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Résumé / Abstract 
 

Nous utilisons une base de données de panel néerlandaise assez originale pour examiner comment les 

décisions d’innovation et de financement varient selon les caractéristiques des entreprises. Nous examinons 

en particulier dans quelle mesure il y a une faille de marché due aux besoins de financement de 

l’innovation. En résumé, nous aboutissons aux résultats suivants. Premièrement, les entreprises soumises à 

des contraintes financières font leurs choix de financement et d’innovation en fonction de leur âge, de leur 

taille et de leur degré d’endettement. Sans contraintes de financement, les enterprises sont moins portées à 

innover en s’endettant, quelles que soient leurs caractéristiques. Deuxièmement, ont tendance à être 

contraintes financièrement les enterprises jeunes, petites, avec un rapport dettes/fonds propres élevé et peu 

d’avoirs collatérables. Troisièmement, les entreprises jeunes, grandes et avec un faible rapport dettes/fonds 

propres ont plus de chances d’être innovantes. Quatrièmement, les contraintes de financement réduisent 

l’intensité de R-D. Cinquièmement, ce sont les entreprises petites et jeunes qui sont plus intenses en R-D. 

Pour estimer notre modèle, nous développons un nouvel estimateur qui combine les méthodes des effets 

aléatoires corrélés et des fonctions de contrôle pour tenir compte de l’endogénéité des régresseurs dans un 

modèle structurel d’équations simultanées. 

 

Mots clés : financières, structure de capital, R-D, innovation, dynamique de firmes, failles de 

marché, données panel, effets aléatoires corrélés, fonctions de contrôle, attentes a posteriori. 

 

 

Using a unique panel data of Dutch innovation and financial variables we empirically investigate how 
financing and innovation vary across firm characteristics. The study also tries to gauge the extent of market 

failure due to the presence of financing frictions. Our main findings can be summarized as follows. First, 
when firms face endogenous financial constraints, debt financing and innovation choices are not 

independent of firm characteristics such as age, size, and existing leverage. In the absence of financial 

constraints, however, firms, almost uniformly across firm characteristics, become less inclined – as 
compared to firms facing constraints - to engage in innovative activity by raising debt. Second, small, 

young, highly leveraged, and firms with lower collateralizable assets are more likely to be financially 

constrained. Third, large, young, and low leveraged firms are more likely to be innovators. Fourth, 
financial constraints adversely affect a firm’s R&D intensity. Fifth, smaller and younger firms are more 

R&D intensive. A new estimator, that combines the method of “Correlated Random Effects” and “Control 
Function” to account for the endogeneity of regressors in a structural equations model, is developed. 
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1 Introduction

In this paper we empirically investigate how incentives to innovate interact with financing
frictions that are related to innovative activity. We show that financing and innovation
choices vary differently with firm characteristics such as size, age, and leverage for financially
constrained and unconstrained firms. This implies that the incentives to innovate and the
extent and the nature of frictions are not uniform across firm characteristics. Our results, thus,
inform theory that in modeling firm dynamics, investment in R&D along with investment in
physical capital and the financing decisions of the firm must be taken into account, especially
since, given the nature of R&D activity, the associated financing frictions can be acute.

For our empirical analysis we use a unique data set where firms report if they have faced
financial constraints due to which some of their R&D projects were hampered. To study how
financing and innovation policy vary with firm characteristics and to establish the extent of
impact due to existence of financing frictions on innovative activity, for our empirical analysis
we write a fully specified econometric model of R&D investment with endogenous financial
constraint, endogenous decision to innovate, and endogenous financial choices. This entails
estimating a system of structural equations pertaining to (a) model for R&D investment,
where we try to assess the impact of financial constraints, as reported by the firms, on R&D
investment, (b) a model for financial constraints, where we try to explain why certain firms
report they are financially constrained, (b) a model for decision to innovate, where we study
the financing choices of innovative firms, and (d) a system of reduced form equations of
financing choice and other endogenous variables.

We find that (i) under binding financial constraints the marginal propensity to innovate
by employing more long-term debt varies with characteristics such as age, size, and existing
leverage, and that (ii) when financial constraints do not bind the change in propensity to
innovate by increasing leverage does not, or vary little with firm characteristics, and is uni-
formly lower as compared to the situation when financial constraints bind. Some of our other
important empirical findings related to financing and innovative activity are that (iii) large
and young firms are more likely to engage in innovative activity, (iv) that large and mature
firms are less R&D intensive, (v) small and younger firms are more financially constrained.
These findings suggest that decisions to innovate, financing choices, and firm dynamics are
not independent.

While there are models of efficient firm and industry dynamics where R&D activity and
uncertainty in innovation explain some of the stylized facts related to R&D investment, pro-
ductivity, firm dynamics, and firm size distribution (see for eg. Klette and Kortum (2004),
Klepper and Thompson (2006)), none to our knowledge has explored the interaction of fi-
nancing frictions with innovative activity in shaping up firm and industry dynamics. Some
of our results, for example, that not all firms are innovative, that under financial constraints
financing and innovation policy are not independent of firm characteristics, and that R&D in-
tensity is not independent of firm size are contrary to what Klette and Kortum (2004) purport
to explain. Our findings suggest that in modeling firm dynamics with R&D and innovation,
financial consideration too must also be taken into account.

On the other hand there are models of financial market inefficiency, such as by Cooley
and Quadrini (2001), where financial frictions introduced in a standard model of industry
dynamics generate results that match the empirical regularities in the financial and company
level investment characteristics of firms that are related to their size and age. Albuquerque
and Hopenhayn (2004) ( henceforth AH) and Clementi and Hopenhayn (2006) (henceforth
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CH) in their respective papers develop models of endogenous borrowing constraints and study
its implication for firm dynamics such as growth and survival. However, R&D and innovation
do not feature in these models. In AH and CH borrowing constraint is hinged on the capital
structure of the firm, where state contingent equity value determines borrowing constraint,
exit probability, and expansion. Our results suggest that capital structure also matters for
the exercise of growth options that are related to R&D. While a successful completion and
implementation of a R&D project enhances firm productivity and chances of survival, given
the nature of R&D and the fact that it is affected by various kinds of uncertainties (see Berk
et al. (2004)), engaging in R&D will also affect the evolution of equity, thereby affecting
borrowing constraints and firm growth and survival. Our results suggests that modeling firm
dynamics with R&D and innovation that incorporates borrowing constraints in a dynamic
financial contract framework could be an important area of research.

Secondly, our results are in congruence with the papers that provide empirical evidence
that R&D intensive firms are less leveraged than those that are not. Brown, Fazzari, and
Petersen (2009) (BFP) studying a panel of R&D performing US firms draw out a financing
hierarchy for R&D intensive firms, where equity – when more easily available, as during the
boom in the supply of internal and external equity finance in the mid and late 1990’s in US
– might be preferred to debt as a means of financing R&D. We find that, ceteris paribus,
innovative firms are likely to maintain higher levels of liquidity reserve, and less likely to pay
out dividends, which tells us that external financing could be more costly for innovative firms.

Thirdly, in our fully specified model of endogenous financing and innovation choices and
endogenous financial constraints we are able to assess if certain financing choices, as reflected
in the balance sheets of the firms, determine whether a firm is financially constrained. This
allows us to assess the relevance of the classification criteria (see Hennessy and Whited (2007))
that distinguish firms as financially constrained or unconstrained, and which have been mo-
tivated by the theories of financial contracting. We find that small and young firms, firms
that are highly levered, and firms that pay less dividends are more likely to face financial
constraints. The finding is in line with prediction made by AH and CH in models of firm
growth and survival with endogenous borrowing constraints. We also find that firms that
maintain high level of liquidity reserve and those whose asset base includes more tangible
assets are less likely to face financial constraints.

Fourthly, our paper contributes to the empirical literature that seeks to test for financing
friction and quantifying the extent of market failure due to existence of financing friction.
The small number of empirical studies on testing for financing frictions for R&D investment
are documented in Hall and Lerner (2010). More recent papers such as, Whited (2006),
Bayer (2006), and Bayer (2008), studying company level investment, show how financing
frictions interact with adjustment costs to alter the timing of company level lumpy investment.
Hennessy and Whited (2007) find that existence of costly external funds depresses the path
of investment. In a recent paper Hajivassiliou and Savignac (2011), using a similar data set
for France, find that financial constraints do adversely affect innovation output. Our aim
here is to assess by how much R&D investment is hampered given that a firm faces financial
constraints.

Empirical analysis in corporate finance, as discussed in Roberts and Whited (2010), is
marred with issues of endogeneity. Our estimation strategy combines the method of “corre-
lated random effect” (CRE) and “control function” (CF) ( see Blundell and Powell (2003))
to account for unobserved heterogeneity and endogeneity of regressors in the structural equa-
tions. We estimate the fully specified model, stated earlier, in three steps. In the first step
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we estimate the system of reduced form equations, the estimates of which are then used to
construct the control functions that correct for the bias that can arise due the presence of
endogenous regressors in the structural equations. With the control functions in place, in
the second stage we jointly estimate the structural model of financial constraint faced by the
firms and the decision to innovate, and finally in the third stage, conditional on the decision
to innovate, we estimate the switching regression model of R&D investment to assess the
impact of financial constraints on R&D investment.

Typically, in a control function approach the structural parameters are estimated condi-
tional on unobserved heterogeneity and unobserved idiosyncratic errors that appear in reduced
form equations of a simultaneous triangular system of equations. In such an approach resid-
uals obtained from the first stage reduced form estimates that proxy for the idiosyncratic
errors are used as control variables in the structural equations to account for the endogeneity
of the regressors in the structural equations. However, in panel data models, the residuals of
the reduced form regression, which are defined as the observed value of the response variable
minus the expected value of the response conditional on exogenous regressors and the indi-
vidual effects, are functions of unobserved individual effects. Since the individual effects are
unobserved, the residuals remain unidentified. The novelty of our approach lies in integrating
out the unobserved individual effects. The integration is performed with respect to the condi-
tional distribution of the individual effects approximated by the posterior distribution of the
individual effects obtained from the first stage reduced form estimation. This leaves us with
the expected a posteriori (EAP) values of the individual effects, which can then be used to
get the residuals. The paper also provides the theoretical foundations for such a procedure.

The rest of the paper is organized as follows. In Section 2 we discuss the empirical
strategy employed, in Section 3 the data used and the definition of the variables, in Section 4
the results and finally in Section 5 we conclude. In Appendix A we discuss the identification
of the structural parameters. The details of the econometric methodology are provided in
appendices C, D, E, and F, which for reasons of space we have not included in the core of the
paper, but which are available upon request.

2 Empirical Model

To study the effect of endogenous financial constraints on R&D expenditure, the endogenous
financing decisions of firms, the endogenous decision to innovate, and to account for the fact
that with our data R&D expenditure is known only for firms that opt to innovate, we consider
the following system of equations:

rit = fit(βf + zr′itβ1 + xr′
itβ̃1 + µ1α̃i + η1it) + (1− fit)(z

r′
itβ0 + xr′

itβ̃0 + µ0α̃i + η0it) if sit = 1

= fitr1it + (1− fit)r0it if sit = 1, (1)

fit = 1(f∗
it = zf ′itϕ+ xf ′

it ϕ̃+ λα̃i + ζit > 0), (2)

sit = 1(s∗it = zs′itγ + xs′
itγ̃ + θα̃i + υit > 0), (3)

xit = Z′
itδδδ + α̃iκκκ+ εεεit, (4)

where rit in equation (1) is the ratio of total R&D expenditure to total capital assets (tangible
+ intangible) of the firm. fit is a binary variable that indicates, with value 1, if the firm reports
that it is financially constrained with respect to innovation or R&D activities in period t, and
f∗
it in (2) is the latent variable underlying fit. We term equation (2) as the financial constraint
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equation. Since R&D expenditure is observed only when the firm decides to innovate, that
is when sit = 1, to rule out possible sample selection bias that could arise because some
component (observed or unobserved) of the decision to innovate also determines the amount
of R&D expenditure, we specify a selection equation, equation (3), where the idiosyncratic
error term is correlated with the idiosyncratic error terms appearing in the R&D and the
financial constraint equations.

Conditional on unobserved heterogeneity/individual effect α̃i, z
r
it is a vector of exogenous

variables and xr
it, is a vector of endogenous variables. To allow for the effect of zrit and xr

it to
be different in the two regimes, financially constrained and unconstrained, we model equation
(1) as an endogenous switching regression model, where the financial constraint equation sorts
the firms over the two different regimes. That is, rit = r1it = βf +zr′itβ1+xr′

itβ̃1+µ1α̃i+η1it if
fit = 1 and sit = 1 and rit = r0it = zr′itβ0+xr′

itβ̃0+µ0α̃i+η0it if fit = 0 and sit = 1. η1it is the
idiosyncratic term of the R&D equation for the firm that is financially constrained, regime 1,
and η0it denotes the idiosyncratic term when the firm is not financially constrained, regime
0. We term equation (1) as the R&D equation.

Similarly, conditional on unobserved heterogeneity α̃i, z
f
it and zsit are vectors of exogenous

variables in the financial constraint and selection equations respectively. xf
it and xs

it are
vectors of endogenous variables in equation (2) and (3) respectively. A detailed discussion of
the specification for the all the three equations, (1), (2), and (3), is carried out later.

While equations (1), (2), and (3) are our structural equations of interest, equation (4)
is the system of ‘m’ equations written in a reduced form for the endogenous variables xit =
(x1it, . . . , xmit)

′, where every component of xr
it, x

f
it, and xs

it is also a component of xit. Zit =
diag(z1it, . . . , zmit) is the matrix of exogenous variables or instruments appearing in each of the
m reduced form equations in (4) and δδδ = (δδδ′1, . . . , δδδ

′
m)′. Let zit be the union of all exogenous

variables appearing in each of zrit, z
f
it, and zsit. For every l ∈ (1, . . . ,m), zlit = Zit = (z′it, z̃

′
it)

′,
where the dimension of vector of instruments, z̃, is greater than or equal to the dimension x.
Also define Xi = {x′

i1, . . . ,x
′
iTi

}′ and Zi = (Z ′
i1 . . .Z

′
iTi

)′.
εεεit = (ε1it, . . . , εmit)

′ is the vector of idiosyncratic component and α̃i is the scalar unob-
served individual effect for firm i, which we model as a random effect, is correlated with Zi,
but is assumed to be mean independent of ηit, ζit, υit, and εεεit. Also, conditional on α̃i, Zi

is independent of ηit, ζit, υit, and εεεit. Since the unobserved individual specific effect affects
the endogenous regressors as well as the firm’s decision to innovate, it being financially con-
strained, and how much it spends on R&D, therefore we have different factor loadings, such
as, {κ1 . . . , κm}, that appear in the reduced form equations, and µ1, µ0, λ, and θ that appear
in the structural equations (1), (2), and (3).

The above structural equations – (1), (2), and (3) – can be succinctly written as

y∗
it = X

′
itB+ α̃ik+Υit, (5)

where y∗
it, suppressing the it subscript, is y∗ = {sfr1, s(1 − f)r0, f

∗, s∗}′, Xit = diag(X r
1it,

X r
0it, X

f
it , X

s
it), where X r

1it = sitfit{1, z
r′
it ,x

r′
it}

′, X r
0it = sit(1 − fit){z

r′
it ,x

r′
it}

′, X f
it = {zf ′it ,x

f ′
it }

′,
and X s

it = {zs′it,x
s′
it}

′. B in (5) is given by B = {βf ,βββ
′
1,βββ

′
0,ϕϕϕ

′,γγγ ′}′, where βββ1 = {β′
1, β̃

′
1},

βββ0 = {β′
0, β̃

′
0}

′, ϕϕϕ = {ϕ′, ϕ̃′}′, and γγγ = {γ′, γ̃′}′. Finally, k = {µ1, µ0, λ, θ}
′, and Υit =

{η1it, η0it, ζit, υit}
′. The distribution of the error terms of the system of equations (1), (2),

(3), and (4) is given by:
(
Υit

εεεit

)
∼ N

[(
0
0

)(
ΣΥΥ ΣΥε

ΣεΥ Σεε

)]
.
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To estimate the structural equations in (5) of the above model we combine the method of
“correlated random effect” and the “control function” approaches in a sequential estimation
procedure. Our constructed control functions allow us to take account of the fact that the
regressors are correlated with unobserved heterogeneity as well as the idiosyncratic compo-
nent. The identification strategy that allows us to construct the control functions is based on
the following conditional mean restriction:

E(α̃ik+Υit|Xi,Zi, α̃i) = α̃ik+ E(Υit|Zi,Xi, α̃ααi) = α̃ik+ E(Υit|Zi, εεεi, α̃ααi)

= α̃ik+ E(Υit|εεεi, α̃i) = α̃ik+ E(Υit|εεεi). (6)

According to the above, the mean dependence of the structural error term Υit on the vector
of regressors Xi, Zi, and α̃i is completely characterized by the reduced form error vectors εεεi.
The expectation of Υit given εεεi is given by

E(Υit|εεεi) = E(Υit|εεεit) = ΣΥεΣ
−1
εε εεεit = Σ̃ΥεΣεΣ

−1
εε εεεit = Σ̃ΥεΣ̃

−1
εε εεεit, (7)

where the first equality follows from the assumption that conditional on εit, Υit is independent
of εεεi−t

. This assumption has also been made in Papke and Wooldridge (2008), and Semykina

and Wooldridge (2010). The (4×m) matrices Σ̃Υε in the fourth equality is

Σ̃Υε =




ρη1ε1ση1 . . . ρη1εmση1
ρη0ε1ση0 . . . ρη0εmση0
ρζε1σζ . . . ρζεmσζ
ρυε1συ . . . ρυεmσυ




and the (m ×m) matrix Σε is diag(σε1, . . . , σεm), so that Σ̃ΥεΣε = ΣΥε. Finally, in the last
equality Σ̃−1

εε = ΣεΣ
−1
εε . We prefer to write the above conditional expectation as E(Υit|εεεit) =

Σ̃ΥεΣ̃
−1
εε εεεit since the elements of Σ̃−1

εε are obtained from the estimates of the first stage reduced
form estimation of our sequential estimation procedure and the formulation in (7) helps us
distinguish the parameters that are estimated in the first stage as compared to those that are
estimated in the subsequent stages. Also, as we will see, it is the elements of Σ̃Υε, which are
estimated in the subsequent stages that give us the test of exogeneity of xit with respect to
Υit .

Given (7) we can write the linear projections of α̃ik+ Υit in error form, given α̃i and εεεit
as

α̃ik+Υit = α̃ik+ Σ̃ΥεΣ̃
−1
εε εεεit + Ῡit (8)

where Ῡit is independent of Zi, Xi, εεεit, and α̃i, and is normally distributed with expectation
0. The above then implies that the projections of y∗

it in error form given α̃i and εεεit is given
by

y∗
it = X

′
itB+ α̃ik+ Σ̃ΥεΣ̃

−1
εε εεεit + Ῡit. (9)

The structural parameters of interest in (9) are estimated sequentially. In the first step,
the system of reduced form equations, equation (4), is estimated.
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2.1 Estimation of the First Stage Reduced Form Equations

In the first stage we estimate the system of reduced form equations (4). Since α̃i and Zi are
correlated in order to estimate δδδ, Σεε, and σα consistently, we use Mundlak’s (1978) correlated
random effects formulation. We assume that

α̃i = Z̄ ′
iδ̄δδ + αi, (10)

where Z̄i, is the mean of time-varying variables in Zit. We also assume that αi is normally
distributed with mean 0 and variance σ2

α. Given the above, equation (4) can now be written
as

xit = Z′
itδδδ + (Z̄ ′

iδ̄δδ + αi)κκκ+ εεεit. (4a)

To consistently estimate the reduced form parameters, Θ1 = {δδδ′, δ̄δδ
′
, vech(Σεε)

′,κκκ′, σα}
′, we

employ the technique of step-wise maximum likelihood method in Biørn (2004). However,
our model differs from Biørn’s (2004). While Biørn (2004) estimates the covariance matrix
Σα of αααi = {α1i, . . . , αmi}

′, where each of the αli, l ∈ {1, . . . ,m}, is unrestricted, we place the
restriction αli = κlαi. This implies that

Σα = σ2
αΣκ = σ2

α




κ21
κ1κ2 κ22
...

...
κ1κm κ2κm . . . κ2m


 .

Moreover, as can be seen from the modified equation (4a), we also impose the restriction
that δ̄δδ remains the same across each of the m reduced form equations. In Appendix C we
provide a note on the estimation strategy employed to estimate the parameters of the reduced
form equations.

2.2 Estimation of the Structural Equations

Given equation (9) and (10), we can write the linear predictor of y∗
it given Xi, Zi, and αi in

error form as

y∗
it = X

′
itB+ (Z̄ ′

iδ̄δδ + αi)k+ Σ̃ΥεΣ̃
−1
εε εεεit + Ῡit, (11)

To estimate the system of equations in (11) the standard technique is to replace εεεit by the
residuals from the first stage reduced form regression, here equation (4a). However, the
residuals xit − E(xit|Zi, αi) = xit − Z′

itδδδ − (Z̄ ′
iδ̄δδ + αi)κκκ, remain unidentified because the αi’s

are unobserved even though the reduced form parameters, δδδ, δ̄δδ, and κκκ, can be consistently
estimated for the first stage estimation. From the results on identification of structural
parameters derived in Appendix A, it can be shown that

E(y∗
it|Xi,Zi) =

∫
E(y∗

it|Xi,Zi, αi)f(αi|Xi,Zi)dαi = X
′
itB+ (Z̄ ′

iδ̄δδ + α̂i)k+ Σ̃ΥεΣ̃
−1
εε ε̂εεit,

(12)

where α̂i = E(αi|Xi,Zi), as discussed in Appendix A, is the Expected a Posteriori (EAP)
value of αi and ε̂εεit = xit−E(xit|Xi,Zi) = xit−Z′

itδδδ−κκκ(Z̄ ′
iδ̄δδ+ α̂i). α̂i and ε̂εεit are the “control
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functions” that correct for the bias when estimating the structural equations, which arises due
to the correlation of xit with the unobserved individual effect αi and with the idiosyncratic
component Υit. The correlation of the exogenous variables Zit with the unobserved individual
effect, α̃i, is accounted by Z̄ ′

iδ̄δδ + α̂i. In Appendix A we show how to construct the control
functions α̂i and ε̂εεit. Given (12) we can write the projection of y∗

it given Xi, Zi in error form
as

rit = fit(X
r′
it βββ1 + (Z̄ ′

iδ̄δδ + α̂i)µ1 + Σ̃η1εΣ̃
−1
εε ε̂εεit + η̃1it)

+ (1− fit)(X
r′
it βββ0 + (Z̄ ′

iδ̄δδ + α̂i)µ0 + Σ̃η0εΣ̃
−1
εε ε̂εεit + η̃0it) if sit = 1, (13)

f∗
it = X f ′

it ϕϕϕ+ (Z̄ ′
iδ̄δδ + α̂i)λ+ Σ̃ζεΣ̃

−1
εε ε̂εεit + ζ̃it, (14)

s∗it = X s′
it γγγ + (Z̄ ′

iδ̄δδ + α̂i)θ + Σ̃υεΣ̃
−1
εε ε̂εεit + υ̃it, (15)

where Υ̃it = {η̃1it, η̃0it, ζ̃it, υ̃it}
′, defined in Appendix A, is normally distributed with mean 0,

variance ΣΥ̃Υ̃ and is independent of Xi and Zi.
Given Z̄ ′

iδ̄δδ + α̂i and ε̂εεit, while it may be possible to consistently estimate the structural
parameters of interest by specifying a joint likelihood for r1it, r0it, fit, and sit, given the
presence of nonlinearities in the model, the likelihood function will be difficult to optimize.
Given this fact we estimate the structural parameters of interest in equations (13) to (15) in
two steps after the first stage reduced form estimation. In the second stage, given the estimates
of the control functions Z̄ ′

iδ̄δδ + α̂i and ε̂εεit, we estimate jointly the structural parameters, Θ2,
of the financial constraint equation (14) and the innovation/selection equation (15).

2.2.1 The Second Stage: Estimation of the Financial Constraint and the Inno-
vation Selection Equations

Given the financial constraint equation (14) and the innovation selection equation (15), the
conditional log likelihood function for individual i in period t given Xi, Zi, if the time period
t corresponds to CIS3 and CIS3.51, is given by

Lit2(Θ2|Xi,Zi, α̂i, ε̂εεit) = fitsit ln(Φ2(ϕit, γit, ρζ̃υ̃)) + (1− fit)sit ln(Φ2(−ϕit, γit,−ρζ̃υ̃))

+ fit(1− sit) ln(Φ2(ϕit,−γit,−ρζ̃υ̃)) + (1− fit)(1− sit) ln(Φ2(−ϕit,−γit, ρζ̃υ̃)), (16)

where Θ2 = {ϕϕϕ′, λ, Σ̃ζε,γγγ
′, θ, Σ̃υε, ρζ̃υ̃}

′, Φ2 is the cumulative distribution function of a stan-

dard bivariate normal, ρζ̃υ̃ is the correlation of ζ̃it and υ̃it, and

ϕit = (X f ′
it ϕϕϕ+ λ(Z̄ ′

iδ̄δδ + α̂i) + Σ̃ζεΣ̃
−1
εε ε̂εεit)

1

σζ̃
, (17)

γit = (X s′
it γγγ + θ(Z̄ ′

iδ̄δδ + α̂i) + Σ̃υεΣ̃
−1
εε ε̂εεit)

1

συ̃
. (18)

It should be noted that all the parameters of the structural equations (14) and (15) can only
be identified up to a scale, the scaling factor for the financial constraint equation and selection

1As discussed in next section, where we discuss the data, the empirical analysis is done using three waves
of Dutch Community Innovation Survey (CIS). For CIS3 and CIS3.5 we observe if the firm is financially
constrained for both the innovating and the non-innovating firms, but for CIS2.5, the information on financial
constraint is given for only the innovating firms.
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equation being respectively σζ̃ and συ̃. In what follows, with a slight abuse of notation, we
will denote the scaled parameters of the second stage estimation by their original notation.

For CIS2.5, since we do not observe whether a firm is financially constrained or not for
the non-innovating firms, for time period t corresponding to CIS2.5, we have

Lit2(Θ2|Xi,Zi, α̂i, ε̂εεit) =

fitsit ln(Φ2(ϕit, γit, ρζ̃υ̃)) + (1− fit)sit ln(Φ2(−ϕit, γit,−ρζ̃υ̃)) + (1− sit) ln(Φ(−γit)), (19)

where Φ(−γit) = Pr(sit = 0|Xi,Zi, α̂i, ε̂εεit). The log likelihood of the second stage parameters
is given by

L2() =

N∑

i=1

Ti∑

t=1

Lit2(). (20)

Given the first stage estimates Θ̂1, we can obtain the estimates of Z̄ ′
iδ̄δδ + α̂i and ε̂εεit, as shown

in Appendix A, which can then be used in the above likelihood function to obtain consistent
estimates for the second stage parameters. The true measure of the effect of a certain covariate
on the probability of engaging in innovation or the probability of being financially constrained
is the Average Partial Effect (APE) of a variable. In Appendix A we introduce the concept
of APE and discuss tests for it in Appendix E.

2.2.2 The Third Stage: Estimation of the R&D Switching Regression Model

The structural parameters of interest, Θ3, of the R&D switching regression equation in (13) are
estimated in the third stage, which is an extension of Heckman’s classical two step estimation
to multivariate selection problem. Here we are dealing with two kinds of selection problems,
one is to be financially constrained or not, and the other one is the choice to be innovative
or not, determining whether R&D expenditure need to be declared or not. To consistently
estimate the parameters of equation (13), in Appendix D we derive the correction terms that
correct for the bias due to endogenous switching and the bias due to endogenous sample
selection. These correction terms are obtained for each firm-year observation. Adding these
extra correction terms, in addition to the estimates of Z̄ ′

iδ̄δδ + α̂i and ε̂εεit, for each observation,
we obtain consistent estimates of Θ3.

To this effect, consider the following conditional mean:

E(rit|f
∗
it, s

∗
it > 0,Xi,Zi) = fit

(
βf + X r′

it βββ1 + µ1(Z̄
′
iδ̄δδ + α̂i) + Σ̃η1εΣ̃

−1
εε ε̂εεit

)

+ (1− fit)

(
X r′
it βββ0 + µ0(Z̄

′
iδ̄δδ + α̂i) + Σ̃η0εΣ̃

−1
εε ε̂εεit

)

+ fitE(η̃1it|f
∗
it > 0, s∗it > 0,Xi,Zi) + (1− fit)E(η̃0it|f

∗
it ≤ 0, s∗it > 0,Xi,Zi)

(21)

Now, we know that

E(η̃1it|f
∗
it > 0, s∗it > 0,Xi,Zi) = E[η̃1it|ζ̃it > −ϕit, υ̃it > −γit],

and

E(η̃0it|f
∗
it ≤ 0, s∗it > 0,Xi,Zi) = E[η̃0it|ζ̃it ≤ −ϕit, υ̃it > −γit],
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where ϕit and γit are defined, respectively, in (17) and (18). In Appendix D we show that for
an individual i

E[η̃1t|ζ̃t > −ϕt, υ̃t > −γt] = ση̃1ρη̃1ζ̃φ(ϕt)

Φ

(
(γt − ρζ̃υ̃ϕt)/

√
1− ρ2

ζ̃υ̃

)

Φ2(ϕt, γt, ρζ̃υ̃)

+ ση̃1ρη̃1υ̃φ(γt)

Φ

(
(ϕt − ρζ̃υ̃γt)/

√
1− ρ2

ζ̃υ̃

)

Φ2(ϕt, γt, ρζ̃υ̃)
(22)

and

E[η̃0t|ζ̃t ≤ −ϕt, υ̃t > −γt] = −ση̃0ρη̃0ζ̃φ(ϕt)

Φ

(
(γt − ρζ̃υ̃ϕt)/

√
1− ρ2

ζ̃υ̃

)

Φ2(−ϕt, γt,−ρζ̃υ̃)

+ ση̃0ρη̃0υ̃φ(γt)

Φ

(
(−ϕt + ρζ̃υ̃γt)/

√
1− ρ2

ζ̃υ̃

)

Φ2(−ϕt, γt,−ρζ̃υ̃)
, (23)

where φ, Φ, and Φ2, respectively denote the density function of a standard normal distribution,
the cumulative distribution function of a standard normal, and the cumulative distribution
function of a standard bivariate normal. For any individual i, define the following

C11t ≡ φ(ϕt)

Φ

(
(γt − ρζ̃υ̃ϕt)/

√
1− ρ2

ζ̃υ̃

)

Φ2(ϕt, γt, ρζ̃υ̃

) , C12t ≡ φ(γt)

Φ

(
(ϕt − ρζ̃υ̃γt)/

√
1− ρ2

ζ̃υ̃

)

Φ2

(
ϕt, γt, ρζ̃υ̃)

,

C01t ≡ −φ(ϕt)

Φ

(
(γt − ρζ̃υ̃ϕt)/

√
1− ρ2

ζ̃υ̃

)

Φ2(−ϕt, γt,−ρζ̃υ̃)
, and C02t ≡ φ(γt)

Φ

(
(−ϕt + ρζ̃υ̃γt)/

√
1− ρ2

ζ̃υ̃

)

Φ2(−ϕt, γt,−ρζ̃υ̃)
.

Given estimates of α̂i and ε̂it, ϕit, γit, and ρζ̃υ̃ we can construct the above control functions.
With the above defined, we can now write the R&D switching equations in (14), conditional
on f∗

it, s
∗
it > 0, Xi, Zi as

rit = fit

(
βf +X r′

it βββ1 + µ1(Z̄
′
iδ̄δδ + α̂i) + Σ̃η1εΣ̃

−1
εε ε̂εεit + ση̃1ρη̃1ζ̃C11it + ση̃1ρη̃1υ̃C12it + η

1it

)

+ (1− fit)

(
X r′
it βββ0 + µ0(Z̄

′
iδ̄δδ + α̂i) + Σ̃η0εΣ̃

−1
εε ε̂εεit + ση̃0ρη̃0ζ̃C01it + ση̃0ρη̃0υ̃C02it + η

0it

)
,

(24)

where η
1it

and η
0it

conditional on f∗
it, s

∗
it, Xi, Zi is distributed with mean zero. With the

additional correction terms – C11, C12, C01, and C02 – constructed for every firm year obser-
vation, the parameters of the R&D switching regression model can be consistently estimated
by running a simple pooled OLS for the sample of selected/innovating firms.

Estimating the parameters of the second and third stage, given the first stage consistent
estimates Θ̂1, is asymptotically equivalent to estimating the subsequent stage parameters had
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the true value of Θ1 been known. To obtain correct inference about the structural parameters,
Θ2 and Θ3, one has to account for the fact that instead of true values of first stage reduced form
parameters, we use their estimated value. In Appendix F we provide analytical expression
for the error adjusted covariance matrix for the estimates of the structural parameters.

To measure the magnitude by which R&D intensity is affected due to the presence of
financial constraints we have to compute the average partial effect (APE) of fit. For an
individual, i, in time period, t, given Xit = X̄ , where Xit is the union of elements appearing
in X r

it, X
f
it , and X s

it, the APE of financial constraint on R&D intensity is computed as the
difference in the expected R&D expenditure between the two regimes, financially constrained
and non-financially constrained, averaged over α̂ and ε̂εε. The APE of financial constraint on
R&D expenditure, conditional on sit = 1, is given by

∆fE(rit|X̄ ) =

∫
E(r1it|X̄ , fit = 1, sit = 1, α̂, ε̂εε)dG(α̂, ε̂εε)

−

∫
E(r0it|X̄ , fit = 0, sit = 1, α̂, ε̂εε)dG(α̂, ε̂εε). (25)

In Appendix E we discuss the estimation and the testing of the above measure.

3 Data and Definition of Variables

For our empirical analysis we had to merge two data sets, one containing information on
R&D related variables and the other on the financial status of the firms. The data on
information related to R&D is obtained from the Dutch Community Innovation Surveys
(CIS), which are conducted every two years by the Central Bureau of Statistics (CBS) of The
Netherlands. The Innovation Survey data are collected at the enterprise level. Information on
financial variables is available at the firm/company level, which could be constituted of many
enterprises consolidated within the firm. The financial data, known as Statistiek Financiën
(SF), is from the balance sheet of the individual firms.

A combination of a census and a stratified random sampling is used to collect the CIS
data. A census of large (250 or more employees) enterprises, and a stratified random sample
for small and medium sized enterprises from the frame population is used to construct the
data set for every survey. The stratum variables are the economic activity and the size of an
enterprise, where the economic activity is given by the Dutch standard industrial classification.
For our empirical analysis we use three waves of innovation survey data: CIS2.5, CIS3, and
CIS3.5 pertaining respectively to the years 1996-98, 1998-2000, and 2000-02.

However, since not all enterprises belonging to the firm have been surveyed in the CIS
data the problem when merging the SF data and the CIS data is to infer the size of the
relevant R&D variables for each firm. To do this we use the information on the sampling
design used by CBS.

For any given year, let N be the total population of R&D performing enterprises in the
Netherlands. From this population a stratified random sampling is done. These strata are
again based on size and the activity class. Let S be the total number of strata, and each
stratum is indexed by s = 1, 2, · · · , S. Then,

∑S
s=1Ns = N , where Ns is the population size

of R&D performing enterprise belonging to stratum s. Let ns be the sample size of each
stratum and let Θs = {1, 2, · · · , i, · · · , is} be the set of enterprises for the sth stratum, that
is |Θs| = ns.
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Let x be the variable of interest and xi the value of x for the ith enterprise. The average
value of x for an enterprise belonging to the sth stratum is x̄s = (

∑
i∈Θs

xi)/ns. Now consider
a firm f . Let Nfs be the total number of enterprises belonging to the firm f and stratum
s and nfs be the number of enterprises belonging to firm f and stratum s that have been
surveyed.

Then the estimated value of x for the firm f , x̂f is given by

x̂f =

S∑

s=1

(Nfs − nfs)x̄s +

S∑

s=1

nfs∑

k=1

xfsk, (26)

where xfsk is the value of x for the kth enterprise belonging to stratum s and firm f that has
been surveyed, and Nfs − nfs is the number of enterprises of the f th firm in stratum s that
have not been surveyed. It can be shown under appropriate conditions that x̂f is an unbiased
estimator of the expected value of x for firm f2. Table 1 below gives, based on size class and
2 digit Dutch Standard Industry Classification (SBI), the number of strata between which
the enterprises surveyed in the CIS surveys were divided.

Table 1: Number of Enterprises and Number of Strata

CIS2.5 CSI3 CIS3.5

Total no. of enterprises 13465 10750 10533

Total no. of strata 240 249 280

These figures are from the original/raw data set.

The sample of firms used in the estimation are only those for which at least one R&D
performing enterprise is present in the innovation surveys. Enterprises belonging to firms
not present in the SF data had to be dropped. Nf was obtained from the Frame Population
constructed by the CBS and nf from the CIS surveys. The percentage of firms in the sample
for which imputation, using equation (1), had to be done was 18.06 in CIS2.5, 24.62 in CIS3
and 23.75 in CIS3.5. The majority of the other firms happen to be single enterprises: 78.97,
74.01, and 73.87 respectively for CIS2.5, CIS3, and CIS3.5. The exact count of firms for which
Nf = nf or for which, (Nf − nf ) > 0 can be found in Table B1 in Appendix B.

The two variables of interest are the R&D expenditure and the share of innovative sales
in the total sales (SINS) of the enterprise. Here we would like to mention that we do
not have any information on these two variables for those firms that have been categorized
as non-innovators. An enterprise is considered as an innovator if either one of the following
conditions is satisfied: (a) it has introduced a new product to the market, (b) it has introduced
a new process to the market, (c) it has some unfinished R&D project and (d) it has begun an
R&D project, and abandoned it during the time period that the survey covers. Given that

2Proof:
The proof is based on the assumption that the expected value of x is the same for each enterprise in a particular
stratum. Let µxf be the population mean of x for the firm f and let µxs be the population mean of x for
an enterprise belonging to stratum s. Given our assumption, we know that x̄s is an unbiased estimator of
µxs, that µxf =

∑S

s=1
Nfsµxs, and that the expected value of

∑S

s=1

∑nfs

k=1
xfsk, the second term on the

RHS of equation (26), is
∑S

s=1
nfsµxs. Taking expectations in (26) and substituting the expected value of

E(
∑S

s=1

∑nfs

k=1
xfsk) =

∑S

s=1
nfsµxs and noting that E(

∑S

s=1
nfsx̄s) =

∑S

s=1
nfsµxs, we get E(x̂f ) = µxf =

∑S

s=1
Nfsµxs.
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the definition criteria for an innovator are exhaustive, we can reasonably assume that if an
enterprise meets none of the above criteria it has no R&D expenditure and no new products.

We consider a firm to be financially constrained as soon as any one of its enterprises
declares to be financially constrained. When Nf > nf , a firm is characterized as an innovator
if one the constituent enterprises surveyed has innovated or if anyone of the enterprises that
have not been surveyed is found in a stratum that, based on the CIS survey, is classified as
an innovating stratum.

The total number of employees as a measure of the size of the firm was also constructed
using information from the CIS data and the General Business Register. As far as the number
of employees in a firm is concerned, if all the enterprises belonging to a firm are surveyed,
that is if Nf = nf , then we simply add up the number employees of each of the constituent
enterprises. However, when Nf > nf , for those enterprises that have not been surveyed we
take the mid point of the size class of those enterprises that have not been surveyed. The size
class an enterprise belongs to is available from the General Business Register for every year.

In Table 2 below we tabulate the number of innovating and non-innovating firms for each
of the three waves, and the number of firms that declare to be financially constrained in
their innovation activities. As can be seen from the table, for CIS2.5 information on financial
constraint is available only for the innovators. It can be noticed that the number of financially
constrained firms is much lower than the number of unconstrained firms. In our sample we
find that the number of financially constrained firms is larger for the innovating firms than
for the non-innovating ones.

Table 2: Innovating/Non-Innovating and Financially Constrained/Unconstrained
Firms

CIS2.5 (1996-98)

Financially Financially
Constrained Unconstrained Total

Innovators 525 2,422 2,947

Non-Innovators 2,416

Total 5,363

CIS3 (1998-00)

Financially Financially
Constrained Unconstrained Total

Innovators 336 1,508 1,844

Non-Innovators 75 1,504 1,579

Total 411 3,012 3,423

CIS3.5 (2000-02)

Financially Financially
Constrained Unconstrained Total

Innovators 154 1,826 1,980

Non-Innovators 32 2,234 2,266

Total 186 4,060 4,246

These figures are for the data set used in estimation.
In CIS 2.5, non-innovating firms do not report if they are financially constrained.

As mentioned earlier the CIS survey is conducted every two years. The question on being
innovative or being financially constrained pertains to all the years of the survey. However,
the variables, share of innovative sales in the total sales (SINS) and R&D expenditure are
reported only for the last year. The stock variables – long-term debt, liquidity reserve, assets
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of the firms, and the number of employees, indexed t – are the values of the variables as
recorded at the beginning of period t. The flow variables are the observed values as recorded
during period t. R&D expenditure and SINS are reported only for the last year of the
periods that any CIS covers.

Below we provide the definition and the list of the variables that were used in the empirical
exercise.

(1) rit: R&D intensity defined as the ratio of R&D expenditure to total (tangible+ intangible)
capital assets.

(2) fit: Binary variable equal to one if the firm is financially constrained.

(3) sit: Binary variable equal to one if the firm is an innovator.

(4) DEBTit: Long-term debt constituted of the book value of long-term liabilities owed to
group companies, members of cooperative society and other participating interests, plus
subordinated loans and debentures.

(5) LQit: Liquidity reserve including cash, bills of exchange, cheques, deposit accounts, cur-
rent accounts, and other short-term receivables.

(6) DIVit: Dividend payments to shareholders, group companies, and cooperative societies.

(7) SIZEit: Logarithm of the number of people employed.

(8) RAINTit: Ratio of intangible assets to total (tangible+ intangible) capital assets.

(9) SINSit: Share of sales in the total sales of the firm which is due to newly introduced
products.

(10) CFit: Cashflow defined as operating profit after tax, interest payment, and preference
dividend plus the provision for depreciation of assets.

(11) MKSHit: Market share defined as the ratio of firms sales to the total industry sales.

(12) DNFCit: Dummy variable that takes value one for negative realization of cashflows

(13) DMULTIit: Dummy that takes value one if a firm has multiple enterprises.

(14) AGEit: Age of the firm3.

(15) Industry dummies.

(16) Year dummies.

To minimize heteroscedasticity we scale long-term debt (DEBTit), cashflows (CFit), liq-
uidity reserve (LQit), and dividend payout DIVit by total capital assets. Henceforth whenever
we refer to these variables it would mean the scaled value of these variables. The lagged values
of some of these variables are used as instruments.

3We do not the age of the firms that existed prior to 1967 as the General Business Register, from which we
calculated the age of the firms, was initiated in 1967. For such cases we assume that the firm began in 1967.
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Our set of endogenous regressors, xit, that appear in the structural equations are (1)
long-term debt (DEBTit) (2) liquidity reserve (LQit), (3) dividend payout (DIVit), (4) the
logarithm of the number of people employed (SIZEit), (5) ratio of intangible assets to total
assets (RAINTit), (6) the share of sales in the total sales of the firm (SINSit). SINSit is only
observed for innovators. For the purpose of estimating the reduced form equation we assume
that SINS is zero for the non-innovators. Given that the classification criteria, classifying
firms as innovators, is fairly exhaustive, we believe that this is not a strong assumption.

The vector of exogenous – exogenous conditional on unobserved heterogeneity α̃i – vari-
ables, zit, that appear in the structural and reduced form equation, and which are included
in Zit are: (1) cashflows of the firm (CFit), (2) a dummy for negative realization of cashflows
(DNFCit), (3) the market share of the firm (MKSHit), (4) the age of the firm (AGEit),
(5) a dummy that takes value 1 if the firm consists of multiple enterprises (DMULTIit), (6)
industry dummies, and (7) year dummies.

Our additional set of instruments, z̃it, that are also part of Zit are: (1) cashflows in
period t−1 (CFi,t−1), (2) market share in period t−1 (MKSHi,t−1), (3) dummy for negative
cashflows (DNFCi,t−1), (4) square of cashflows in period t (CF 2

it), (5) square of cashflows
in period t − 1 (CF 2

i,t−1), (6) a dummy that takes value 1 if the firm consists of multiple
enterprises in period t− 1 (DMULTIi,t−1), and (7) dummy if the firm existed prior to 1967
(DAGEit).

Here we would like to point out that variables included in Zit may or may not be strictly
exogenous, but are very likely to be exogenous conditional on unobserved individual effects.
For example, cashflows of a firm will most likely have a component that is correlated with firm
characteristics, but is also driven to a large extent by exogenous events. To the extent that
we take into account the correlation betweeen Zit and α̃i, the presence of these variables in
the specification of the structural equations will not lead to any inconsistency of the results.

[Table 3 about here]

4 Results

4.1 Financial constraints

As discussed earlier, in the second stage we jointly estimate the structural parameters of the
financial constraint and the innovation equation. The results of the second stage estimation
results are shown in Table 4 and Table 5. While Table 4 has the coefficient estimates, in
Table 5 the Average Partial Effects (APE) of the covariates are reported. In Specification
2 and Specification 3 in Table 4 and 5 we do not have dummies for multiple enterprises in
the financial constraint equation, and while the specification for the innovation equation in
Specification 1 and 2 are same, in Specification 3 we remove the control function/correction
term for share of innovative sales.

[Table 4 about here]

[Table 5 about here]

Let us first discuss the specification and the results of the financial constraint equation. A
firm may be constrained both because of high cost of external funds and/or because of high
need for external funds, see Hennessy and Whited (2007). Accordingly, we interpret the latent
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variable f∗
it in equation (2) as reflecting both the premium on scarce external finance and the

inability to access external funds. The premium, for example, could reflect bankruptcy cost
or the cost of floating equity as in Hennessy and Whited (2007) and Gale and Hellwig (1985),
or could reflect higher repayment schedule to lenders as compared to profits during such time
as when firms face borrowing constraints and short-term capital advancement are low as in
AH and CH. We hypothesize that the premium on external finance and the gap in financing
are a function of observable variables, as in Whited and Wu (2005) and Gomes, Yaron, and
Zhang (2006), where the shadow price of scarce external finance in the firm’s optimization
problem is assumed to be a function of observable variables. Our specification for the financial
constraint equation is rich enough to capture both aspects, high cost as well as high need for
external finance4.

In the specification for the financial constraint equation we use cashflows (CF ) and share
of innovative sales in the total sales of the firm (SINS) as proxies to control for future
expected profitability for R&D investment. Ceteris paribus, higher expectation of profits will
drive up the demand for R&D investment and cause the firm to report itself being financially
constrained. Since we do not have any information on the market valuation of the firms,
we cannot construct an average “q” for our firms. In any case, Moyen (2004) finds that
Tobin’s “q” is a poor proxy for investment opportunities, while cashflow is an excellent proxy,
positively related to the income shock. Hence, we expect cashflows (CF ) to signal investment
opportunities and expect it to have a positive sign in the financial constraint equation. We
use the share of innovative sales in the total sales of the firm (SINS) since the amount of
SINS can signal demand for R&D related activity within a firm. We note here that while
CF , which is largely driven by exogenous shocks and is exogenous conditional on α̃i, SINS
is an outcome of current and past R&D efforts. Therefore we endogenise SINS. We find
that both CF and SINS have a significant positive sign in the financial constraint equation.
This suggests that both cashflows and the share of innovative sales are correlated with the
R&D investment opportunity set, and ceteris paribus, are indicative of the financing gap that
firms face.

In our specification we also have a dummy for negative cashflows (DNCF ), which is found
to have a positive and significant coefficient. It seems that variations over time from negative
to positive in the cashflows are more indicative of positive “shifts” in the supply of internal
equity finance that relax financial constraints than variation in cashflows itself.

For all the specifications we obtain a significant positive sign on debt to assets ratio,
(DEBT ), indicating that highly leveraged firms are more likely to be financially constrained.
This is consistent with the prediction in AH and CH, who show that firms with higher long-
term debt in their capital structure are more likely to face tighter short-term borrowing
constraints. This could also reflect the debt overhang problem studied in Myers (1977). It
is also possible that, ceteris paribus, firms with higher leverage face a threat of default and
therefore a higher premium on additional borrowing due to bankruptcy costs. Also, as can
be evinced from Table 5, for an average firm the likelihood of experiencing higher financial
constraint is quite high for a firm that has higher long-term debt in its capital structure.

We find that firms that maintain higher liquidity reserve, (LQ), are less likely to be
constrained. Gamba and Triantis (2008) point out that cash balances, which give financial
flexibility to firms, are held when external finance is costly and/or income uncertainty is high.

4 The paper by Hennessy and Whited (2007) has a detailed discussion on constraint proxies that reflect
high cost or high need for external finance.
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With higher liquidity reserve firms can counter bad shocks by draining it. Hall and Lerner
(2010) and BFP point out that most of the R&D spending is in the form of payments to highly
skilled workers, who often require a great deal of firm-specific knowledge and training. The
effort of the skilled workers create the knowledge base of the firm, and is therefore embedded
in the human capital of the firms. This knowledge base is lost once workers get laid off. The
implication of this is that R&D intensive firms behave as if they faced large adjustment costs
and therefore chose to smooth their R&D spending, if only to avoid laying off their knowledge
workers. This implies that when a firm is not sure about a steady supply of positive cashflow
it is likely to practice precautionary savings to reduce its risks of being financially constrained
during periods of bad shocks.

Our results suggest that dividends (DIV ) paying firms are less likely to be financially
constrained. Hennessy and Whited (2007) also find low dividend paying firms face high costs
of external funds. Besides, AH and CH show that when a firm faces borrowing constraints
and all profits are reinvested or paid to the lenders, so that the burden of debt is reduced
and the firm grows to its optimal size, no dividends are paid. Since the APE of dividends, as
shown in Table 5, is very high, our results too lend credence to papers that employ dividend
pay out as a criterion for classifying firms as financially constrained or unconstrained.

We find that large and mature firms are less likely to be financially constrained. Hennessy
and Whited (2007) also find large differences between the cost of external funds for small
and large firms. AH and CH show that over time as the firm pays off its debt, it reduces
its debt burden and increases its equity value. This increase in the value of equity reduces
the problem of threat of default in AH and the problem of moral hazard in CH, with the
result that the extent of borrowing constraint decreases, the advancement of working capital
from the lender increases and the firm grows in size. Consequently larger and mature firms
are less likely to face financial constraints. Besides, old firms having survived through time
have built a reputation over the years and are therefore less likely to face adverse information
asymmetry problems, as compared to young firms.

We include the ratio of intangible assets to total capital assets, RAINT , in the specifi-
cation for financial constraints. Since secondary markets for intangible asset is fraught with
more frictions and generally does not exist, hence firms with a higher percentage of intangible
assets have a lower amount of pledgable support to borrow, and are thus expected to be more
financially constrained. Almeida and Campello (2007) also find that firms with lower levels
of asset tangibility are more financially constrained, and that investments in intangible assets
do not generate additional debt capacity. Our results suggest that firms that have a higher
percentage of intangible assets are indeed more likely to be financially constrained. Since a
large part of the capital of an R&D intensive firm resides in the knowledge base of the firm,
which is intangible, innovating and R&D intensive firms, as can be evinced in Table 3, have
a higher intangible asset base. Given this fact, innovating firms are thus more likely to face
financial constraint.

We do not, however, find firms with a high market share, which serves as a proxy for
monopoly power, and firms with multiple enterprises to be significantly less or more financially
constrained.

In Table 4 we find all correction terms to be significant, suggesting that the share of
innovative sales, long-term debt, liquidity reserve, dividends, size and the ratio of intangible
assets to total assets are endogenously determined.
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4.2 Innovation

In the innovation/selection equation we do not include cashflows and the dummy for negative
cashflows since cashflows do not have any bearing on the decision to innovate, except maybe
through its effect on financial constraints, and we have included both DNCF and CF in the
financial constraint equation. We do not include the share of innovative sales in total sales
because it is observed only for innovators.

We find that firms with higher long-term debt, DEBT , in their capital structure are less
likely to take up innovative activity. This is consistent with the findings of BFP and others
who find that equity rather than debt may be more suitable to finance innovative activity.
Holmstrom (1989) points out that R&D has a number of characteristics that make it different
from ordinary investment: it is long-term in nature, high risk in terms of the probability of
failure, unpredictable in outcome, labor intensive, and idiosyncratic. The high risk involved
and unpredictability of outcomes are potential sources of asymmetric information that give
rise to agency issues in which the inventor frequently has better information about the like-
lihood of success and the nature of the contemplated innovation project than the investors.
Leland and Pyle (1977) point out that investors have more difficulty distinguishing good or
low risk projects from bad ones when they are long-term in nature. Besides, due to the ease
of imitation of inventive ideas, as pointed out by Hall and Lerner (2010), firms are reluctant
to reveal their innovative ideas to the marketplace, and there could be a substantial cost to
revealing information to their competitors. Thus the implication of asymmetric information
coupled with the costliness of mitigating the problem is that firms and inventors will face a
higher cost of external capital for R&D.

Because the knowledge asset created by R&D investment is intangible, partly embedded
in human capital, and ordinarily very specialized to the particular firm in which it resides, the
capital structure of R&D-intensive firms customarily exhibits considerably less leverage than
that of other firms, see Titman and Wessels (1988). The logic is that the lack of a secondary
market for R&D and the non-collaterability of R&D activity mitigates against debt-financed
R&D activity. Aboody and Lev (2000) argue that because of the relative uniqueness of R&D,
which makes it difficult for outsiders to learn about the productivity and value of a given
firm’s R&D from the performance and products of other firms in the industry, the extent of
information asymmetry associated with R&D is larger than that associated with investment
in tangible (e.g., property, plant, and equipment) and financial assets. Bond holders, ceteris
paribus, may be unwilling to hold the risks associated with greater R&D activity.

We also find that firms that take up innovative activity maintain higher amount of liquidity
reserve, (LQ). Again, as pointed out earlier, because R&D intensive firms behave as if they
faced large adjustment cost, they choose to smooth their R&D spending. This necessitates
that innovative firms maintain a higher level of cash reserve.

As far as dividend pay out is concerned, in Specification 3, where we remove the correc-
tion term for SINS in the innovation equation, we find a significant negative coefficient for
dividends, DIV . We remove the correction term for SINS in the selection because SINS,
which is observed only for the innovators, is not included in the specification for the innova-
tion equation5. This suggests that firms that pay out dividends are less likely to innovate.

5As stated earlier, we assumed SINSit to be zero for the non-innovators when estimating the system of
reduced form equation. Therefore, like SINSit the correction term for SINSit will highly correlated with sit,
the decision to innovate. Hence, the significance of correction term/control function for Share of Innovative
Sales in Specification 1 and Specification 2 should not come as a surprise.
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Now, given the nature of R&D activity that makes borrowing costly, internal funds may be
more preferable. Therefore, innovative firms, ceteris paribus, are less likely to distribute cash
as dividends.

We find that large firms are more likely to be ones taking up innovative activity. While
the finding is consistent with the Schumpeterian view that large firms have a higher incentive
to engage in innovative activities because they can amortize the large fixed costs of investing
by selling more units of output, we also know that large firms, as shown in AH and CH, are
less likely to face constraints in accessing external capital and therefore more likely to engage
in R&D activity.

We find that younger firms are more innovative. This corroborates with the findings
of other studies that find that young firms in their bid to survive and grow take up more
innovative activity. Entry, see Audretsch (1995) and Huergo and Jaumandreu (2004), is
envisaged as the way in which firms explore the value of new ideas in an uncertain context.
Entry, the likelihood of survival and subsequent growth are determined by barriers to survival,
which differ by industries according to technological opportunities. In this framework entry is
innovative and increases with uncertainty. Also, firms with large market share, MKSH, are
found to be engaging more in innovative activity. This result confirms the fact that a firm is
more incited to innovate if it enjoys a monopoly position to prevent entry of potential rivals,
as has been argued in the Schumpeterian tradition.

The ratio of intangible assets to total capital assets, RAINT , has been found to be
significantly positive in the innovation equation. This was to be expected since firms that
engage in innovative activity have more intangible assets in their asset base. But also, as
Raymond et al. (2010) point out, there is persistence in innovation activity of a firm, or
in other words, innovation decision exhibits a certain degree of path dependency. To the
extent that RAINT is the outcome of past innovation activity, it captures the persistence
in the innovation decision of the firm. We also find that firms that have many enterprises
consolidated within them, DMULTI, are more likely to be innovative. Cassiman et al.
(2005) argue that entreprises merged or acquired may realize economies of scale in R&D,
and therefore have bigger incentive to perform R&D than before. Also, when merged entities
are technologically complementary they realize synergies and economies of scope in the R&D
process through their merger, and become more active R&D performers after being merged
or acquired.

The factor loadings, λ and θ, which are the coefficients of Z̄ ′
iδ̄δδ + α̂i in the financial con-

straint and the selection equation respectively are significant. This, and the facts that control
functions pertaining various endogenous regressors to correct for the bias in the structural
equations, and ρζυ, the correlation between the idiosyncratic component of the financial con-
straint equation and the innovation equation, are all significant, suggest simultaneity in the
decision to innovate, the financing choices made, and the financial constraints faced.

Our analysis allows us to examine how the average partial effect of certain exploratory
variables depends on the levels of other variables. In Figure 1 we plot the APE of leverage on
the propensity to innovate conditional on being financially constrained and conditional being
financially unconstrained. We plot the APE of leverage against size, age and leverage. These
plots of APE against age, size and leverage are based on Specification 2 of the second stage
estimation. The APE plots based on other specifications are almost exactly same.

[Figure 1 about here]
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We find that conditional on not being financially constrained, the APE of leverage on
innovation to be negative and almost constant over the distribution of size, age and leverage.
In contrast, the APE of leverage on innovation conditional on being financially constrained
varies widely over the distribution of age, size and leverage, and is less negative and some-
time positive when compared to the APE of leverage on innovation conditional on not being
financially constrained. This indicates that under no financial constraints innovative firms,
regardless of size, maturity, and existing level of debt, would almost uniformly be less inclined
to finance themselves with debt. In other words, when borrowing constraints do not bind and
debt is accessible on easier terms, and if for some reason the firm has to finance itself with
debt, then it is very unlikely to do it for innovative activity or to be an innovating firm in the
first place. The following scenario can elucidate this: suppose there is a profitable firm, that
has a substantial amount of cash holdings, that it can distribute to its shareholders. Being
profitable, it is likely that it has a rather large debt capacity and suppose its existing debt
levels are such that it has not reached its debt capacity. In such a situation, the firm can
distribute cash and borrow more to finance its investment. However, if it decides to innovate
or spend more on R&D related activity, then as our results suggests, it would be less inclined
to distribute cash as dividends, be more inclined to maintain a high cash reserves and not
borrow more, in other words, finance itself with retained earnings. This confirms the find-
ings of BFP that, in the absence of constraints, when internal and external equity are easily
available the preferred means for financing innovation is not debt.

When financial constraints set in, innovating firms, though still averse to debt financing,
do borrow as is reflected in the relatively higher marginal propensity to innovate with respect
to marginal increase in leverage as compared to when firms are unconstrained. Now, under
financial constraints, as Lambrecht and Myers (2008) explain, there can be two possibilities:
(a) postpone investment or (b) borrow more to invest. Given that most of the firms that
report being financially constrained are innovators, it is true that these firms have not entirely
abandoned innovative activity. Therefore, the fact that the propensity to innovate with
respect to leverage is relatively higher than under no financial constraints, suggests that some
projects might have been valuable enough to be pursued by borrowing, even if that implied
a higher cost.

However, under financial constraint, the marginal propensity to innovate with respect to
leverage varies with size, age, and existing leverage. This is because under financial con-
straints, the relative cost of, or access to, external financing depends on firm’s age, size, and
the existing levels of debt.

Consider the plot of APE of leverage on innovation conditional on financial constraint
against size of the firm. We see that under financial constraints large firms are more likely
to innovate by increasing their leverage as compared to small firms. This is because as
firms become large the extent of constraints weakens, and if some R&D projects are valuable
enough to be pursued, large firms have more leeway to finance their project by borrowing
than small firms. Both AH and CH show that a firm with a given need of external financing
to fund an initial investment and working capital, for a given level of growth opportunity and
profitability, over time, during which firms face borrowing constraints and dividend payment
is restricted, firms by paying off debt reduces its debt and increases its equity value. As
the firm increases its equity value, with the result that the problem of threat of default in
AH and the problem of moral hazard in CH decreases, the advancement of working capital
from the lender increases and the firm grows in size. Thus if a large firm sees an investment
opportunity in some R&D project it will be in a better position to borrow than a small firm.
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Also, Hennessy and Whited (2007) find that large firms face lower bankruptcy and equity
flotation costs as compared to small firms, which gives an advantage to large firms when it
comes to borrowing for R&D. While the above argument explains, through the role of finance,
why, for a given investment opportunity, large firms under financial constraint are more likely
to be willing to engage in innovation by borrowing more, it is also true that large firms, by
Schumpeterian argument, have a higher incentive to innovate, and, given that large firms have
a higher stock of knowledge, they are able to find more valuable R&D investment projects.

Incentives to innovate also explain the plot of APE of leverage on the conditional prob-
ability to innovate against age of the firms. We know that even though younger firms are
more likely to be financially constrained, it is the young firms that are more likely to take
up innovative activity. This is because, as discussed earlier, survival and subsequent growth
of young firms, especially those that are in the high-tech sector, depend on their innovation.
Hence, under financial constraints young firms are more willing to finance themselves by in-
creasing their leverage than matured firms. Consequently, we find the marginal propensity
to innovate with respect to leverage of young firms is higher compared to a matured firm.
This also makes the young firms more prone to default as discussed in Cooley and Quadrini
(2001). However, the difference in APE of leverage on innovation conditional on being finan-
cially constrained for young and old is not large as compared to the same for small and large
firms. This could be due to the fact that once conditioned on size, here at the mean value
of all firm-year observations, APE of leverage on engaging in innovation does not vary much
with age.

Lastly, under financial constraints, we find that APE of leverage on innovation declines
with higher leverage, which only shows that, ceteris paribus, for reasons stated earlier, the
borrowing constraints get tighter with higher debt in the capital structure, and the firm
becomes more reluctant to engage in innovative activity by increasing leverage.

4.3 R&D Switching Regression Model

In the third stage we estimate the R&D switching regression model, given in equation (25),
to assess the impact of financial constraint, as reported by the firms, on R&D investment.
The distinguishing feature of our R&D model is that it takes into consideration the fact that
R&D investment is determined endogenously along the decision to innovate and other financial
choices. To the extent that the latent variable, f∗

it, underlying fit reflects high premium on
external finance and the high financing need of firms, the switching regression model for R&D
investment allows us test whether financing frictions affect R&D activity adversely.

[Table 6 about here]

The results of the third stage switching regression estimates are presented in Table 6.
The additional correction terms – C11, C12, C01, C02 – that correct for the bias that can
arise due to endogeneity of selection, sit, and financial constraints, fit, are constructed out of
the estimates of the Specification 2 of the second stage estimates. Results of the third stage
that are based on the other specification of the second stage estimates are almost exactly the
same, the coefficients differing at the third or fourth decimal places. The results in Table 6
has two specifications; in Specification 2 the correction term for size, not being significant in
Specification 1, has been dropped.

In order to see the effect of financial constraints, fit, on R&D investment, we have to
fix the firm’s investment opportunity. Since we do not have any information on the market
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valuation of the firms, we can not construct average “q” for our firms or any such measure
related to the firm’s R&D investment. Hence, for reasons stated in Section 4.1, where we
discussed the results of the second stage estimation, we include cashflows, CF , and share of
innovative sales, SINS, which are indicative of demand signals and are thus correlated with
the R&D investment opportunity set.

The specification for the R&D equation does not include any financial state variables such
as long-term debt to asset ratio or cash reserves to asset ratio. This is because in the structural
model for R&D investment, R&D investment is determined only by the degree of financial
constraint a firm faces and the expected profitability from R&D investment. Therefore, it
seems unlikely that leverage and cash holdings will have an independent effect, other than
through the financial constraints affecting the firm.

Now, even though cashflows turn out to be significantly positive and larger for the set of
financially constrained firms as compared to those that are not, a test for the existence of
financial frictions in our model is not predicated on sensitivity of R&D investment to cash-
flows for constrained and unconstrained firms, but through the test of the effect of reported
financial constraints on R&D investment. While sensitivity of R&D investment to cashflows
can indicate the existence of financing frictions, as BFP claim, it could be possible that cash-
flows are correlated with the R&D investment opportunity set and provide information about
future investment opportunities, hence, R&D investment-cashflow sensitivity may equally oc-
cur because firms respond to demand signals that cashflows contain. Besides, SINS, which
we include in the specification to control for future expected profitability, may not perfectly
control for the firm’s R&D investment opportunity, giving predictive power to cashflows.
Moyen (2004) too finds that cashflow is an excellent proxy for investment opportunity, and
that cashflow is an increasing function of the income shock. Hennessy and Whited (2007)
also discuss mechanisms, that are related to costs of issuing new equity, bankruptcy costs,
and curvature of profit functions, that drive investment-cashflow sensitivity. However, it is
beyond the scope of this paper to test for exact mechanism that drives the results on R&D
investment-cashflow sensitivity across constrained and unconstrained firms.

We find that firms whose share of innovative sales, SINS, is high are more likely to
be R&D intensive. This suggests that the share of innovative sales is also indicative of
demand signals for R&D activity. This finding is in line with stylized facts studied in Klette
and Kortum (2004) that more innovative firms have higher R&D intensity. However, the
difference, though positive, in the size of the coefficients of SINS across constrained and
unconstrained firms is not high. Besides, SINS is clearly endogenous as is reflected in the
significance of correction term for share of innovative sales.

Here, we want to test whether financing friction, as summarized by fit, adversely affects
a firm’s R&D investment. In Specification 2, where the correction term for SIZE has been
dropped, we find that the coefficient of fit is significantly negative. Now, while the SIZE of
the firm turns out to be endogenous to the decision to innovate, as can be evinced from the
results of the second stage regression, it seems that SIZE, as reflected in Specification 1 in
Table 6, conditional on unobserved heterogeneity α̃i, is exogenous to the amount invested in
R&D. This could be either because the additional correction terms – C11, C12, C01, C02 – that
take in account the endogeneity of the decision to innovate also accounts for the endogeneity
of SIZE. It could also reflect the fact that R&D investment, which is a fraction of total
investment, affects SIZE of the firm in a predetermined way. However, what does not turn
out significant is the APE of financial constraint on R&D intensity, ∆fE(rit|X̄ ), defined in
equation (25).
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The other variables included in the specification are size of the firm (SIZE), market share
(MKSH), age of the firm (AGE), dummy (DMULTI) that takes value 1 if the number of
enterprises consolidated within a firm is more than one. We find that, even though large firms
are more likely to engage in innovative activity, among the innovators smaller firms invest
relatively more in R&D than larger firms. This finding is contrary to Klette and Kortum
(2004) who model firm dynamics with R&D and where R&D intensity is independent of firm
size. This is because Klette and Kortum (2004) in their model do not consider the financing
aspect of R&D. The finding that smaller firms are more R&D intensive could be because, as
has been argued in Cooley and Quadrini (2001) and Gomes (2001), of the fact that smaller
firms have a higher Tobin’s “q” than large firms, which can even be true of R&D capital.
Thus smaller firms in their bid to grow exhibit risky behavior in terms of investment in R&D.
Also, for larger firms investing as much as or proportionately more in R&D than smaller
firms would imply subjecting themselves to higher risk. This is because large firms, as argued
in Cooley and Quadrini (2001), operating on a larger scale are more subject to exogenous
shocks, and tying up more capital, or in proportionate to size, in a risky venture as R&D
can potentially make large firms more susceptible to default. This is specially true when the
price process of R&D output is correlated with the output of the existing operation of the
firm. Thus given the fact that R&D is highly intangible, which lacks second hand market,
and with decreasing returns to R&D, investing in R&D proportionate to size or more would
imply making itself more prone to default. We also find that for a given SIZE a constrained
firm will invest less in R&D.

Young firms are found to be more R&D intensive, corroborating the result of the second
stage, where we found them to more likely to engage in innovative activity as compared to
mature firms. We also find that at a given age constrained firms are less likely to invest. In
our sample we find that constrained firms with a large market share, MKSH, invest more
in R&D, but market share does not have any explanatory power for unconstrained firms. In
another set of regression, where we had removed DMULTI from the specification we did
find a marginally significant positive sign for market share among the unconstrained firms,
but the comparison of the size and the significance of the coefficients across the two regimes
remained the same. Similar to the result on innovation we find that firms that have a number
of enterprises consolidated within them, DMULTI, are more likely to be R&D intensive.

In our analysis we find that the correction term for long-term debt and dividends are
significant for financially constrained firms but not for the unconstrained ones, suggesting
that financing with long-term debt and dividend payout are determined endogenously with
R&D investment for constrained firms but not for the unconstrained ones. This is consistent
with the results of the some of the papers, cited above, that model endogenous borrowing
constraints, firm investment, and firm dynamics. We find that the control function for liq-
uidity reserve is significant for the unconstrained firms but not for the constrained ones. In
another set of regression, where we had removed DMULTI from the specification we found
a significant sign for the control function of liquidity reserve for the constrained firms. This
finding suggests that R&D investment and cash retention along with other financial decision
are endogenous. This is in line with the findings of Gamba and Triantis (2008) where they
analyze optimal liquidity policies and their resulting effects on firm value. In their model
the decision on investment, borrowing and cash retention/distribution represent endogenous
response to costs of external financing, the level of corporate and personal tax rates that
determine the effective cost of holding cash, the firm’s growth potential and maturity, and
the reversibility of capital.

23



While the significance of individual control functions correcting for endogeneity of finan-
cial state variables differ across constrained and unconstrained firms we find that Z̄ ′

iδ̄δδ + α̂i is
significant across both the regimes, suggesting overall a strong simultaneity in R&D invest-
ment and financial choices. Besides, we find that the additional correction terms – C11, C12,
C01, C02 – that take in account the endogeneity of the decision to innovate and the financial
constraint faced are also significant.

5 Concluding Remarks

The main objective of this paper was to empirically study how incentives to innovate interact
with financing frictions, frictions that assume a special status given the risky and idiosyncratic
nature of R&D and innovative activity. We focused on (I) the firms’ endogenous decision to
innovate and the endogenous financial constraint faced given the endogenous financial choices
made by the firms. Then conditional on financial choices made, the decision to innovate,
and the constraint faced we tried to determine (II) how financial constraints affect R&D
investment.

To the above mentioned end, we presented an empirical strategy to estimate a fully spec-

ified model of endogenous R&D investment, endogenous financial constraints, endogenous
decision to innovate, and endogenous financial choices made. The strategy entailed estimat-
ing in three steps (1) a system of structural equations pertaining to (a) model for R&D
investment, where we try to assess the impact of financial constraints on R&D investment,
(b) a model for financial constraints, where we try to explain why certain firms report they
are financially constrained, (c) a model for decision to innovate, where we try to explain how
incentives to innovate are shaped, and (2) a system of reduced form equations of financing
choice and other endogenous variables. The first (I) structural part of the analysis, that is, the
study of firms’ endogenous decision to innovate and the endogenous financial constraint faced,
was carried out in the second step, conditional on the first stage reduced form estimation.
The second (II) part, where we study the effect of financial constraints on R&D investment,
was carried out in the third step, conditional on the first and second stage estimates.

Our methodology combined the method of “correlated random effect” and “control func-
tion” to account for unobserved heterogeneity and endogeneity of regressors in the structural
equations. We believe that the estimation technique is new to the literature and solves the
much discussed endogeneity problem in empirical corporate finance.

From the estimates of the second stage, where we estimated jointly the probability of being
an innovator and the probability of being financially constrained, conditional on endogenous
financial choices, we could garner that debt is not the preferred means of external finance
for firms engaging in R&D activity, and that a highly leveraged firm is more likely to be
financially constrained. We found that large and young firms, and those enjoying a higher
degree of monopoly are more likely to be innovators. Also, firms that have many enterprises
consolidated within them are more likely to be innovators. We found that small and young
firms and firms with lower collateralizable assets are more likely to be financially constrained.
Besides, the analysis also revealed that the decision to engage in R&D activity, the various
financial choices, and the financial constraint faced are all endogenously determined.

Interestingly, we found that under no financial constraints, the marginal propensity to
innovate with respect to leverage is lower as compared to a situation in which firms find
themselves financially constrained. Also, though the marginal propensity to innovate un-
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der no financial constraints, barely varies with firm characteristics such as maturity, size and
leverage, under financial constraints the propensity to innovate with respect to leverage varies
with the distribution of firm characteristics. The above implies that when a firm is not finan-
cially constrained, regardless of its characteristic, it will be unwilling to engage in innovative
activity by raising debt. On the other hand under constraint, even though on average debt it
not a preferred means to finance innovative activity, firms do show a propensity to engage in
innovative activity by raising debt. However, this propensity is influenced both by the incen-
tives to innovate and the capacity to raise debt; both of which vary with firm characteristics.
These findings draw our attention to the fact that innovation and financing policy are not
independent of firms dynamics of survival, exit, and growth.

The results of the third stage R&D switching regression imply that financial constraints do
adversely affect R&D investment. We found that small, young, and firms with multiple enter-
prises are more R&D intensive. However, for a given size and age, the financially constrained
ones invest less. Besides, our analysis also showed that R&D investment and financing de-
cisions are determined simultaneously. Finally, among others, one of the aims of this paper
has been to gauge the magnitude of the impact of financial constraints. However, since the
measure of the magnitude is not statistically significant we can not assert this finding.

These results underscore the fact that capital-market imperfections does affect the incen-
tives to innovate, and the interaction between financing frictions and innovation is not uniform
across firm characteristics. Our results therefore, taken together, point towards the fact that
financing frictions that affect innovation and R&D activity also affect firm dynamics. While
these findings are consistent with some of the empirical and theoretical results that seek to
explain the implication of financing frictions and firm dynamics, none to our knowledge has
explored the implications of innovation and its interaction with financing frictions in deter-
mining firm dynamics. On the other hand while models in industrial organization do study
firm and industry dynamics where R&D and the stochastic nature of innovation drive the
dynamics, the financial aspect and its interaction with innovative activity is found lacking.
Our results suggest that future work in this area is needed.
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Appendix A: Identification of Structural Parameters with Ex-
pected a Posteriori Values of Individual Effects

We began with a set of structural equations

y∗
it = X

′
itB+ α̃ik+Υit, (A-1)

and a set of reduced m form equations for the endogenous regressors in the above equation,

xit = Z′
itδδδ + α̃iκκκ+ εεεit, (A-2)

a specification for the conditional expectation and distribution of the individual effects α̃i,

α̃i = Z̄ ′
iδ̄δδ + αi, (A-3)

and specification of the joint distribution of idiosyncratic components Υit and εεεit. In order
to identify the structural parameters of interest in (A-1) we had posited a set of conditional
mean restriction, given in equations (6) and (7), which led to the following modified set of
structural equations

y∗
it = X

′
itB+ (Z̄ ′

iδ̄δδ + αi)k+ Σ̃ΥεΣ̃
−1
εε εεεit + Ῡit. (A-4)

We had argued that in order to estimate the system of equations in (A-4) the standard
technique of the control function approach is to replace εεεit by the residuals from the first stage
reduced form regression. However, the residuals xit−E(xit|Zi, αi) = xit−Z′

itδδδ− (Z̄ ′
iδ̄δδ+αi)κκκ,

remain unidentified because the αi’s are unobserved even though the reduced form parameters,
δδδ, δ̄δδ, and κκκ, can be consistently estimated from the first stage estimation of the modified
reduced form equation given in (4a).

However, it can still be possible to estimate the structural parameters if we can integrate
out the αis. But given that αis are correlated with the endogenous regressors we have to
integrate it out with respect to its conditional distribution. Given (A-4), we have

E(y∗
it|Xi,Zi, αi) = X

′
itB+ (Z̄ ′

iδ̄δδ + αi)k+ Σ̃ΥεΣ̃
−1
εε εεεit.

Let f(αi|Xi,Zi) be the conditional distribution of time invariant individual effect αi condi-
tional on Xi and Zi. For any individual, i, taking expectation of the above with respect to
the conditional distribution of α, f(α|X,Zi) we obtain

E(y∗
it|Xi,Zi) =

∫
E(y∗

it|Xi,Zi, αi)f(αi|Xi,Zi)dαi

= X
′
itB+ Z̄ ′

iδ̄δδk+ Σ̃ΥεΣ̃
−1
εε (xit − Z′

itδδδ − Z̄ ′
iδ̄δδκκκ) +

∫
(k− Σ̃ΥεΣ̃

−1
εε κκκ)αif(αi|Xi,Zi)dαi

= X
′
itB+ Z̄ ′

iδ̄δδk+ Σ̃ΥεΣ̃
−1
εε (xit − Z′

itδδδ − Z̄ ′
iδ̄δδκκκ) +

∫
(k− Σ̃ΥεΣ̃

−1
εε κκκ)αif(αi|Xi)dαi

= X
′
itB+ Z̄ ′

iδ̄δδk+ Σ̃ΥεΣ̃
−1
εε (xit − Z′

itδδδ − Z̄ ′
iδ̄δδκκκ) + (k− Σ̃ΥεΣ̃

−1
εε κκκ)α̂i

= X
′
itB+ (Z̄ ′

iδ̄δδ + α̂i)k+ Σ̃ΥεΣ̃
−1
εε (xit − Z′

itδδδ − (Z̄ ′
iδ̄δδ + α̂i)κκκ)

= X
′
itB+ (Z̄ ′

iδ̄δδ + α̂i)k+ Σ̃ΥεΣ̃
−1
εε ε̂εεit, (A-5)
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where the second equality follows from the fact that Zi and αi are independent. α̂i =
α̂i(Xi,Zi,Θ1) is the expected a posteriori (EAP) value of time invariant individual effects αααi,
and Θ1 is the set of first stage reduced form parameters.

To obtain (A-5), using Bayes rule we can write f(α|X,Z) as

f(α|X) =
f(X|α)g(α)

h(X)
=

f(X,Z|α)g(α)

h(X,Z)
, (A-6)

where g and h are density functions. The above can be written as

f(α|X,Z) =
f(X|Z, α)p(Z|α)g(α)

h(X|Z)p(Z)
,

By our assumption the, αis are independent of the exogenous variables Z, hence p(Z|α) =
p(Z), that is,

f(α|X,Z) =
f(X|Z, α)g(α)

h(X|Z)
=

f(X|Z, α)g(α)∫
f(X|Z, α)g(α)dα

, (A-7)

Hence,

∫
αf(α|X,Z)d(α) =

∫
αf(X|Z, α)g(α)dα∫
f(X|Z, α)g(α)dα

=

∫
α
∏T

t=1 f(xt|Z, α)g(α)dα∫ ∏T
t=1 f(xt|Z, α)g(α)dα

= α̂(X,Zi,Θ1) (A-8)

where the second equality follow from the fact that conditional on Z and α, each of the
xt, xt ∈ {x1, . . . ,xT } are independently normally distributed with mean Z′

tδδδ + (Z̄ ′δ̄δδ + α)κκκ
and standard deviation Σεε. g(α) by our assumption is normally distributed with mean zero
and variance σ2

α and a = α
σα

follows a standard normal distribution. The functional form of
α̂i(xi,Zi,Θ1) is given by:

α̂i(xi,Zi,Θ1) =∫
σαa

∏T
t=1 exp(−

1
2 (xt − Z′

tδδδ − (Z̄ ′δ̄δδ + σαa)κκκ)
TΣ−1

εε (xt − Z′
tδδδ − (Z̄ ′δ̄δδ + σαa)κκκ))φ(a)da∫ ∏T

t=1 exp(−
1
2 (xt − Z′

tδδδ − (Z̄ ′δ̄δδ + σαa)κκκ)TΣ
−1
εε (xt − Z′

tδδδ − (Z̄ ′δ̄δδ + σαa)κκκ))φ(a)da
.

(A-9)

The right hand side of (A-9) is the expected a posteriori value of αi. ˆ̂αi(xi,Zi, Θ̂1) is the
estimated expected a posteriori value of αi, which can be estimated by employing numerical
integration techniques, such as Gauss-Hermite quadratures, with respect to α at the estimated
Θ1 from the first stage. Also, it can be shown that

Lemma 1 ˆ̂αi(xi,Zi, Θ̂1) converges a.s. to α̂i(xi,Zi,Θ1), where Θ̂1 is the consistent first

stage estimates.

Proof of Lemma 1 Given in Section A.1.
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Lemma 1 implies that

X
′
itB+ (Z̄ ′

iδ̄δδ +
ˆ̂αi)k+ Σ̃ζεΣ̃

−1
εε
ˆ̂εεεit,

a.s
→ E(y∗t |X,Z) =

∫
E(y∗t |X,Z, α)f(α|X,Z)d(α).

Therefore, if the reduced form population parameters, Θ1, are known, the above implies that
we could write the linear predictor of y∗it, given Xi and Zi in error form as

y∗
it = X

′
itB+ (Z̄ ′

iδ̄δδ + α̂i)k+ Σ̃ΥεΣ̃
−1
εε ε̂εεit + Υ̃it, (A-10)

where conditional of Xi and Zi, Υ̃it is i.i.d. with mean 0. For liner models, say if all the
variables in y∗

it were continuous and observed, with estimates of expected a posteriori values,
Z̄ ′
iδ̄δδ + α̂i, and the estimates of Σ̃−1

εε ε̂εεit the parameters of interest, B, can be consistently
estimated by running a seemingly unrelated regression (SUR) or a panel version of SUR to
gain efficiency. We note here that for any k, k ∈ {1, . . . , n}, n = 4 in our model, Σ̃ΥkεΣ̃

−1
εε ε̂εεit

take the form

ρΥkε1σΥk
f1(Σεε, ε̂1it, . . . , ε̂mit) + . . .+ ρΥkεmσΥk

fm(Σεε, ε̂1it, . . . , ε̂mit)

where each of the f ’s above are linear in ε̂εεit. The estimates ρΥkεlσΥk
, l ∈ {1, . . . ,m}, provides

us with a test of exogeneity of the regressor xl with respect to Υk.
However, when response outcomes are discrete and we have to deal with nonlinear models

additional assumptions than those made above are required. Let us consider f∗
t of y∗

t where
f∗
t is the latent variable underlying ft, the binary variable that takes value 1 when the firm is
financially constrained and 0 otherwise. Also, let, given the first stage population parameters
Θ1, the linear predictor of f∗

it, given Xi and Zi, in error form given by (A-10) be

f∗
it = X f ′

it ϕϕϕ+ λ(Z̄ ′
iδ̄δδ + α̂i) + Σ̃ζεΣ̃

−1
εε ε̂εεit + ζ̃it,

where ζ̃t is i.i.d. and normally distributed with mean 0 and variance σ2
ζ̃
. Since in probit

models the parameters are identified only up to a scale, for an individual i, the probability of
ft = 1 given Xi and Zi is given by

Pr(ft = 1|X,Z) = Pr(ft = 1|X,Z, ε̂εεt, α̂) = Pr(y∗t > 0|X,Z, ε̂εεt, α̂)

= Φ

(
(X f ′

it ϕϕϕ+ λ(Z̄ ′
iδ̄δδ + α̂i) + Σ̃ζεΣ̃

−1
εε ε̂εεit)

1

σζ̃

)
, (A-11)

where the first equality follows from the fact that ε̂εεt and α̂ is a function of X and Z and Φ() is
the cumulative standard normal density function. However, Pr(ft = 1|X,Z, ε̂εεt, α̂) = Pr(ft =
1|X,Z,E(εεεt|X,Z),E(α̃|X,Z)) is generally not equal to Pr(ft = 1|X,Z, εεεt, α̃). Our measure
of interest, however, is

∫
Pr(ft = 1|X,Z, εεεt, α̃)dg(εεεt, α̃), since for any individual i, the average

partial effect (APE) of changing a variable, say zk, in time period t from zkt to zkt +∆zk is
given by

∆Pr(ft = 1)

∆zk

=

[∫
Pr(ft = 1|X,Z−zk , zk−t

, (zkt +∆zk), εεεt, α̃)dg(εεεt, α̃)

−

∫
Pr(ft = 1|X,Z−zk , zk−t

, zkt, εεεt, α̃)dg(εεεt, α̃)

]
/∆zk , (A-12)
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where g(εεεt, α̃) is the joint distribution function of εεεt and α̃. To recover the above measure in
(A-15), like Chamberlain (1984), we make an assumption about the conditional distribution
for λα̃i and Σ̃ζεΣ̃

−1
εε εεεt, where the conditioning variable are Xi and Zi. We assume that

λα̃i = E(λα̃i|Xi,Zi) + ᾱζi and Σ̃ζεΣ̃
−1
εε εεεit = E(Σ̃ζεΣ̃

−1
εε εεεit|Xi,Zi) + ε̄ζit (A-13)

where ᾱζi and ε̄ζt, a scalar, are normally distributed with mean 0, and are independent of
everything else. Now, for any individual i, we have shown that

E(α̃|X,Z) = Z̄ ′δ̄δδ +

∫
αf(α|X,Z)d(α) = Z̄ ′δ̄δδ + α̂(X,Z,Θ1) and E(Σ̃ζεΣ̃

−1
εε εεεt|Xi,Zi) = Σ̃ζεΣ̃

−1
εε ε̂εεt.

Hence, under the assumption about the conditional distribution of λα̃i and Σ̃ζεΣ̃
−1
εε εεεt, we can

write the linear projection of f∗
t in error form in (A-4), as

f∗
t = X f ′

t ϕϕϕ+ λ(Z̄ ′δ̄δδ + α̂) + Σ̃ζεΣ̃
−1
εε ε̂εεt + ωζt + ζ̄t, (A-14)

where ωζt = ᾱζ + ε̄ζt and ζ̃t in (A-10) becomes ζ̃t = ωζt + ζ̄t.
Now, having assumed the conditional distribution of λα̃i and Σ̃ζεΣ̃

−1
εε εεεt, for any individual

i, we now have

Pr(ft = 1|X,Z, εεεt, α̃) = Pr(ft = 1|X,Z, ε̂εεt, α̂, ωζt)

and
∫

Pr(ft = 1|X,Z, εεεt, α̃)dg(εεεt, α̃) =

∫
Pr(ft = 1|X,Z, ε̂εεt, α̂, ωζt)dF (ε̂εεt, α̂, ωζt),

where F (ε̂εεt, α̂, ωζt) is the joint distribution function of the arguments. Now
∫

Pr(ft = 1|X,Z, ε̂εεt, α̂, ωζt)dF (ε̂εεt, α̂, ωζt) =

∫ ∫
Pr(ft = 1|X,Z, ε̂εεt, α̂, ωζt)d(h(ωζt, |̂εεεt, α̂))dG(ε̂εεt, α̂)

=

∫ ∫
Pr(ft = 1|X,Z, ε̂εεt, α̂, ωζt)d(h(ωζt))dG(ε̂εεt, α̂)

=

∫
Pr(ft = 1|X,Z, ε̂εεt, α̂)dG(ε̂εεt, α̂), (A-15)

where G(ε̂εεt, α̂) is the distribution of ε̂εεt and α̂, and h(ωζt, |α̂, ε̂εεt) is the conditional distribution
of ωζt given ε̂εεt and α̂. The second equality above follows from the fact that ε̂εεt and α̂ are
independent of ωζt. Thus we have shown that

∫
Pr(ft = 1|X,Z, εεεt, α̃)dg(εεεt, α̃) =

∫
Pr(ft = 1|X,Z, ε̂εεt, α̂)dG(ε̂εεt, α̂)

=

∫
Φ

({
X f ′
t ϕϕϕ+ λ(Z̄ ′δ̄δδ + α̂) + Σ̃ζεΣ̃

−1
εε ε̂εεt

}
1

(σ2
ωζ

+ σ2
ζ̄
)1/2

)
dG(ε̂εεt, α̂), (A-16)

where σ2
ωζ

is the variance of ωζt and σ2
ζ̄
the variance of ζ̄. To obtain the sample analog of

RHS of (A-16) for any fixed X f
it = X̄ f we can compute

1∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

Pr(fit = 1|X̄ f , ˆ̂εεεit, ˆ̂αi). (A-17)
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With (A-17) we can now compute (A-12), the mean effect or the average partial effect (APE),

of changing a variable, say w, from wt = w̄ to w̄+∆w, given X f
−wt = X̄ f

−w. In the limit when
∆w tends to zero, and since the integrand is a smooth function of its arguments we can change
the order of differentiation and integration in (A-16) to get

∂ Pr(ft = 1)

∂w
=

∫
ϕwφ

(
X̄ f ′ϕϕϕ+ λ(Z̄ ′δ̄δδ + α̂) + Σ̃ζεΣ̃

−1
εε ε̂εεt

)
dG(ε̂εεt, α̂), (A-18)

where φ is the density function of a standard normal and the coefficient – ϕϕϕ, λ, and Σ̃ζε –

with a slight abuse of notation, denote the scaled coefficients. Then, for any fixed X f
it = X̄ f ,

an estimate of the APE of w, the sample analog of the RHS in (A-18), can be computed as
follows:

∂P̂r(fit = 1)

∂w
=

1∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

ϕ̂wφ

(
X̄ f ′ϕ̂ϕϕ+ λ(Z̄ ′

i
ˆ̄δδδ + ˆ̂αi) +

ˆ̃Σζε
ˆ̃Σ−1
εε
ˆ̂εεεit

)
, (A-19)

which converges in probability to its true value in (A-18) as
∑N

i=1 Ti = N → ∞.
Suppose, w is dummy variable taking values 0 and 1, then the APE of change of wit from

0 to 1, at population parameters, on the probability of yit = 1, given other covariates, is given
by

∫ [
Φ

(
X̄ f ′
−wϕϕϕ−w + ϕw + λ(Z̄ ′δ̄δδ + α̂αα) + Σ̃ζεΣ̃

−1
εε ε̂εεt

)

− Φ

(
X̄ f ′
−wϕϕϕ−w + λ(Z̄ ′δ̄δδ + α̂αα) + Σ̃ζεΣ̃

−1
εε ε̂εεt

)]
dG(ε̂εεt, α̂αα), (A-20)

whose sample analog, given X f
it−w

= X̄ f
−w

, the estimated first and second stage coefficients, ˆ̂εεεit,

and ˆ̂αααi, can be computed by employing (A-17) for w = 1 and w = 0. In this Appendix we have
shown the identification of structural parameters only for the financial constraint equation.
A similar equation as (A-14) also holds for the R&D and selection equations. That is Υ̃it

in equations (13) to (15) in the main text is Υ̃it = {η̃1it, η̃0it, ζ̃it, υ̃it}
′ = {ωη1it + η̄1it, ωη0it +

η̄0it, ωζit + ζ̄it, ωυit + ῡit}
′, where ωη1it, ωη0it, and ωυit are defined in the same way as ωζit is

defined in (A-14) and Ῡit = {η̄1it, η̄0it, ζ̄it, ῡit}
′ in equations (8) and (9) in the main text.

A.1 Proof of Lemma 1

Proof: Let Θ∗
1 be true value of first stage reduced form parameters. Now, for an individual i

α̂(X,Z,Θ1) =

∫
α exp(−1

2r(Θ1, α))φ(α)dα∫
exp(−1

2r(Θ1, α))φ(α)dα
,

where r(Θ1, α) =
∑T

t=1(xt − Z′
tδδδ − (Z̄ ′

tδ̄δδ + α)κκκ)′Σ−1
εε (xt − Z′

tδδδ − (Z̄ ′
tδ̄δδ + α)κκκ).

First consider the expression in the numerator
∫
α exp(−1

2r(Θ1, α))φ(α)dα. Now, |α|, |.|
being the absolute value of its argument, is continuous in α and |α| ≥ α exp(−1

2r(Θ1, α))

∀Θ1 ∈ Θ1Θ1Θ1. We also know that Θ̂1
a.s.
−→ Θ∗

1, and since α exp(−1
2r(Θ1, α)), is continuous in Θ1

and α, α exp(−1
2r(Θ̂1, α))

a.s.
−→ α exp(−1

2r(Θ
∗
1, α)) for any given α. Thus by an application of

Lebesque Dominated Convergence Theorem we can conclude that
∫

α exp(−
1

2
r(Θ̂1, α))φ(α)dα

a.s.
−→

∫
α exp(−

1

2
r(Θ∗

1, α))φ(α)dα.

32



Also, since 1 ≥ exp(−1
2r(Θ1, α)), again by an application of Lebesque Dominated Convergence

Theorem we can conclude that
∫

exp(−
1

2
r(Θ̂1, α))φ(α)dα

a.s.
−→

∫
exp(−

1

2
r(Θ∗

1, α))φ(α)dα.

Given that both the numerator and the denominator in (A-9) defined at Θ̂1 converge almost
surly to the same defined at Θ∗

1, it can now be easily shown that

ˆ̂α(X,Z, Θ̂1)
a.s.
−→ α̂(X,Z,Θ∗

1).
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Appendix B: Information on Firms for which Imputations was
done in from moving to Enterprise to Firm Level
Data

Table B.1: Total number of enterprises, Nf , and number of enterprises surveyed
within a firm, nf

The table illustrates the number of firms, in each of the three CIS waves, for which the number of number
of enterprises surveyed is equal to the number of enterprises present in the firm, Nf = nf , and the number
of firms, for which the number of enterprises present in the firm exceeds the number of enterprises surveyed.
These figures pertain to the CIS data set prior to merging with the SF data set. Since not all the CIS firms
are in the SF data set, the CIS data used for estimation after cleaning is a bit less than half the size of the
original data set.

CIS2.5 CSI3 CIS3.5

No. of firms for which No. of firms for which No. of firms for which

Nf Nf = nf Nf > nf Nf Nf = nf Nf > nf Nf Nf = nf Nf > nf

1 9400 0 1 6155 0 1 7096 0
2 151 1255 2 67 823 2 137 978
3 20 608 3 4 424 3 24 553
4 3 316 4 3 237 4 2 290
5 3 247 5 2 108 5 222
6 149 6 115 6 122
7 107 7 48 7 105
8 60 8 77 8 50
9 2 93 9 58 9 77
10 83 10 39 10 82
11 106 11 63 11 50
12 49 12 39 12 58
13 43 13 15 13 49
14 59 14 50 14 46
15 46 15 17 15 25
16 31 16 28 16 51
17 62 17 15 17 15
18 36 18 26 18 55
19 37 19 13 19 8
20 29 20 21 20 28
21 13 21 2 21 43
22 23 22 27 22 36
23 15 24 5 23 18
25 34 25 9 24 25
26 46 26 8 25 11
27 4 27 21 27 17
29 14 28 13 28 19
30 14 29 8 29 11
31 18 30 8 30 15
32 15 31 3 31 7
33 11 32 16 32 16
34 18 34 22 33 25
37 15 40 10 37 21
38 15 45 14 38 13
43 15 48 18 39 20
44 17 50 19 40 9
45 14 57 16 41 10
48 20 60 16 46 15
49 22 50 16
51 28 53 47
56 19 55 16
66 33
85 41
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Table 3: Means of Variables for Innovators and Non-Innovators

CIS2.5 CSI3 CIS3.5

Innovator Non-Innovator Innovator Non-Innovator Innovator Non-Innovator

R&D* 0.506 0.338 0.192

Share of Innovative Sales
in Total Sales (%) 8.532 10.944 8.025

Long-term Debt* 0.789 0.834 0.739 0.8080 1.149 0.954

Cashflow* 0.869 0.841 0.638 1.167 0.589 0.352

Dummy for
Multiple Enterprises 0.369 0.019 0.478 0.008 0.539 0.019

Liquidity Reserve* 0.913 1.837 0.840 1.689 1.152 1.532

Dividends* 0.082 0.133 0.089 0.268 0.176 0.253

Market Share (%) 0.926 0.067 1.295 0.073 1.267 0.099

Size (Log of Employed) 5.038 4.007 4.808 3.304 4.980 3.759

Age 21.696 19.489 24.817 21.978 25.131 21.109

Ratio of Intangible
to Total Assets (%) 4.284 2.771 5.254 2.230 7.773 2.702

Dummy for Negative
Cashflow 0.069 0.110 0.079 0.109 0.119 0.135

No. of Observations 2,947 2,416 1,844 1,579 1,980 2,266

* Variables normalized by total capital assets
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Table 4: Second Stage Estimates: Financial Constraints and Innovation

Coefficient Estimates

Specification 1 Specification 2 Specification 3

Eq. (14) Eq. (15) Eq. (14) Eq. (15) Eq. (14) Eq. (15)

Variables of Financial Innovation Financial Innovation Financial Innovation
interest Constraints Constraints Constraints

Share of Innovative Sales 0.201∗∗∗ 0.206∗∗∗ 0.206∗∗∗

(0.024) (0.021) (0.021)

Long Term Debt 0.781∗∗∗ -0.366∗∗∗ 0.788∗∗∗ -0.366∗∗∗ 0.788∗∗∗ -2.292∗∗∗

(0.247) (0.108) (0.248) (0.108) (0.248) (0.133)

Cashflows 0.313∗∗∗ 0.317∗∗∗ 0.317∗∗∗

(0.041) (0.041) (0.041)

Dummy for Negative 0.99∗∗∗ 1.018∗∗∗ 1.018∗∗∗

Cashflows (0.116) (0.097) (0.097)

Liquidity Reserve -0.26∗∗∗ 0.515∗∗∗ -0.298∗∗∗ 0.515∗∗∗ -0.298∗∗∗ 1.524∗∗∗

(0.086) (0.095) (0.038) (0.095) (0.038) (0.121)

Dividends -3.624∗∗∗ 0.019 -3.677∗∗∗ 0.019 -3.677∗∗∗ -0.096∗∗∗

(0.454) (0.018) (0.452) (0.018) (0.452) (0.018)

Size -0.49∗∗∗ 0.29∗∗∗ -0.486∗∗∗ 0.29∗∗∗ -0.486 0.741∗∗∗

(0.069) (0.033) (0.067) (0.033) (0.067) (0.042)

Market Share 0.008 0.131∗∗∗ 0.004 0.131∗∗∗ 0.004 0.059∗∗∗

(0.008) (0.021) (0.004) (0.021) (0.004) (0.021)

Age -0.011∗∗ -0.012∗∗∗ -0.011∗∗∗ -0.012∗∗∗ -0.011∗∗∗ -0.017∗∗∗

(0.004) (0.002) (0.004) (0.002) (0.004) (0.002)

Ratio of Intangible 0.041 -0.259∗∗∗ 0.056∗∗∗ -0.259∗∗∗ 0.056∗∗∗ 0.175∗∗∗

Assets to Total Assets (0.029) (0.03) (0.014) (0.03) (0.014) (0.024)

Dummy for Multiple 0.082 3.177∗∗∗ 3.177∗∗∗ 2.041∗∗∗

Enterprise Firms (0.162) (0.172) (0.172) (0.155)

Control Functions† for

Share of Innovative -1.328∗∗∗ 0.549∗∗∗ -1.378∗∗∗ 0.549∗∗∗ -1.378∗∗∗

Sales (0.184) (0.031) (0.154) (0.031) (0.154)

Long-term Debt -6.209∗∗∗ 2.633∗∗∗ -6.217∗∗∗ 2.633∗∗∗ -6.217∗∗∗ 18.626∗∗∗

(2.198) (0.892) (2.199) (0.892) (2.199) (1.06)

Dividends 17.387∗∗∗ -2.105∗∗∗ 17.787∗∗∗ -2.105∗∗∗ 17.787∗∗∗ -4.964∗∗∗

(2.058) (0.369) (1.98) (0.369) (1.98) (0.443)

Liquidity Reserve 7.637∗∗∗ -5.833∗∗∗ 8.164∗∗∗ -5.833∗∗∗ 8.164∗∗∗ -15.145∗∗∗

(1.089) (1.044) (0.404) (1.044) (0.404) (1.288)

Ratio of Intangible -1.209∗∗ 5.286∗∗∗ -1.517∗∗∗ 5.286∗∗∗ -1.517∗∗∗ -2.749∗∗∗

to Total Assets (0.59) (0.609) (0.257) (0.609) (0.257) (0.476)

Size -0.871∗∗∗ 0.775∗∗∗ -0.937∗∗∗ 0.775∗∗∗ -0.937∗∗∗ 2.044∗∗∗

(0.167) (0.164) (0.111) (0.164) (0.111) (0.189)

Individual Effects -0.729∗∗∗ -0.265∗∗∗ -0.688∗∗∗ -0.265∗∗∗ -0.688∗∗∗ 1.779∗∗∗

(Z̄iδ̄δδ + α̂i) (0.187) (0.084) (0.16) (0.084) (0.16) (0.102)

ρζ̃υ̃ 0.589∗∗∗ 0.589∗∗∗ 0.589∗∗∗

(0.033) (0.033) (0.033)

Total Number of Observations: 13032

Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

† The estimated coefficient for the Control Functions for Share of Innovative Sales, Long-term Debt, Divi-

dends, Liquidity Reserve, Ratio of Intangible to total Assets, and Size correspond to the estimated terms in

Σ̃ζε = {ρζε1σζ , . . . , ρζεmσζ} of equation (14) and Σ̃υε = {ρυε1συ, . . . , ρυεmσυ} of equation (15).
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Table 5: Average Partial Effects of Second Stage Estimates

Specification 1 Specification 2 Specification 3

Eq. (14) Eq. (15) Eq. (14) Eq. (15) Eq. (14) Eq. (15)

Financial Innovation Financial Innovation Financial Innovation
Constraints Constraints Constraints

Share of Innovative Sales 0.028∗∗∗ 0.028∗∗∗ 0.028∗∗∗

(0.004) (0.003) (0.003)

Long Term debt 0.107∗∗∗ -0.091∗∗∗ 0.108∗∗∗ -0.091∗∗∗ 0.108∗∗∗ -0.3∗∗∗

(0.034) (0.025) (0.034) (0.027) (0.034) (0.01)

Cashflows 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗

(0.006) (0.006) (0.006)

Dummy for Negative 0.163∗∗∗ 0.166∗∗∗ 0.166∗∗∗

Cashflows (0.02) (0.019) (0.019)

Liquidity Reserve -0.036∗∗∗ 0.127∗∗∗ -0.041∗∗∗ 0.127∗∗∗ -0.041∗∗∗ 0.199∗∗∗

(0.013) (0.023) (0.005) (0.024) (0.005) (0.013)

Dividends -0.497∗∗∗ 0.005 -0.502∗∗∗ 0.005 -0.502∗∗∗ -0.013∗∗∗

(0.066) (0.005) (0.062) (0.005) (0.062) (0.002)

Size -0.067∗∗∗ 0.072∗∗∗ -0.066∗∗∗ 0.072∗∗∗ -0.066∗∗∗ 0.097∗∗∗

(0.009) (0.009) (0.009) (0.008) (0.009) (0.005)

Market Share 0.001 0.032∗∗∗ 0.001 0.032∗∗∗ 0.001 0.008∗∗∗

(0.001) (0.005) (0.001) (0.005) (0.001) (0.003)

Age -0.001∗∗ -0.003∗∗∗ -0.002∗∗∗ -0.003∗∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.001) (0) (0.001) (0) (0.001) (0)

Ratio of Intangible Assets 0.006 -0.064∗∗∗ 0.008∗∗∗ -0.064∗∗∗ 0.008∗∗∗ 0.023∗∗∗

to Total Assets (0.004) (0.008) (0.002) (0.008) (0.002) (0.003)

Dummy for Multiple 0.011 0.555∗∗∗ 0.621∗∗∗ 0.866∗∗∗

Enterprise Firms (0.023) (0.097) (0.013) (0)

Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
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Figure 1: Plot of APE of Long-term Debt on the Probability of Innovation conditional on be-
ing Financially Constrained, ∂ Pr(sit=1|fit=1)

∂DEBTit
, or not Financially Constrained, ∂ Pr(sit=1|fit=0)

∂DEBTit
,

against Age, Size, and Leverage.
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Table 6: Third Stage Estimates: R&D Switching Regression Model

Variables Specification 1 Specification 2 Control Functions† Specification 1 Specification 2
of Interest No Control No Control

Function for Size Function for Size

f , Binary variable for -1.049 -0.84∗∗ For Financially
Financial Constraint (0.661) (0.408) Constrained Firms

f∗ Share of 0.217∗∗∗ 0.219∗∗∗ Share of Innovative -1.559∗∗∗ -1.597∗∗∗

Innovative Sales (0.018) (0.017) Sales (0.159) (0.141)

(1− f)∗Share of 0.201∗∗∗ 0.205∗∗∗ Long-trem Debt 0.525∗∗ 0.511∗∗

Innovative Sales (0.018) (0.015) (0.213) (0.215)

f∗ Cashflow 0.07∗ 0.071∗ Dividends -1.296∗∗∗ -1.232∗∗∗

(0.041) (0.041) (0.39) (0.363)

(1− f)∗ Cashflow 0.005 0.005 Liquidity Reserve -0.395 -0.352
(0.003) (0.003) (0.291) (0.27)

f∗Dummy for 0.799∗∗∗ 0.682∗∗∗ Ratio of Intangible -0.034 -0.036
Multiple Enterprise (0.245) (0.158) to Total Assets (0.046) (0.046)

(1− f)∗ Dummy for 0.514∗∗∗ 0.429∗∗∗ Size 0.067
Multiple Enterprise (0.189) (0.078) (0.106)

f∗Market Share 0.027∗ 0.019∗∗ Financial Constraint 0.967∗∗∗ 0.83∗∗∗

(0.015) (0.009) (C11(.)t) (0.319) (0.209)

(1− f)∗Market share 0.011 0.005 Selection 0.636∗ 0.589∗

(0.012) (0.004) (C12(.)t) (0.326) (0.306)

f∗Size -0.494∗∗∗ -0.431∗∗∗ Individual effects -0.413∗ -0.297∗∗

(0.118) (0.071) (Z̄iδ̄δδ + α̂i) (0.236) (0.142)

(1− f)∗Size -0.364∗∗∗ -0.318∗∗∗ For Financially
(0.102) (0.035) Unconstrained Firms

f∗Age -0.012∗∗∗ -0.012∗∗∗ Share of Innovative -1.52∗∗∗ -1.57∗∗∗

(0.004) (0.004) Sales (0.164) (0.125)

(1− f)∗Age -0.002 -0.003∗∗ Long-trem Debt -0.029 -0.034
(0.002) (0.001) (0.084) (0.08)

Dividends 0.022 0.027
(0.053) (0.051)

Liquidity Reserve 0.18∗∗∗ 0.189∗∗∗

(0.063) (0.058)
Ratio of Intangible -0.089∗∗∗ -0.092∗∗∗

to Total Assets (0.013) (0.012)
Size 0.034

(0.074)
Financial Constraint -0.277 -0.186∗∗

(C01(.)t) (0.198) (0.065)
Selection -0.883∗∗∗ -0.745∗∗∗

(C02(.)t) (0.324) (0.114)
Individual effects 0.346∗∗∗ 0.312∗∗∗

(Z̄iδ̄δδ + α̂i) (0.091) (0.064)

Average Partial Effect -0.241 -0.175
of Financial Constraint (0.7) (0.393)

Total Number of Observations: 6771

Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

† The estimated coefficient for the Control Functions for Share of Innovative Sales, Long-term Debt, Dividends,

Liquidity Reserve, Ratio of Intangible to total Assets, and Size correspond to the estimated terms in Σ̃η1ε =

{ρη1ε1ση1 , . . . , ρη1εmση1} for the firms that are financially constrained and Σ̃η0ε = {ρη0ε1ση0 , . . . , ρη0εmση0}

for the firms that are not financially constrained of the R&D equation (13).
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Supplement to “Microeconometric Evidence of Financing

Frictions and Innovative Activity”: Supplementary Appendix

Amaresh K Tiwari∗, Pierre Mohnen†, Franz C. Palm‡,

Sybrand Schim van der Loeff§

Not meant to be included with the main text of the paper.

Appendix C: Maximum Likelihood Estimation of the Reduced

Form Equations

Let N be the total number of individuals. The individuals are observed in at least one and
at most P periods. Let Np denote the number of individuals observed in p periods, that is

N =
∑P

p=1Np. Let N be the total number of observations, i.e., N =
∑P

p=1Npp. Assume that
the individuals are ordered in P groups such that the N1 individuals observed once come first,
the N2 individuals observed twice come second, etc. Let Mp =

∑p
k=1Nk be the cumulated

number of individuals observed up to p times, so that the index sets of the individuals observed
p times can be written as I(p) = (Mp−1+1, . . . ,Mp)(p = 1, . . . , P ;M0 = 0). We may, formally,
consider I1 as a cross section and Ip(p = 2, . . . , P ) as a balanced panel with p observations of
each individual.

The system of m reduced form equations in equation (4a) is given by

xit = Z′
itδδδ + Z̄ ′

iδ̄δδκκκ+ αiκκκ+ εεεit = Z′
itδδδ + Z̄ ′

iδ̄δδκκκ+ uuuit, (C-1)

where xit = (x1it, . . . , xmit)
′ and Zit = diag(z1it, . . . , zmit) is the matrix of exogenous vari-

ables appearing in each of the m reduced form equation in (C-1). δδδ = (δδδ′1, . . . , δδδ
′
m)′, κκκ =

(κ1, . . . , κm)′, and εεεit = (ε1it, . . . , εmit)
′. σ2α is the variance of αi, which is normally distributed

with mean 0. We employ a step-wise maximum likelihood method developed by Biørn (2004)
to obtain consistent estimates of parameters, δδδ,Σεε,κκκ, and σ

2
α. Given the distribution of αi,

κκκαi is normally distributed with mean zero and variance Σα, given by:

Σα = σ2αΣκ = σ2α




κ21
κ1κ2 κ22
...

...
κ1κm κ2κm . . . κ2m


 .
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εεεit is normally distributed with mean zero and variance Σεε. We assume that αi and εit are
mutually uncorrelated and given that Z′

it is exogenous, αi and εit are uncorrelated with Z′
it.

Let xxxi(p) = (xxx′i1, . . . xxx
′
ip)

′, ZZZi(p) = (ZZZ ′
i1, . . .ZZZ

′
ip)

′ and εεεi(p) = (εεε′i1, . . . εεε
′
ip)

′ and write the model
as

xi(p) = Z′
i(p)δδδ + (ep ⊗ Z̄ ′

iδ̄δδκκκ) + (ep ⊗ αiκκκ) + εεεi(p) = Z′
i(p)δδδ + (ep ⊗ Z̄ ′

iδ̄δδκκκ) + uuui(p), (C-2)

E(uuui(p)uuu
′
i(p)) = Ip ⊗Σεε +Ep ⊗ Σα = Kp ⊗ Σεε + Jp ⊗ Σ(p) = Ωu(p) (C-3)

where

Σ(p) = Σεε + pΣα, p = 1, . . . , P (C-4)

and Ip is the p dimensional identity matrix, ep is the (p × 1) vector of ones, Ep = epe
′
p,

Jp = (1/p)Ep, and Kp = Ip− Jp. The latter two matrices are symmetric and idempotent and
have orthogonal columns, which facilitates inversion of Ωu(p).

C.1 GMM estimation

Before addressing the maximum likelihood problem, we consider the GMM problem for δ̃δδ =
{δδδ′, δ̄δδ

′
}′ when κκκ, σα (hence Σα), and Σεε are known. Define Qi(p) = uuu′i(p)Ω

−1
u(p)uuui(p), then

GMM estimation is the problem of minimizing Q =
∑P

p=1

∑
i∈I(p)

Qi(p) with respect to δ̃δδ.

Since Ω−1
u(p) = Kp ⊗ Σ−1

εε + Jp ⊗ (Σεε + pΣα)
−1, we can rewrite Q as

Q =
P∑

p=1

∑

i∈I(p)

Qi(p)(δδδ,Σεε,κκκ, σ
2
α) =

P∑

p=1

∑

i∈I(p)

uuu′i(p)[Kp ⊗ Σ−1
εε + Jp ⊗ (Σεε + pΣα)

−1]uuui(p),

(C-5)

with uuui(p) = xi(p)−Z′
i(p)δδδ−(ep⊗Z̄ ′

iδ̄δδκκκ). Had we not imposed the restriction that δ̄δδ be the same

for each of the m equations we could have estimated δδδ and δ̄δδ by employing GLS estimation
as in Biørn (2004).

C.2 Maximum Likelihood Estimation

We now consider ML estimation of Θ1 = {δ̃δδ,Σεε,κκκ, σ
2
α}. Assuming normality of αi and the

disturbances εεεit, i.e., αiκκκ ∼ IIN(0, σ2αΣκ) and εit ∼ IIN(0,Σεε), then uuui(p) = (ep ⊗ αiκκκ) +
εεεi(p) ∼ IIN(0mp,1,Ωu(p)). The log-likelihood function of all x’s conditional on all Z’s for an
individual in group p and for all individuals then become, respectively,

Li(p)1(Θ1) =
−mp

2
ln(2π)−

1

2
ln |Ωu(p)| −

1

2
Qi(p)(δ̃δδ,Σεε,κκκ, σ

2
α) (C-6)

L1(Θ1) =

P∑

p=1

∑

i∈I(p)

Li(p)1 =
−mN

2
ln(2π)−

1

2

P∑

p=1

Np ln |Ωu(p)| −
1

2

P∑

p=1

∑

i∈I(p)

Qi(p)(δ̃δδ,Σεε,κκκ, σ
2
α),

(C-7)
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where |Ωu(p)| = |Σ(p)||Σεε|
p−1.

We split the problem into: (A) Maximization of L with respect to δ̃δδ for given (Σεε,κκκ, σ
2
α)

and (B) Maximization of L1(Θ1) with respect to (Σεε,κκκ, σ
2
α) for given δ̃δδ. Subproblem (A) is

identical with the GMM problem, since maximization of L1(Θ1) with respect to δ̃δδ for given
(Σεε,κκκ, σ

2
α) is equivalent to minimization of

∑P
p=1

∑
i∈I(p)

Qi(p)(δ̃δδ,Σεε,κκκ, σ
2
α).

The first order conditions with respect to Σεε, κκκ, and σ
2
α, which we derive in Appendix E

does not have a closed form solution. To obtain estimates of Σεε, κκκ, and σ
2
α, we numerically

maximize L1(Θ1) with respect to Σεε, κκκ, and σ
2
α for a given δ̃δδ and use the first order conditions

as vector of gradients in the maximization routine.
The complete stepwise algorithm for solving jointly subproblems (A) and (B) then consists

in switching between minimizing (C-5) with respect to δ̃δδ and (C-7) with respect to Σεε, κκκ, and
σ2α and iterating until convergence. Biørn (2004) and the reference there in have monotonicity
properties of such a sequential procedure which ensure that its solution converges to the ML
estimator even if the likelihood function is not globally concave.

Appendix D: Derivation of the Correction Terms for the Third

Stage Switching Regression Model

To avoid complicating the notations, we denote the idiosyncratic error components, η̃1, η̃0, ζ̃
and υ̃ in equations (13) to (15) respectively as η1, η0, ζ and υ. We know that the conditional
expectation of η, where η is either η1 or η0, given ζ and υ, E[η|ζ, υ], is given by

E[η|ζ, υ] = µη +
ση(ρηζ − ρηυρζυ)(ζ − µζ)

σζ(1− ρ2ζυ)
+
ση(ρηυ − ρηζρζυ)(υ − µυ)

συ(1− ρ2ζυ)
.

Since, µη = µζ = µυ = 0 we have,

E[η|ζ, υ] =
ση(ρηζ − ρηυρζυ)(ζ)

σζ(1− ρ2ζυ)
+
ση(ρηυ − ρηζρζυ)(υ)

συ(1− ρ2ζυ)
.

Define, ζ̄ = ζ
σζ

and ῡ = υ
συ

, then

E[η|ζ, υ] =
ση(ρηζ − ρηυρζυ)ζ̄

(1− ρ2ζυ)
+
ση(ρηυ − ρηζρζυ)ῡ

(1− ρ2ζυ)
,

which can be written as

E[η|ζ, υ] =
σηρηζ

(1− ρ2ζυ)
(ζ̄ − ρζυῡ) +

σηρηυ
(1− ρ2ζυ)

(ῡ − ρζυ ζ̄). (D-1)
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Hence,

E[η|ζ > −a, υ > −b] = E[η|ζ̄ >
−a

σζ
, ῡ >

−b

συ
] =

∫∞
−b
συ

∫∞
−a
σζ

E[η|ζ̄ , ῡ]φ2(ζ̄, ῡ, ρζυ)dζ̄dῡ

Φ2

(
a
σζ
, b
συ
, ρζυ

)

=
1

Φ2

(
a
σζ
, b
συ
, ρζυ

) σηρηζ
(1− ρ2ζυ)

∫ ∞

−b
συ

∫ ∞

−a
σζ

(ζ̄ − ρζυῡ)φ2(ζ̄, ῡ, ρζυ)dζ̄dῡ

+
1

Φ2

(
a
σζ
, b
συ
, ρζυ

) σηρηυ
(1− ρ2ζυ)

∫ ∞

−b
συ

∫ ∞

−a
σζ

(ῡ − ρζυζ̄)φ2(ζ̄, ῡ, ρζυ)dζ̄dῡ, (D-2)

where, φ2 and Φ2 denote respectively the density and cumulative density function function of
a standard bivariate normal. Now, consider the expression

∫∞
−b
συ

∫∞
−a
σζ

(ζ̄−ρζυῡ)φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ,

of the RHS in (D-2). Given that φ2(ζ̄ , ῡ, ρζυ) = φ(ζ̄) 1√
(1−ρ2

ζυ
)
φ

(
ῡ−ρζυ ζ̄√
(1−ρ2

ζυ
)

)
, the concerned

expression can be written as

∫ ∞

−b
συ

∫ ∞

−a
σζ

(ζ̄ − ρζυῡ)φ(ζ̄)
1√

(1− ρ2ζυ)
φ

(
ῡ − ρζυ ζ̄√
(1− ρ2ζυ)

)
dζ̄dῡ =

∫ ∞

−a
σζ

ζ̄φ(ζ̄)

(
1− Φ

( −b
συ

− ρζυζ̄√
(1− ρ2ζυ)

))
dζ̄ − ρζυ

∫ ∞

−b
συ

∫ ∞

−a
σζ

ῡφ(ζ̄)
1√

(1− ρ2ζυ)
φ

(
ῡ − ρζυ ζ̄√
(1− ρ2ζυ)

)
dζ̄dῡ.

(D-3)

Now, let y =
ῡ−ρζυ ζ̄√
(1−ρ2

ζυ
)
, then dy = dῡ√

(1−ρ2
ζυ

)
. Having defined y, the right hand side of (D-3)

can now be written as

∫ ∞

−a
σζ

ζ̄φ(ζ̄)

(
1− Φ

( −b
συ

− ρζυζ̄√
(1− ρ2ζυ)

))
dζ̄ − ρζυ

∫ ∞

−b
συ

−ρζυζ̄
√

(1−ρ2
ζυ

)

∫ ∞

−a
σζ

(y
√

(1− ρ2ζυ) + ρζυζ̄)φ(ζ̄)φ(y)dζ̄dy

=

∫ ∞

−a
σζ

ζ̄φ(ζ̄)

(
1− Φ

( −b
συ

− ρζυ ζ̄√
(1− ρ2ζυ)

))
dζ̄

−ρζυ

∫ ∞

−b
συ

−ρζυζ̄
√

(1−ρ2
ζυ

)

∫ ∞

−a
σζ

y
√

(1− ρ2ζυ)φ(ζ̄)φ(y)dζ̄dy − ρ2ζυ

∫ ∞

−b
συ

−ρζυζ̄
√

(1−ρ2
ζυ

)

∫ ∞

−a
σζ

ζ̄φ(ζ̄)φ(y)dζ̄dy (D-4)

= (1− ρ2ζυ)

∫ ∞

−a
σζ

ζ̄φ(ζ̄)

(
1− Φ

( −b
συ

− ρζυ ζ̄√
(1− ρ2ζυ)

))
dζ̄ − ρζυ

√
(1− ρ2ζυ)

∫ ∞

−b
συ

−ρζυζ̄
√

(1−ρ2
ζυ

)

∫ ∞

−a
σζ

yφ(ζ̄)φ(y)dζ̄dy
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= (1− ρ2ζυ)

∫ ∞

−a
σζ

ζ̄φ(ζ̄)Φ

( b
συ

+ ρζυζ̄√
(1− ρ2ζυ)

)
dζ̄ − ρζυ

√
(1− ρ2ζυ)

∫ ∞

−b
συ

−ρζυζ̄
√

(1−ρ2
ζυ

)

∫ ∞

−a
σζ

yφ(ζ̄)φ(y)dζ̄dy.

(D-5)

Now, note that ζ̄φ(ζ̄)dζ̄ = −dφ(ζ̄) and φ(ζ̄) = φ(−ζ̄), hence using integration by parts, the
first part of the last equation of (D-5) can now be written as

(1− ρ2ζυ)

∫ ∞

−a
σζ

ζ̄φ(ζ̄)Φ

( b
συ

+ ρζυζ̄√
(1− ρ2ζυ)

)
dζ̄ = (1− ρ2ζυ)

∫ ∞

−a
σζ

−dφ(ζ̄)Φ

( b
συ

+ ρζυζ̄√
(1− ρ2ζυ)

)

= −(1− ρ2ζυ)φ(ζ̄)Φ

( b
συ

+ ρζυ ζ̄√
(1− ρ2ζυ)

)∣∣∣∣
∞

−a
σζ

+ ρζυ

√
(1− ρ2ζυ)

∫ ∞

−a
σζ

φ(ζ̄)φ

( b
συ

+ ρζυ ζ̄√
(1− ρ2ζυ)

)
dζ̄

= (1− ρ2ζυ)φ(
a

σζ
)Φ

( b
συ

− ρζυ
a
σζ√

(1− ρ2ζυ)

)
+ ρζυ

√
(1− ρ2ζυ)

∫ ∞

−a
σζ

φ(ζ̄)φ

( b
συ

+ ρζυζ̄√
(1− ρ2ζυ)

)
dζ̄. (D-6)

The second expression of the last line in equation (D-5) can be written as

−ρζυ

√
(1− ρ2ζυ)

∫ ∞

−b
συ

−ρζυζ̄
√

(1−ρ2
ζυ

)

∫ ∞

−a
σζ

yφ(ζ̄)φ(y)dζ̄dy = ρζυ

√
(1− ρ2ζυ)

∫ ∞

−a
σζ

∫ ∞

−b
συ

−ρζυζ̄
√

(1−ρ2
ζυ

)

dφ(y)φ(ζ̄)dζ̄

= ρζυ

√
(1− ρ2ζυ)

∫ ∞

−a
σζ

φ(y)

∣∣∣∣
∞

−b
συ

−ρζυζ̄
√

(1−ρ2
ζυ

)

φ(ζ̄)dζ̄ = −ρζυ

√
(1− ρ2ζυ)

∫ ∞

−a
σζ

φ

( b
συ

+ ρζυ ζ̄√
(1− ρ2ζυ)

)
φ(ζ̄)dζ̄.

(D-7)

Plugging the results obtained in (D-6) and (D-7) into (D-4), we obtain

∫ ∞

−b
συ

∫ ∞

−a
σζ

(ζ̄ − ρζυῡ)φ2(ζ̄, ῡ, ρζυ)dζ̄dῡ = (1− ρ2ζυ)φ(
a

σζ
)Φ

( b
συ

− ρζυ
a
σζ√

(1− ρ2ζυ)

)
.

Similarly, it can be shown that

∫ ∞

−b
συ

∫ ∞

−a
σζ

(ῡ − ρζυ ζ̄)φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ = (1− ρ2ζυ)φ(
b

συ
)Φ

( a
σζ

− ρζυ
b
συ√

(1− ρ2ζυ)

)
.

Hence,

E[η|ζ̄ >
−a

σζ
, ῡ >

−b

συ
] =

σηρηζφ(
a
σζ
)

Φ2

(
a
σζ
, b
συ
, ρζυ

)Φ

( b
συ

− ρζυ
a
σζ√

(1− ρ2ζυ)

)
+

σηρηυφ(
b
συ

)

Φ2

(
a
σζ
, b
συ
, ρζυ

)Φ

( a
σζ

− ρζυ
b
συ√

(1− ρ2ζυ)

)
.

(D-8)
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Now, consider

E[η|ζ ≤ −a, υ > −b] = E[η|ζ̄ ≤
−a

σζ
, ῡ >

−b

συ
] =

∫∞
−b
συ

∫ −a
σζ

−∞ E[η|ζ̄ , ῡ]φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ

Φ2

(
−a
σζ
, b
συ
,−ρζυ

)

=
1

Φ2

(
−a
σζ
, b
συ
,−ρζυ

) σηρηζ
(1− ρ2ζυ)

∫ ∞

−b
συ

∫ −a
σζ

−∞
(ζ̄ − ρζυῡ)φ2(ζ̄ , ῡ, ρζυ)dζ̄dῡ

+
1

Φ2

(
−a
σζ
, b
συ
,−ρζυ

) σηρηυ
(1− ρ2ζυ)

∫ ∞

−b
συ

∫ −a
σζ

−∞
(ῡ − ρζυζ̄)φ2(ζ̄, ῡ, ρζυ)dζ̄dῡ. (D-9)

By a method analogous to that used in deriving (D-8), it can be shown that

E[η|ζ̄ ≤
−a

σζ
, ῡ >

−b

συ
] =

−σηρηζφ(
a
σζ
)

Φ2

(
−a
σζ
, b
συ
,−ρζυ

)Φ

( b
συ

− ρζυ
a
σζ√

(1− ρ2ζυ)

)
+

σηρηυφ(
b
συ

)

Φ2

(
−a
σζ
, b
συ
,−ρζυ

)Φ

( −a
σζ

+ ρζυ
b
συ√

(1− ρ2ζυ)

)
.

(D-10)

Appendix E: Estimation of Average Partial Effects

In this section we discuss estimation of Average Partial Effects (APE) and testing hypothesis
about the APEs for the structural equations.

E.1 Average Partial Effects for the Second Stage

E.1.1 Estimation

In the second stage, as discussed earlier, we jointly estimate the parameters of financial
constraint equation and the selection equation,

f∗it = X f ′
it ϕϕϕ+ (Z̄ ′

iδ̄δδ + α̂i)λ+ Σ̃ζεΣ̃
−1
εε ε̂εεit + ζ̃it,

s∗it = X s′
it γγγ + (Z̄ ′

iδ̄δδ + α̂i)θ + Σ̃υεΣ̃
−1
εε ε̂εεit + υ̃it,

given in equations (14) and (15) in the main text above. In our discussion of the identification
of structural parameters of interest and the APE for nonlinear model in Appendix A, we had
shown how to estimate the APE of covariates for the unconditional probability of being
financially constrained or being an innovator.

We may also be interested in the APE of a variable on the conditional probability of
an event, or compare the APE of a variable on the probability of an event conditional on
two mutually exclusive events. For example, we may be interested in the marginal effect of
w = xk, say long-term debt to asset ratio, on the probability of firm being an innovator,
sit = 1, conditional on being financially constrained, fit = 1, as compared to the APE of w,
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on the probability of sit = 1, conditional on fit = 0. We know that for an individual i

Pr(st = 1|ft = 1,X,Z, α̂, ε̂εεt) =
Pr(st = 1, ft = 1,X,Z, α̂, ε̂εεt)

Pr(ft = 1,X,Z, α̂, ε̂εεt)
=

Φ2(ϕt, γt, ρζ̃υ̃)

Φ(ϕt)
,

Pr(st = 1|ft = 0,X,Z, α̂, ε̂εεt) =
Pr(st = 1, ft = 0,X,Z, α̂, ε̂εεt)

Pr(ft = 0,X,Z, α̂, ε̂εεt)
=

Φ2(ϕt,−γt,−ρζ̃υ̃)

1− Φ(ϕt)
,

where Φ2 is the cumulative distribution function of a standard bivariate normal and

ϕit = (X f ′
it ϕϕϕ+ λ(Z̄ ′

iδ̄δδ + α̂i) + Σ̃ζεΣ̃
−1
εε ε̂εεit)

1

σζ̃
, and γit = (X s′

it γγγ + θ(Z̄ ′
iδ̄δδ + α̂i) + Σ̃υεΣ̃

−1
εε ε̂εεit)

1

συ̃
.

Hence, for an individual i we have

∂ Pr(st = 1|ft = 1)

∂w
=

∫
∂

∂w

(
Φ2(ϕt, γt, ρζ̃υ̃)

Φ(ϕt)

)
dG(α̂, ε̂εε). (E-1)

If w belongs to both the specifications, ϕt and γt, then the above involves taking derivative of
CDF of a standard bivariate normal with respect to ϕt and γt. It can be shown that in (E-1)

∂

∂w

(
Φ2(ϕt, γt, ρζ̃υ̃)

Φ(ϕt)

)
=

1

Φ(ϕt)

[
gsγw+

(
gf − Φ2()

φ(ϕt)

Φ(ϕt)

)
ϕw

]
, (E-2)

where

gf = φ(ϕt)Φ

(
γt − ρζ̃υ̃ϕt√

1− ρ2
ζ̃υ̃

)
and gs = φ(γt)Φ

(
ϕt − ρζ̃υ̃γt√

1− ρ2
ζ̃υ̃

)
. (E-3)

The derivatives of the other conditional probabilities with respect to ϕt and γt can be found in
Greene (2002). Once the integrand in (E-2) is estimated at X f

it = X̄ f and X s
it = X̄ s, given the

estimates ˆ̂αi and ˆ̂εεεit, the APE of w on the conditional probabilities are estimated by taking
an average over all firm-year observations.

E.1.2 Hypothesis Testing

To test various hypothesis in order to draw inferences about the APE’s we need to compute
the standard errors of their estimates. From (A-19) in Appendix A we know that estimated
APE of w on the unconditional probability of being, say, financially constrained is given by

∂P̂r(fit = 1)

∂w
=

1
∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

ϕ̂wφ(X̄
f ′
it ϕ̂ϕϕ),

where X̄
f
it = {X̄ f ′, ˆ̂αi, (Σ̃

−1
εε

ˆ̂εεεit)
′}′ and ϕ̂ϕϕ = {ϕ̂ϕϕ′, λ̂, ˆ̃Σ′

ζε}
′. Since each of the ϕ̂wφ(X̄

f ′
it ϕ̂ϕϕ) is a

function of ϕ̂ϕϕ the variance of ∂P̂r(fit=1)
∂w will be a function of the variance of the estimate of

ϕϕϕ. Now, we know that by the linear approximation approach (delta method), the asymptotic

covariance matrix of ∂P̂r(fit=1)
∂w is given by

Asy. Var[
∂P̂r(fit = 1)

∂w
] =

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂ϕ̂wφ(X̄
f ′
it ϕ̂ϕϕ)

∂ϕ̂ϕϕ′

]
V ∗
2f

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂ϕ̂wφ(X̄
f ′
it ϕ̂ϕϕ)

∂ϕ̂ϕϕ′

]′
,

(E-4)
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where V ∗
2f is the second stage error adjusted covariance matrix, shown in Appendix E, of ϕ̂ϕϕ.

The RHS of (E-4) turns out to be

[
1

∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

φ(X̄f ′
it ϕ̂ϕϕ)[ew − (ϕ̂ϕϕ′

X̄
f
it)ϕ̂wX̄

f ′
it ]

]
V ∗
2f

[
1

∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

φ(X̄f ′
it ϕ̂ϕϕ)[ew − (ϕ̂ϕϕ′

X̄
f
it)ϕ̂wX̄

f ′
it ]

]′
,

(E-5)

where and ew is a row vector having the dimension of ϕϕϕ′ and with 1 at the position of ϕw

in ϕϕϕ and zeros elsewhere. The estimated asymptotic covariance matrix of the APE of all the

continuous variables in X f on the probability of being financially constrained can be obtained
as above.

If w is a dummy variable then from (A-20) we know that the estimated APE of w on the
probability of being financially constrained is given by

∆w Pr(fit = 1) =
1

∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

Φ(X̄ f
−w, w = 1, ˆ̂αi, ˆ̂εεεit)− Φ(X̄ f

−w, w = 0, ˆ̂αi, ˆ̂εεεit)

=
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∆wΦit(.).

To obtain the variance of the above, again by the delta method we have

Asy. Var∆w Pr(fit = 1) =

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂∆Φit(.)

∂ϕ̂ϕϕ

]′
V ∗
2f

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂∆Φit(.)

∂ϕ̂ϕϕ

]
,

(E-6)

where

∂∆Φit(.)

∂ϕ̂ϕϕ
=
∂Φ̂it(., w = 1)

∂ϕ̂ϕϕ
−
∂Φit(., w = 0)

∂ϕ̂ϕϕ
= φit(., w = 1)

[
X̄
f
it−w

1

]
− φit(., w = 0)

[
X̄
f
it−w

0

]
.

Substituting the above in (E-6) gives the asymptotic variance of the APE of the dummy
variable w.

Delta method can also be applied for to obtain the asymptotic variance of the APE’s of
the continuous or dummy variable on the conditional probability of say being an innovator
(selected) given the firm is financially constrained or not financially constrained. Let X̄2it =

{X̄f ′
it , X̄

s′
it}

′ and Θ2 = {ϕϕϕ′,γγγ ′, ρζ̃υ̃}
′, where X̄

s′
it = {X̄ s′, ˆ̂αi, (Σ̃

−1
εε

ˆ̂εεεit)
′}′ and γγγ = {γγγ′, θ, Σ̃′

υε}
′ and

denote the right hand side of (E-2) as Λ(s=1|f=1),w(X̄2it,Θ2). Then the APE of w on the
conditional probability of being an innovator given that the firm is financially constrained is
given by

∂P̂r(st = 1|ft = 1)

∂w
=

1∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

Λ(s=1|f=1),w(X̄2it, Θ̂2)

By the delta method we know that the asymptotic variance of ∂P̂r(st=1|ft=1)
∂w is given by

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂Λ(s=1|f=1),w(X̄2it, Θ̂2)

∂Θ′
2

]
V ∗
2

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂Λ(s=1|f=1),w(X̄2it, Θ̂2)

∂Θ′
2

]′
,

(E-7)
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where V ∗
2 is second stage error corrected covariance matrix of Θ̂2. The derivative of Λ(s=1|f=1),w(X̄2it, Θ̂2)

with respect to the second stage parameters, Θ2, can easily obtained, even though the algebra
is a bit messy.

E.2 Average Partial Effects for the Third Stage

One of the main purposes of this exercise is to measure the effect of financial constraints,
fit = 1, on R&D expenditure. For an individual, i, in time period, t, given Xit = X̄ , where
Xit is the union of elements appearing in X r

it, X
f
it , and X s

it, the APE of financial constraint on
R&D intensity is computed as the difference in the expected R&D expenditure between the
two regimes, financially constrained and non-financially constrained, averaged over α̂ and ε̂εε.
The conditional, conditional on being an innovator (sit = 1), APE of financial constraint on
R&D expenditure is given by

∆fE(rit|X̄ ) =

∫
E(r1it|X̄ , fit = 1, sit = 1, α̂, ε̂εε)dG(α̂, ε̂εε)

−

∫
E(r0it|X̄ , fit = 0, sit = 1, α̂, ε̂εε)dG(α̂, ε̂εε). (E-8)

From the discussion of the third stage estimation we know that for an individual i

E(r1t|X̄ , ft = 1, st = 1, α̂, ε̂εεt) =

βf + X̄ r′βββ1 + µ1(Z̄δ̄δδ + α̂) + Σ̃η1εΣ̃
−1
εε ε̂εεt + ση̃1ρη̃1ζ̃C11(α̂, ε̂εεt) + ση̃1ρη̃1υ̃C12(α̂, ε̂εεt) (E-9)

if f∗it > 0, and

E(r0t|X̄ , ft = 0, st = 1, α̂, ε̂εεt) =

X̄ r′
t βββ0 + µ0(Z̄δ̄δδ + α̂) + Ση0εΣ

−1
εε ε̂εεt + ση̃0ρη̃0ζ̃C01(α̂, ε̂εεt) + ση̃0ρη̃0υ̃C02(α̂, ε̂εεt) (E-10)

if f∗it ≤ 0, and where the correction terms – C11(X̄
f , X̄ s, α̂, ε̂εεt), C12(X̄

f , X̄ s, α̂, ε̂εεt), C01(X̄
f , X̄ s, α̂, ε̂εεt),

and C02(X̄
f , X̄ s, α̂, ε̂εεt) – are defined at the given X f

it = X̄ f and X s
it = X̄ s. Given the above, an

estimate of the APE of financial constraint on R&D intensity, can be obtained by taking the
average of the difference in (E-9) and (E-10) over all firm-year observations for which sit = 1.

The unconditional APE’s of all other variables in the specification are simply the coefficient
estimates of the two regimes of the switching regression model.

E.2.1 Hypothesis Testing

Since the APE of being financially constrained in the third stage switching regression model
is a function of the correction terms constructed from the estimates of the seconds stage, the
variance of the APE will be a function of the variances of the correction terms. Since the
correction terms are in turn functions of the estimated coefficients in the second stage, the
variance of the estimated APE be a function of the variance of the estimated second stage
coefficients.

To see this, consider the the conditional APE of the financial constraint on the R&D

9



expenditure, which is given by

∆f Ê(rt|X̄ ) =
1

∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

[
sit

(
β̂f + X̄ r′(β̂ββ1 − β̂ββ0) + (µ̂1 − µ̂0)(Z̄

ˆ̄δδδ + ˆ̂α) + (ˆ̃Ση1εk −
ˆ̃Ση0εk)

ˆ̃Σ−1
εε
ˆ̂εεεt

+ σ̂η̃1ρη̃1ζ̃C11( ˆ̂α, ˆ̂εεεt) + σ̂η̃1ρη̃1υ̃C12( ˆ̂α, ˆ̂εεεt)− σ̂η̃0ρη̃0ζ̃C01( ˆ̂α, ˆ̂εεεt)− σ̂η̃0ρη̃0υ̃C02( ˆ̂α, ˆ̂εεεt)

)]

(E-11)

Let us denote the structural coefficients of our model as Θs = {Θ′
2,Θ

′
3}

′ where Θ′
2 and Θ′

3 are
the vector of structural coefficients estimated in the third stage respectively. Again, by the
application of the delta method we know that

Asy. Var[∆f Ê(rt|X̄ )] =

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂∆f Ê(rt|X̄ )

∂Θs

]′
V ∗
s

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂∆f Ê(rt|X̄ )

∂Θs

]
,

(E-12)

where V ∗
s , the error corrected asymptotic covariance matrix of Θ̂s, has been derived in Ap-

pendix F. Since only the correction terms are functions of the second stage parameters Θ2,
the above involves taking the derivative of the correction terms with respect to the second
stage parameters Θ2.

Appendix F: Asymptotic Covariance Matrix of the Second
and Third Stage Estimates

In this section we give the asymptotic covariance matrix of the coefficients of the second stage
and third stage R&D switching regression model. Newey (1984) has shown that sequential
estimators can be interpreted as members of a class of Method of Moments (MM) estimators
and that this interpretation facilitates derivation of asymptotic covariance matrices for multi-
step estimators. Let Θ = {Θ′

1,Θ
′
2,Θ

′
3}

′, where Θ1, Θ2, and Θ3 are respectively the parameters
to be estimated in the first, second and third step estimation of the sequential estimator.
Following Newey (1984) we write the first, second, and third step estimation as an MM
estimation based on the following population moment conditions:

E(Li(p)1Θ1
) = E

∂ lnLi(p)1(Θ1)

∂Θ1
= 0 (F-1)

E(Li(p)2Θ2
) = E

∂ lnLi(p)2(Θ1,Θ2)

∂Θ2
= 0 (F-2)

and

E(Li(p)3Θ3
) = E[

p∑

t=1

sitX
r
it(rit − X

r′
itΘ3)] = 0 (F-3)

where Li(p)1(Θ1) is the likelihood function for individual i belonging to the group p, p ∈
{1, . . . , P}, for the first step system of reduced form equations. The notation p was introduced

10



in Appendix C. p is the number of time period an individual is observed in an unbalanced
panel; the minimum being 1 and maximum P . Hence

∑N
i=1

∑Ti

t=1 =
∑P

p=1

∑
i∈I(p)

∑p
t=1,

where I(p) has been defined in Appendix B. Li(p)2(Θ1,Θ2) is the likelihood function for the
second step estimation in which the joint probability of a firm being an innovator and the
firm being financially constrained is estimated. Equation (F-3) is the first order condition
for minimizing the sum of squared error for the pooled OLS regression of Xr

it on rit for those
firms, that have been selected, sit = 1, where

rit = fitrit

X
r
it = fit{fit,X

r′
it , Z̄

′
iδ̄δδ + α̂i(Θ1), (Σ

−1
εε ε̂εεit(Θ1))

′, C11it(Θ1,Θ2), C12it(Θ1,Θ2)}
′

if fit = 1, else

rit = (1− fit)rit

X
r
it = (1− fit){fit,X

r′
it , Z̄

′
iδ̄δδ + α̂i(Θ1), (Σ

−1
εε ε̂εεit(Θ1))

′, C01it(Θ1,Θ2), C02it(Θ1,Θ2)}
′

if fit = 0.
The estimates for Θ1, Θ2, and Θ3 are obtained by solving the sample analog of the above

population moment conditions. The sample analog of moment conditions for the first step
estimation is given by

1

N
L1Θ1

(Θ̂1) =
1

N

P∑

p=1

∑

i∈I(p)

∂ lnLi(p)1(Θ̂1)

∂Θ1
(F-4)

where Li(p)1 = lnLi(p)1(Θ1) is given by equation (C-6) in Appendix C. Θ1 = {δδδ′, δ̄δδ
′
vech(Σεε)

′,κκκ′,
σ2α}

′ and N is the total number of individuals/firms. The first order moment conditions for
solving Θ̂1 are derived in Subsection F.1.

Since in the second stage we pool all data to estimate the parameters of the financial
constraint and innovation equation, the sample analog of population moment condition for
the second step estimation is given by

1

N
L2Θ2

(Θ̂1, Θ̂2) =
1

N

P∑

p=1

∑

i∈I(p)

∂Li(p)2(Θ̂1, Θ̂2)

∂Θ2
=

1

N

P∑

p=1

∑

i∈I(p)

p∑

t=1

∂Lit2(Θ̂1, Θ̂2)

∂Θ2
(F-5)

where Lit2(Θ1,Θ2) is given by equations (19) and (20) in the main text and Θ2 = {ϕϕϕ′,γγγ′, ρζ̃υ̃}
′

was defined in Appendix E. Finally, the sample analog of the population for the third step
estimation is given by

1

N
L3Θ3

(Θ̂1, Θ̂2, Θ̂3) =
1

N

P∑

p=1

∑

i∈I(p)

p∑

t=1

sitX
r
it(rit − X

r′
itΘ̂3) (F-6)

In Appendix A, we had shown that with αi substituted by their EAP values α̂i(Xi,Zi,Θ1)
still leads to the identification of Θ2 and Θ3. Let Θ∗

1, Θ
∗
2, and Θ∗

3 respectively be the true
values of Θ1, Θ2 and Θ3. Under the assumptions we make, maximizing Li(p)2(Θ̂1,Θ2) is

asymptotically equivalent to maximizing Li(p)2(Θ
∗
1,Θ2), where Θ̂1 is a consistent first step

estimate of Θ1. Hence Θ̂2 obtained by solving 1
NL2Θ2

(Θ̂1, Θ̂2) = 0 is a consistent estimate of
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Θ2. By the same logic Θ̂3 obtained by solving 1
NL3Θ3

(Θ̂1, Θ̂2, Θ̂3) = 0 in the third step gives
consistent estimate of the third stage parameters. Newey (1984) gives a general formulation of
the asymptotic distribution of the subsequent step estimates for a sequential step sequential
estimator.

To derive the asymptotic distribution of the second and third step estimates Θ̂2 and Θ̂3

respectively, consider the stacked up sample moment conditions

1

N




L1Θ1
(Θ̂1)

L2Θ2
(Θ̂1, Θ̂2)

L3Θ3
(Θ̂1, Θ̂2, Θ̂3)


 = 0. (F-7)

A series of Taylor’s expansion of L1Θ1
(Θ̂1), L2Θ2

(Θ̂1, Θ̂2) and LΘ3
(Θ̂1, Θ̂2, Θ̂3) around Θ∗

gives

1

N



L1Θ1Θ1

0 0
L2Θ2Θ1

L2Θ2Θ2
0

L3Θ3Θ1
L3Θ3Θ2

L3Θ3Θ3





√
N(Θ̂1 −Θ∗

1)√
N(Θ̂2 −Θ∗

2)√
N(Θ̂3 −Θ∗

3)


 = −

1
√
N



L1Θ1

L2Θ2

L3Θ3




In matrix notation the above can be written as

BΘΘN

√
N(Θ̂−Θ) = −

1
√
N

ΛΘN
, (F-8)

where ΛΘN
is evaluated at Θ∗ and BΘΘN

is evaluated at points somewhere between Θ̂ and
Θ∗. Under the standard regularity conditions for Generalized Method of Moments (GMM),
see Newey (1984), BΘΘN

converges in probability to the lower block triangular matrix B∗ =
limEBΘΘN

. B∗ is given by

B∗ =



L1Θ1Θ1

0 0
L2Θ2Θ1

L2Θ2Θ2
0

L3Θ3Θ1
L3Θ3Θ2

L3Θ3Θ3


 ,

where a typical element, say, L2Θ2Θ1
= E(Li(p)2Θ2Θ1

). 1√
N
ΛN in (F-8) converges in distribu-

tion to an asymptotically normal random variable with mean zero and a covariance matrix
A∗ = limE 1

NΛNΛ′
N , where A∗ is given by

A∗ =



VL1L1

VL1L2
VL1L3

VL2L1
VL2L2

VL2L3

VL3L1
VL3L2

VL3L3


 ,

where a typical element of A∗, say VL1L2
is given by VL1L2

= E[Li(p)1Θ1
(Θ1)Li(p)2Θ2

(Θ1,Θ2)
′].

Under the regularity conditions
√
N(Θ̂ − Θ∗) is asymptotically normal with zero mean and

covariance matrix1 given by B−1
∗ A∗B

−1′
∗ .

√
N(Θ̂−Θ∗)

a
∼ N[(0), (B−1

∗ A∗B
−1′
∗ )] (F-9)

1The covariance matrices V ∗
2f in equation (E-5), V ∗

2 in equation (E-7), and V ∗
s in equation (E-12) can

obtained by selecting the appropriate submatrix of 1

N
B−1

∗ A∗B
−1′
∗ .
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The moment conditions for every individual, at the estimates of Θ1, Θ2, and Θ3, of the three
stages can be employed to obtain the sample analog of every element in A∗. For example, to
get an estimate of VL1L2

we have to estimate 1
N

∑P
p=1

∑
i∈I(p)

[Li(p)1Θ1
(Θ̂1)Li(p)2Θ2

(Θ̂1, Θ̂2)
′].

Consider now the elements of B∗. Since in the first and the second stage we employ MLE,
at Θ∗

1 and Θ∗
2 to which Θ̂1 and Θ̂2 converge, we have

L1Θ1Θ1
= E

[
∂Li(p)1(Θ1)

∂Θ1Θ
′
1

]
= −E

[
∂Li(p)1(Θ1)

∂Θ1

∂Li(p)1(Θ1)

∂Θ′
1

]
= −VL1L1

and

L2Θ2Θ2
= E

[
∂Li(p)2(Θ2)

∂Θ2Θ′
2

]
= −E

[
∂Li(p)2(Θ2)

∂Θ2

∂Li(p)2(Θ2)

∂Θ′
1

]
= −VL2L2

.

We can employ the derivative Li(p)1(Θ1) of with respect to Θ1 and of Li(p)2(Θ1,Θ2) with re-
spect to Θ2 to compute Li(p)1Θ1Θ1

and Li(p)2Θ2Θ2
for all individuals, which can then be used

to compute the sample analog of L1Θ1Θ1
and L2Θ2Θ2

. This leaves us with the problem of con-
structing sample analogs of L2Θ2Θ1

, L3Θ3Θ1
, L3Θ3Θ2

, and L3Θ3Θ3
. While it is straightforward

to compute sample analog of L3Θ3Θ3
, computation of sample analogs of L2Θ2Θ1

, L3Θ3Θ1
, and

L3Θ3Θ2
can be challenging. In the next subsections we derive the derivative of Li(p)2Θ2

(Θ1,Θ2)
and Li(p)3Θ3

(Θ1,Θ2,Θ2) with respect to Θ1 and the derivative of Li(p)3Θ3
(Θ1,Θ2,Θ2) with

respect to Θ2. But first we begin by deriving the first order conditions of the log likelihood
function of the first stage.

F.1 Derivation of the First Order Conditions for First Stage Reduced Form
Likelihood Function

To derive the first order conditions it is convenient to arrange the disturbances, uuuit, given
in (C-1), for an individual i, i ∈ Ip, in the (m × p) matrix Ẽi(p) = [uuui1, . . . ,uuuip], write
uuui(p) = vec(Ei(p)), where ‘vec()’ is the vectorization operator, and define

Wui(p) = Ẽi(p)KpẼ
′
i(p) and Bui(p) = Ẽi(p)JpẼ

′
i(p), (F-10)

where Jp and Kp defined earlier in Appendix C are Jp = (1/p)Ep, and Kp = Ip − Jp, where
Ip is the p dimensional identity matrix, ep is the (p× 1) vector of ones, Ep = epe

′
p.

Below we show that

∂Li(p)

∂δδδ
= 2ZZZi(p)Ω

−1
u(p)uuui(p),

∂Li(p)

∂δ̄δδ
= −2Z̄iκκκ

′

[
Σ−1
(p)Ẽi(p)Jp +Σ−1

εε Ẽi(p)Kp

]
ep,

∂Li(p)

∂vech(Σεε)
= −

1

2
vech

(
Σ−1
(p) + (p − 1)Σ−1

εε − Σ−1
(p)Bui(p)Σ

−1
(p) −Σ−1

εε Wui(p)Σ
−1
εε

)
,

∂Li(p)

∂κκκ
= −pσ2α[Σ

−1
(p) − Σ−1

(p)Bui(p)Σ
−1
(p)]κκκ+ Z̄ ′

iδ̄δδ

[
Σ−1
(p)Ẽi(p)Jp +Σ−1

εε Ẽi(p)Kp

]
ep,

and

∂Li(p)

∂σ2α
= −

1

2
p[vec(Σ−1

(p))
′ − vec(Σ−1

(p)Bui(p)Σ
−1
(p))

′]vec(Σκ), (F-11)
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where ‘vech()’ operator is column-wise vectorization of the lower triangle of the symmetric
matrix Σεε

2.
To derive the above we utilize the following matrix results:

(a) |Jp ⊗ C +Kp ⊗D| = |C||D|p−1, since Jp and Kp have ranks 1 and p− 1,

(b) ∂ ln |A|
∂A = (A′)−1,

(c) tr(ABCD) = tr(CDAB) = vec(A′)′(D′ ⊗B)vec(C) = vec(C ′)′(B′ ⊗D)vec(A),

(d) ∂tr(CB−1)
∂B = −(B−1CB−1)′,

(e) ∂xx′

∂x = x ⊗ In + In ⊗ x, where x is a (n × 1) matrix and In is a n dimensional identity
matrix

and

(f) vec(ABC) = (C ′ ⊗A)vec(B).

The log-likelihood for an individual i belonging to group p is given by

Li(p) =
−mp

2
ln(2π) −

1

2
ln |Ωu(p)| −

1

2
Qi(p)(δδδ, δ̄δδ,Σεε,κκκ, σ

2
α).

Then

∂Li(p)

∂Σεε
= −

1

2

∂ ln |Ωu(p)|

∂Σεε
−

1

2

∂Qi(p)(δδδ, δ̄δδ,Σεε,κκκ, σ
2
α)

∂Σεε
.

Now from (a) we have |Ωu(p)| = |Kp ⊗Σεε + Jp ⊗Σ(p)| = |Σεε|
p−1|Σ(p)| and from (b) we have

∂ ln |Ωu(p)|

∂Σεε
=
∂ ln |Σ(p)|

∂Σεε
+ (p− 1)

∂ ln |Σεε|

∂Σεε
= Σ−1

(p)
+ (p− 1)Σ−1

εε (F-12)

For any given δδδ and δ̄δδ we have

Qi(p)() = uuu′i(p)[Kp ⊗ Σ−1
εε ]uuui(p) +uuu′i(p)[Jp ⊗ Σ−1

(p)
]uuui(p)

= vec(Ei(p))
′[Kp ⊗ Σ−1

εε ]vec(Ei(p)) + vec(Ei(p))
′[Jp ⊗ Σ−1

(p)]vec(Ei(p))

From (c) we get

Qi(p)() = tr[Ei(p)Σ
−1
(p)E

′
i(p)Jp] + tr[Ei(p)Σ

−1
εε E

′
i(p)Kp] = tr[Ei(p)JpE

′
i(p)Σ

−1
(p)] + tr[Ei(p)KpE

′
i(p)Σ

−1
εε ].

Using (F-10) we obtain

Qi(p)() = tr[Bui(p)Σ
−1
(p)] + tr[Wui(p)Σ

−1
εε ],

2Because Σεε is symmetric we only need to optimize with respect to m(m+1)

2
elements of the lower triangle

of the Σεε.
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and from (d) we get

∂Qi(p)()

∂Σεε
= −[Σ−1

(p)Bui(p)Σ
−1
(p) +Σ−1

εε Wui(p)Σ
−1
εε ]. (F-13)

Combining (F-12) and (F-13) we obtain

∂Li(p)

∂vech(Σεε)
= −

1

2
vech

(
Σ−1
(p) + (p− 1)Σ−1

εε − Σ−1
(p)Bui(p)Σ

−1
(p) − Σ−1

εε Wui(p)Σ
−1
εε

)
. (F-14)

To find expressions for the first order condition with respect to κκκ and σ2α, consider the
total differential d(ln |Ωu(p)|) and d(Qi(p)()) for given Σεε, δδδ, and δ̄δδ.

d(ln |Ωu(p)|) = d(ln(|Σεε|
p−1|Σ(p)|)) = d(ln(|Σ(p)|)) = vec[Σ−1

(p)]
′vec[d(Σ(p))]

= vec[Σ−1
(p)]

′vec[pd(σ2α)Σκ + pσ2αd(Σκ)]

= vec[Σ−1
(p)]

′vec[pd(σ2α)Σκ + pσ2α(κκκ⊗ Im + Im ⊗ κκκ)d(κκκ)], (F-15)

where the third equality follows from employing (b). Since Σεε is given, dΣ(p) = d(Σεε +
pσ2αΣκ) = pd(σ2αΣκ) = pd(σ2α)Σκ+pσ

2
αd(Σκ), hence the fourth equality. Also, since Σκ = κκκκκκ′,

the last equality follows using (e).
The total differential, d(Qi(p)()), is given by

d(Qi(p)()) =d(tr[Bui(p)Σ
−1
(p)

] + tr[Wui(p)Σ
−1
εε ])

=− vec(Σ−1
(p)Bui(p)Σ

−1
(p))

′vec(pd(σ2α)Σκ + pσ2αd(Σκ))

+ vec(Σ−1
(p))

′vec(d(Bui(p))) + vec(Σ−1
εε )

′vec(d(Wui(p)))

=− vec(Σ−1
(p)Bui(p)Σ

−1
(p))

′vec

(
pd(σ2α)Σκ + pσ2α(κκκ⊗ Im + Im ⊗ κκκ)dκκκ

)

+ vec(Σ−1
(p))

′

[
(Im ⊗ Ẽi(p)Jp)vec(d(Ẽ

′
i(p))) + (Ẽi(p)J

′
p ⊗ Im)vec(d(Ẽi(p)))

]

+ vec(Σ−1
εε )

′

[
(Im ⊗ Ẽi(p)Kp)vec(d(Ẽ

′
i(p))) + (Ẽi(p)K

′
p ⊗ Im)vec(d(Ẽi(p)))

]

=− vec(Σ−1
(p)Bui(p)Σ

−1
(p))

′vec

(
pd(σ2α)Σκ + pσ2α(κκκ⊗ Im + Im ⊗ κκκ)dκκκ

)

− vec(Σ−1
(p))

′

[
(Im ⊗ Ẽi(p)Jp)(Z̄

′
iδ̄δδdκκκ⊗ ep) + (Ẽi(p)J

′
p ⊗ Im)(ep ⊗ Z̄ ′

iδ̄δδdκκκ)

]

− vec(Σ−1
εε )

′

[
(Im ⊗ Ẽi(p)Kp)(Z̄

′
iδ̄δδdκκκ⊗ ep) + (Ẽi(p)K

′
p ⊗ Im)(ep ⊗ Z̄ ′

iδ̄δδdκκκ)

]

=− pvec(Σ−1
(p)Bui(p)Σ

−1
(p))

′vec(Σκ)d(σ
2
α)− pσ2αvec(Σ

−1
(p)Bui(p)Σ

−1
(p))

′(κκκ⊗ Im + Im ⊗ κκκ)dκκκ

−

[
vec(J ′

pẼ
′
i(p)Σ

−1
(p))

′(Z̄ ′
iδ̄δδdκκκ⊗ ep) + vec(Σ−1

(p)Ẽi(p)J
′
p)

′(ep ⊗ Z̄ ′
iδ̄δδdκκκ)

]

−

[
vec(K ′

pẼ
′
i(p)Σ

−1
εε )

′(Z̄ ′
iδ̄δδdκκκ⊗ ep) + vec(Σ−1

εε Ẽi(p)K
′
p)

′(ep ⊗ Z̄ ′
iδ̄δδdκκκ)

]

=− pvec(Σ−1
(p)Bui(p)Σ

−1
(p))

′vec(Σκ)d(σ
2
α)− 2pσ2αvec([Σ

−1
(p)Bui(p)Σ

−1
(p)]κκκ)

′dκκκ

− 2e′p

[
J ′
pẼ

′
i(p)Σ

−1
(p) +K ′

pẼ
′
i(p)Σ

−1
εε

]
Z̄ ′
iδ̄δδdκκκ, (F-16)
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where the second equality follows from employing (d), and the fact that Σεε being given,
dΣ(p) = d(Σεε + pσ2αΣκ) = pd(σ2αΣκ). Since Σκ = κκκκκκ′, the third equality follows using (e)
and taking the differential of Bui(p) and Wui(p). The fourth equality follows from taking the

differential of Ẽi(p), and finally in the fifth and sixth we have used matrix algebra to rearrange
terms. Given (F-16) we can conclude that

∂Qi(p)()

∂κκκ
= −2pσ2α[Σ

−1
(p)
Bui(p)Σ

−1
(p)

]κκκ− 2Z̄ ′
iδ̄δδ

[
Σ−1
(p)
Ẽi(p)Jp +Σ−1

εε Ẽi(p)Kp

]
ep. (F-17)

Similarly, from (F-15) we obtain

∂ ln |Ωu(p)|

∂κκκ
= 2pσ2α[Σ

−1
(p)]κκκ. (F-18)

Combining (F-17) and (F-18) we get the expression in (F-11) for
∂Li(p)

∂κκκ .

Again, from (F-15) and (F-16) respectively we obtain
∂ ln |Ωu(p)|

∂σ2
α

= pvec[Σ−1
(p)]

′vec(Σκ) and
∂Qi(p)()

∂σ2
α

= −pvec[Σ−1
(p)Bui(p)Σ

−1
(p)]

′vec(Σκ), which when combined yields the expression for
∂Li(p)

∂σ2
α

in (F-11). By a similar derivation as in (F-16), we can conclude that

∂Li(p)

∂δ̄δδ
= −2Z̄iκκκ

′

[
Σ−1
(p)Ẽi(p)Jp +Σ−1

εε Ẽi(p)Kp

]
ep. (F-19)

F.2 Derivative of Li(p)2Θ2
with respect to Θ1

Let us begin by deriving the derivative of score functions, Li(p)2Θ2
, of second stage likelihood

with respect to Θ1. Since the second step is essentially a combination of probit and bivariate

probit, we have to take the derivative of the score functions of the probit and bivariate probit

with respect to Θ1. Now, we know that Θ1 enters the second stage of the sequential estimator

through z̄′iδ̄δδ + α̂i(Θ1) and Σ̃−1
εε ε̂εεit(Θ1), and that Li(p)2Θ2

=
∑p

t=1 Lit2Θ2
. Hence in order to

compute the derivative of Li(p)2Θ2
with respect to Θ1 we have to compute

∂Lit2Θ2
(Θ1,Θ2)

∂Θ′
1

. To

do so let us first separate the coefficients of the second stage into coefficients of the financial

constraint equation, Θ2f , coefficients of the selection equation Θ2s and ρζ̃υ̃, the correlation

between the idiosyncratic components of the financial constraint and the selection equation.

In matrix form we can write

Li(p)2Θ2Θ1
=

∂Li(p)2Θ2

∂Θ′
1

=

p∑

t=1

∂Lit2Θ2

∂Θ′
1

=

p∑

t=1




∂Lit2Θ
2f

∂Θ′
1

∂Lit2Θ2s

∂Θ′
1

∂Lit2ρ
ζ̃υ̃

∂Θ′
1


 ,

where the score functions, Lit2Θ2f
, Lit2Θ2s

, and Lit2Θ2ρ
ζ̃υ̃
, above are the score functions of the

log likelihood function for bivariate probit when it belongs to CIS3 and CIS3.5, and are given
by

Lit2Θ2f
(Θ1,Θ2) =

qitfgitf
Φ2

X
f
it, Lit2Θ2s

(Θ1,Θ2) =
qitsgits
Φ2

X
s
it, and Lit2ρ

ζ̃υ̃
(Θ1,Θ2) =

qitfqitsφ2
Φ2

(F-20)
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where X
f
it = {X f ′

it , Z̄
′
iδ̄δδ + α̂i, (Σ̃

−1
εε ε̂εεit)

′}′, X
s
it = {X s′

it , Z̄
′
iδ̄δδ + α̂i, (Σ̃

−1
εε ε̂εεit)

′}′, qitf = 2fit − 1,
qits = 2sit − 1. gitf and gits in (F-20) are defined as

gitf = φ(ϕit)Φ(
γit − ρ∗

ζ̃υ̃
ϕit

√
(1− ρ∗2

ζ̃υ̃
)
), and gits = φ(γit)Φ(

ϕit − ρ∗
ζ̃υ̃
γit

√
(1− ρ∗2

ζ̃υ̃
)
),

where ρ∗
ζ̃υ̃

= qitfqitsρζ̃υ̃, ϕit = X
f ′
itΘ2f , and γit = X

s′
itΘ2s. However, for CIS2.5, where we do

not observe fit when sit = 0, the score functions remain the same as in (F-20) when sit = 1,
but are

Lit2Θ2f
(Θ1,Θ2) = 0Θ2f

, Lit2Θ2s
(Θ1,Θ2) = −

φ(−X
s′
itΘ2s)

Φ(−Xs′
itΘ2s)

X
s
it, and Lit2ρ

ζ̃υ̃
(Θ1,Θ2) = 0

(F-21)

when sit = 0, and where 0Θ2f
is a vector of zeros.

To ease notations we now suppress individual and time subscript except when necessary.
Given the above, we have

∂L2Θ2j
(Θ1,Θ2)

∂Θ′
1

= qj

{
∂

∂Θ′
1

(
gj
Φ2

)
X
j +

gj
Φ2

∂Xj

∂Θ′
1

}

= qj

{(
∂(gj/Φ2)

∂ϕit

∂ϕit

∂Θ′
1

+
∂(gj/Φ2)

∂γit

∂γit
∂Θ′

1

)
X
j +

gj
Φ2

∂Xj

∂Θ′
1

}

= qj

{(
∂(gj/Φ2)

∂ϕit

∂Xf ′
it

∂Θ′
1

Θ2f +
∂(gj/Φ2)

∂γit

∂Xs′
it

∂Θ′
1

Θ2s

)
X
j +

gj
Φ2

∂Xj

∂Θ′
1

}
. (F-22)

where j ∈ {f, s} and

∂L2ρ
ζ̃υ̃
(Θ1,Θ2)

∂Θ′
1

= qfqs

{
∂

∂Θ′
1

(
φ2
Φ2

)}
= qfqs

{
∂(φ2/Φ2)

∂ϕit

∂Xf ′
it

∂Θ′
1

Θ2f +
∂(φ2/Φ2)

∂γit

∂Xs′
it

∂Θ′
1

Θ2s

}

(F-23)

when the firm year observation, it, is such that it belongs to CIS3 and CIS3.5, and CIS2.5

when sit = 1. When sit = 0 for CIS2.5 we have
∂L2Θ

2f
(Θ1,Θ2)

∂Θ′
1

= 0Θ2f
,
∂L2ρ

ζ̃υ̃
(Θ1,Θ2)

∂Θ′
1

= 0, and

∂L2Θ2s
(Θ1,Θ2)

∂Θ′
1

= −

{
∂

∂Θ′
1

(
φ(−γit)

Φ(−γit)

)
X
s
it +

φ(−γit)

Φ(−γit)

∂Xs
it

∂Θ′
1

}

= −

{
∂

∂γit

(
φ(−γit)

Φ(−γit)

)
∂Xs′

it

∂Θ′
1

Θ2sX
s
it +

φ(−γit)

Φ(−γit)

∂Xs
it

∂Θ′
1

}
(F-24)

To obtain expressions for (F-22), (F-23), and (F-24) we need the derivative of
gj
Φ2

, j ∈

{f, s}, with respect to ϕit and γit, the derivative of φ2

Φ2
with respect to ϕit and γit, and the

derivative of φ(−γit)
Φ(−γit)

with respect to γit. While these can be easily obtained and can be found

in Greene (2002), what is challenging to obtain is the derivative of Xf
it and X

s
it with respect

to Θ1.
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∂X
j
it

∂Θ′
1

=




∂X j
it

∂δδδ′
∂X j

it

∂δ̄δδ
′

∂X j
it

∂κκκ′
∂X j

it
∂vech(Σεε)′

∂X j
it

∂σ2α
∂(Z̄ ′

iδ̄δδ+α̂i)

∂δδδ′
∂(Z̄ ′

iδ̄δδ+α̂i)

∂δ̄δδ
′

∂(Z̄ ′
iδ̄δδ+α̂i)

∂κκκ′
∂(Z̄ ′

iδ̄δδ+α̂i)

∂vech(Σεε)′
∂(Z̄ ′

iδ̄δδ+α̂i)

∂σ2α
∂Σ̃−1

εε ε̂εεit
∂δδδ′

∂Σ̃−1
εε ε̂εεit

∂δ̄δδ
′

∂Σ̃−1
εε ε̂εεit
∂κκκ′

∂Σ̃−1
εε ε̂εεit

∂vech(Σεε)′
∂Σ̃−1

εε ε̂εεit
∂σ2α


 ,

where j ∈ {f, s}. While
∂X j

it

∂Θ′
1

= 0, below we show that

∂(Z̄ ′
iδ̄δδ + α̂i)

∂δδδ′
= −

1

U2
dr

p∑

t=1

[
U2
nr − UdrFdr

]
κκκ′Σ−1

εε Z
′
it

∂(Z̄ ′
iδ̄δδ + α̂i)

∂δ̄δδ
′ = Z̄ ′

i −
p

U2
dr

[
U2
nr − UdrFdr

]
κκκ′Σ−1

εε κκκZ̄
′
i

∂(Z̄ ′
iδ̄δδ + α̂i)

∂κκκ′
= −

1

U2
dr

p∑

t=1

{[
U2
nr − UdrFdr

]
(Z̄ ′

iδ̄δδκκκ
′ − r′it)Σ

−1
εε +

[
UnrFdr − UdrFnr

]
κκκ′Σ−1

εε

}

∂(Z̄ ′
iδ̄δδ + α̂i)

∂vech(Σεε)′
=

1

2U2
dr

p∑

t=1

[
(U2

nr − UdrFdr)vec(κκκr
′
it + ritκκκ

′)′ + (UdrFnr − UnrFdr)vec(Σκ)
′

]
(Σ−1

εε ⊗ Σ−1
εε )

′L′
m

∂(Z̄ ′
iδ̄δδ + α̂i)

∂σ2α
=

1

2σ4αU
2
dr

(UdrFnr − UnrFdr) (F-25)

∂Σ̃−1
εε ε̂εεit
∂δδδ′

= −Σ̃−1
εε Z

′
it +

Σ̃−1
εε κκκ

U2
dr

p∑

t=1

[
U2
nr − UdrFdr

]
κκκ′Σ−1

εε Z
′
it

∂Σ̃−1
εε ε̂εεit

∂δ̄δδ
′ = −Σ̃−1

εε κκκZ̄
′
i +

pΣ̃−1
εε κκκ

U2
dr

[
U2
nr − UdrFdr

]
κκκ′Σ−1

εε κκκZ̄
′
i

∂Σ̃−1
εε ε̂εεit
∂κκκ′

= −Σ̃−1
εε Z̄

′
iδ̄δδ − Σ̃−1

εε α̂i +
Σ̃−1
εε κκκ

U2
dr

p∑

t=1

{[
U2
nr − UdrFdr

]
(Z̄ ′

iδ̄δδκκκ
′ − r′it)Σ

−1
εε +

[
UnrFdr − UdrFnr

]
κκκ′Σ−1

εε

}

∂Σ̃−1
εε ε̂εεit

∂vech(Σεε)′
=

[
(εεε′itΣ

−1
εε ⊗ Im)vec((dg(Σεε))

−1/2)′ − (εεεit ⊗ Σ′
ε)

′(Σ−1
εε ⊗ Σ−1

εε )
′

]
L′
m

−
Σ̃−1
εε κκκ

2(Udr)2

p∑

t=1

[
(U2

nr − UdrFdr)vec(κκκr
′
it + ritκκκ

′)′ + (UdrFnr − UnrFdr)vec(Σκ)
′

]
(Σ−1

εε ⊗ Σ−1
εε )

′L′
m

∂Σ̃−1
εε ε̂εεit
∂σ2α

= −
Σ̃−1
εε κκκ

2σ4αU
2
dr

(UdrFnr − UnrFdr), (F-26)

where

Unr =

∫
α exp(−

1

2

p∑

t=1

εεε′itΣ
−1
εε εεεit)φ(α)dα, Fnr =

∫
α3 exp(−

1

2

p∑

t=1

εεε′itΣ
−1
εε εεεit)φ(α)dα,

Udr =

∫
exp(−

1

2

p∑

t=1

εεε′itΣ
−1
εε εεεit)φ(α)dα, Fdr =

∫
α2 exp(−

1

2

p∑

t=1

εεε′itΣ
−1
εε εεεit)φ(α)dα,
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and rit = xit − Zitδδδ − κκκZ̄iδ̄δδ. We note here that while construction of α̂i to estimate the
structural parameters involved estimation of Unr and Udr, in order to estimate the covariance
matrix of the structural parameters Fnr and Fdr will also have to be estimated.

F.2.1 Derivation of the derivative of Z̄ ′
iδ̄δδ + α̂i and Σ̃−1

εε ε̂εεit and with respect to Θ1

Let us first consider the derivative of Z̄ ′
iδ̄δδ +αααi and Σ̃−1

εε ε̂εεit with respect to δδδ′. We have

∂(Z̄ ′
iδ̄δδ + α̂i)

∂δδδ′
=
∂Z̄ ′

iδ̄δδ

∂δδδ′
+
∂α̂i

∂δδδ′
= 0 +

∂

∂δδδ′

[∫
α exp(−1

2

∑p
t=1 εεε

′
itΣ

−1
εε εεεit)φ(α)dα∫

exp(−1
2

∑p
t=1 εεε

′
itΣ

−1
εε εεεit)φ(α)dα

]

= 0−
1

(
∫
exp(.)φ(α)dα)2

p∑

t=1

[ ∫
α exp(.)εεε′itΣ

−1
εε Z

′
itφ(α)dα

∫
exp(.)φ(α)dα

−

∫
α exp(.)φ(α)dα

∫
exp(.)εεε′itΣ

−1
εε Z

′
itφ(α)dα

]
, (F-27)

To derive the above result in (F-27) we used the fact that

∂(εεε′itΣ
−1
εε εεεit)

∂δδδ′
= 2εεε′itΣ

−1
εε

∂(εεεit)

∂δδδ′
= −2εεε′itΣ

−1
εε Z

′
it.

Taking into account the fact that εεεit = xit−Z′
itδδδ− (Z̄ ′

iδ̄δδ+αi)κκκ, after some rearrangements it
can be shown that

∂α̂i

∂δδδ′
= −

1

U2
dr

T∑

t=1

[
U2
nr − UdrFdr

]
κκκ′Σ−1

εε Z
′
it,

where

Unr =

∫
α exp(−

1

2

p∑

t=1

εεε′itΣ
−1
εε εεεit)φ(α)dα, Fnr =

∫
α3 exp(−

1

2

p∑

t=1

εεε′itΣ
−1
εε εεεit)φ(α)dα

Udr =

∫
exp(−

1

2

p∑

t=1

εεε′itΣ
−1
εε εεεit)φ(α)dα, Fdr =

∫
α2 exp(−

1

2

p∑

t=1

εεε′itΣ
−1
εε εεεit)φ(α)dα.

(F-28)

Hence we have

∂(Z̄ ′
iδ̄δδ + α̂i)

∂δδδ′
= −

1

U2
dr

p∑

t=1

[
U2
nr − UdrFdr

]
κκκ′Σ−1

εε Z
′
it, (F-29)

and

∂Σ̃−1
εε ε̂εεit
∂δδδ′

=
∂Σ̃−1

εε (xit − Z′
itδδδ − Z̄ ′

iδ̄δδκκκ)

∂δδδ′
−
∂Σ̃−1

εε α̂iκκκ

∂δδδ′
= −Σ̃−1

εε Z
′
it +

Σ̃−1
εε κκκ

U2
dr

p∑

t=1

[
U2
nr − UdrFdr

]
κκκ′Σ−1

εε Z
′
it.

(F-30)

From (F-29) and (F-30) we can see that while ∂(Z̄′δ̄δδ+α̂ααi)
∂δδδ′ for an individual i remains the same

for all time periods, ∂Σ̃−1
εε ε̂εεit
∂δδδ′ varies with time. Similarly it can be shown that

∂(Z̄ ′
iδ̄δδ + α̂i)

∂δ̄δδ
′ = Z̄ ′

i −
1

U2
dr

p∑

t=1

[
U2
nr − UdrFdr

]
κκκ′Σ−1

εε κκκZ̄
′
i = Z̄ ′

i −
p

U2
dr

[
U2
nr − UdrFdr

]
κκκ′Σ−1

εε κκκZ̄
′
i,

(F-31)

19



and

∂Σ̃−1
εε ε̂εεit
∂δδδ′

=
∂Σ̃−1

εε (xit − Z′
itδδδ − Z̄ ′

iδ̄δδκκκ)

∂δδδ′
−
∂Σ̃−1

εε α̂iκκκ

∂δδδ′
= −Σ̃−1

εε κκκZ̄
′
i +

pΣ̃−1
εε κκκ

U2
dr

[
U2
nr − UdrFdr

]
κκκ′Σ−1

εε κκκZ̄
′
i.

(F-32)

Let us now consider the derivative of Z̄ ′
iδ̄δδ + α̂i with respect to κκκ. We have

∂(Z̄ ′
iδ̄δδ + α̂i)

∂κκκ′
=

∂

∂κκκ′

[∫
α exp(−1

2

∑p
t=1 εεε

′
itΣ

−1
εε εεεit)φ(α)dα∫

exp(−1
2

∑p
t=1 εεε

′
itΣ

−1
εε εεεit)φ(α)dα

]

= −
1

(
∫
exp(.)φ(α)dα)2

p∑

t=1

[ ∫
α exp(.)εεε′itΣ

−1
εε (Z̄

′
iδδδ + αi)φ(α)dα

∫
exp(.)φ(α)dα

−

∫
α exp(.)φ(α)dα

∫
exp(.)εεε′itΣ

−1
εε (Z̄

′
iδδδ + αi)

′φ(α)dα

]
, (F-33)

which after simplification can be written as

∂(Z̄ ′
iδ̄δδ + α̂i)

∂κκκ′
= −

1

U2
dr

p∑

t=1

{[
U2
nr − UdrFdr

]
(Z̄ ′

iδ̄δδκκκ
′ − r′it)Σ

−1
εε +

[
UnrFdr − UdrFnr

]
κκκ′Σ−1

εε

}
,

(F-34)

where rit = xit −Z′
itδδδ − Z̄ ′

iδ̄δδκκκ and Unr, Udr, Fnr, and Fdr are given in (F-28). Also, it can be
shown that

∂Σ̃−1
εε ε̂εεit
∂κκκ′

=
∂Σ̃−1

εε (xit − Z′
itδδδ − Z̄ ′

iδ̄δδκκκ)

∂κκκ′
−
∂Σ̃−1

εε α̂iκκκ

∂κκκ′

= −Σ̃−1
εε Z̄

′
iδ̄δδ − Σ̃−1

εε α̂i +
Σ̃−1
εε κκκ

U2
dr

p∑

t=1

{[
U2
nr − UdrFdr

]
(Z̄ ′

iδ̄δδκκκ
′ − r′it)Σ

−1
εε +

[
UnrFdr − UdrFnr

]
κκκ′Σ−1

εε

}
.

(F-35)

Now consider the derivative of Z̄ ′
iδ̄δδ + α̂i with respect to vech(Σεε). We have

∂(Z̄ ′
iδ̄δδ + α̂i)

∂vech(Σεε)′
=

∂α̂i

∂vech(Σεε)′
=

∂

∂vech(Σεε)′

[∫
α exp(−1

2

∑p
t=1 εεε

′
itΣ

−1
εε εεεit)φ(α)dα∫

exp(−1
2

∑p
t=1 εεε

′
itΣ

−1
εε εεεit)φ(α)dα

]

= −
1

2

[∫ αψ(α)∂
∑p

t=1
εεε′itΣ

−1
εε εεεit

∂vech(Σεε)′
dα

∫
ψ(α)dα −

∫
αψ(α)dα

∫
ψ(α)

∂
∑p

t=1
εεε′itΣ

−1
εε εεεit

∂vech(Σεε)′
dα

(
∫
ψ(α)dα)2

]
,

where ψ(α) = exp(−1
2

∑p
t=1 εεε

′
itΣ

−1
εε εεεit)φ(α). With

∂
∑p

t=1
εεε′itΣ

−1
εε εεεit

∂vech(Σεε)′
=

∑p
t=1 vec(−(Σ−1

εε )
′εεεitεεε

′
it(Σ

−1
εε )

′)′L′
m
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the above can be written as

∂α̂i

∂vech(Σεε)′
=

1

2(
∫
ψ(α)dα)2

p∑

t=1

[ ∫
αψ(α)vec((Σ−1

εε )′εεεitεεε
′
it(Σ

−1
εε )

′)′L′
mdα

∫
ψ(α)dα

−

∫
ψ(α)vec((Σ−1

εε )′εεεitεεε
′
it(Σ

−1
εε )

′)′L′
mdα

∫
αψ(α)dα

]

=
1

2U2
dr

T∑

t=1

[ ∫
αψ(α)vec(εεεitεεε

′
it)

′(Σ−1
εε ⊗ Σ−1

εε )
′L′

mdαUdr

− Unr

∫
ψ(α)vec(εεεitεεε

′
it)

′(Σ−1
εε ⊗ Σ−1

εε )
′L′

mdα

]

=
1

2U2
dr

p∑

t=1

[ ∫
(Udrαvec(εεεitεεε

′
it)

′ − Unrvec(εεεitεεε
′
it)

′)ψ(ααα)dα

]
(Σ−1

εε ⊗ Σ−1
εε )

′L′
m,

(F-36)

where Lm is an elimination matrix. To simply further, write εεεit as εεεit = xit−Zitδδδ−κκκZ̄iδ̄δδ−κκκα =
rit − κκκα, where rit = xit − Zitδδδ − κκκZ̄iδ̄δδ. Then εεεitεεε

′
it = ritr

′
it − κκκr′itα − ritκκκ

′α + κκκκκκ′α2, then
(F-36) after some simplification can be written as

∂α̂i

∂vech(Σεε)′
=

1

2U2
dr

p∑

t=1

[
(U2

nr − UdrFdr)vec(κκκr
′
it + ritκκκ

′)′ + (UdrFnr − UnrFdr)vec(Σκ)
′

]
(Σ−1

εε ⊗ Σ−1
εε )

′L′
m.

(F-37)

where Unr, Udr, Fnr, and Fdr have been defined in (F-28) and Σκ = κκκκκκ′. Let us now consider

the derivative ∂Σ̃−1
εε ε̂εεit

∂vech(Σεε)′
= ∂(ΣεΣ

−1
εε ε̂εεit)

∂vech(Σεε)′
= ∂(ΣεΣ

−1
εε rit)

∂vech(Σεε)′
− ∂(ΣεΣ

−1
εε κκκα̂i)

∂vech(Σεε)′
. The total differential of

ΣεΣ
−1
εε κκκα̂i is given by:

d(ΣεΣ
−1
εε κκκα̂i) = d(Σε)Σ

−1
εε κκκα̂i +Σεd(Σ

−1
εε )κκκα̂i +ΣεΣ

−1
εε κκκd(α̂i). (F-38)

Now, as defined earlier, Σε = (dg(Σεε))
1/2, hence

∂(Σε)Σ
−1
εε κκκα̂i

∂vech(Σεε)′
=

1

2
(κκκ′α̂iΣ

−1
εε ⊗ Im)vec((dg(Σεε))

−1/2)
∂vec(Σεε)

∂vech(Σεε)′

=
1

2
(κκκ′α̂iΣ

−1
εε ⊗ Im)vec((dg(Σεε))

−1/2)′L′
m. (F-39)

Now, consider the second term of the differential given in (F-38). It can be shown that

Σε∂(Σ
−1
εε )κκκα̂i

∂vech(Σεε)′
= −(κκκα̂i ⊗ Σ′

ε)
′(Σ−1

εε ⊗ Σ−1
εε )

∂vec(Σεε)

∂vech(Σεε)′
= −(κκκα̂i ⊗ Σ′

ε)
′(Σ−1

εε ⊗ Σ−1
εε )L

′
m.

(F-40)

Now consider the third term in the total differential in (F-38). From (F-37) we can conclude
that

ΣεΣ
−1
εε κκκ∂(α̂i)

∂vech(Σεε)′
=

ΣεΣ
−1
εε κκκ

2U2
dr

p∑

t=1

[
(U2

nr − UdrFdr)vec(κκκr
′
it + ritκκκ

′)′

+ (UdrFnr − UnrFdr)vec(Σκ)
′

]
(Σ−1

εε ⊗ Σ−1
εε )

′L′
m. (F-41)
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Combining (F-39), (F-40), and (F-41) we obtain

∂Σ̃−1
εε ε̂εεit

∂vech(Σεε)′
=

[
(εεε′itΣ

−1
εε ⊗ Im)vec((dg(Σεε))

−1/2)′ − (εεεit ⊗ Σ′
ε)

′(Σ−1
εε ⊗ Σ−1

εε )
′

]
L′
m

−
Σ̃−1
εε κκκ

2(Udr)2

p∑

t=1

[
(U2

nr − UdrFdr)vec(κκκr
′
it + ritκκκ

′)′ + (UdrFnr − UnrFdr)vec(Σκ)
′

]
(Σ−1

εε ⊗ Σ−1
εε )

′L′
m.

(F-42)

Finally, let consider the derivative of Z̄ ′
iδ̄δδ + α̂i with respect to σ2α. We have

∂(Z̄ ′
iδ̄δδ + α̂i)

∂σ2α
=
∂α̂i

∂σ2α
=

∂

∂σ2α

[∫
α exp(.)φ(α)dα∫
exp(.)φ(α)dα

]
=

=
[
∫
α exp(.)∂φ(α)

∂σ2
α
dα][

∫
exp(.)φ(α)dα] − [

∫
α exp(.)φ(α)dα][

∫
exp(.)∂φ(α)

∂σ2
α
dα]

[
∫
exp(.)φ(α)dα]2

.

Given that ∂φ(α)
∂σ2

α
= − 1

2σ2
α
φ(α) + α2

2σ4
α
φ(α), the above after simplification reduces to

∂(Z̄ ′
iδ̄δδ + α̂i)

∂σ2α
=

1

2σ4αU
2
dr

(UdrFnr − UnrFdr), (F-43)

and we can write ∂Σ̃−1
εε εεεit
σ2
α

as

∂Σ̃−1
εε ε̂εεit

∂vech(Σεε)′
= −

Σ̃−1
εε κκκ∂(α̂i)

∂σ2α
= −

Σ̃−1
εε κκκ

2σ4αU
2
dr

(UdrFnr − UnrFdr). (F-44)

F.3 Derivative of Li(p)3Θ3
with respect to Θ1 and Θ2

As stated earlier in order to construct error corrected standard errors of the structural pa-
rameters we also need sample analogs of L3Θ3Θ1

, L3Θ3Θ2
, and L3Θ3Θ3

to construct B∗ in
(F-9). While it is straightforward to compute sample analog of L3Θ3Θ3

, computation of
sample analogs of L3Θ3Θ1

and L3Θ3Θ2
needs some work. Here we derive the derivative of

Li(p)3Θ3
(Θ1,Θ2,Θ2) with respect to Θ1 and Θ2. Now, we know that

∂Li(p)3Θ3

∂Θ′
j

=

p∑

t=1

∂Lit3Θ3

∂Θ′
j

=

p∑

t=1

∂

∂Θ′
j

sit[X
r
it(Θ1, Θ̂2)(rit − X

r
it(.)

′Θ3)]

=

p∑

t=1

sit

[
X
r
it(.)

∂Θ′
j

(rit − X
r
it(.)

′Θ̂3) + X
r
it(Θ̂1, Θ̂2)

X
r
it(.)

′

∂Θ′
j

Θ̂3

]
j ∈ {1, 2},

(F-45)
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where

X
r
it(Θ̂1, Θ̂2) =




X r
it

fit(Z̄
′
iδ̄δδ + α̂i)

(1− fit)(Z̄
′
iδ̄δδ + α̂i)

fitΣ
−1
εε ε̂εεit

(1− fit)Σ
−1
εε ε̂εεit

fitC11(Θ1,Θ2)it
(1− fit)C01(Θ1,Θ2)it
fitC12(Θ1,Θ2)it

(1− fit)C02(Θ1,Θ2)it




.

And X r
it = {X r′

1it,X
r′
0it}

′ where X r
1it and X r

0it have been defined in equation (6) in the main
text.

We know that
X r

it

Θ′
1

=
X r

it

Θ′
2

= 0, that
Z̄′

iδ̄δδ+α̂i

Θ′
2

= Σ−1
εε ε̂εεit
Θ′

2

= 0 and
Z̄′

iδ̄δδ+α̂i

Θ′
1

and Σ−1
εε ε̂εεit
Θ′

1

have been

derived above. Here we derive the derivatives of the remaining correction terms, C11, C12,
C01, and C02 with respect to Θ1 and Θ2. We have

∂Cjk(Θ1,Θ2)it
∂Θ′

1

=
∂Cjk(Θ1,Θ2)it

∂ϕit

∂Xf ′
itΘ2f

∂Θ′
1

+
∂Cjk(Θ1,Θ2)it

∂γit

∂Xs′
itΘ2s

∂Θ′
1

, j ∈ {0, 1}, k ∈ {1, 2}.

(F-46)

Given the functional form of Cjk(Θ1,Θ2) in equations (24) and (25), its derivative with respect

to ϕit and γit can be easily obtained. The partial derivatives
∂Xf ′

it

∂Θ′
1

and
∂Xs′

it

∂Θ′
1

have been worked

out above. Now consider the derivative of Cjk(Θ1,Θ2) with respect to Θ2 = {Θ′
2f ,Θ

′
2s, ρζ̃υ̃}

′.

∂Cjk(Θ1,Θ2)it
∂Θ′

2

=




∂Cjk(Θ1,Θ2)it
∂ϕit

∂Xf ′
itΘ2f

∂Θ2f

∂Cjk(Θ1,Θ2)it
∂γit

∂Xs′
itΘ2s

∂Θ2s
∂Cjk(Θ1,Θ2)it

∂ρ
ζ̃υ̃




′

=




∂Cjk(Θ1,Θ2)it
∂ϕit

X
f
it

∂Cjk(Θ1,Θ2)it
∂γit

X
s
it

∂Cjk(Θ1,Θ2)it
∂ρ

ζ̃υ̃




′

(F-47)

Again, given the functional form of Cjk(Θ1,Θ2),
∂Cjk(Θ1,Θ2)it

∂ϕit
and

∂Cjk(Θ1,Θ2)it
∂γit

can be easily
computed. If only to note, depending on the particular combination of j and k, the derivatives
stated above involve taking derivatives of Pr(fit = 1, sit = 1) and Pr(fit = 0, sit = 1) with
respect to ϕit, γit and ρζ̃υ̃, and these are stated in Greene (2002).
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