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Abstract:   
This paper develops a high-frequency risk measure, the Liquidity-adjusted Intraday 
Value at Risk (LIVaR). Our objective is to explicitly consider the endogenous liquidity 
dimension associated with order size. Taking liquidity into consideration when using 
intraday data is important because significant position changes over very short horizons 
may have large impacts on stock returns. By reconstructing the open Limit Order Book 
(LOB) of Deutsche Börse, the changes of tick-by-tick ex-ante frictionless return and 
actual return are modeled jointly using a Log-ACD-VARMA-MGARCH structure. This 
modeling helps to identify the dynamics of frictionless and actual returns, and to quantify 
the risk related to the liquidity premium. From a practical perspective, our model can be 
used not only to identify the impact of ex-ante liquidity risk on total risk, but also to 
provide an estimation of VaR for the actual return at a point in time. In particular, there 
will be considerable time saved in constructing the risk measure for the waiting cost 
because once the models have been identified and estimated, the risk measure over 
any time horizon can be obtained by simulation without re-sampling the data and re-
estimating the model. 
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1. Introduction 

With the help of computerization, many main exchanges around the world such as 

Euronext, the Tokyo Stock Exchange, Toronto Stock Exchange and the Australian 

Stock Exchange organize trading activities under a pure automatic order-driven 

structure: there are no designated market-makers during the continuous trading 

and the liquidity is fully guaranteed by market participants via an open Limit Order 

Book (LOB hereafter). In other main exchange markets including NYSE, 

NASDAQ and Frankfurt Stock Exchange, the trading activities are carried out 

under the automatic order-driven structure and the traditional floor-based quote-

driven structure. Nevertheless, most trades are executed under the automatic 

order-driven structure due to its advantage of transparency, efficiency and 

immediacy. Consequently, the frequency of trading is becoming shorter and 

trading activity has become easier than ever before.  

One type of trading behavior is active trading or day-trading by which traders trade 

during the day and liquidate all open positions before market closing. Besides high-

frequency traders, financial institutions also need intraday risk analysis (Gouriéroux 

and Jasiak (2010)) for internal control of their trading desks. As a result, an active 

trading or day-trading culture requires institutional investors, active individual 

traders and even regulators of financial markets to pay more and more attention to 

intraday risk management. 1  However, traditional risk management has been 

challenged by this trend towards high-frequency trading because the low-frequency 

measures of risk such as Value at Risk (VaR), which is usually based on daily data, 

struggle to capture the potential liquidity risk hidden in very short horizons. 

Typically, the well recognized description of a liquid security is that there is the 

ability to convert the desired quantity of the financial asset into cash quickly and with 

little impact on the market price (Demsetz (1968); Black (1971); Kyle (1985); Glosten 

and Harris (1988)). Four dimensions are implicitly included in this definition: volume 

                                                           
1 High-frequency trading was estimated to make up 51% of equity trades in the U.S. in 2012 and 
39% of traded value in the European cash markets (Tabb Group). 
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(significant quantity), price impact (deviation from the best price provided in the 

market), time (speed to complete the transaction) and resilience (speed to backfilling). 

In an automated order-driven trading system, because the liquidity is fully provided 

by the open LOB, we can investigate liquidity risk by monitoring the evolution of 

LOB and exploring the corresponding embedded information.  

The traditional VaR can be interpreted as estimation of the potential loss on a 

predetermined portfolio over a relatively long fixed period, that is, a measure of 

price risk. This is not a liquidation value since it does not take into account the 

volume dimension but solely a ‘paper value’ for a frozen portfolio. However, 

liquidity risk is always present when the transaction is not yet realized. 

Furthermore, from a high-frequency market microstructure perspective, the 

transaction price is an outcome of information shock, trading environment, market 

imperfections and the state of the LOB. For very short horizons, all these 

microstructure effects could cause the transaction price to deviate from the 

efficient price. Therefore, if we concentrate on the actual liquidation value resulting 

from an active trading operation, the traditional VaR may be characterized by a 

serious omission of liquidity, especially when the liquidation quantity is large. To 

make the VaR measure more accurate in evaluating the liquidation value, one 

should include an additional dimension of risk, the ex-ante liquidity risk. From a 

practical perspective, this introduction of a liquidity dimension can offer a more 

accurate risk measure for intraday or active traders and market regulators who aim 

to closely monitor the total risk of the market.  

Few studies have focused on high-frequency risk measures. Dionne, Duchesne and 

Pacurar (2009) are the first to consider a ultra-high-frequency market risk measure, 

Intraday Value at Risk (IVaR) based on all transactions. In their study, the 

informative content of trading frequency is taken into account by modeling the 

durations between two consecutive transactions. One important practical 

contribution is that, instead of being restricted to traditional one- or five-minute 

horizons, their model allows for computing the IVaR measure for any horizon. 
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The authors found that ignoring the effect of durations can underestimate risk. 

However, as they noted, similar to other VaR measures, the IVaR ignores the 

ex-ante liquidity dimension by only taking into account information about 

transaction prices. 

On the other hand, in spite of the rapid development of electronic trading 

platforms, high-frequency risk measures hardly incorporate the endogenous 

relationship between open LOB dynamics and frictionless prices, although some 

recent theoretical and empirical works find that the LOB is informative about the 

volatility of efficient price (Pascual and Veredas (2010)), and that the 

volume-volatility relationship is related negatively to the LOB slope (Næs and 

Skjeltorp (2006)). One exception is Giot and Grammig (2006) who consider the 

ex-ante liquidity provided by the LOB using data from Xetra, an automated 

auction system. They focus on the ex-ante liquidity risk faced by an impatient 

trader acting as a liquidity demander by submitting a market order. The quantity to 

liquidate is fictive and the choice of quantity is motivated by descriptive statistics 

and trading statistics of the underlying stock. The use of open LOB data allows 

them to construct an actual return that is a potential implicit return for a 

predetermined volume to trade over a fixed time horizon of 10 or 30 minutes. The 

ex-ante liquidity risk is then quantified by comparing the standard VaR based on 

frictionless return, i.e. mid-quote return, and the liquidity-adjusted VaR inferred 

from the actual return. Since the proposed VaR is computed on data from 

regularly spaced intervals of 10 or 30 minutes and the snapshot of the LOB is 

taken at the beginning and end of the interval, all the information within the 

interval is omitted.  

The development of liquidity-adjusted risk measures goes back to Bangia et al. 

(1999) who first consider the liquidity risk in VaR computation. Their liquidity risk 

is measured by the half spread, which is furthermore assumed to be uncorrelated 

with market risk. Actually, the total risk they attempt to identify is the sum of 

market risk and trading cost associated to only one share since their liquidity risk 
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measure does not consider the volume dimension. In line with Bangia et al. (1999), 

Angelidis and Benos (2006) estimate the liquidity-adjusted VaR by using data from 

the Athens Stock Exchange. They find that liquidity risk measured by the bid-ask 

spread accounts for 3.4% for high-capitalization stocks and 11% for low-

capitalization stocks. Using the same framework as Bangia et al. (1999), Weiβ and 

Supper (2013) address liquidity risk of a five-NASDAQ stock portfolio by 

estimating the multivariate distribution of both log-return and spread using the 

vine copulas to account for the dependence between the two across firms over a 

regular interval of 5 minutes. They evidence strong extreme comovements in 

liquidity and tail dependence between bid-ask spreads and log-returns across the 

selected stocks. 

Our paper is related to the market microstructure literature that investigates the 

role of high-frequency liquidity risk. However, our study differs from previous 

papers in several ways. First, we examine the ex-ante liquidity risk by focusing on 

the tick-by-tick frictionless return and actual returns derived from open LOB. By 

ex-ante we mean that the transaction does not really occur but we can still obtain a 

potential transaction price issued from a predetermined volume to trade if we have 

information from the reconstructed LOB. Most papers in the literature are 

interested in ex-post liquidity, which is already consumed by the market or 

marketable orders when the trades complete. Compared to ex-post liquidity, 

ex-ante liquidity is more informative and relevant as it measures the unconsumed 

liquidity in LOB. Besides, the existing literature that analyzes ex-ante measures of 

liquidity (e.g., Giot and Grammig, 2006) is based on a regular time-interval and 

thus ignores the information during the intervals. In our study, we evidence that 

the durations between two consecutive observations do have a positive relation 

with volatilities of actual returns and frictionless returns.  

Second, our study addresses the questions of what is the relationship between 

liquidity risk and market risk and how does the ex-ante liquidity evolve during the 

trading day. There are several empirical papers that attempt to identify the 
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proportion of risk associated with liquidity as discussed above. However, to the 

best of our knowledge, their identified liquidity is ex-post liquidity without studying 

the dynamics of ex-ante liquidity derived from LOB and its relation with market 

risk. Nevertheless, one challenge of directly modeling frictionless returns and 

actual returns (issued from the best bid/ask price and potential liquidation price, 

respectively) is that they are not time-additive. Therefore, in this paper, we model 

the frictionless return changes and actual return changes using an econometric 

system characterized by the Logarithmic Autoregressive Conditional Duration, 

Vector Autoregressive Moving Average and Multivariate GARCH processes 

(denoted by Log-ACD, VARMA and M-GARCH hereafter). The structure will not 

only capture the joint dynamics of both frictionless return changes and actual 

return changes, but also quantify the impact of ex-ante liquidity risk on total risk by 

further defining IVaRc and LIVaRc as the VaRs on frictionless return changes and 

actual return changes, respectively. In order to make the model more flexible, we 

allow for the time-varying correlation of volatility of the frictionless return and 

actual return.  

Third, from a practical perspective, our proposed risk measure aims at providing a 

global view of ex-ante liquidity that can help high-frequency traders develop their 

timing strategies during a particular trading day. Our model is first estimated on 

deseasonalized data and then validated on both simulated deseasonalized and 

re-seasonalized data. The time series of re-seasonalized data is constructed by 

re-introducing the deterministic seasonality factors. One advantage of simulated 

re-seasonalized data is that risk management can be conducted under calendar 

time. In addition, as the model is estimated using tick-by-tick observations and 

takes into account the durations between two consecutive transactions, 

practitioners can construct the risk measure for any desired time horizon. 

The rest of the paper is organized as follows: Section 2 describes the Xetra trading 

system and the dataset we utilize. Section 3 briefly presents the procedure used to 

test the model and compute Impact coefficient of ex-ante liquidity risk and Ex-
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ante liquidity premium. Section 4 defines the actual return, frictionless return, IVaR 

and LIVaR. In Section 5, we present the econometric model used to capture the 

dynamics of duration, frictionless return changes, actual return changes and their 

correlation. Section 6 applies the econometric model proposed in Section 5 to data 

for stocks RWE AG, Merck and SAP and reports the estimation results. The 

model performance is assessed by the Unconditional Coverage test of Kupiec 

(1995) and the Independence test proposed by Christoffersen (1998). In Section 7, 

we discuss the ex-ante liquidity risk in LIVaRc and compare the proposed LIVaR 

with other high-frequency risk measures. Section 8 concludes and provides 

possible new research directions.  

2. Xetra trading system and dataset 

As mentioned above, electronic trading systems have gained popularity in many 

stock exchanges during the two last decades. The present study uses data from the 

automated order-driven trading system Xetra, which is operated by Deutsche 

Börse at Frankfurt Stock Exchange (FSE) and has a similar structure to Integrated 

Single Book of NASDAQ and Super Dot of NYSE. It is the main trading platform 

in Germany and realizes more than 90% of total transactions at German 

exchanges. The trading and order processing (entry, revision, execution and 

cancellation) of the Xetra system are highly computerized and maintained by the 

German Stock Exchange. Since September 20, 1999, trading hours have been from 

9h00 to 17h30 CET (Central European Time). However, during the pre- and post-

trading hours, operations such as entry, revision and cancellation are still 

permitted.  

To ensure trading efficiency, Xetra operates with different market models that 

define order matching, price determination, transparency, etc. One of the 

important parameters of a market model is the trading model that determines 

whether the trading is organized in a continuous or discrete way or both. During 

normal trading hours, there are two types of trading mechanisms: call auction and 



7 

continuous auction. Call auction could occur one or several times during the 

trading day in which the clearance price is determined by the state of LOB and 

remains as the open price for the following continuous auction. Furthermore, at 

each call auction, market participants can submit both round-lot and odd-lot 

orders, and both start and end time for a call auction are randomly chosen by a 

computer to avoid scheduled trading. For the stocks in DAX30 index, there are 

three auctions during a trading day—the open, mid-day and closing auctions. The 

mid-day auction starts at 13h00 and lasts around 2 minutes. Between the call 

auctions, the market is organized as a continuous auction where traders can only 

submit round-lot-sized limit orders or market orders.  

For blue chip and other highly liquid stocks, during the continuous trading there 

are no dedicated market makers like the traditional NYSE specialists. Therefore, 

the liquidity comes from all market participants who submit limit orders in LOB. 

In the Xetra trading system, most of the market models impose the 

Price-Time-Priority condition where the electronic trading system places the 

incoming order after checking the price and timestamps of all available limit orders 

in LOB. Our database includes up to 20 levels of LOB information except the 

hidden part of an iceberg order, which means that by observing the LOB, any 

trader and registered member can monitor the dynamic of liquidity supply and 

potential price impact caused by a market or marketable limit order. However, all 

the trading and order submission are anonymous, that is, the state and the updates 

of LOB can be observed but there is no information on the identities of market 

participants.  

The raw dataset that we have access to contains all the events that are tracked and 

sent through the so-called data streams. There are two main types of streams: delta 

and snapshot. The former tracks all the possible updates in LOB such as entry, 

revision, cancellation and expiration. Traders can be connected to the delta stream 

during the trading hours to receive the latest information, whereas the second aims 

at giving an overview of the state of LOB and is sent after a constant time interval 
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for a given stock. Xetra original data with delta and snapshot messages are first 

processed using the software XetraParser developed by Bilodeau (2013) in order to 

make Deutsche Börse Xetra raw data usable for academic and professional 

purposes. XetraParser reconstructs the real-time order book sequence including all 

the information for both auctions and continuous trading by implementing the 

Xetra trading protocol and Enhanced Broadcast.2 We further convert the raw LOB 

information into a readable LOB for each update time and then retrieve useful and 

accurate information about the state of LOB and the precise timestamp for order 

modifications and transactions during the continuous trading. Inter-trade durations 

as well as LOB update durations are irregular. The stocks SAP (SAP), RWE AG 

(RWE) and Merck (MRK) that we choose for this study are blue chip stocks from 

the DAX30 index. SAP is a leading multinational software corporation with a 

market capitalization of 33.84 billion Euros in 2010. RWE generates and 

distributes electricity to various customers including municipal, industrial, 

commercial and residential customers. The company produces natural gas and oil, 

mines coal and delivers and distributes gas. In 2010, its market capitalization was 

around 15 billion Euros. Merck is the world’s oldest operating chemical and 

pharmaceutical company with a market capitalization of 4 billion Euros in 2010.  

3. Procedure used for computing the risk measures 

To compute the proposed risk measures, the model will be first estimated using 

deseasonalized data and then the tests will be carried out on both deseasonalized 

and seasonalized data. We present the flowchart where we illustrate the steps to 

follow. More precisely, our study proceeds as follows: 

[Insert Flowchart here] 

 

                                                           
2  See SolutionXetra Release 11.0 – Enhanced Broadcast solution and Interface specification for a detailed 
description.  
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(a) We first compute the raw tick-by-tick durations defined as the time interval 
between two consecutive trades and tick-by-tick frictionless returns and actual 
returns based on the data of open LOB and trades. 

(b) We further compute the frictionless return changes and actual return changes 
by taking the first difference of frictionless returns and actual returns, 
respectively. This step is required because the frictionless return and actual 
return are not time-additive and cannot be modeled directly. 

(c) We remove seasonality from durations, frictionless return changes and actual 
return changes to obtain the corresponding deseasonalized data.  

(d) The deseasonalized data are modeled by the LogACD-VARMA-MGARCH 
model. 

(e) Once we estimate the model, we simulate the deseasonalized data based on 
estimated coefficients and construct VaR measures at different confidence 
levels for backtesting on out-of-sample deseasonalized data. 

(f) The seasonal factors are re-introduced into deseasonalized data to generate the 
re-seasonalized data. 

(g) As done in (e), we construct different quantiles for backtesting on out-of-
sample seasonalized data. 

(h) We construct Impact coefficients of ex-ante liquidity risk based on the 
simulated re-seasonalized data. 

(i) We further compute the IVaR and LIVaR, which are defined as the VaR for 
frictionless return and actual return, respectively. 

(j) Based on IVaR and LIVaR, we can finally compute the ex-ante liquidity 
premium by taking the ratio of the difference between IVaR and LIVaR over 
LIVaR. 

The following sections will explain each step in detail. 

4. Frictionless return, actual return and the corresponding high-frequency VaRs 

We take into account all information available in the continuous auction by 

modeling tick-by-tick data. The first characteristic in tick-by-tick data modeling is 

that the durations between two consecutive transactions are irregularly spaced. 



10 

Consider two consecutive trades that arrive at 1it −  and it , and define idur  as the 

duration from 1it −  to it . Based on this point process, we can further construct two 

return processes. One is frictionless return and the other is actual return. More 

specifically, the frictionless return is defined as the log ratio of best bid price, (1)ib  

at moment i and previous best ask price, 1(1)ia − . The frictionless return is an ex-

ante return indicating the tick-by-tick return for selling only one unit of stock.  

1

(1)ln( )                                                                                     (1)
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F i
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a −

=
 
 

The actual return is defined as the log ratio of selling price for a volume v and 

previous best ask price.3  
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, ,  k i k ib and v  are the kth level bid price and volume available, respectively. ,K iv  is the 

quantity left after K-1 levels are completely consumed by v. The consideration of 

quantity available in LOB is in line with other ex-ante liquidity measures in market 

microstructure literature (Irvine, Benston and Kandel (2000); Domowitz, Hansch 

and Wang (2005); Coppejans, Domowitz and Madhavan (2004), among others). 

The choice of volume v is motivated by transaction volume and volume available 

in LOB. Explicitly, for each stock we first compute the cumulative volume 

available over the 20 levels at each transaction moment for the bid side of LOB, 

and then we choose the minimum cumulative volume as the maximum volume to 

construct the actual returns. By doing so, we avoid the situation where the actual 

price does not exist for a given volume. One concern that may arise involves the 

iceberg orders, which keep a portion of quantity invisible to the market 
                                                           
3 The frictionless return and actual return from the point of view of buyers can be defined similarly.    



11 

participants. In this study, we assume that the liquidity risk is faced by an impatient 

trader and the possibility of trading against an iceberg order will not influence his 

trading behavior. Furthermore, as noted by Beltran-Lopez, Giot and Grammig 

(2009), the hidden part of the book does not carry economically significant 

informational content. The difference between frictionless return and actual return 

is that actual return takes into account the desired transaction volume, which is 

essential for the liquidity measure. Intuitively, the actual return measures the ex-

ante return when liquidating v units of shares.  

One characteristic of our defined frictionless returns and actual returns is that they 

do not possess the time-additivity property as traditional log-returns. To 

circumvent this difficulty, we model the frictionless return changes and actual 

return changes instead of modeling the actual return and frictionless return 

directly. More specifically, let 1
f F F

i i ir R R −= −
 
and 1

b B B
i i ir R R −= −  be the tick-by-tick 

frictionless return changes and actual return changes. Following this setup, the L-

step forward frictionless return and actual return can be expressed as follows:  

1 2
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∑  are the sum of all tick-by-tick changes in return over a 

predetermined interval and can be considered as the waiting cost related to 

frictionless returns and actual return. 4  More specifically, they measure the 

costs/gains associated with the latter instead of immediate liquidation of 1 share 

and v shares of stock, respectively. Moreover, if we define the IVaRc and LIVaRc as 

the VaR for 
1

i m
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∑  and 

1
i m
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m
r

+
=
∑ , respectively and compute them from a 

                                                           
4  The waiting cost could be positive or negative, which indicates loss and gain, respectively. 
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predetermined time interval, then the IVaRc and LIVaRc will provide the possible 

loss over a given interval for an investor that trades at frictionless or actual return. 

In other words, the IVaRc and LIVaRc will estimate the possible loss in terms of 

frictionless return and actual return, which are related to market risk and total risk 

(market risk and ex-ante liquidity risk), respectively. Mathematically, consider a 

realization of a sequence of intervals with length int and let   f b
int,t int,ty and y 5 be the 

sum of tick-by-tick changes of returns   f b
i ir and r  over t-th interval, 

( ) 1 ( ) 1

,
( 1) ( 1)

  ;                                             (5)
t t

f f b b
int,t j int t j

j t j t
y r y r

τ τ

τ τ

− −

= − = −

= =∑ ∑   

where ( )tτ  is the index for which the cumulative duration exceeds t-th interval with 

length int for the first time. By definition 

( ) 1 ( )

( 1) ( 1)
  and  .                                                      (6)
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j t j t

int dur int dur
τ τ

τ τ

−

= − = −

≥ ≤∑ ∑  

The process of duration allows aggregating the tick-by-tick data to construct the 

dynamic of frictionless return and actual return for a predetermined interval that 

will allow for consideration of risk in calendar time. Accordingly, the IVaRc and 

LIVaRc 6 for frictionless return changes and actual return changes with confidence 

level 1 α−  for a predetermined interval int are defined as  

( ( ) )f c
int,t int,t tPr y IVaR Iα α< =  

,( ( ) )b c
int t int,v,t tPr y LIVaR Iα α< =  

                                                           
5 

int int  f by and y are defined on both seasonalized return changes and deseasonalized return changes.  
6 IVaRc and LIVaRc are also defined on both seasonalized return changes and deseasonalized return changes. 

Moreover, our IVaRc and LIVaRc can also be used in the strategy of short selling where IVaRc and LIVaRc will be 
the 1-α quantiles of the distributions. 
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tI  is the information set until moment ( 1)tτ − . Similar to the traditional definition 

of VaR, ( )c
int,tIVaR α  and ( )c

int,v,tLIVaR α  are the conditional α-quantiles for f
int,ty  and 

,
b
int ty . 

We can further define the IVaR and LIVaR as the VaR for the frictionless return 

and actual return as following:  

( 1)
F c

int,t t int,tIVaR R IVaRτ −= +
 

( 1)
B c

int,v,t t int,v,tLIVaR R LIVaRτ −= +  

where ( 1)
F

tRτ −  and ( 1)
B

tRτ −  are the frictionless return and actual return at the 

beginning of the t-th interval. Consequently, IVaR and LIVaR estimate the α-

quantiles for frictionless return and actual return at the end of the t-th interval. 

5. Methodology 

In our tick-by-tick modeling, there are three random processes: the duration, the 

changes of frictionless return, and the changes of actual return. The present study 

assumes that the duration evolution is strongly exogenous but has an impact on 

the volatility of frictionless and actual return changes. The joint distribution of 

duration, frictionless return change and actual return change can be decomposed 

into the marginal distribution of duration and joint distribution of frictionless and 

actual return change conditional on duration. More specifically, the joint 

distribution of the three variables is: 

, ,
1 1 1

, ,
1 1 1 1 1 1

( , , , , ; )
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d f b f b f b f
i i i i i i
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Θ
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where , ,d f bf  is the joint distribution for duration, frictionless return change and 

actual return change. ( )df ⋅  is the marginal density for duration and , ( )f bf ⋅  is the 
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joint density for actual and frictionless return changes. Consequently, the 

corresponding log-likelihood function for each joint distribution can be written as: 

, , ,
1 1 1 1 1 1

1
( , ) log ( , , ; ) log ( , , , , ; )      (8)

n
d f b d f b d f b f b f b f b

i i i i i i i i i i
i

L f dur dur r r f r r dur r r durθ θ θ θ− − − − − −
=

= +∑
 

In the next subsections, we specify marginal density for dynamics of duration and 

joint density for frictionless return and actual return changes. We present the 

model for deseasonalized duration, frictionless and actual return changes. The 

deseasonalization procedure is described in detail in Section 6.  

5.1 Model for duration 

The ACD model used to model the duration between two consecutive transactions 

was introduced by Engle and Russell (1998). The GARCH-style structure is 

introduced to capture the duration clustering observed in high-frequency financial 

data. The basic assumption is that the realized duration is driven by its conditional 

duration and a positive random variable as error term. Let 1( )i i iE dur Iψ −=  be the 

expected duration given all the information up to i-1, and iε  be the positive 

random variable. The duration can be expressed as: i i idur ψ ε= ⋅ . There are several 

possible specifications for the expected duration and the independent and 

identically distributed (i.i.d.) positive random error (see Hautsch (2004) and 

Pacurar (2008) for surveys). In order to guarantee the positivity of duration, we 

adopt the log-ACD model proposed by Bauwens and Giot (2000). The 

specification for expected duration is  

1 1
exp ln .                                    (9)

p q

i j i j j i j
j j

ψ ω α ε β ψ− −
= =

 
= + + 

 
∑ ∑  

For positive random errors, we use the generalized gamma distribution, which 

allows a non-monotonic hazard function and nests the Weibull distribution 

(Grammig and Maurer (2000); Zhang, Russell and Tsay (2001)): 
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where 1 2, 0γ γ > , (.)Γ is the gamma function, and 3 2 2
1

1( ) / ( )γ γ γ
γ

= Γ Γ + . 

5.2 Model for frictionless return and actual return changes 

The high-frequency frictionless return and actual return changes display a high 

serial correlation. To capture this microstructure effect, we follow Ghysels and 

Jasiak (1998) and adopt a VARMA (p,q) structure: 

( ) ( )' '

i

i
1 1

, , ,

                                                (11)

b f b f
i i i i i

p q

i m i m n i n
m n

R r r E e e

R R E E− −
= =

= =

= Φ + − ∆∑ ∑
 

where mΦ  and n∆  are matrix of coefficients for i mR −  and i nE − , respectively. As 

mentioned in Dufour and Pelletier (2011), we cannot directly work with the 

representation in (11) because of an identification problem. Consequently, we 

impose the restrictions on n∆ by supposing that the VARMA representation is in 

diagonal MA form. More specifically, 
( )

11
( )
22

0
0

n

n n

δ
δ

 
∆ =  

 
 where ( )

11
nδ  and ( )

22
nδ  are the 

coefficients for nth-lag error terms of the actual return change and frictionless 

return change respectively.  

Furthermore, we assume the volatility part follows a multivariate GARCH process. 

1/ 2  
b
i

i if
i

e
H z

e
 

= 
 

 

where iz  is the bivariate normal distribution that has the following two moments: 

2( ) 0, ( )i iE z Var z I= = . The normality assumption for the error term is supported by 

backtesting. The other distributions we tried, such as Normal Inverse Gaussian 
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(NIG), Student-t or Johnson, overestimated the error distribution in our 

simulation tests. 

iH  is the conditional variance matrix for iR  that should be positive definite. To 

model the dynamic of iH , we use the DCC structure proposed by Engle (2002) in 

which iH  is decomposed as follows: 

11 22

2 2
11 22 11 22

1/ 2 1/ 2

:

( , ),    ,                         

( ) ( )

fb

i i

i i i i

i i i i i i i

i i i i

H D C D
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D diag h h h dur h dur

C diagQ Q diagQ

γγσ σ

− −

=

 = = =


 =

 

, 1'
1 2 1 1 1 2 1 , 1

, 1

(1 ) ,     ,  1, 2                    (12)k i
i i i i k i

kk i

e
Q Q Q k

h
θ θ θ ε ε θ ε −

− − − −
−

= − − + + = =   

iQ  is the unconditional correlation matrix of { } 1

N
i i
ε

=
, 11ih ( 22ih ) is the conditional 

variance for actual (frictionless) return change, and  ( )b fγ γ  measures the impact of 

duration on the volatilities of actual and frictionless return changes, respectively. 

A useful feature of the DCC model is that it can be estimated by a two-step 

approach. Engle and Sheppard (2001) show that the likelihood of the DCC model 

can be written as the sum of two parts: a mean and volatility part, and a correlation 

part. Even though the estimators from the two-step estimation are not fully 

efficient, the one iteration of a Newton-Raphson algorithm applied to total 

likelihood provides asymptotically efficient estimators. 

In the DCC framework each series has its own conditional variance. For both 

actual and frictionless return changes, we adopt a NGARCH(m,n) process as 

proposed by Engle and Ng (1993) to capture the cluster as well as the asymmetry 

in volatility. The process can be written as: 
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where bπ  and fπ are used to capture the asymmetry in the conditional volatilities. 

When   0f borπ π = , the model will become a standard GARCH model, whereas a 

negative   f borπ π  indicates that a negative shock will cause higher conditional 

volatilities for the next moment.  

Our structure also explicitly introduces the duration dimension in conditional 

volatilities. The first study of the impact of duration on volatility by Engle (2000) 

assumes that the impact is linear, that is 2
11, 11,i i ih durσ= ⋅ . As suggested in Dionne, 

Duchesne and Pacurar (2009), this modeling for the unit of time might be 

restrictive for some empirical data for which conditional volatility can depend on 

duration in a more complicated way. To make the model more general, we follow 

Dionne, Duchesne and Pacurar (2009) by assuming the exponential form 
2

11, 11,
b

i i ih durγσ= ⋅ and 2
22, 22,

f
i i ih durγσ= ⋅ . When    0f borγ γ = , the volatility will become 

a standard NGARCH process whereas when    1f borγ γ = , it transforms to the 

similar model studied in Engle (2000).  

As mentioned above, our model has three uncertainties: variation in duration, price 

uncertainty and LOB uncertainty. Deriving a closed form of LIVaRc would be 

complicated for multi-period forecasting in the presence of three risks, especially 

for non-regular time duration. Therefore, once the models are estimated, we follow 
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Christoffersen (2003) and use Monte Carlo simulations to make multi-step 

forecasting and to test the model’s performance. 

6. Empirical Results 

6.1 Seasonality adjustment 

It is well known that high-frequency data behave very differently from 

low-frequency data. Table 1 presents the descriptive statistics of raw and 

deseasonalized duration, frictionless return changes and actual return changes for 

which various volumes are chosen for the three studied stocks. From Panel A, we 

can observe that for the entire sample period (July 2010), SAP is the most liquid 

stock as the average duration is the shortest and the number of observations is the 

largest. MRK is the least liquid one. Moreover, as the variables are constructed on 

tick-by-tick frequency, all three stocks have an average of zero and a very small 

standard deviation for frictionless return changes and actual return changes. All 

three stocks present high kurtosis due to the fact that most of the observations are 

concentrated on their average and co-exist with some extreme values. In addition, 

the raw data are also characterized by extremely high autocorrelation for both first 

and second moments for all of the variables.  

High-frequency data are characterized by seasonality, which should be cleaned out 

before estimating any model. To do so, several approaches have been proposed in 

the literature: Andersen and Bollerslev (1997) use Fourier Flexible Functional 

(FFF) form to take off seasonality, Dufour and Engle (2000) remove seasonality by 

applying a simple linear regression with a dummy, and Bauwens and Giot (2000) 

take off seasonality by averaging over a moving window and linear interpolation.  

[Insert Table 1 here] 

However, as found in Anatolyev and Shakin (2007) and Dionne, Duchesne and 

Pacurar (2009), the high-frequency data could behave differently throughout the 

day as well as between different trading days. Therefore, in order to fully account 
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for the deterministic part exhibited in data, we apply a two-step deseasonalisation 

procedure, interday and intraday. Besides, it should also be noted that there exists 

an open auction effect in our continuous trading dataset similar to the one 

mentioned by Engle and Russell (1998). More precisely, for each trading day, the 

continuous trading follows the open auction in which specialists set a price in 

order to maximize the volume. Once the open auction is finished, the transactions 

are recorded. Consequently, the beginning of continuous trading is contaminated 

by extremely short durations. In addition, these short durations could produce 

negative seasonality factors of duration that are based on previous observations 

and cubic splines. To address this problem, the data for the first half hour are only 

used to compute the seasonality factor and then discarded.  

The interday trend is extracted under a multiplicative form: 
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where ,i sdur , ,
f

i sr , ,
b

i sr  are the ith duration, frictionless and actual return change for 

day s , respectively and sdur , 2( )f
sr , 2( )b

sr  are the daily average for day s for duration, 

squared frictionless, and actual return changes, respectively.  

Based on inter-day deseasonalized data, the intra-day seasonality is removed by 

following Engle and Russell (1998): 
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where ( )i,interE dur , 2(( )f
i,interE r  and 2(( ) )b

i,interE r  are the corresponding deseasonality 

factors constructed by averaging the variables over 30-minute intervals for each 

day of the week and then applying cubic splines to smooth these 30-minute 

averages. The same day of week shares the same intra-deseasonality curve. 
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However, it takes different deseasonality factors according to the moment of 

transaction. Figure 1 illustrates the evolution of the seasonality factors of RWE for 

duration, frictionless, and actual return changes when v = 4000.7 It is not surprising 

to see that the frictionless and actual return changes have similar dynamics for the 

reason that the actual return changes contain the frictionless return changes. 

However, the magnitude is different for frictionless and actual return changes. 

Panel B of Tables 1.1, 1.2 and 1.3 report descriptive statistics of deseasonalized 

durations, frictionless and actual return changes. The raw frictionless and actual 

return changes have been normalized to have the mean equal to zero and standard 

deviation equal to one. However, other statistics such as skewness, kurtosis and 

auto-correlation are not affected by this normalization process. The high kurtosis 

and auto-correlation will be captured by the proposed models. 

[Insert Figure 1 here] 

6.2 Estimation results 

We use the model presented in Section 5 to fit SAP, RWE and MRK 

deseasonalized data. The data cover the first week of July 2010. The data from the 

second week are used as out-of-sample data to test the model’s performance. As 

previously mentioned, the estimation is realized jointly for frictionless and actual 

return changes. The likelihood function is maximized using Matlab v7.6.0 with 

Optimization toolbox. 

Tables 2.1, 2.2 and 2.3 report the estimation results for actual return changes for 

SAP, RWE and MRK for v = 4000, 4000 and 1800 shares, respectively. It should 

be noted that for each stock, the frictionless return changes and actual return 

changes are governed by the same duration process, which is assumed to be strictly 

exogenous. The high clustering phenomenon is indicated in deseasonalized data by 

the Ljung-Box statistic (see Table 1, Panel B). Furthermore, the clustering in 

duration is confirmed by the Log-ACD model. To better fit the data, we retain a 
                                                           
7 Results on other volumes for RWE, SAP and MRK are available upon request. 
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log-ACD (2,1) specification for SAP durations, a Log-ACD(3,1) model for RWE 

durations and a log-ACD(1,1) model for MRK durations. The Ljung-Box statistic 

on standardized residuals of duration provides the evidence that the Log-ACD 

model is capable of removing the high autocorrelation identified in deseasonalized 

duration data. The Ljung-Box statistic with 15 lags is dramatically reduced to 25.08 

for SAP, to 39.7 for RWE and to 21.79 for MRK. 

Frictionless and actual return changes of the three stocks are also characterized by 

a high autocorrelation in level and volatility. Moreover, the Ljung-Box statistics 

with 15 lags on deseasonalized return change and its volatility reject the 

independence at any significance level for the three stocks. Taking the model 

efficiency and parsimony into consideration, a VARMA(4,2)-

MGARCH((1,3),(1,3)))) 8  model is retained for SAP, a VARMA(5,1)-

MGARCH((1,3),(1,3)) model for RWE, and the specification of VARMA(2,2)-

MGARCH((1,3),(1,3)) for MRK. The model adequacy is assessed based on 

standardized residuals and squared standardized residuals. Taking MRK as an 

example, the Ljung-Box statistics for standardized residuals and squared 

standardized residuals of actual return changes computed with 5, 15, 15, 20 lags, 

respectively, are not significant at the 5% level. The Ljung-Box statistic with 15 

lags has been significantly reduced after modeling to 7.72. Similar results are 

obtained for stocks RWE and SAP. 

Regarding the estimated parameters, the sum of coefficients in each individual 

GARCH model is close to one, indicating a high persistence in volatility. 

Furthermore, non-zero of fπ  and bπ  in both structures provides the evidence of 

asymmetry, that is, a negative shock generates a higher conditional volatility for the 

next moment. It also should be noted that bγ  and fγ  are both positive for the 

three stocks. This means that a longer duration will generate a higher volatility for 

both actual return and frictionless return changes. In addition, due to the fractional 

                                                           
8 NGARCH (1,3) for actual return changes and NGARCH(1,3) for frictionless return changes.  
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exponent, the volatility increases with a decreasing speed when duration becomes 

longer. It should be noted that in our model the volatility is the product of 

no-duration scaled variance and duration factor, and the bγ  of actual return 

changes are higher than fγ  of frictionless return changes for the three stocks. This 

implies that the duration factor has a larger impact on actual returns than 

frictionless returns.  

The use of dynamic conditional correlation is justified by the fact that 1θ  and 2θ  in 

equation (12) are both significantly different from zero for the three stocks. As 

expected, the conditional correlation of actual return and frictionless return 

changes is time-varying. The sum of two parameters around 0.8 confirms the high 

persistence of conditional correlation.  

[Insert Table 2 here]  

6.3 Model performance and backtesting  

In this section, we present the simulation procedure and backtesting results on 

simulated deseasonalized and re-seasonalized frictionless and actual return changes. 

Once the model is estimated on tick-by-tick frequency, we can test the model 

performance and compute frictionless IVaRc and LIVaRc by Monte Carlo 

simulation. One of the advantages of our method is that once the model is 

estimated, we can compute the simulated deseasonalized IVaRc and LIVaRc for any 

horizon without re-estimating the model. In addition, we can compute the 

simulation-based re-seasonalized IVaRc and LIVaRc in traditional calendar time 

using the available seasonal factors. 

We choose different time intervals to test the model performance. The interval 

lengths are: 40, 50, 60, 80, 100, 120 and 140 units of time for more liquid stocks 

SAP and RWE and 20, 30, 40, 50, 60, 80 and 100 for less liquid stock MRK. As the 

model is applied to deseasonalized data, the simulated duration is not in calendar 

units. However, they are related in a proportional way. It should also be noticed 
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that, according to the trading intensity, the simulated duration does not correspond 

to the same calendar time interval. For a more liquid stock, the same simulated 

interval relates to a shorter calendar time interval. For instance, in the case of 

MRK, the interval-length 50 re-samples the one-week data for 190 intervals and 

corresponds to 13.42 minutes and the 100 interval-length relates to 95 intervals 

and corresponds to 26.84 minutes. However, for a more liquid stock such as SAP, 

50 interval-length corresponds to 5.45 minutes and 140-interval-length to 15.27 

minutes.  

The simulations for frictionless and actual return changes are realized as follows: 

1) We generate the duration between two consecutive transactions since we assume 

that the duration process is strongly exogenous.  

2) With the simulated duration and estimated coefficients of the VARMA-

NGARCH model, we obtain the corresponding return changes.  

3) We repeat steps 1 and 2 for 10,000 paths and re-sample the data at each path 

according to the predetermined interval.  

4) For each interval, we compute the corresponding IVaRc and LIVaRc at the 

desired level of confidence. To conduct the backtesting for each given interval, we 

also need to construct the return changes for original out-of-sample data.  

To validate the model, we conduct the Unconditional Coverage and Independence 

tests by applying Kupiec test (1995) and Christoffersen test (1998). The Kupiec 

test checks whether the empirical failure rate is statistically different from the 

failure rate we are testing, whereas the Christoffersen test aims at evaluating the 

independence aspect of the violations. More specifically, it rejects VaR models that 

generate clustered violations by estimating a first order Markov chain model on the 

sequence. Table 3 reports the p-values for the Kupiec and the Christoffersen tests 

upon simulated data for confidence levels of 95%, 97.5%, 99% and 99.5%. The 

time interval varies from 5 minutes to 15 minutes for SAP, from 5 minutes to 
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16.67 minutes for RWE and from 5 minutes to 27 minutes for MRK. Most of p-

values are higher than 5% indicating that, in general, the model captures well the 

distribution of frictionless and actual return changes.  

[Insert Table 3 here] 

Since most of trading and risk management decisions are based on the calendar 

time and raw data, it might be difficult for practitioners to use simulated 

deseasonalized data to conduct risk management. To this end, we conduct another 

Monte Carlo simulation that takes into account the time-varying deterministic 

seasonality factors. The process is similar to that used for simulating 

deseasonalized data. However, the difference is that we re-introduce the seasonality 

factors for duration, actual return changes and frictionless return changes. As 

seasonality factors vary from one day to another, the simulation should take the 

day of week into account. More precisely, for the first day, simulated durations are 

converted to a calendar time of that day and then the corresponding timestamp 

will identify the seasonality factors for actual and frictionless return changes. The 

simulation process will continue until the corresponding timestamp surpasses the 

closing time for the underlying day. In the case of a multiple-day simulation, the 

processes will continue for another day. Based on the simulated re-seasonalized 

data, we also compute our IVaRc and LIVaRc by repeating the same algorithm.  

Table 4 presents the backtesting results on the re-seasonalized simulated data. The 

time interval varies from 5 minutes to 10 minutes for the three stocks and the 

confidence levels to test are 95%, 97.5%, 99% and 99.5%. Similar to the test results 

for simulated deseasonalized data, both the Unconditional Coverage test and 

Independence test suggest that the simulated re-seasonalized data can also provide 

reliable high-frequency risk measures for all chosen confidence levels over intervals 

from 5 to 10 minutes.  

[Insert Table 4 here] 
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7 Risks for Waiting Cost, Ex-ante Liquidity Risk and Various IVaRs 

7.1 Risks for waiting cost  

As shown in Section 4, the sums of tick-by-tick frictionless return changes and 

actual return changes over a given interval can be viewed as the waiting costs 

related to market risk and total risk, which contains market risk and ex-ante 

liquidity risk. Consequently, the corresponding IVaRc and LIVaRc estimate the risk 

of losses on these waiting costs. Based on simulated re-seasonalized data from 

previous section that contain the determinist (seasonal factor) and random (error 

term) elements, we can further investigate the effect of the ex-ante liquidity risk 

embedded in the open LOB on the total risk. To this end, we define an impact 

coefficient of ex-ante liquidity risk9: 

𝛤𝑖𝑛𝑡,𝑣 =   
𝐿𝐼𝑉𝑎𝑅𝚤𝑛𝑡,𝑣

𝑐� −  𝐼𝑉𝑎𝑅𝚤𝑛𝑡𝑐�

𝐿𝐼𝑉𝑎𝑅𝚤𝑛𝑡,𝑣
𝑐�                     (17)            

As mentioned above, c
int,tIVaR  and c

int,v,tLIVaR  are the VaRs for frictionless return 

changes and actual return changes of volume v for the t-th interval. As we simulate 

the data in the tick-by-tick framework, we can compute the c
int,tIVaR  and c

int,v,tLIVaR  

for any desired interval. Accordingly, 𝐼𝑉𝑎𝑅𝚤𝑛𝑡𝑐�  and 𝐿𝐼𝑉𝑎𝑅𝚤𝑛𝑡,𝑣
𝑐�  are the averages of 

c
int,tIVaR  and c

int,v,tLIVaR . As a result, int,vΓ  assesses, on average, the impact of the 

ex-ante liquidity risk of volume v on total risk for a given interval. Figure 2 shows 

how the impact coefficients of ex-ante liquidity perform for intervals from 3 

minutes to 10 minutes for the three stocks.  

[Insert Figure 2 here] 

There are two interesting points to stress after observing the plots. First, the curve 

is globally increasing, that is, in most of the times, the impact coefficient of the ex-

ante liquidity increases when interval increases and will finally converge to its long-
                                                           
9 The risk measures in equation (17) are computed for confidence level 95%; in practice, other confidence levels can 
also be used. 
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run level. It should be noted that the relation of frictionless return changes and 

actual return changes can be explicitly expressed by ,b f LOB
i i ir r r= +  where LOB

ir is the 

volume-dependent LOB return change for i-th transaction. Econometrically, as the 

sum of two ARMA structures is also an ARMA structure (Engel (1984)), the 

difference of the frictionless return changes and the actual return changes follow 

implicitly another ARMA structure. Accordingly, the relationship of c
int,tIVaR  and 

c
int,v,tLIVaR  can be generally written as: 

int,                                 (18)c c c F,LOB
int,v,t t int,v,t int,v,tLIVaR IVaR LOBIVaR Dep= + +   

c
int,v,tLOBIVaR  measures the risk associated with the open LOB and F,LOB

int,v,tDep  presents 

the dependence between the frictionless return changes and the actual return 

changes, which can stand for various dependence measures. However, in our 

specific modeling, F,LOB
int,v,tDep  is the covariance between f

ir and LOB
ir . Therefore, the 

numerator of equation (17) is the sum of c
int,v,tLOBIVaR and F,LOB

int,v,tDep . The fact that the 

curve is globally increasing in time is due to the higher autocorrelation in LOB 

return changes over time, which are the changes of magnitude in LOB caused by a 

given ex-ante volume.  

The convergence means that, for the long run, the sum of c
int,v,tLOBIVaR and F,LOB

int,v,tDep  

is proportional to c
int,v,tLIVaR . Recall that in a general GARCH framework, the 

forward multi-step volatility will converge to its unconditional level. In the present 

study, once the intervals include sufficient ticks for which the volatilities of both 

LOB return changes and frictionless return changes reach their unconditional 

levels, the volatilities of the sum of both return changes will increase with the same 

speed and therefore the impact coefficient of the ex-ante liquidity will converge to 

its asymptotic level.  

Second, it is interesting to observe that the impact coefficients of ex-ante liquidity 

of RWE stock are negative for a volume of 1000 shares and become positive when 
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volumes are 2000, 3000 and 4000 shares. A negative impact coefficient of ex-ante 

liquidity indicates that volatility for the actual return changes is less than that of the 

frictionless return changes. In other words, the ex-ante liquidity risk embedded in 

LOB offsets the market risk. This again results from the fact that off-best levels of 

LOB are more stable than first level. Based on equation (18), when the volume is 

small, the negative correlation between frictionless return change and LOB return 

change plays a more important role in determining the sign of the impact 

coefficients of ex-ante liquidity. However, for a higher ex-ante volume, the risk of 

LOB return change also increases but faster than its interaction with frictionless 

return change. Consequently, the impact coefficients of ex-ante liquidity become 

positive.  

7.2 High-frequency ex-ante liquidity premium 

Based on the tick-by-tick simulation, we can also compute the high-frequency 

IVaR and LIVaR for frictionless return and actual return. Using IVaR and LIVaR 

of the same stock, we can further define a relative interval-dependent liquidity 

premium as follows: 

                                              (19)int,v,t int,t
int,v,t

int,v,t

LIVaR IVaR
LIVaR

−
Λ =  

Similar to the liquidity ratio proposed in Giot and Grammig (2006), int,tIVaR  and 

int,v,tLIVaR  are the VaR measures for frictionless return and actual return at the end 

of t-th interval and int is the predetermined interval such as 5-min, 10-min, etc. It 

should be noticed that our defined actual return and frictionless return do not have 

the time-additivity property but the frictionless return changes and actual return 

changes do. Even though the VaR based on frictionless return changes and actual 

return changes can be used directly in practice, in some situations, practitioners 

might want to predict their potential loss on frictionless return or actual return 

instead of frictionless and actual return changes for a precise calendar time point.  
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To illustrate how our model can be used to provide the ex-ante risk measure for 

frictionless return and actual return, we first compute the return changes for 

frictionless returns and actual returns, then calculate the instantaneous frictionless 

return and actual return at the beginning of the given interval using equations (3) 

and (4). Once we know the frictionless return and actual return at the beginning of 

a given interval, we can obtain the frictionless return and actual return for the end 

of the interval. Figure 3 illustrates how the frictionless return and actual return at 

the end of an interval are computed. Figure 4 then illustrates the evolutions of 

IVaR and LIVaR associated with a large liquidation volume for SAP, RWE and 

MRK during one out-of-sample day, July 12th, 2010. For the three stocks, the IVaR 

and LIVaR both present an inverse U shape during the trading day. However, for 

the more liquid stock SAP, the IVaR and LIVaR are less volatile than those of the 

less liquid stocks RWE and MRK. It also seems that the total risk is smaller during 

the middle of day. Nonetheless, it should be noted that the smaller VaR in absolute 

terms does not mean we should necessarily trade at that moment. The IVaR and 

LIVaR only provide the estimates of potential loss for a given probability at a 

precise point in time.  

[Insert Figure 3 here] 

[Insert Figure 4 here] 

In addition, the difference between curves on each graph, which measures the risk 

associated with ex-ante liquidity, varies with time. This is due to the fact that LOB 

interacts with trades and also changes during the trading days. Smaller (bigger) 

difference indicates a deeper (shallower) LOB. More specifically, for the least liquid 

stock, MRK, the ex-ante liquidity risk is more pronounced even for a relatively 

smaller quantity of 1800 shares. Regarding the more liquid stocks such as SAP and 

RWE, the ex-ante liquidity risk premiums are much smaller even for the relatively 

larger quantities of 4000 shares. This again suggests that the ex-ante liquidity risk 
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becomes more severe when the liquidation quantity is large and the stock is less 

liquid.  

7.3 Comparison of LIVaR and other intraday VaRs  

Our proposed IVaR and LIVaR, which are validated by backtesting, allow us to 

conduct more analysis on ex-ante liquidity and compare them with other 

high-frequency risk measures in existing literature. 

The standard IVaR proposed by Dionne, Duchesne and Pacurar (2009) is based on 

a transaction price that is similar to the closing price in daily VaR computation. 

However, the resulting IVaR serves as a measure of potential loss of ‘paper value’ 

for a frozen portfolio and it omits the ex-ante liquidity dimension. To some extent, 

the IVaR accounts for an ex-post liquidity dimension; more specifically, it 

measures the liquidity already consumed by the market. However, active traders are 

more concerned with ex-ante liquidity because it is related to their liquidation 

value. For any trader, the risk related to liquidity is always present and the omission 

of this liquidity dimension can cause a serious distortion from the observed 

transaction price especially when the liquidation volume is large.  

Another major difference is that before obtaining LIVaR, we should compute 

LIVaRc for actual return changes, which gives the potential loss in terms of waiting 

costs over a predetermined interval. Accordingly, the resulting LIVaR provides a 

risk measure for actual return at a given point in time while the standard IVaR is 

based on tick-by-tick log-returns, which have time-additive property. It thus 

directly gives a risk measure in terms of price for a given interval.   

The high-frequency VaR proposed by Giot and Grammig (2006) is constructed on 

mid-quote price and ex-ante liquidation price over an interval of 10 or 30 minutes. 

The mid-quote price is usually considered as the efficient market price in market 

microstructure theory. However, from a practical perspective, the traders can rarely 

obtain the mid-quote price during their transactions. Therefore, the use of mid-



30 

quote price will underestimate the risk faced by high-frequency traders. Instead of 

taking the mid-quote price as the frictionless benchmark, we take a more realistic 

price, best bid price, as the frictionless price for traders who aim at liquidating their 

stock. Consequently, for active day-traders, our LIVaR can be considered an upper 

bond of risk measure that provides the maximum p-th quantile in absolute value 

when liquidating a given volume v. Figure 5 illustrates the difference in 

constructing the frictionless returns and actual returns. 

[Insert Figure 5 here] 

8. Conclusion 

In this paper, we introduce the ex-ante liquidity dimension in an intraday VaR 

measure using tick-by-tick data. In order to take the ex-ante liquidity into account, 

we first reconstruct the LOB for three blue chip stocks actively traded in Deutsche 

Börse (SAP, RWE and MRK) and then define the tick-by-tick actual return that is 

the log ratio of ex-ante liquidation price computed from a predetermined volume 

over the previous best ask price. Correspondingly, the proposed IVaRc and LIVaRc 

are based on the frictionless return changes and actual return changes and relate to 

the ex-ante loss in terms of actual return. In other words, both risk measures can 

be considered as the waiting costs associated with market risk and liquidity risk.  

In order to model the dynamic of actual return, we use a logACD-VARMA-

MGARCH structure that allows for both the irregularly spaced durations between 

two consecutive transactions and stylized facts in changes of actual return. In this 

setup, the time dimension is supposed to be strongly exogenous. Once the model 

is estimated, Monte Carlo simulations are used to make multiple-steps forecasts. 

More specifically, the log-ACD process generates first the tick-by-tick duration 

while the VARMA-MGARCH simulates the corresponding conditional tick-by-tick 

frictionless return changes and actual return changes. The model performance is 

assessed by using the tests of Kupiec (1995) and Christoffersen (1998) on both 

simulated deseasonalized and re-seasonalized data. Both tests indicate that our 
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model can correctly capture the dynamics of frictionless returns and actual returns 

over various time intervals for confidence levels of 95%, 97.5%, 99% and 99.5%.  

Our LIVaR provides a reliable measure of total risk for short horizons. In addition, 

the simulated data from our model can be easily converted to data in the calendar 

time. Practically, the potential users of our measure could be the high-frequency 

traders that need to specify and update their trading strategies within a trading day 

or the market regulators who aim to track the evolution of market liquidity, and the 

brokers and clearing houses that need to update their clients’ intraday margins.  

Future research can continue in several directions. Our study is focused on a single 

stock ex-ante liquidity risk. A possible alternative is to investigate how the IVaR 

and LIVaR evolve in the case of a portfolio. In particular, the no-synchronization 

of the durations between two consecutive transactions for each stock is a 

challenge. Another direction is to test the role of ex-ante liquidity in different 

regimes. Our study focuses on the liquidity risk premium in a relatively stable 

period. It could also be interesting to investigate how the liquidity risk behaves 

during a crisis period. This study will require a more complicated econometric 

model to take into account different regimes.  
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Flowchart for Computing Impact Coefficient of Ex-ante Liquidity Risk  
and Ex-ante Liquidity Premium 

 

 
 

(a): Compute durations, frictionless returns and actual returns based on raw data. 

(b): Construct the frictionless return changes and actual return changes. 

(c): Remove seasonality from durations, frictionless return changes and actual return changes. 

(d): Estimate the model. 

(e): Backtest deseasonalized IVaRc and LIVaRc. 

(f): Compute the re-seasonalized data by re-introducing the seasonal factors. 

(g): Backtest re-seasonalized IVaRc and LIVaRc. 

(h): Compute the Impact coefficient of ex-ante liquidity risk.  

(i): Compute the IVaR and LIVaR for frictionless return and actual return. 

(j): Derive the ex-ante liquidity risk premium. 
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Table 1.1: Descriptive Statistics for SAP Raw and Deseasonalized Data  
The table shows the descriptive statistics for raw durations, actual return changes when Q=2000, 4000, 6000, 8000 

and frictionless return changes. The sample period is the first 2 weeks of July 2010 with 44,467 observations. 

Panel A :  SAP Raw data 
  Mean Std.Dev Skew Kurt Min Max LB(15) LB2(15) 

Duration 6.43 13.21 4.58 37.28 1.00E-03 292.75 6909.93 1426.06 

FR Change 6.39E-09 1.93E-04 0.10 6.01 -1.98E-03 1.47E-03 6408.48 7082.94 
AR(Q=8000) -7.77E-09 1.66E-04 0.13 8.13 -1.92E-03 2.14E-03 5096.10 6512.58 
AR(Q=6000) -6.25E-09 1.66E-04 0.10 7.43 -1.93E-03 1.72E-03 5252.56 6021.21 
AR(Q=4000) -4.73E-09 1.68E-04 0.09 7.79 -1.96E-03 2.11E-03 5374.51 5185.26 
AR(Q=2000) -2.76E-09 1.72E-04 0.11 7.15 -1.98E-03 1.90E-03 5514.05 5156.26 

Panel B :  SAP  Deseasonalized Data 
Duration 1.00 1.88 4.21 37.82 0.00 52.68 4345.54 1528.45 

FR Change -1.33E-04 1.01E+00 0.07 5.99 -10.96 7.21 6411.40 5923.61 
AR(Q=8000) -4.32E-05 1.04E+00 0.08 9.99 -15.37 11.25 5043.46 6599.80 

AR(Q=6000) -1.05E-05 1.04E+00 0.08 9.45 -13.07 12.60 5184.79 7189.66 
AR(Q=4000) -6.65E-05 1.03E+00 0.07 8.33 -12.78 10.76 5324.84 5661.21 
AR(Q=2000) -1.37E-04 1.02E+00 0.09 7.26 -12.78 9.69 5501.73 4684.47 

 

Table 1.2: Descriptive Statistics for RWE Raw and Deseasonalized Data 

The table shows the descriptive statistics for raw durations, actual return changes when Q=1000, 2000, 3000, 4000 

and frictionless return changes. The sample period is the first 2 weeks of July 2010 with 37,394 observations. 

Panel A :  RWE  Raw data 
  Mean Std.Dev Skew Kurt Min Max LB(15) LB2(15) 

Duration 7.64 15.88 4.75 37.53 1.00E-03 296.58 10061.17 2479.01 
FR Change -3.10E-08 2.51E-04 0.12 7.51 -3.07E-03 2.49E-03 5091.89 7971.04 

AR(Q=4000) -4.33E-08 2.23E-04 0.22 10.01 -2.96E-03 2.38E-03 3940.66 10253.80 
AR(Q=3000) -4.05E-08 2.25E-04 0.18 10.00 -3.29E-03 2.37E-03 4022.16 10239.86 
AR(Q=2000) -3.70E-08 2.27E-04 0.18 9.19 -3.22E-03 2.33E-03 4131.99 10306.19 
AR(Q=1000) -3.12E-08 2.32E-04 0.16 8.75 -3.19E-03 2.42E-03 4364.74 11046.85 

Panel B :  RWE Deseasonalized Data 
Duration 0.97 1.73 3.71 24.51 2.45E-05 28.63 3101.10 577.62 

FR Change -7.80E-05 0.98 0.12 6.00 -8.55 7.80 5123.94 5093.30 
AR(Q=4000) -1.23E-04 0.99 0.20 7.32 -8.61 10.11 3930.82 4781.76 
AR(Q=3000) -1.13E-04 0.98 0.18 7.08 -9.52 9.60 4002.22 4796.94 
AR(Q=2000) -1.01E-04 0.98 0.17 6.66 -9.40 9.14 4101.41 4888.15 
AR(Q=1000) -8.61E-05 0.98 0.17 6.38 -9.27 8.52 4315.98 5519.57 
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Table 1.3: Descriptive Statistics for MRK Raw and Deseasonalized Data 

The table shows the descriptive statistics for raw durations, actual return changes when Q=900, 1800, 2700 and 

frictionless return changes. The sample period is the first 2 weeks of July 2010 with 17,472 observations. 

Panel A : MRK  Raw data 
  Mean Std.Dev Skew Kurt Min Max LB(15) LB2(15) 

Duration 16.31 36.40 5.16 47.06 0.001  718.35 2157.42 905.39 
FR Change -3.83E-09 3.11E-04 0.00 15.52 -5.03E-03 4.25E-03 2551.10 4125.30 

AR(Q=2700) -1.33E-08 2.74E-04 -0.02 24.71 -4.71E-03 3.75E-03 1672.50 2303.16 
AR(Q=1800) -9.58E-09 2.79E-04 0.17 24.70 -4.77E-03 4.74E-03 1754.34 2308.44 
AR(Q=900) -6.82E-09 2.84E-04 0.24 21.74 -4.82E-03 4.50E-03 1890.60 3030.64 

Panel B :  MRK Deseasonalized Data 
Duration 0.97 1.95 4.13 29.42 1.581E-05 26.65 736.41 150.75 

FR Change -2.55E-04 1.01 0.06 13.44 -13.87 11.61 2537.61 4884.19 
AR(Q=2700) -2.78E-04 1.03 0.14 15.67 -14.65 11.65 1670.95 2537.68 
AR(Q=1800) -2.81E-04 1.03 0.20 17.60 -14.15 15.63 1730.01 2201.63 
AR(Q=900) -2.68E-04 1.02 0.33 16.44 -13.79 16.86 1862.13 2289.72 
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Table 2.1: Estimation Results SAP (v = 4000) 

The column Statistics reports the Ljung-Box statistic on standardized residuals of duration, actual return changes 
and squared standardized residuals for different lags. The bold entries are the estimation coefficients that are not 
significant from zero and the Ljung-Box statistics that reject the no-correlation in the residuals.  

Estimation log-ACD(2,1)-VARMA(4.2)- NGARCH((1.3).(1.3))  (Obs =21089) 

A
C

D
(2

.1
)  

Parameters Estimation Std Error Statistics  

𝛼1 0.127  0.009  LB test on Residuals 

𝛼2 -0.049  0.009  Lags Statistic C_Value 
𝛽1 0.963  0.004  5 5.364 11.070 
𝛾1 0.812  0.022  10 13.045 18.307 
𝛾2 0.419  0.016  15 25.077 24.996 

𝜔 -0.081  0.004  20 30.561 31.410 

A
ct

ua
l R

et
ur

n 
C

ha
ng

es
 

V
A

R
M

A
(4

.2
)-

N
G

A
R

C
H

((
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3)
.(1

,3
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𝜑11
(1) 1.043 0.088 

 LB test on Residuals 
𝜑12

(1) -0.322 0.010 

𝜑11
(2) -0.154 0.061 Lags Statistic C_Value 

𝜑12
(2) 0.089 0.031 5 5.291 11.070 

𝜑11
(3) -0.031 0.016 10 13.424 18.307 

𝜑12
(3) 0.047 0.014 15 16.106 24.996 

𝜑11
(4) 0.032 0.011 20 18.769 31.410 

𝜑12
(4) 0.008 0.012 

 LB test on Squared Residuals 
𝛿11

(1) -1.338 0.087 

𝛿11
(2) 0.353 0.085 Lags Statistic C_Value 

𝜔𝑏 0.088 0.004 5 3.395 11.070 

𝛼1𝑏 0.412 0.022 10 15.405 18.307 

𝛽1𝑏 0.159 0.006 15 18.925 24.996 

𝜋𝑏 0.404 0.022 20 21.266 31.410 

𝛼3𝑏 0.308 0.018       

𝛾𝑏 0.073 0.002       
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𝜑22
(1) 0.6055 0.0693 LB test on Residuals 

𝜑21
(1) 0.1754 0.0093 

𝜑22
(2) -0.0401 0.0175 Lags Statistic C_Value 

𝜑21
(2) -0.0593 0.0187 5 15.811 11.070 

𝜑22
(3) 0.0488 0.0133 10 21.046 18.307 

𝜑21
(3) -0.0199 0.0103 15 23.203 24.996 

𝛿22
(1) -1.4122 0.0690 20 32.595 31.410 

𝛿22
(2) 0.4265 0.0669 LB test on Squared Residuals 
𝜔𝑓 0.0716 0.0037 
𝛼1
𝑓 0.4799 0.0305 Lags Statistic C_Value 

𝛽1
𝑓 0.1612 0.0074 5 7.794 11.070 

𝜋𝑓 0.3466 0.0254 10 17.916 18.307 

𝛼3
𝑓 0.2472 0.0237 15 21.902 24.996 

𝛾𝑓 0.0377 0.0025 20 24.743 31.410 

DCC  
parameter 

𝜃1 0.0791 0.0032 
   𝜃2 0.7537 0.0113 
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Table 2.2: Estimation Results RWE (v = 4000) 

The column Statistics reports the Ljung-Box statistic on standardized residuals of duration, 
actual return changes and squared standardized residuals for different lags. The bold entries are 
the estimation coefficients that are not significant from zero and the Ljung-Box statistics that 
reject the no-correlation in the residuals.  

Estimation log-ACD(3,1) VARMA(5.1)- NGARCH((1.3).(1.3))  (Obs =15320) 

A
C

D
(3

.1
)  

Parameter Estimation StdError Statistics 
𝛼1 0.108  0.010  

LB test on Residuals 
𝛼2 -0.020  0.013  
𝛼3 -0.024  0.009  Lags Statistic C_Value 
𝛽1 0.970  0.004  5 9.209 11.070 
𝛾1 1.145  0.028  10 20.280 18.307 
𝛾2 0.280  0.010  15 39.712 24.996 
𝜔 -0.068  0.004  20 44.304 31.410 
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𝜑11
(1) 0.710 0.012 

 LB test on Residuals 𝜑12
(1) -0.333 0.011 

𝜑11
(2) 0.047 0.014 

𝜑12
(2) 0.005 0.013 Lags Statistic C_Value 

𝜑11
(3) 0.006 0.014 5 10.161 11.070 

𝜑12
(3) 0.024 0.013 10 14.653 18.307 

𝜑11
(4) 0.006 0.014 15 27.042 24.996 

𝜑12
(4) 0.009 0.013 20 30.095 31.410 

𝜑11
(5) 0.041 0.012 

LB test on Squared Residuals 𝜑12
(5) 0.007 0.012 

𝛿11
(1) -0.980 0.002 

𝜔𝑏 0.099 0.006 Lags Statistic C_Value 
𝛼1𝑏 0.437 0.030 5 4.356 11.070 
𝛽1𝑏 0.156 0.008 10 8.474 18.307 
𝜋𝑏 0.461 0.029 15 11.071 24.996 
𝛼3𝑏 0.260 0.023 20 14.102 31.410 
𝛾𝑏 0.067 0.003 
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𝜑22
(1) 0.2324 0.0123 

 
   

𝜑21
(1) 0.1447 0.0109 

 LB test on Residuals 
𝜑22

(2) 0.0374 0.0132 

𝜑21
(2) 0.0048 0.0131 Lags Statistic C_Value 

𝜑22
(3) 0.0746 0.0135 5 6.378 11.070 

𝜑21
(3) -0.0428 0.0133 10 9.420 18.307 

𝜑22
(4) 0.0305 0.0138 15 13.824 24.996 

𝜑21
(4) -0.0168 0.0132 20 22.560 31.410 

𝜑22
(5) 0.0205 0.0128 

 𝜑21
(5) 0.0179 0.0114 

𝛿22
(1) -0.9805 0.0018 

LB test on Squared Residuals 
𝜔𝑓 0.0711 0.0049 
𝛼1
𝑓 0.4586 0.0343 Lags Statistic C_Value 

𝛽1
𝑓 0.1436 0.0080 5 7.403 11.070 

𝜋𝑓 0.4531 0.0359 10 16.284 18.307 
𝛼3
𝑓 0.2731 0.0276 15 19.750 24.996 

𝛾𝑓 0.0299 0.0029 20 22.811 31.410 
DCC  

parameter 
𝜃1 0.0813 0.0043 

   𝜃2 0.7791 0.0135 
    

  



40 

Table 2.3: Estimation Results MRK (v = 1800) 

The column Statistics reports the Ljung-Box statistic on standardized residuals of duration, actual return changes 
and squared standardized residuals for different lags. The bold entries are the estimation coefficients that are not 
significant from zero and the Ljung-Box statistics that reject the no-correlation in the residuals.  

Estimation log-ACD(1,1)-VARMA(1.1)-NGARCH((1.3).(1.3))  (Obs =7653) 

A
C

D
(1

.1
)  

Parameter Estimation StdError 
Statistics 

LB test on Residuals 
𝛼1 0.048  0.005  Lags Statistic C_Value 
𝛽1 0.984  0.004  5 8.240 11.070 
𝛾1 0.784  0.034  10 17.239 18.307 
𝛾2 0.382  0.025  15 21.796 24.996 
𝜔 -0.049  0.005  20 25.006 31.410 
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𝜑11
(1) 0.9401 0.0599  LB test on Residuals 

𝜑12
(1) -0.3679 0.0149 Lags Statistic C_Value 

𝜑11
(2) -0.0316 0.0515 5 11.971 11.070 

𝜑12
(2) 0.0945 0.0264 10 25.105 18.307 

𝛿11
(1) -1.1788 0.0584 15 27.396 24.996 

𝛿11
(2) 0.2028 0.0565 20 29.201 31.410 
𝜔𝑏 0.1543 0.0109  LB test on Squared Residuals  

𝛼1𝑏 0.3863 0.0341 Lags Statistic C_Value 
𝛽1𝑏 0.1877 0.0115 5 1.818 11.070 
𝜋𝑏 0.4853 0.0328 10 3.084 18.307 
𝛼3𝑏 0.2238 0.0289 15 7.719 24.996 
𝛾𝑏 0.0861 0.0032 20 10.320 31.410 
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𝜑22
(1) 0.4737 0.0725  LB test on Residuals 

𝜑21
(1) 0.1822 0.0129 Lags Statistic C_Value 

𝜑22
(2) 0.0422 0.0228 5 20.248 11.070 

𝜑21
(2) -0.0652 0.0179 10 28.844 18.307 

𝛿22
(1) -1.2728 0.0712 15 30.197 24.996 

𝛿22
(2) 0.3020 0.0677 20 34.977 31.410 
𝜔𝑓 0.1551 0.0119  LB test on Squared Residuals 

𝛼1
𝑓 0.4034 0.0378 Lags Statistic C_Value 

𝛽1
𝑓 0.2373 0.0163 5 4.348 11.070 

𝛼3
𝑓 0.1670 0.0272 10 11.419 18.307 

𝛾𝑓 0.0525 0.0039 15 22.855 24.996 
DCC  

parameter 
𝜃1 0.1009 0.0027 20 35.233 31.410 
𝜃2 0.6775 0.0159 
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Table 3: Backtesting on Simulated Deseasonalized Data  

Panel A: SAP Out-of-sample Backtesting on Deseasonalized Actual Return Change (v = 4000) 

Interval  
(in 

units) 

Kupiec Test  Christoffersen Test Nb of  
Intervals 

Time interval 
in minutes 5% 2.50% 1% 0.50%  5% 2.50% 1% 0.50% 

40 0.001 0.010 0.717 0.191  0.407 0.724 0.769 0.953 585 4.36 
50 0.097 0.133 0.160 0.321  0.302 0.669 0.896 0.948 468 5.45 
60 0.907 0.090 0.286 0.971  0.174 0.747 0.919 0.919 390 6.54 
80 0.313 0.796 0.548 0.264  0.376 0.530 0.773 0.803 292 8.73 
100 0.078 0.062 0.320 0.872  0.709 0.852 0.926 0.926 234 10.90 
120 0.342 0.679 0.971 0.980  0.503 0.723 0.838 0.919 195 13.08 
140 0.200 0.231 0.573 0.196  0.619 0.825 0.912 # 167 15.27 

 

Panel B: RWE Out-of-sample Backtesting on Deseasonalized Actual Return Change (v = 4000) 

Interval  
(in 

units) 

Kupiec Test  Christoffersen Test Nb of  
Intervals 

Time interval 
in minutes 5% 2.50% 1% 0.50%  5% 2.50% 1% 0.50% 

40 0.001 0.002 0.095 0.239 
 

0.477 0.832 0.902 0.951 535 4.77 
50 0.134 0.589 0.891 0.923 

 
0.313 0.557 0.783 0.891 428 5.96 

60 0.217 0.292 0.362 0.874 
 

0.341 0.679 0.881 0.881 357 7.14 
80 0.106 0.258 0.239 0.761 

 
0.510 0.762 0.931 0.931 267 9.55 

100 0.109 0.877 0.577 0.126 
 

0.591 0.661 0.811 0.811 214 11.92 
120 0.145 0.460 0.522 0.909 

 
0.590 0.748 0.915 0.915 178 14.33 

140 0.626 0.299 0.646 0.797 
 

0.538 0.817 0.908 0.908 153 16.67 
 

Panel C: MRK Out-of-sample Backtesting on Deseasonalized Actual Return Change (v = 1800) 

Interval  
(in 

units) 

Kupiec Test  Christoffersen Test Nb of  
Intervals 

Time interval 
in minutes 5% 2.50% 1% 0.50%  5% 2.50% 1% 0.50% 

20 0.006 0.120 0.384 0.699  0.430 0.647 0.845 0.845 476 5.36 
30 0.026 0.119 0.152 0.617  0.547 0.782 0.936 0.936 317 8.04 
40 0.021 0.058 0.309 0.857  0.642 0.854 0.927 0.927 238 10.71 
50 0.213 0.384 0.942 0.959  0.530 0.756 0.836 0.918 190 13.42 
60 0.470 0.613 0.747 0.820  0.490 0.732 0.820 0.910 158 16.14 
80 0.055 0.179 0.122 0.275  0.793 0.896 # # 119 21.43 
100 0.378 0.800 0.959 0.506  0.656 0.768 0.883 0.883 95 26.84 

 

The table contains the p-values for Kupiec and Christoffersen tests for the stocks SAP, RWE and MRK. 
Interval is the interval length used for computing the LIVaR. Nb of intervals is the number of intervals 
for out-of sample analysis and Time interval in minutes are the corresponding calendar times. Bold entries 
indicate the rejections of the model at 95% confidence level. When the numbers of hits are less than two, 
the p-values are denoted by #. 
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Table 4: Backtesting on Simulated Re-seasonalized Data 

Panel A: SAP Out-of-sample Backtesting on Raw Actual Return Change (v = 4000) 

Interval  
(in 

mins) 

Kupiec Test  Christoffersen Test Nb of  
Intervals 5% 2.50% 1% 0.50%  5% 2.50% 1% 0.50% 

5 0.445 0.420 0.091 0.017  0.612 0.444 0.130 0.675 485 
6 0.132 0.483 0.256 0.986  0.334 0.570 0.888 0.888 405 
7 0.072 0.160 0.803 0.838  0.053 0.332 0.818 0.878 345 
8 0.588 0.566 1.000 0.663  0.297 0.651 0.841 # 300 
9 0.670 0.923 0.209 0.220  0.500 0.132 0.697 0.832 270 
10 0.066 0.726 0.362 0.520  0.081 0.552 0.752 0.898 245 

 

Panel B: RWE Out-of-sample Backtesting on Raw Actual Return Change (v = 4000) 

Interval  
(in mins) 

Kupiec Test  Christoffersen Test Nb of  
Intervals 5% 2.50% 1% 0.50%  5% 2.50% 1% 0.50% 

5 0.173 0.341 0.364 0.778  0.266 0.604 0.897 0.927 485 

6 0.132 0.071 0.583 0.986  0.352 0.777 0.888 0.921 405 
7 0.570 0.563 0.772 0.379  0.259 0.618 0.791 0.851 345 
8 0.070 0.156 0.537 0.697  0.651 0.776 0.908 0.908 300 
9 0.307 0.247 0.857 0.601  0.430 0.795 0.863 0.931 270 
10 0.043 0.156 0.733 0.175  0.647 0.856 0.856 0.856 245 

 

Panel C: MRK Out-of-sample Backtesting on Raw Actual Return (v = 1800) 

Interval  
(in mins) 

Kupiec Test  Christoffersen Test Nb of  
Intervals 5% 2.50% 1% 0.50%  5% 2.50% 1% 0.50% 

5 0.187 0.201 0.140 0.298  0.344 0.628 0.897 0.949 485 
6 0.010 0.071 0.980 0.220  0.476 0.723 0.777 0.777 405 
7 0.273 0.175 0.394 0.548  0.312 0.701 0.878 0.939 345 
8 0.267 0.566 0.537 0.083  0.359 0.620 0.870 # 300 
9 0.098 0.247 0.654 0.752  0.513 0.728 0.863 0.931 270 
10 0.016 0.050 0.765 0.520  0.647 0.856 0.856 0.856 245 

 

The table contains the p-values for Kupiec and Christoffersen tests. Intervals are regularly time-spaced 
from 5 minutes to 10 minutes. Bold entries indicate the rejections of the model at 95% confidence level. 
When the numbers of hits are less than two, the p-values are denoted by #. 
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Figure 1: Seasonality Factor For RWE 

Panel A: Seasonality Factor for Duration 

 

Panel B: Seasonality Factor for Actual Return Changes (v = 4000)  
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Panel C: Seasonality Factor for Frictionless Return Changes 

 

  



45 

Figure 2: Impact Coefficients of Ex-ante Liquidity for Different Time Intervals 

Panel A: SAP 

 

 

Panel B: RWE 

 

  



46 

Panel C: MRK 

 

Panels A, B and C illustrate how the impact coefficients of ex-ante liquidity evolve for intervals from 5 minutes to 
10 minutes for stocks SAP, RWE and MRK. The selected volumes for the actual return changes are 2000, 4000, 
6000, and 8000 shares for SAP, 1000, 2000, 3000, and 4000 shares for RWE, and 900, 1800 and 2700 shares for 
MRK. 
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Figure 3: Computation of the Frictionless Return and the Actual Return for the 
End of an Interval 

 

 

Figure 3 illustrates the computation of the frictionless return and the actual return for the end of an interval. I 
indicates the transaction. At the beginning of the interval, we compute the frictionless return and actual return using 
the real data from market. Each I corresponds to a frictionless (actual) change which comes from the simulations. 
Consequently, the frictionless return (actual return) at the end of the interval is the sum of the initial frictionless 
return (actual return) and all the corresponding changes in the interval. 
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Figure 4: IVaR and LIVaR of 5-minute for July 12, 2010 

Panel A: SAP with LIVaR (v =4000) 

 

 

Panel B: RWE with LIVaR (v =4000)
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Panel C: MRK with LIVaR (v =1800) 

 
Panels A, B and C present the VaRs for frictionless returns and actual returns at the end of each 5-minute interval 
on July 12th, 2010, for the three stocks of SAP, RWE and MRK, respectively. The selected volumes for the actual 
returns are 4000 shares for SAP, 4000 shares for RWE and 1800 shares for MRK.  
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Figure 5: Frictionless Returns and Actual Returns  

 
This figure presents the difference between our frictionless (actual) return and the frictionless (actual) return proposed by Giot and Grammig (2006). Arrow a 
presents the starting price and end price in constructing our frictionless return, while arrow b shows the starting price and end price for the actual return given a 
liquidation quantity v. Both frictionless returns and actual returns take the previous best ask price as starting price. Arrows c and d give the starting price and end 
price for computing the frictionless return and the actual return (for quantity v) proposed by Giot and Grammig (2006). Their frictionless return takes the previous 
mid-quote as the starting price and the following mid-quote as the end price. Their actual return takes the previous mid-quote as the starting price and the actual 
price as the end price.    


