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Abstract:   
We address the issue of risk aversion in a competitive equilibrium when some buyers 
engage in learning and information is conveyed through the price system. Specifically, 
since the learning process yields uncertainty, we study the effect of risk aversion on the 
equilibrium outcomes of the model, including the amount of information released by the 
market. We show that risk aversion has an effect on the market outcomes but not on the 
flow of information. In particular, an increase in risk aversion lowers the competitive price 
and quantity. However, an increase in risk aversion does not change the amount of 
information embedded in the equilibrium price. 
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1 Introduction

One of the central questions in the field of economics of uncertainty is the

effect of risk aversion on behavior. The question has been long studied.

In general, agents interact in markets and thus risk aversion influences not

only behavior directly, but also indirectly through the equilibrium or the

market outcomes such as prices and quantities. This is especially relevant in

markets with asymmetric information in which the agents face uncertainty

due to incomplete information, but learn from observing prices.

It is well known that market prices are instrumental in disseminating

information to market participants (Grossman, 1989). The informational

role of prices is generally studied in a noisy environment in which there is

asymmetric information about a characteristic of the good being traded. In

much of the literature on the dissemination of information via prices, agents

are assumed to be risk-neutral. In fact, little is known about the role risk

aversion plays in the conveyance of information. It is our purpose to study

the effect of risk aversion on the competitive equilibrium when agents in the

markets are uninformed, but extract information from the price.

Specifically, in a noisy environment in which the price conveys information

imperfectly, the learning process is itself a source of uncertainty, which must

be taken account of by the risk-averse agents. In fact, in the interaction

between uncertainty, learning, optimal behavior, and market equilibrium,

risk aversion plays a central role not only in the decision-making process but

also in the learning process. Since the learning process yields uncertainty, a

natural question is the effect of risk aversion on the equilibrium outcomes of

the model, including the amount of information released by the market.

In this paper, we consider a competitive market in which demand is com-

posed of both informed and uninformed buyers. The informed buyers know

the quality of the good. The uninformed buyers use Bayesian methods to

infer information about quality from observing the price. On the supply side,

the representative, price-taking firm produces and sells the good. The cost

of production is assumed to be increasing in quality and quantity. There is

also a noise, a random noise component, which is known to the firm, but
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unknown to buyers. The presence of noise in the market prevents complete

learning by the uninformed consumers, which fundamentally affects the mar-

ket equilibrium.1

We provide two sets of results on the effect of risk aversion on the com-

petitive equilibrium with learning. First, we study the effect of risk aversion

on the competitive price and quantity. We show that an increase in risk aver-

sion induces a downward movement of the demand curve, which decreases

price and output. The effect of risk aversion on demand is both direct and

indirect. The direct effect is to reduce the demand of the uninformed buyers,

which shifts demand inward. The indirect effect of risk aversion is through

the updating rule of the uninformed buyers. Indeed, the updating rule (as a

function of price) depends on risk aversion.

Our second result concerns the influence of risk aversion on the amount

of information transferred through the competitive equilibrium. We show

that risk aversion has no effect on the conveyance of information through

prices and thus on the updated beliefs (i.e., the posterior mean). To under-

stand why risk aversion has no effect on what the uninformed buyers learn,

note first that an increase in risk aversion does reduce the uninformed buyers

demand, essentially reducing the influence of the uninformed buyers on the

equilibrium and thus making the presence of informed buyers more impor-

tant. However, this increase in the relative importance of informed buyers

does not make the equilibrium price more informative. The reason is that

the amount of information contained in the price can be summarized by a

sufficient statistics that is independent of risk aversion. Hence, changes in

risk aversion do not alter the conveyance of information through the price

and thus the value of the posterior mean (which is relevant to the uninformed

buyers demand) remains the same, i.e., is unaffected by changes in risk aver-

sion. Note that since the level of the equilibrium price changes (although

1Our work falls in the category of rational expectations models that study information
flows in perfectly competitive markets (Kihlstrom and Mirman, 1975; Grossman, 1976,
1978; Grossman and Stiglitz, 1980; Diamond and Verrecchia, 1981; Hellwig, 1980). The
majority of these papers considers the trading of a financial asset and, thus, there is no
firm supplying the good. We take a different point of view by addressing the issue of
learning in a market for a good or service in which the behavior of a price-taking firm is
made explicit.
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the information contained in it does not), the updating rule (as a function

of price) adapts in such a way as to yield the same value of the posterior

mean. It does not however mean that the updating rule puts more weight

or less weight on the information contained in the price, i.e., this change in

the updating rule is not due to changes in the informativeness of the signal

since the price carries the same amount of information. Our result on infor-

mation flows being independent of risk aversion complements the one stated

in Grossman and Stiglitz (1980) in an endowment economy about the effect

of the variance of the demand shock on the informativeness of the price. In-

deed, from Grossman and Stiglitz (1980), “...an increase in noise reduces the

informativeness of the price system: but it leads more individuals to become

informed; the remarkable result obtained above establishes that the two ef-

fects exactly offset each other so that the equilibrium informativeness of the

price system is unchanged”(their italic).

The paper is organized as follows. Section 2 characterizes the learning

equilibrium with a competitive market, whereas Section 3 considers the effect

of uncertainty and risk aversion on equilibrium, particularly on learning. We

provide concluding remarks in Section 4.

2 Equilibrium with risk averse learning buyer

in a competitive market

In this section we study the learning equilibrium of a competitive market

with risk averse buyers.

On the supply side there is a competitive firm, which maximizes profit

given price P. The firm has a cost function dependent on quantity Q , quality,

θ ≥ 0, and a random noise ε̃:

C(Q) = CF + (γθθ + ε̃)Q+ γqQ
2, γθ, γq > 02 (1)

2Throughout this work we assume that γq is strictly positive.The case where γq = 0,
i.e., the supply function is horizontal, was extensively studied in (Mirman et al., 2014).
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where ε̃ is a normally-distributed noise3, with ε̃ ∼ n(0, σ2
ε)

4. It is assumed

that the realization of ε̃ is known to the firm but not to the buyers.

From the cost function we derive the supply function. As the firm is a

price taker, it will choose its output to maximize profit setting marginal cost

equal to price, i.e.,

P = γθθ + γqQ
S + ε̃ (2)

or

QS =
P − γθθ − ε̃

γq
(3)

On the demand side, there is a fraction λ ∈ (0, 1) of consumers who

are informed about the value of the θ. The remaining fraction, (1 − λ),

of consumers is not informed and must learn about the quality. These are,

respectively, the informed consumers I and learning consumers L . The learn-

ing consumers extract information from observing the price. Specifically, a

learning consumer has prior beliefs5 regarding quality that are given by

θ̃a ∼ n
(
µθ, σ

2
θ

)
, µθ > 0 (4)

represented by the p.d.f. ξ̂(θa). Given P these prior beliefs are updated to

the posterior beliefs θ̃p|P ∼ n (µ̂θ, σ̂
2
θ), with µ̂θ =

∫
R xξ̂(x|P )dx > 0. The

corresponding posterior p.d.f. ξ̂(θp|P ) is computed according to Bayes’ rule.

We define χ(P ) to be the updating rule for the posterior mean, i.e., µ̂θ = χ(P )

3The tilde sign differentiates a random variable from its realization.
4In order to study noisy signaling in a competitive market, we rely on the fact that the

family of normal distributions with an unknown mean is a conjugate family for samples
from a normal distribution. A normal distribution combined with linear demand yields
closed-form equilibrium values and makes the analysis tractable by focusing on the mean
and variance of price and posterior beliefs(see Grossman and Stiglitz (1980), Kyle (1985),
Judd and Riordan (1994) for the use of normal distributions to study the informational
role of prices in single-agent problems). Hence, the normality assumption allows us to
gain insight into information flows in a noisy environment. Although equilibrium price
and posterior mean quality can admit negative values, restrictions on parameter values
ensures that the probability of a negative price or a negative posterior mean be arbitrarily
close to zero.

5We use θ̃a to denote the prior (ex ante) beliefs of the learning buyers regarding quality,
and θ̃p for their posterior (ex post) beliefs. This avoids confusion between prior beliefs,
posterior beliefs and the true quality θ.
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Both types of consumers maximize the expected value of their CARA

utility functions, given by Ui(Q) = − exp
{
−ai

[
θQ− Q2

2
+ y
]}

, subject to

their budget constraint (I=PQ+y). The parameter ai > 0 is the Arrow-Pratt

coefficient of absolute risk-aversion; a bigger ai corresponds to a more risk

averse agent. Here, y is an alternative good with no risk and price standard-

ized to 1. While the informed buyers know θ , their certainty equivalent is

CEI =
[
θQ− Q2

2
+ y
]

. The certainty equivalent of the learning buyers is

CEL =

[
µ̂θ −

1 + aLσ̂
2
θ

2
Q

]
Q+ y (5)

The demand functions of both types of buyers are then given, respectively,

by :

QD
I = θ − P (6)

QD
L =

µ̂θ − P
1 + aLσ̂2

θ

(7)

The demand of the informed buyers is the difference between the quality,

θ, and price. The demand of the learning buyers is the difference between the

expected value of their posterior beliefs about quality, µ̂θ, and price, divided

by (1 +aLσ̂
2
θ). This last term reflects the effect of risk aversion and posterior

uncertainty. When aL → 0, i.e. when we approach risk neutrality, the

demand function of the learning buyers tends to the demand function of the

informed buyers, but with θ replaced by the posterior beliefs. When either

the coefficient of risk aversion or the posterior variance increases, demand by

the learning buyers decreases.

Total demand is the sum of the demands of the informed and of the

learning agents. This sum is given by

QD(P, θ) = λ (θ − P ) + (1− λ)
µ̂θ − P

1 + aLσ̂2
θ

(8)
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From (8), the inverse demand is given by

P =
(1 + aLσ̂

2
θ)λθ + (1− λ) µ̂θ

(1 + aLσ̂2
θ)λ+ (1− λ)

− (1 + aLσ̂
2
θ)Q

D

(1 + aLσ̂2
θ)λ+ (1− λ)

(9)

Note that, while the inverse supply function has a random component,

the inverse demand has not. However, the variability of the equilibrium price

depends on demand through the slope of the inverse demand, which is

∂P

∂QD
= − (1 + aLσ̂

2
θ)

(1 + aLσ̂2
θ)λ+ (1− λ)

(10)

which becomes steeper, i.e. more negative, when risk-aversion increases:

∂2P

∂QD∂aL
= − (1− λ) σ̂2

θ

[(1 + aLσ̂2
θ)λ+ (1− λ)]2

< 0 (11)

This rotation of the demand function due to risk aversion and its effect

on the variance of the equilibrium price is further discussed in section 2.2.

2.1 The equilibrium

Having described the market structure, we now define the equilibrium. The

learning competitive equilibrium consists of the quantity of the firm, Q∗(θ, ε),

the uninformed buyers’ posterior beliefs about quality upon observing the

realized price, ξ̂∗(·|P ), and the distribution of the market-clearing price

P ∗(θ, ε̃). In terms of notation, x is a dummy variable for quality and the

asterisk sign on a variable denotes the equilibrium value.

Definition 2.1. The n-tuple
[
Q∗(θ, ε), ξ̂∗(·|P ), P ∗(θ, ε)

]
is a competitive equi-

librium with learning if,

1. Firm. For all (θ, ε), given P ∗(θ, ε),

Q∗(θ, ε) = arg max
Q≥0

{P ∗(θ, ε)Q− C(Q, θ, ε)} . (12)
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2. Uninformed buyers. For all θ, given the price-signal P ∗(θ, ε̃) with

corresponding p.d.f. φ∗P (P |θ), posterior beliefs upon observing the real-

ization P = P ∗(θ, ε) are

ξ̂∗(θp|P ) ∝ ξ(θa)φ
∗
P (P |θ) (13)

by Bayes’ rule.

3. Market-clearing price. For all (θ, ε), given Q∗(θ, ε) and ξ̂∗(·|P ),

P ∗(θ, ε) clears the market, i.e.,

λ(θ − P ∗(θ, ε)) + (1− λ)(
µ̂∗θ(P )|P=P ∗(θ,ε) − P ∗(θ, ε)

1 + aLσ̂2
θ

) = Q∗(θ, ε) (14)

where µ̂∗θ(P ) ≡
∫
x≥0 xξ̂

∗(x|P )dx is the updating rule.

From Statement 1 of the definition of equilibrium, the firm’s conjecture

about the price, after observing ε, is correct. Moreover, from Statements 2,

the uninformed buyers’ conjecture, not knowing ε, of the distribution of the

price-signal (conditional on θ) is correct. This correct conjecture is then used

to form posterior beliefs. Finally, the market-clearing price and posterior be-

liefs are dependent on each other. On the one hand, the market-clearing

condition and the distribution of the price-signal are influenced by the up-

dating rule (Statements 2 and 3). On the other hand, from Statement 2, in

equilibrium, posterior beliefs depend on the correct conditional distribution

of the price-signal.

Proposition 2.2 states that there exists a unique equilibrium in which

the price retains the normal distribution and the updating rule is a linear

function of the prior mean and the price signal.

Proposition 2.2. Under the conditions of Definition 2.1, with cost function

defined by (1), there exists an unique learning competitive equilibrium (LE)

in which the updating rule for the posterior mean is a linear function of the

prior beliefs and the price signal.

1. In equilibrium, the posterior beliefs are given by ξ̂∗(θp|P ) ∼ n (µ̂θ, σ̂
2
θ),
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with

µ̂θ = aµθ + bP ∗(θ, ε) (15)

and

σ̂2
θ =

σ2
εσ

2
θ

σ2
ε + σ2

θ [γθ + γqλ]2
(16)

with

a =
σ2
ε(1 + aLσ̂

2
θ)

(1 + aLσ̂2
θ)
[
σ2
ε + σ2

θ [γθ + γqλ]2
]

+ γq(1− λ) [γθ + γqλ]σ2
θ

(17)

and

b =
(1 + γqλ)(1 + aLσ̂

2
θ) [γθ + γqλ]σ2

θ + γq(1− λ) [γθ + γqλ]σ2
θ

(1 + aLσ̂2
θ)
[
σ2
ε + σ2

θ [γθ + γqλ]2
]

+ γq(1− λ) [γθ + γqλ]σ2
θ

(18)

2. The equilibrium price is

P ∗(θ, ε) =
(σ2

ε + σ2
θ [γθ + λγq]

2)(1 + aLσ̂
2
θ) + γq(1− λ) [γθ + γqλ]σ2

θ

(σ2
ε + [γθ + λγq]

2 σ2
θ)[(1 + γqλ)(1 + aLσ̂2

θ) + γq(1− λ)]
[γθ + λγq] θ

+
σ2
εγq(1− λ)

(σ2
ε + [γθ + λγq]

2 σ2
θ)[(1 + γqλ)(1 + aLσ̂2

θ) + γq(1− λ)]
µθ

+
(σ2

ε + σ2
θ [γθ + λγq]

2)(1 + aLσ̂
2
θ) + γq(1− λ) [γθ + γqλ]σ2

θ

(σ2
ε + [γθ + λγq]

2 σ2
θ)[(1 + γqλ)(1 + aLσ̂2

θ) + γq(1− λ)]
ε

(19)

with distribution given by P(θ, ε̃, ξ̂∗(·)) ∼ n(µ̂P , σ̂
2
P ) 6.

6Here µ̂P is written as

µ̂P = λ
(γθ + γqλ)(1 + aLσ̂

2
θ)

(1 + γqλ)(1 + aLσ̂2
θ) + γq(1− λ)

θ

+ (1− λ)
(γθ + γqλ)(1 + aLσ̂

2
θ) + γqσ

2
εµθ + [γθ + γqλ]

2
σ2
θθ

(σ2
ε + [γθ + λγq]

2
σ2
θ)[(1 + γqλ)(1 + aLσ̂2

θ) + γq(1− λ)]
(20)

This formulation shows that the expected price depends on the behavior of the two types
of consumers.
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3. Equilibrium output is

Q∗(θ, ε) =
P ∗(θ, ε)− γθθ − ε

γq
(21)

Proof. Substituting (1) into (12) and solving (12) yields (21). Then assume

the posterior mean of the quality parameter is given by the updating rule in

(15) . Plugging (15) and (21) into (14) and solving for the price, yields the

equilibrium price as a function of a and b

P(θ, ε) =
[γθ + γqλ] (1 + aLσ̂

2
θ)θ + γq(1− λ)aµθ + (1 + aLσ̂

2
θ)ε

(1 + γqλ)(1 + aLσ̂2
θ) + γq(1− b)(1− λ)

(22)

Hence the conditional distribution

P̂ |θ ∼ n
(
µ̂P |θ; σ̂

2
P |θ
)

(23)

with

µ̂P |θ =
[γθ + γqλ] (1 + aLσ̂

2
θ)θ + γq(1− λ)aµθ

(1 + γqλ)(1 + aLσ̂2
θ) + γq(1− b)(1− λ)

(24)

σ̂2
P |θ =

[
(1 + aLσ̂

2
θ)

(1 + γqλ)(1 + aLσ̂2
θ) + γq(1− b)(1− λ)

]2
σ2
ε (25)

We define

z =
[(1 + γqλ)(1 + aLσ̂

2
θ) + γq(1− b)(1− λ)]

[γθ + γqλ] (1 + aLσ̂2
θ)

P (θ, ε)

− γq(1− λ)a

[γθ + γqλ] (1 + aLσ̂2
θ)

= θ +
ε

[γθ + γqλ]
(26)

with conditional distribution z|θ

z|θ ∼ n

(
θ;

σ2
ε

[γθ + γqλ]2

)
(27)

.

From (27) and from the prior distribution of beliefs (4) the posterior

distribution θ̃p|z is obtained,
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θ̂p|z ∼ n

(
z [γθ + γqλ]2 σ2

θ + σ2
εµθ

σ2
ε + σ2

θ [γθ + γqλ]2
;

σ2
εσ

2
θ

σ2
ε + σ2

θ [γθ + γqλ]2

)
(28)

Substituting in (28) z for its expression in order of P (given in (26)), we

obtain the posterior pdf for θ̂p|P , i.e.,

θ̂p|P ∼ n
(
µ̂θ; σ̂

2
θ

)
(29)

with

µ̂θ =
(1 + aLσ̂

2
θ)σ

2
εµθ − γq(1− λ)(γθ + γqλ)σ2

θa

[σ2
ε + σ2

θ(γθ + γqλ)2] (1 + aLσ̂2
θ)

+

(1 + aLσ̂
2
θ)(1 + γqλ) + γq(1− b)(1− λ)(γθ + γqλ)σ2

θ

[σ2
ε + σ2

θ(γθ + γqλ)2] (1 + aLσ̂2
θ)

P (θ, ε) (30)

σ̂2
θ =

σ2
εσ

2
θ

(γθ + γqλ)2σ2
θ + σ2

ε

(31)

Equating µ̂θ = aµθ + bP and solving for a and b we arrive at (17) and

(18), confirming the existence of a linear updating rule. Substituting (17)

and (18) into (22) yields (19).

Note that the distribution of the posterior beliefs has a nonrandom vari-

ance (see (16)) but a random mean. By (15), the posterior mean is a linear

function of the random price, and so also has a normal distribution.

The updating rule χ(P ) combines the prior beliefs of the learning con-

sumers (given by µθ) with the information inferred from the price (see (15),

(17) and (18)). The weights given to the prior beliefs and the price, respec-

tively a and b, vary with: i) the ratio between the variance of the prior beliefs

and the variance of the random supply noise (σ2
θ/σ

2
ε); ii) the coefficient of

risk aversion (aL) and the posterior variance (σ̂2
θ , which itself depends on the

parameters in i) and iii)); iii) the other parameters (λ, γθ and γq), which influ-

ence the slopes of the demand and supply curves. The expected equilibrium

price and quantity depend on all these parameters.
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2.2 Discussion

In this section we study the impact that the learning risk averse buyers

have on the equilibrium. For this purpose we compare the LE in Proposition

2.2 with the full information equilibrium (FIE), i.e., the equilibrium when all

buyers know θ.

We calculate the FIE, substituting λ = 1 in equations (15) to (21).

Remark 2.3. With λ = 1, FIE is:

P =
γθ + γq
1 + γq

θ +
ε

1 + γq
(32)

µ̂P = γθ+γq
1+γq

θ and σ̂2
P = σ2

ε

(1+γq)2

E [Q|θ] =
1− γθ
1 + γq

θ (33)

For the expected output to be positive we assume that γθ < 1.

The difference between this FIE and the LE from Proposition 2.2 is due

to the impact of the presence of uninformed buyers. We depict the FIE and

the LE in Fig.1, assuming µθ < θ7.

To understand the impact of the presence of risk-averse learning buyers,

the change from the FIE to the LE can be decomposed into two components.

The first is due to the presence of uninformed but nonlearning (naive) buy-

ers, i.e., buyers that do not update their prior beliefs. The second component

reflects the change in equilibrium due to the learning process, i.e., the up-

dating of prior beliefs upon observing the price. We call the first component

the prior beliefs effect and the second component the price effect.

To identify the prior beliefs effect we calculate the equilibrium of the

intermediate case with naive uninformed buyers8. In this intermediate case,

7We could also assume that µθ > θ. In this case the LE demand function would start
above the FIE demand function and would have a steeper slope

8This naive equilibrium is important in itself. We show in Section 3.2 that, when
uncertainty increases, the LE tends to the naive equilibrium
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demand by the learning buyers depends on the prior mean and variance.

Total demand is given by

QD(P, θ) = λ (θ − P ) + (1− λ)
µθ − P

1 + aLσ2
θ

(34)

Proposition 2.4. Assuming naive (nonlearning) uninformed buyers, with

supply and demand defined by (1) and (34), the competitive equilibrium is

given by, :

1.

P(θ, ε) =
[γθ + γqλ] (1 + aLσ

2
θ)θ + γq(1− λ)µθ + (1 + aLσ

2
θ)ε

(1 + γqλ)(1 + aLσ2
θ) + γq(1− λ)

(35)

and

P̃(θ, ε) ∼ n(µ̂P , σ̂
2
P ) (36)

2.

Q(θ, ε) =
P (θ, ε)− γθθ − ε

γq
(37)

Proof. Equation (37) derives immediately from (1), while (35) results from

(22), with a = 1 and b = 0. Finally, from (35) P is a linear function of ε,

hence it is normally distributed.

Note that, from (34), the naive inverse demand is given by

P (QD, θ) =
(1 + aLσ

2
θ)λθ + (1− λ)µθ − (1 + aLσ

2
θ)Q

D

(1 + aLσ2
θ)λ+ (1− λ)

(38)

From (38), P (QD|QD = 0), the intercept on the y-axis, is equal to (larger

than, smaller than) the equivalent intercept in the FIE expected demand

if µθ = θ (µθ > θ, µθ < θ). If the uninformed buyers are naive then the

demand function shifts up or down (relative to the FIE), depending on the

prior being over or undervalued. The presence of uninformed risk-averse

naive buyers also rotates the demand function, increasing its slope9. So,

9From (34), QD(P |P = 0), the x-axis intercept, is smaller than the FI solution if µθ≤θ,
and can go either way if µθ>θ.
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even if prior beliefs are unbiased, there is always a difference between naive

and FI demand, due to the risk aversion of the uninformed buyers. Note that

in the case of risk neutral10 naive buyers the demand curve does not rotate.

This rotation of the naive demand curve is due to the effect of risk aversion

and has an impact on the equilibrium quantity and price.

In fact, even though the supply function is not affected by risk aversion,

the presence of uninformed naive buyers changes the equilibrium price and

output, again even if prior beliefs are unbiased. The increase in the slope of

the demand curve (compared with the FIE) due to the presence of uninformed

naive buyers means that: a) if µθ ≤ θ, the naive price and output are always

below the FI solutions; b) if µθ > θ, the naive equilibrium price and output

may be above, below or coincide with the FI solutions, depending on the

values of all parameters. We depict these two situation in Fig.2 and Fig.3.

Next consider the price effect. The change in equilibrium due to the price

effect is the difference between the naive equilibrium of Proposition 2.4 and

the LE of Proposition 2.2. This price effect shifts the LE demand function

back towards the FI demand while also rotating it. This is similar to the

risk neutral case. However, the presence of risk aversion ensures that the

LE demand never coincides with the FIE demand even if prior beliefs are

unbiased, as in the risk neutral case. Fig.4 and Fig.5 illustrate the cases of

under and overvalued prior.

3 The effects of risk aversion and uncertainty

In this section we study the effect of uncertainty and risk aversion on the

learning process and the learning equilibrium. When referring to uncer-

tainty, we must distinguish between prior uncertainty (introduced by the

prior variance, σ2
θ , and the variance of noisy demand, σ2

ε) and posterior un-

certainty, characterized by the posterior variance, σ̂2
θ . We show that risk

aversion affects the learning process changing the distribution of θ̂p|P , i.e.,

10Henceforth, when we refer the risk neutral case we are referring to the limit case when
aL → 0 and the demand of the learning buyers tends to QDL = µ̂θ − P . This limit case
corresponds to the risk-neutral case studied in (Mirman et al., 2014).
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the conditional distribution of posterior beliefs for an observed P. However,

it has no effect on Eµ̂∗θ(P ∗(θ, ε̃)), the average value of the posterior mean11.

Increasing risk aversion shifts the price distribution, lowering expected price

and expected output. On the other hand, prior uncertainty affects both the

learning process and the marginal posterior distribution. Finally, the effects

of risk aversion and posterior uncertainty cannot be studied separately.

Starting with this last comment, notice that the coefficient of risk aversion

always appears connected with posterior uncertainty , in (1+aLσ̂
2
θ). As noted

in Section 2, the term (1 + aLσ̂
2
θ) reflects the effect of posterior uncertainty

about quality on the demand function of the uninformed buyers. Without

posterior uncertainty (σ̂2
θ = 0) there is no risk aversion effect and without

risk aversion (aL → 0) there is no effect of posterior uncertainty.

The posterior variance, σ̂2
θ =

σ2
εσ

2
θ

σ2
ε+σ

2
θ [γθ+γqλ]

2 , increases with the prior vari-

ance, σ2
θ , and the variance of the supply noise, σ2

ε . Moreover, σ̂2
θ decreases

with γθ, the impact of quality on the cost, with the slope of the supply

function, γq, and with λ, the fraction of informed buyers.

If either aL or σ̂2
θ tend to zero we approach the risk neutral case and the

same results as in Mirman et al. (2014) are applicable.

Remark 3.1. If aL → 0 or σ̂2
θ = 012 , then the LE tends to the risk neutral

results:

a =
σ2
ε

(γθ + γq)(γθ + γqλ)σ2
θ + σ2

ε

(39)

b =
(1 + γq)(γθ + γqλ)σ2

θ

(γθ + γq)(γθ + γqλ)σ2
θ + σ2

ε

(40)

11Here, E is the expectation operator with respect to the p.d.f. φ∗P (·|θ).
12σ̂2

θ = 0 may result from two different situations: if γq = 0 or σ2
ε = 0 we have perfect

learning and non random price; if σ2
θ = 0 we have no learning at all.
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µ̂P =
γθ + γqλ

1 + γq

{
[γθ + γq] [γθ + γqλ]σ2

θ + σ2
ε

[γθ + γqλ]2 σ2
θ + σ2

ε

}
θ

+
(1− λ)γq

1 + γq

{
σ2
ε

[γθ + γqλ]2 σ2
θ + σ2

ε

}
µθ (41)

E [Q|θ] =
µ̂P − γθθ − ε

γq
(42)

3.1 The effect of risk aversion

This section studies the impact that risk aversion has on the learning

process and on the LE. Starting with the learning process, we analyze the

effect of risk aversion on the updating rule, µ̂θ = aµθ + bP . Note that µ̂θ is

not a convex combination of µθ and P, i.e., a+ b 6= 1. Define

b′ =
[(γθ + γqλ)(1 + aLσ̂

2
θ) + γq(1− λ)] [γθ + γqλ]σ2

θ

σ2
ε(1 + aLσ̂2

θ) + [(γθ + γqλ)(1 + aLσ̂2
θ) + γq(1− λ)] [γθ + γqλ]σ2

θ

(43)

Then a+ b′ = 1, and the posterior mean is given by the convex combination

µ̂θ = aµθ + b′P ′, where P’, the revised price13, is

P ′ =
(1 + γqλ)(1 + aLσ̂

2
θ) + γq(1− λ)

(γθ + γqλ)(1 + aLσ̂2
θ) + γq(1− λ)

P > P (44)

We now look to the effect of risk aversion on the weights, a and b’.

Dividing both the numerator and the denominator of a by (1 + aLσ̂
2
θ) yields:

a =
σ2
ε

σ2
ε +

[
[γθ + γqλ] + γq(1−λ)

(1+aLσ̂
2
θ)

]
[γθ + γqλ]σ2

θ

(45)

Compared with the coefficient a in the risk neutral case from (39), note

that the denominator decreases with aL, thus increasing a. As a + b′ = 1,

when a increases b’ decreases. Hence, the presence of risk aversion changes

13With Full Information, λ = 1, the expected value of this revised price is equal to the
true quality, θ.
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the weights of the prior beliefs and the revised observed price in the learning

process, giving more weight to prior beliefs and giving less to the information

conveyed by the revised observed price14.

Despite these changes in the coefficients of the updating rule, from Propo-

sition 3.2 the effect of risk aversion on Eµ̂∗θ(P ∗(θ, ε̃)) is null. In fact, risk

aversion changes the posterior distribution of θ̃p|P but not the conditional

distribution of θ̃p|ε 15. This means the price signal adjusts to compensate for

the changes in a and b’, in a way that ensures that, for any realization of the

supply noise ε the posterior beliefs in the risk aversion case are the same as

in the risk neutral case.

Proposition 3.2. Under the conditions of Definition 2.1, with supply and

demand defined by (1), (12) and (8), the coefficient of risk aversion has no

effect on the conditional distribution of the posterior beliefs for a given noise,

ξ̂∗(θp|ε) ∼ n
(
µθp , σ

2
θp

)
, with µθp and σ2

θp
independent from aL.

Moreover, learning always occurs on average, i.e.:

1.

Eµ̂∗θ(P̃ ∗) = αµθ + (1− α)θ, 0 < α ≤ 1 (46)

2.

σ̂2
θ =

σ2
εσ

2
θ

σ2
ε + σ2

θ [γθ + γqλ]2
< σ2

θ (47)

Proof. Substituting (26) in (28) we obtain

ξ̂∗(θp|ε) ∼ n

 [γθ + γqλ]2 σ2
θ

[
θ + ε

γθ+γqλ

]
+ σ2

εµθ

σ2
ε + σ2

θ [γθ + γqλ]2
;

σ2
εσ

2
θ

σ2
ε + σ2

θ [γθ + γqλ]2


(48)

14Note that P’ itself changes with risk aversion, increasing away from P. However the

revised price always lays in the interval
[

1+γq
γθ+γq

P ;
1+γqλ
γθ+γqλ

P
]
, as aL goes from zero to infinity.

15The conditional distribution of θ̃p|P is the subjective distribution of the posterior
beliefs of the learning buyers, resulting from their updating process for a given equilibrium
price. The conditional distribution of θ̃p|ε is not relevant for the learning buyers, because
they cannot observe the random noise ε. However, as the informed observers (us) know
the function P ∗(θ, ε̃), we can predict how the posterior beliefs react for each realization of
the random noise, obtaining the conditional distribution of θ̃p|ε.
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showing that µθp and σ2
θp

are independent from aL, the coefficient of risk

aversion. Moreover, µθp is random (linear in ε) while σ2
θp

is nonrandom (in-

dependent of ε). Taking expectations of µθp with respect to the distribution

of ε, we obtain

Eµθp = Eµ̂∗θ(P̃ ∗) =
[γθ + γqλ]2 σ2

θθ + σ2
εµθ

σ2
ε + σ2

θ [γθ + γqλ]2
(49)

From (49) we derive (46), with α = σ2
ε

σ2
ε+(γθ+γqλ)2σ

2
θ
. Equation (47) comes

from (16) .

From Proposition 3.2 the conditional distribution θ̃p|ε does not depend on

risk aversion, i.e., for a given realization of the random noise, ε, the posterior

beliefs are exactly the same with or without risk aversion. However, for a

given observed price, posterior beliefs depend on risk aversion, because the

weights a and b depend on risk aversion.

Risk aversion changes the likelihood function, i.e., the distribution of price

for a given θ, so that the same realization of the supply noise ε translates

into different observed prices in the risk aversion and the risk neutral case.

The effect of risk aversion is to diminish the demand of the learning buyers,

so the demand of the informed buyers has a bigger fraction of total demand.

Then the observed price becomes depends more on the informed buyers than

with no risk aversion. In other words, the price in the risk averse case is

more dependent (comparing with the risk neutral case) on θ and less on the

prior beliefs of the uninformed buyers. This change in the price completely

compensate the changes in a and b.

Analytically, equation (19) shows that the expected mean of the equilib-

rium price is a linear combination of θ and µθ. After some manipulation, the

expected equilibrium price is written as:

µ̂P |θ =
1

b

{
[γθ + γqλ]2 σ2

θ

(γθ + γqλ)2σ2
θ + σ2

ε

θ +

[
σ2
ε

(γθ + γqλ)2σ2
θ + σ2

ε

− a
]
µθ

}
(50)

Hence, as the presence of risk aversion changes the weights a and b, the
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expected price is inversely proportional to b and annuls the effect of a, main-

taining the expected posterior mean unchanged. This complete compensation

happens because the posterior distribution can be written as a function of a

sufficient statistic, z (used in the proof of Proposition 2.2), which does not

depend on risk aversion16.

From Proposition 3.2, the effect of risk aversion on the expected price and

output is determined. Compare the risk averse and the risk neutral cases.

From equation (14), for the same random noise, if the equilibrium price was

equal in both cases, the demand at the market equilibrium with positive risk

aversion would be smaller than without risk aversion, creating excess supply.

So, for the same random noise, with risk aversion the equilibrium price must

be smaller than in the risk neutral case. Note that, in this argument, the

supply function and the posterior beliefs are the same in both cases, as was

shown in Proposition 3.2. The supply function remaining unchanged, output

also decreases with risk aversion. If, for any random noise, equilibrium price

and output are smaller with risk aversion, then expected price and output

decrease with risk aversion.

Remark 3.3. Expected price and output diminishes with risk aversion.

3.2 The effect of prior uncertainty

In this section we study the effect of both components of prior uncertainty:

the variance of the supply noise, σ2
ε (henceforth called supply uncertainty)

and the prior variance, σ2
θ .

16(Grossman and Stiglitz, 1980) arrive at similar results, but concerning the effect of the
variance of the demand shock on the informativeness of the price. They say: “..an increase
in noise reduces the informativeness of the price system: but it...leads more individuals
to become informed; the remarkable result obtained above establishes that the two effects
exactly offset each other so that the equilibrium informativeness of the price system is
unchanged”(their italic). In their model it is the percentage of informed traders, λ, that is
endogenous (in our model it is exogenous) and so it is λ that adjusts. Again, in (Grossman
and Stiglitz, 1980), what happens is that there is a sufficient statistic for the unknown
parameter θ (wλ(θ, x)) which does not depend on the demand uncertainty, hence the latter
has no influence on posterior beliefs.
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3.2.1 The effect on learning

When σ2
ε = 0 there is no posterior uncertainty, learning becomes perfect and

risk aversion irrelevant. Hence, as in the FI equilibrium.

µ̂θ = θ and σ̂2
θ = 0

a = 0 and b = 1+γq
γθ+γq

σ̂2
P = 0 and P = µ̂P = γθ+γq

1+γq
θ

Q = E [Q|θ] = 1−γθ
1+γq

θ

On the other hand, when σ2
θ = 0 there is no posterior uncertainty and

risk aversion becomes irrelevant, but there is no learning17. Hence,

µ̂θ = µθ and σ̂2
θ = 0

a = 1 and b = 0

µ̂P = γθθ+γq [λθ+(1−λ)µθ]
1+γq

and σ̂2
P = σ2

ε

(1+γq)2

Q = λθ+(1−λ)µθ−γθθ−ε
1+γq

Next consider the case of σ2
ε > 0 and σ2

θ > 0. Contrary to the effect of risk

aversion, prior uncertainty does influence the posterior distribution, through

both the posterior mean and the posterior variance. Prior uncertainty affects

the posterior mean through the updating rule . The weight a (b’ is 1-a),

depends directly on the ratio of the prior and the supply noise variance,
σ2
θ

σ2
ε

:

a =
1

1 +
[
[γθ + γqλ]2 + γq(1−λ)[γθ+γqλ]

(1+aLσ̂
2
θ)

]
σ2
θ

σ2
ε

(51)

This direct effect implies that, when
σ2
θ

σ2
ε

increases (decreases) a decreases

(increases) and b’ increases (decreases). Hence, if the variability of the prior

17If σ2
ε = σ2

θ = 0 we have an indeterminacy. The learning buyers are completely sure
about their prior beliefs and, simultaneously, price is perfectly informative. What should
they belief?
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beliefs increases relative to the supply noise variability, learning buyers put

more weight on the observed information (b’ ) and less weight on the prior

beliefs (a).

But there is also an indirect effect, acting through the posterior variance

σ̂2
θ . When either σ2

ε or σ2
θ increases so does the posterior variance σ̂2

θ . An

increase in σ̂2
θ has the same effect as risk aversion: increases a, decreases b’.

Hence:

1. If σ2
ε increases,

σ2
θ

σ2
ε

decreases and σ̂2
θ increases, implying that a increases,

while b’ decreases. More supply uncertainty increases the weight of

prior beliefs and diminishes the weight of the revised observed price.

2. If σ2
ε decreases,

σ2
θ

σ2
ε

increases and σ̂2
θ decreases, implying that a decreases

and b’ increases. Less supply uncertainty decreases the weight of prior

beliefs and increases the weight of the revised observed price.

3. If σ2
θ increases, both

σ2
θ

σ2
ε

and σ̂2
θ increase, and the effect in a and b’ is

ambiguous.

4. If σ2
θ decreases, both

σ2
θ

σ2
ε

and σ̂2
θ decrease, and the effect in a and b’ is

ambiguous.

As σ̂2
θ changes, so changes

(1+γqλ)(1+aLσ̂
2
θ)+γq(1−λ)

(γθ+γqλ)(1+aLσ̂
2
θ)+γq(1−λ)

, the proportion between P’

and P, adding to the ambiguity of the total effects. However, the change

is P’ is bounded within the interval
[

1+γq
γθ+γq

P ; 1+γqλ

γθ+γqλ
P
]
. Asymptotically, all

ambiguities disappear.

In the limit, if σ2
ε → ∞ then a → 1 and b′ → 0. On the other hand, if

σ2
θ → ∞ then a → 0 and b′ → 1. Hence, when the variance of the supply

noise increases to infinity, more weight is put on the prior beliefs and less

weight on the observed price, reducing learning. In fact, from (15) and (16),

in the limit there is no learning if σ2
ε →∞:

µ̂θ → µθ and σ̂2
θ → σ2

θ

When the prior variance increases to infinity, i.e., σ2
θ →∞, learning depends

only on the observed information:

µ̂θ → P ′ and σ̂2
θ →

σ2
ε

[γθ+γqλ]
2
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3.2.2 The effect on price and output

The market equilibrium (see (14)) is affected by σ2
ε through the posterior

mean and the posterior variance. The posterior mean tends to the prior

mean as market uncertainty increases. If the prior mean is overvalued, µθ >

θ, demand increases; if the prior mean is undervalued, µθ < θ, demand

decreases. The posterior variance increases with σ2
ε , thus decreasing demand.

If the prior is undervalued demand unequivocally decreases when σ2
ε in-

creases. If the prior is overvalued, the joint effect of the posterior mean and

the posterior variance can go either way, depending on the values of the pa-

rameters. Again, from Proposition 2.2, the limits of the price distribution as

σ2
ε →∞ are:

µ̂P→
[γθ+γqλ](1+aLσ

2
θ)θ+γq(1−λ)µθ

(1+γqλ)(1+aLσ
2
θ)+γq(1−λ)

and σ̂2
P →∞

In the limit, expected price is equal to (35) and the equilibrium tends to

the naive equilibrium defined in Proposition 2.4. Because learning disappears

in the limit, uninformed buyers act asymptotically naive.

Market equilibrium is also affected by the prior variance, σ2
θ , through the

posterior mean and the posterior variance. As the prior variance increases

the posterior mean tends to the revised price , while the posterior variance

increases. If the prior mean is undervalued, µθ < θ, demand increases; if the

prior mean is overvalued, µθ > θ, demand decreases. The posterior variance

increases with σ2
θ , thus decreasing demand.

If the prior is overvalued demand unequivocally decreases when σ2
θ in-

creases. If the prior is undervalued, the joint effect of the posterior mean

and the posterior variance can go either way, depending on the values of the

parameters. Again, from Proposition 2.2 and equation (44), the limits of the

price distribution as σ2
θ →∞ are:

µ̂P→γθ+γqλ

1+γqλ
θ and σ̂2

P →
σ2
ε

[γθ+γqλ]
2

3.2.3 The effect with no risk aversion

When studying the impact of prior uncertainty on learning and on the mar-

ket equilibrium, we remarked that there is a direct and an indirect effect,
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the latter through the posterior variance. We also noted that the indirect

effect acts through (1 + aLσ̂
2
θ). When there is no risk aversion, i.e. aL → 0,

this indirect effect disappears and the impact of prior uncertainty on learn-

ing and on the equilibrium becomes more straightforward. Proposition 3.4

states that, in the risk neutral case, increases in supply uncertainty makes

the posterior mean approach the prior mean while diverging from the true

value. This implies that the mean equilibrium price increases if the prior is

overvalued, decreases if it is undervalued and stays the same is the prior is

unbiased.

Proposition 3.4. If aL → 0 then in the limit case

∂a
∂σ2
ε
> 0 ; ∂b

∂σ2
ε
< 0

∂µ̂θ
∂σ2
ε
> 0⇐ µθ > θ ; ∂µ̂θ

∂σ2
ε

= 0⇐ µθ = θ ; ∂µ̂θ
∂σ2
ε
< 0⇐ µθ < θ

∂µ̂P
∂σ2
ε
> 0⇐ µθ > θ ; ∂µ̂P

∂σ2
ε

= 0⇐ µθ = θ ; ∂µ̂P
∂σ2
ε
< 0⇐ µθ < θ

Proof. When aL → 0, a and b and µ̂P are given by (39), (40) and (41).

Deriving these expressions in order of σ2
ε the results above are obtained.

From Proposition 3.4 we conclude that supply uncertainty impairs learn-

ing, because the posterior variance increases and the posterior mean moves

away from the true quality value.

Proposition 3.5 states that, in the risk neutral case, increases in prior

variance makes the posterior mean approach the true value while diverging

from the prior mean. This implies that the mean equilibrium price decreases

if the prior is overvalued, increases if it is undervalued and stays the same is

the prior is unbiased.

Proposition 3.5. If aL → 0 then in the limit case

∂a
∂σ2
θ
< 0 ; ∂b

∂σ2
θ
> 0

∂µ̂θ
∂σ2
θ
> 0⇐ µθ < θ ; ∂µ̂θ

∂σ2
θ

= 0⇐ µθ = θ ; ∂µ̂θ
∂σ2
θ
< 0⇐ µθ > θ

∂µ̂P
∂σ2
θ
> 0⇐ µθ < θ ; ∂µ̂P

∂σ2
θ

= 0⇐ µθ = θ ; ∂µ̂P
∂σ2
θ
< 0⇐ µθ > θ
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Proof. With aL → 0, a and b and µ̂P are given by (39), (40) and (41).

Deriving these expressions in order of σ2
θ the results above are obtained.

From Proposition 3.5 we conclude that prior variance has contradictory

effects upon learning. On one hand, the posterior mean approaches the true

quality value. But on the other hand the posterior variance increases.

4 Final remarks

This model, with production and asymmetric information in a competitive

market, explored the role of risk aversion and uncertainty on the learning

process and on the equilibrium price and output.However, risk aversion was

only relevant to the behavior of the learning buyer, not to the decisions on

the informed buyer or the firm.

It would be interesting to explore a model where risk aversion affects

the decisions of the firm, not only in a competitive market but also in a

monopolistic market. The monopolistic case may also provide the framework

to study strategic dynamic behavior, involving experimentation by some set

of agents.

25



References

W.D. Diamond and R.E. Verrecchia. Information Aggregation in a Noisy

Rational Expectations Economy. J. Financ. Econ., 9(3):221–235, 1981.

S.J. Grossman. On the Efficiency of Competitive Stock Markets where

Traders Have Different Information. J. Finance, 31(2):573–585, 1976.

S.J. Grossman. Further Results on the Informational Efficiency of Competi-

tive Stock Markets. J. Econ. Theory, 18(1):81–101, 1978.

S.J. Grossman. The Informational Role of Prices. MIT Press, 1989.

S.J. Grossman and J.E. Stiglitz. On the Impossibility of Informationally

Efficient Markets. Amer. Econ. Rev., 70(3):393–408, 1980.

M.F. Hellwig. On the aggregation of Information in Competitive Markets.

J. Econ. Theory, 22(3):477–498, 1980.

K.L. Judd and M.H. Riordan. Price and Quality in a New Product Monopoly.

Rev. Econ. Stud., 61(4):773–789, 1994.

R.E. Kihlstrom and L.J. Mirman. Information and Market Equilibrium. Bell.

J. Econ., 6(1):357–376, 1975.

A.S. Kyle. Continuous Auctions and Insider Trading. Econometrica, 53(6):

1315–1335, 1985.

L.J. Mirman, E.M. Salgueiro, and M. Santugini. Learning in a Perfectly

Competitive Market. CIRPEE working paper 1423, 2014.

26



 
 

                                    P 

 

 

                                      θ                                                                                           Cm 

 

 

E(P)= (γq + γθ)θ/(1- γq)  

                                                                                          Total learning effect 

 

                                    γθθ                     E[Qd(LB)]                                E[Qd(FI)] 

 

                                                                         (1- γθ)θ/(1- γq)                      θ                                         Q 

Figure 1: Full information and Bayesian Learning equilibrium
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Figure 2: Full information and Naive (undervalued) equilibrium
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