns of MDP, RQERPΠ, RQERPΨ and RQERPΦ. It shows

that RQERPΦ and RQERPΨ are never dominated by MDP, while the performance of RQERPΠ

broadly coincides with that of the MDP. One dollar invested in RQERPΦ (respectively RQERPΨ)

in July 1973 yields, in December 2013, 1.6 (respectively 1.7) times the cumulative return of one

dollar invested in the MDP.

Table 3 reports the portfolios’ performances in term of variance, Sharpe ratio and turnover. It

shows that RQERPΠ offers essentially the same performance in term of Sharpe ratio as the MDP,

but with a significantly higher variance. RQERPΨ offers essentially the same performance in term

of variance as the MDP, but with a significantly higher Sharpe ratio. RQERPΦ has significantly

lower variance and higher Sharpe ratio than the MDP. Again, these evidences suggest that the

implicit dissimilarity matrix of MDP is not always “optimal ”.

In addition, Table 3 also shows that RQERPΦ and RQERPΨ have respectively lower and higher

turnover than the MDP. We evaluate the impact of the higher turnover of RQERPΨ when transac-

tion costs are present. Results (Figure 4) show that RQERPΨ always outperforms the MDP.This

means that the presence of non-zero transaction costs is not sufficient to overturn our results.
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Figure 3: Scenario II: Portfolios Cumulative Returns
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Table 3: Scenario II: Portfolios Performances

Portfolios σ2 SR TRN

MDP†(RQERPΓ) 0.00226 0.21537 0.06337
RQERPΦ 0.00191∗ 0.25194∗ 0.03992
RQERPΠ 0.00251∗ 0.21136 0.08780
RQERPΨ 0.00215 0.24239∗ 0.09046

† : benchmark portfolio.
Significance Level: ∗= p-value ≤ 5% means that performances
of RQECPΦ, RQECPΠ and RQECPΨ is significantly different
from that of the benchmark.
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Figure 4: Scenario II: Performance metrics depending on transaction costs parameters κ
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3.2.3 Scenario III

Figure 5 depicts the cumulative returns of RQECPΓ,hr , RQECPΦ,hr , RQECPΠ,hr and RQECPΨ,hr .

It shows that RQECPΓ,hr is dominated by RQECPΦ,hr , RQECPΠ,hr and RQECPΨ,hr : One dollar

invested in these three strategies in July 1973 yields 254 (RQECPΦ,hr), 312 dollars (RQECPΠ,hr)

and 225 dollars (RQECPΨ,hr) in December 2013. By contrast, one dollars invests in RQECPΓ,hr

at the same period delivers 197 dollars.

Table 4 shows that portfolio RQECPΓ,hr has a significantly higher variance than RQECPΦ,hr and

RQECPΨ,hr but a lower one than RQECPΠ,hr . In terms of Sharpe ratio, RQECPΓ,hr is slightly

dominated by RQECPΦ,hr , RQECPΠ,hr and RQECPΨ,hr , but the difference are not significant.

Again these lead us to conclude that the implicit dissimilarity matrix of MDP is not always “opti-

mal”.

Table 4 also shows that RQECPΨ,hr has lower turnover than RQECPΓ,hr , while RQECPΦ,hr and

RQECPΠ,hr have higher turnover. We evaluate the impact of the higher turnover when transaction

costs are present in Figure 6, which shows that RQECPΦ,hr , RQECPΠ,hr and RQECPΨ,hr always

outperform RQECPΓ,hr .
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Figure 5: Scenario III: Portfolios Cumulative Returns
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Table 4: Scenario III: Portfolios Performances

Portfolios σ2 SR TRN

RQECP†Γ,hr 0.00227 0.25329 0.75830
RQECPΦ,hr 0.00211∗ 0.27229 0.80755
RQECPΠ,hr 0.00240∗ 0.26724 0.89158
RQECPΨ,hr 0.00209∗ 0.27303 0.72992

† : benchmark portfolio.
Significance Level: ∗= p-value ≤ 5% means that performances
of RQECPΦ,hr

, RQECPΠ,hr
, and RQECPΨ,hr

is significantly
different from that of the benchmark.
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Figure 6: Scenario III: Performance metrics depending on transaction costs parameters κ
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In short, while the Maximum Diversification indexation at the basis of the MDP is equivalent

to the problems RQERΓ and RQECΓ,hΓ
, our results show that one can significantly improve the

out-of-sample performance of this general strategy using different dissimilarity matrices and/or

by changing the minimum targeted level of diversification. Note that the potential improvement

are particularly important in terms of Sharpe ratio when asset excess returns are not perfectly

proportional to its volatility, and low otherwise. The potential improvement can also be important

in terms of cumulative returns when asset returns are not normally distributed.

4 Robustness checks

We check the robustness of our empirical findings by considering alternative portfolios risk, esti-

mation window, and covariance matrix estimation.

4.1 Portfolio risk

To check robustness to portfolio risk, which we equate to portfolio variance or volatility, we consider

alternative portfolio risk measures such as : semivariance (SV), Value at risk (VaR), Conditional

value at risk or Expected Shortfall (CVaR) and Maximum Drawdown (MDD). These risk measures
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are defined as follows :

SVj(w) =
1

T

T∑
t=τ

[
min(0, rjt+1 − µ

j)
]2

VaRj
α(w) = −qj−α (w)

CVaRj
α(w) =

1

α

∫ α

0
VaRj

u (w) du

MDDj = max
t1∈(τ,T−1)

[
max

t2∈(τ,t1)

(
rjt1+1 − r

j
t2+1

)]

where qj−α (w) = inf{x|P (rj(w) ≤ x) ≥ α} is the lower quantiles of rj of order α ∈ (0, 1).

Table 5: Portfolios risk

Portfolios SV VaR CVaR MDD

Scenario I
MDP†(RQECPΓ,hΓ

) 0.00130 -0.07151 -0.10821 0.58557

RQECPΓ,hr 0.00122 -0.06478 -0.10116 0.54941

Scenario II
MDP†(RQERPΓ) 0.00130 -0.07151 -0.10821 0.58557
RQERPΦ 0.00108 -0.06039 -0.09806 0.52827
RQERPΠ 0.00144 -0.07789 -0.11410 0.58808
RQERPΨ 0.00124 -0.06913 -0.10538 0.57478

Scenario III
RQECP†Γ,hr 0.00122 -0.06478 -0.10116 0.54941

RQECPΦ,hr 0.00116 -0.06334 -0.09837 0.52396

RQECPΠ,hr 0.00128 -0.06231 -0.10225 0.56233

RQECPΨ,hr 0.00115 -0.06080 -0.09786 0.55067

† : benchmark portfolio.

Table 5 reports the value of these different risk measures for our set of considered portfolios. In

Scenario I, we can observe that RQECPΓ,hr dominates MDP for all risk measures. In Scenario

II, RQERPΠ is dominated by MDP, which is itself dominated by RQERPΦ and RQERPΨ for all

risk measures. In Scenario III, RQECPΦ,hr dominates MDP for all risk measures. RQECPΨ,hr

dominates MDP for all risk measures, except for MDD. RQECPΠ,hr dominates MDP only for VaR.

As a result, our findings remain robust in terms of portfolio risk.
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4.2 Estimation window

Our empirical analysis assumes an estimation window of 120 months. To check whether our results

are driven by this assumption, we consider alternative window lengths of 60 and 240 months.

We report the resulting Sharpe ratios in Table 6. As we can observe, for τ = 240 and τ =

60, the dissimilarity matrix behind the MDP (hΓ) is “sub-optimal ”, but the minimum level of

diversification Γ seems “optimal ”. In short, our findings are mostly robust for τ = 240 and τ = 60.

Table 6: Sharpe ratio

Rolling Window Robustness (Σ)

Portfolios τ = 60 τ = 240 τ = 120

Scenario I
MDP†(RQECPΓ,hΓ

) 0.17171 0.20072 0.21859

RQECPΓ,hr 0.20247 0.22940 0.25765∗

Scenario II
MDP†(RQERPΓ) 0.17171 0.20072 0.21859
RQERPΦ 0.22667∗ 0.25425∗ 0.25164∗

RQERPΠ 0.14337 0.17806 0.21323
RQERPΨ 0.21550 0.22132 0.24453∗

Scenario III
RQECP†Γ,hr 0.20247 0.22940 0.25765

RQECPΦ,hr 0.22551 0.25210∗ 0.27229

RQECPΠ,hr 0.18535 0.17961 0.27001

RQECPΨ,hr 0.22410 0.21184 0.27387

Significance Level: ∗= p-value ≤ 5%.
† : benchmark portfolio.

4.3 Covariance matrix estimation

Our results are based on the sample covariance matrix. To check whether an alternative specifica-

tion would be more appropriate, we consider a covariance matrix using Ledoit and Wolf (2003)’s

shrinkage estimation, where the shrinkage target is obtained from a one-factor model where the

factor is equal to the cross-sectional average of all the random variables.13 As we can observe from

Table 6, our findings are unchanged by this. In Scenario I, the MDP still has the lower out-of-

sample Sharpe ratio. In Scenario II, we can find a dissimilarity matrix that out-performs Γ (Φ and

Ψ). In short, our finding are robust to covariance matrix estimation.

13Computations are made with the code available at https://r-forge.r-project.org/scm/viewvc.php/pkg/

ExpectedReturns/man/?root=expectedreturns&pathrev=2.
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5 Conclusion

In this paper, we have proposed a new formulation for the Maximum Diversification indexation

strategy using portfolio Rao’s Quadratic Entropy (RQE). We show that the Most Diversified Portfo-

lio (MDP) maximizes the ratio of portfolio RQE to portfolio variance or, said differently, minimizes

portfolio variance subject to a diversification constraint. This new formulation reveals that the

Maximum Diversification strategy solves a well-defined investment objective.

Moreover, our new formulation also suggests two new directions to improve the out-of-sample

performances of the approach: we show that the MDP’s out-of-sample performances can be sig-

nificantly improved by changing its dissimilarity matrix and its minimum level of diversification.

Our robustness analysis has shown that these results are not dependent on risk measure, turnover,

estimation window and covariance matrix estimation. The portfolio allocation problem (11)-(12)

constitutes therefore a very credible alternative to the Maximum Diversification indexation strat-

egy, particularly when asset excess returns are not perfectly proportional to its volatility or when

asset returns are not normally distributed. Additional research could compare the out-of-sample

performance of the optimal portfolio of problem (11)-(12) across different empirical datasets for

various dissimilarity matrices and minimum level of diversification specifications.
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Appendix Development of DR2 − 1

The development of
(
w> σ

)2
and w>Σw are

(
w> σ

)2
=

N∑
i=1

w2
i σ

2
i +

N∑
i,j=1

wiwjσiσj and w>Σw =

N∑
i=1

w2
i σ

2
i +

N∑
i,j=1

wiwjρijσiσj .

Therefore,

DR2(w)− 1 =

∑N
i,j=1(1− ρij)σiσjwiwj

w>Σw
=
w>Γw

w>Σw
,

where Γ = (γij)
N
i,j=1 with

γij = (1− ρij)σi σj .
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