
 

    

François: Professor at HEC Montréal, Department of  Finance and CIRPÉE Fellow 

pascal.francois@hec.ca 

Gauthier: Professor at HEC Montréal, Department of  Management Sciences 

genevieve.gauthier@hec.ca 

Godin: Ph.D. student at HEC Montréal, Department of  Management Sciences 

frederic.godin@hec.ca 

 

Earlier versions of this paper were presented at the IFM2 Mathematical Finance Days 2012, and CORS Annual 

Conference 2012. We thank the conference participants for their helpful feedback. Financial support from SSHRC 

(François), NSERC (Gauthier, Godin) and the Montreal Exchange (Godin) is gratefuly acknowledged. 

 

Electronic copy available at: http://ssrn.com/abstract=2130822 

 

 

 

 

Cahier de recherche/Working Paper 12-34 

 

 

 

 

Optimal Hedging when the Underlying Asset Follows a Regime-

switching Markov Process 

 

 

Pascal François 

Geneviève Gauthier 

Frédéric Godin 

 

 

 

Août/August 2012 

 



Abstract:   
We develop a flexible discrete-time hedging methodology that minimizes the expected 
value of any desired penalty function of the hedging error within a general regime-
switching framework. A numerical algorithm based on backward recursion allows for the 
sequential construction of an optimal hedging strategy. Numerical experiments 
comparing this and other methodologies show a relative expected penalty reduction 
ranging between 0.9% and 12.6% with respect to the best benchmark. 
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1 Introduction and literature review

For a derivatives trading and risk management activity to be sustainable, hedging is paramount.

In practice, portfolio rebalancing is performed in discrete time and the market is typically

incomplete, implying that most contingent claims cannot be replicated exactly. Thus, to

implement a hedging policy, the challenge is twofold: a model must be speci�ed and hedging

strategy objectives must be set.

From a modelling perspective, this article adopts a regime-switching environment. One

widely studied class of regime-switching models views log-returns as a mixture of Gaussian

variables. These models, introduced in �nance by Hamilton (1989), have been shown to

improve the statistical �t and forecasts of �nancial returns. They reproduce widely docu-

mented empirical properties such as heteroskedasticity, autocorrelation and fat tails. In this

framework, the option pricing problem must deal with incomplete markets and requires the

speci�cation of a risk premium. Among signi�cant contributions, Bollen (1998) presents a

lattice algorithm to compute the value of European and American options. Hardy (2001)

�nds a closed-form formula for the price of European options. The continuous-time version

of the Gaussian mixture model is studied by Mamon & Rodrigo (2005) who �nd an explicit

value for European options by solving a partial di�erential equation. Elliott et al. (2005)

price derivatives by means of the Esscher transform under the same continuous-time model.

Bu�ngton & Elliott (2002) derive an approximate formula for American option prices. Be-

yond the Gaussian mixture models, extensions address GARCH e�ects (Duan et al., 2002)

and jumps (Lee, 2009a), for example.

Several authors study the problem of hedging an underlying asset with its futures under

regime-switching frameworks. Alizadeh & Nomikos (2004) and Alizadeh et al. (2008) base

their hedging strategy on minimal variance hedge ratios. Lee et al. (2006), Lee & Yoder

(2007), Lee (2009a) and Lee (2009b) extend the dynamics of the underlying asset in Al-

izadeh & Nomikos (2004) to incorporate a time-varying correlation between the spot and

futures returns, GARCH-type feedback from returns on the volatilty, jumps and copulas for

the dependence between futures and spot returns. Lien (2012) provides conditions under

which minimal variance ratios taking into account the existence of regimes overperform their

unconditional counterparts.
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Option hedging under regime-switching models has recently raised interest in the liter-

ature. Rémillard & Rubenthaler (2009) identify the hedging strategy that minimizes the

squared error of hedging in both discrete-time and continuous-time for European options.

The implementation of this methodology is present in Rémillard et al. (2010a). Rémillard

et al. (2010b) extend the hedging procedure to American options.

Another strand of literature discusses self-�nancing hedging policies1 under general model

assumptions. A widely known methodology is delta hedging. It consists in building a

portfolio whose value variations mimick those of the hedged contingent claim when small

changes in the underlying asset's value occur. In continuous-time complete markets, delta

hedging is the cornerstone of any hedging strategy since it allows for perfect replication.

Based on the �rst derivative of the option price with respect to the underlying asset price,

it requires a full characterization of the risk-neutral measure. Many authors discuss the

implementation of delta hedging in discrete-time and/or incomplete markets (Duan, 1995,

among others). It should be stressed, however, that delta hedging is subject to model

misspeci�cation. Nevertheless, it stands as a relevant benchmark when it comes to assessing

the performance of a hedging strategy.

Another approach is super-replication (e.g. El Karoui & Quenez, 1995, and Karatzas

1997). It identi�es the cheapest trading strategy whose terminal wealth is at least equal to

the derivative's payo�. Since the option buyer alone carries the price of the hedging risk,

the initial capital required is often unacceptably large. Eberlein & Jacod (1997) show that,

under many models, the initial capital required to super-replicate a call option is the price

of the underlying asset itself.

An alternative to super-replication is Global Hedging Risk Minimization (GHRM), which

consists in identifying trading strategies that replicate the derivative's payo� as closely as

possible, or alternatively, minimize the risk associated with terminal hedging shortfalls. Xu

(2006) proposes to minimize general risk measures applied to hedging errors. Several authors

choose more speci�c risk measures: quantiles of the hedging shortfall (Föllmer & Leukert,

1999, Cvitani¢ & Spivak, 1999), expected hedging shortfall (Cvitani¢ & Karatzas, 1999),

expected powers of the hedging shortfall (Pham, 2000), Tail Value-at-Risk (Sekine, 2004),

1By contrast, local risk-minimization, which considers hedging strategies that are not self-�nancing, selects

one that minimizes a measure of the costs related to non-initial investments in the portfolio (Schweizer, 1991).
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expected squared hedging error (Schweizer, 1995, Motoczy«ski, 2000, Cont et al., 2007 and

Rémillard & Rubenthaler, 2009) and the expectation of general loss functions (Föllmer &

Leukert, 2000). Theoretical existence of optimal hedging strategies under those risk measures

and their characterization are studied in a general context. However, explicit solutions exist

only for some particular cases of market setups and risk measures. The implementation of

the preceding methodologies in the case of incomplete markets is often not straightforward,

and tractable algorithms computing the optimal strategies have yet to be identi�ed. The

presence of regimes adds an additional layer of di�culty in applying those methods.

This paper's contributions are twofold. First, on a theoretical level, we develop a discrete-

time hedging methodology with the GHRM objective that miminizes the expected value of

any desired penalty function of the hedging error within a general regime-switching frame-

work (possibly including time-inhomogenous regime shifts). This methodology is highly �ex-

ible and generalizes the quadratic hedging approach. It incorporates a large class of penalty

functions encompassing usual risk measures such as Value-at-Risk and expected shortfall.

The proposed framework can accommodate portfolio restrictions such as no short-selling.

Portfolios can be rebalanced more frequently than the regime-switch timeframe. Second,

from an implementation perspective, a numerical algorithm based on backward recursion al-

lows for the sequential construction of an optimal hedging strategy. Numerical experiments

challenge our model with existing methodologies. The relative expected penalty reduction

obtained with this paper's optimal hedging approach, in comparison with the best bench-

mark, ranges between 0.9% and 12.6% in the di�erent cases exposed.

This paper is organized as follows. In Section 2, the market model and the hedging

problem are described. In Section 3, the hedging problem is solved. Section 4 presents a

numerical scheme to compute the solution to the hedging problem. Section 5 presents the

market model used for the simulations and provides numerical results. Section 6 concludes

the paper.
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2 Market speci�cations and hedging

2.1 Description of the market

Transactions take place in a discrete-time, arbitrage-free �nancial market. Denote by ∆t

the constant time elapsing between two consecutive observations. Two types of assets are

traded. The risk-free asset is a position in the money market account with a nominal amount

normalized to one monetary unit. The time−n price of the risk-free asset is

S(1)
n = exp (rn∆t) , n ∈ {0, 1, 2, ...}

where r is the annualized risk-free rate. The price of the risky asset, starting at S
(2)
0 , evolves

according to

S(2)
n = S

(2)
0 exp (Yn) ,

where Yn is the risky asset's cumulative return over the time interval [0, n]. ~Sn denotes the

column vector
(
S

(1)
n , S

(2)
n

)>
and ~S0:n stands for the whole price process up to time n.

The �nancial market is subject to various regimes that a�ect the dynamics of the risky

asset's price. These regimes are represented by an integer-valued process {hn}Nn=0 taking

values in H = {1, 2..., H} where hn is the regime prevailing during time interval ]n, n + 1].

The joint process (Y, h) has the Markov property2 with respect to the �ltration {Fn}Nn=0

satisfying the usual conditions, where

Fn = σ
(
~S0:n, h0:n

)
= σ (Y0:n, h0:n) ,

meaning that the distribution of (Yn+1, hn+1) conditional on information Fn is entirely de-

termined by Yn and hn.
3 This assumption is consistent with Hamilton (1989) and Duan et

al. (2002), among others. The transition probabilities of the regime process h are denoted

by

P
(n)
i,j (y) = P(hn+1 = j|hn = i, Yn = y) i, j ∈ H.

Because regimes h are not observable, a coarser �ltration {Gn}Nn=0 modelling the infor-

mation available to investors is required, that is, Gn = σ (Y0:n).

2A stochastic process {Xn} has the Markov property with respect to �ltration F if ∀n, x,

P(Xn+1 ≤ x|Fn) = P(Xn+1 ≤ x|Xn).

3Equivalently, the process (~S, h) has the Markov property with respect to �ltration F .
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2.2 The hedging problem

A market participant (referred to as the �hedger�) wishes to replicate (or �hedge�) the payo�

φ(S
(2)
N ) of a European contingent claim written on the risky asset and maturing at time N ,

where φ (·) is some positive Borel function φ : [0,∞)→ R. Alternatively, the payo� can be

written as a function of the risky asset return

φ(S
(2)
N ) = φ̃(YN),

for some function φ̃ (·).

To implement the replication, the hedger adopts G−predictable self-�nancing4 hedg-

ing strategies θ =
{
~θn

}N
n=1

with time−n value5 Vn(v0, Y0:n, ~θ1:n) := ~θ>n ~Sn and initial value

V0 := v0 = ~θ>1
~S0. This ensures that all trading decisions are made based on up-to-date

price information, regardless of the unobserved regime. Below, θ
(k)
n represents the number of

shares of asset k held during period ]n− 1, n] and ~θn is the column vector
(
θ

(1)
n , θ

(2)
n

)>
that

characterizes the hedging portfolio.

De�nition 2.1 The set of all G−predictable self-�nancing hedging strategies satisfying pos-

sible additional requirements (such as no short-selling constraints6) is denoted by Θ. We

refer to Θ as the set of admissible hedging strategies.

Unobservable regimes and discrete-time trading make perfect replication of the European

contingent claim impossible to achieve. The hedger therefore aims to best replicate the

payo� φ̃(YN) according to a certain metric. This justi�es the use of a penalty function that

sanctions departure of the hedging portfolio's terminal value VN from φ(S
(2)
N ). Let g (·) be

a Borel function g : R → R representing a penalty function. For a given amount of initial

wealth v0, the hedger wishes to �nd an admissible hedging strategy solving

min
θ∈Θ

E
[
g(φ(S

(2)
N )− VN)

]
. (1)

The solution is referred to as the optimal hedging strategy. Admittedly, g, φ, θ and S(2) need

to be well-behaved and integrable enough for this expectation to exist.

4θ =
{
~θn

}N
n=1

is a self-�nancing hedging strategy if ∀n ≥ 1, ~θ>n ~Sn = ~θ>n+1
~Sn.

5To ease notation, Vn(v0, Y0:n, ~θ1:n) is denoted by Vn.
6Or a weaker version of it asking for Vn to be positive.
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De�ning the hedging problem at the terminal date does not require a pricing function

for the derivatives, and in particular a characterization of the risk premium. By contrast,

hedging strategies considering intermediate dates (option tracking) rely on additional as-

sumptions about the martingale measure.

Schweizer (1995) and Rémillard & Rubenthaler (2009) work with the quadratic penality

function g(x) = x2. However, this speci�cation entails that gains and losses on the hedge are

penalized equally. In practice, the hedger might be interested in treating gains and losses

on the hedge di�erently. Among asymmetric penalty functions, Pham (2000) investigates

the case g(x) = xp1{x>0} for a positive constant p, where 1{·} denotes the indicator variable.

Another possibility is to choose g(x) = 1{x≥z} where z is a constant. Such a penalty function

induces the minimization of the probability that the hedging shortfall is greater than z.

Föllmer & Leukert (1999) and Cvitani¢ & Spivak (1999) study the hedging problem in

continuous time with a similar hedging goal. In this paper, we opt for a general asymmetric

penalty function of the form

g(x) = α1|x|p1{x≤γ1} + α2|x|q1{x>γ2}, (2)

for some constants α1, α2, γ1, γ2, p ≥ 0 and q ≥ 0. This speci�cation encompasses both

symmetric and asymmetric penalties and allows di�erent penalty weights to be put on the

under- and over-replication of the terminal payo�. If q = α1 = 0 and α2 = 1, the penalty

reduces to a Value-at-Risk type of measure. If q = α2 = 1 and α1 = 0, the penalty becomes

an Expected shortfall type of measure. The case p = q = 2, α1 = α2 = 1 and γ1 = γ2 = 0

leads to the quadratic penalty.

3 Solving the hedging problem

3.1 From path-dependence to the Markov property

The tools of dynamic programming and the Bellman equation are tailor-made to solve prob-

lems of the Equation (1) type if one can invoke the Markov property for the state variables

process. However, the observable process Y does not necessarily have the Markov property

with respect to the �ltration G, because the cumulative returns depend on the regimes. In-

deed, all past values of the cumulative returns path Y give information about the current
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value of the unobservable regime h. This obstacle is circumvented by de�ning additional

state variables that summarize all the relevant information of Y 's previous path. Those

variables allow for the de�nition of a process that has the Markov property with respect to

information �ow G.

Below, f ~X(~x) denotes the joint probability density function (pdf) of a random vector

~X. In some cases, if some components of ~X are discrete-type random variables, f ~X(~x) is a

mixed pdf. Similarly, f ~X|~Y (~x|~y) denotes the pdf of ~X conditional upon ~Y = ~y. All proofs

are provided in Appendix A.

De�nition 3.1 The conditional probability ηi,n of being in regime i at time n given the

cumulative returns Y0:n is the Gn−measurable function

ηi,n := P (hn = i|Gn) = fhn|Y0:n (i|Y0:n) , i ∈ H.

As a special case, ηi,0 = P(h0 = i) = fh0(i). The Gn−measurable vector ~ηn = (η1,n, ..., ηH,n)

denotes the set of conditional probabilities at time n.

Those η are the state variables required in the construction of a Markov process with

respect to �ltration G. Theorem 3.1 provides a recursion formula allowing for an e�cient

computation of those probabilities.7

Theorem 3.1 The conditional probabilities are given recursively by

ηi,n+1 =

∑H
j=1 fhn+1,Yn+1|hn,Yn (i, Yn+1 |j, Yn ) ηj,n∑H

j=1

∑H
`=1 fhn+1,Yn+1|hn,Yn (j, Yn+1 |`, Yn ) η`,n

.

Moreover, if Yn+1 and hn+1 are conditionally independent upon Fn, then

fhn+1,Yn+1|hn,Y0:n (i, Yn+1 |j, Y0:n ) = P
(n)
j,i (Yn)fYn+1|hn,Y0:n (Yn+1 |j, Y0:n ) .

Corollary 3.1 states that those conditional probabilities are the natural extension for the

cumulative returns to retrieve the Markov property.

Corollary 3.1 {Yn, ~ηn}Nn=0 has the Markov property with respect to G.
7An alternative recursion formula is presented in Rémillard et al. (2010a). However, the current formula

is preferred for two main reasons. First, ηi,n lying in [0, 1] makes it numerically more stable. Second, it

bene�ts from a dimension reduction since ηH,n = 1−
∑H−1
j=1 ηH,j .
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Finally, the next corollary extends the previous one to include the hedging portfolio value.

In the general case of predictable hedging strategies, this inclusion unfortunately destroys

the Markov property. However, if asset reallocation is solely determined by the information

about current cumulative return and portfolio value as well as the recursive conditional

probabilities (as de�ned in Theorem 3.1), then the Markov property can be retrieved. This

property is crucial, from a numerical point of view, to obtaining an implementable algorithm.

Corollary 3.2 For any admissible hedging strategy θ ∈ Θ , the conditional distribution of

(Yn+1, ~ηn+1, Vn+1) given Gn is the same as if it is conditioned upon σ
(
Yn, ~ηn, Vn, ~θn+1

)
.

Moreover, if the condition that ~θn+1 is σ (Yn, ~ηn, Vn)−measurable for any n is added, then

{Yn, ~ηn, Vn}Nn=0 has the Markov property with respect to G.

3.2 A recursive construction

In this section, an optimal hedging strategy is constructed. Let Ψ∗N be the hedging penalty

at time N,

Ψ∗N := g
(
φ̃(YN)− VN

)
(3)

and for any n ∈ {0, 1, ..., N − 1}, let Ψ∗n be the smallest possible expected hedging penalty

Ψ∗n := min
~θn+1:N

E [Ψ∗N |Gn] (4)

where ~θn:N =
(
~θn, ..., ~θN

)
.

Remark 3.1 One assumes su�cient regularity in g, φ and the distribution of {Yn}Nn=0 such

that, for all n, the minimum in (4) is attained.

Equation (4) is stated as a minimization over N − n portfolio vectors. Theorem 3.2

presents a way to optimize these portfolios one at a time.

Theorem 3.2 For any n ∈ {0, 1, ..., N − 1} , the smallest expected penalty at time n may be

computed using a recursive argument:

Ψ∗n = min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] . (5)
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Furthermore, let ~θ∗(n+2):N denote one of the possible admissible hedging strategies that mini-

mize the expected penalty at time n+ 1, that is,

~θ∗(n+2):N = arg min
~θn+2:N

E[Ψ∗N |Gn+1].

Then,

~θ∗(n+1):N :=

(
arg min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] , ~θ∗(n+2):N

)
, (6)

is a solution to the following equation:

~θ∗(n+1):N = arg min
~θn+1:N

E[Ψ∗N |Gn].

This means that the optimal admissible hedging strategy may be built up using a backward

induction construction.

Equations (5) and (6) involve conditional expectations with respect to all past return

realizations. Theorem 3.3 shows that it is possible to remove path-dependence and appeal

only to conditional expectations with respect to the current state variables {Yn, ~ηn, Vn}Nn=0.

Theorem 3.3 Assume that for all n, constraints on the portfolio ~θn+1 depend only on the

value of (Yn, ~ηn, Vn). Then, ∀n ≤ N, Ψ∗n is σ(Yn, ~ηn, Vn)−measurable. Moreover, there exists

an optimal self-�nancing hedging strategy
{
~θ∗n

}
that solves (1) such that ∀n ≥ 1, ~θ∗n+1 is

σ(Yn, ~ηn, Vn)−measurable. Furthermore,

~θ∗n+1 = arg min
~θn+1∈σ(Yn,~ηn,Vn)

E
[
Ψ∗n+1 |Yn, ~ηn, Vn

]
. (7)

Since Ψ∗n is σ(Yn, ~ηn, Vn)−measurable, one can write Ψ∗n = Ψn(Yn, ~ηn, Vn). Finally, the next

theorem combines Theorems 3.2 and 3.3 to optimize one portfolio vector at a time, searching

on the space of hedging strategies for which {Yn, ~ηn, Vn}Nn=0 has the Markov property with

respect to G. These two features make the algorithm numerically tractable.

Theorem 3.4 The Bellman Equation There exists a self-�nancing hedging strategy
{
~θ∗n

}
that solves problem (1) and the following set of recursive equations:

∀n, ~θ∗n+1 = arg min
~θn+1∈σ(Yn,~ηn,Vn)

E
[
Ψn+1(Yn+1, ~ηn+1, Vn+1(~θn+1) )

∣∣Yn, ~ηn, Vn] .
10



Furthermore, the minimal expected penalty can be computed as follows:

ΨN (YN , ~ηN , VN ) = g(φ(S
(2)
N )− VN ) = g(φ̃(YN )− VN ) (8)

Ψn(Yn, ~ηn, Vn) = min
~θn+1

E
[
Ψn+1(Yn+1, ~ηn+1, Vn+1(~θn+1) )

∣∣Yn, ~ηn, Vn] , n ∈ {0, 1, ..., N − 1} (9)

Finally, min
{~θn}∈Θ

E
[
g(φ(S

(2)
N )− VN(~θ1:N) )

]
= Ψ0(Y0, ~η0, V0).

The proof of Theorem 3.4 is a direct consequence of Theorems 3.2 and 3.3 and the de�nition

of Ψn.

4 Lattice implementation

Analytical solutions to Theorem 3.4's equations are unlikely to be found for general penal-

ties. Therefore, numerical approximations must be considered in order to implement the

algorithm. The numerical application of the hedging algorithm is discussed in this section.

4.1 Dimensionality reduction

Since
∑H

j ηj,n = 1, the variable ηH,n provides no additional information. Therefore, ~ηn =

(η1,n, ..., ηH,n) can be replaced with ~ηn := (η1,n, ..., ηH−1,n) in Theorem 3.4. This reduces

the dimension of the problem, which is an important numerical issue. Similarly, since for

self-�nancing strategies
∑2

k=1 θ
(k)
n+1S

(k)
n = Vn, the optimization over ~θn+1 is in fact equivalent

to optimizing only over θn+1 := θ
(2)
n+1.

4.2 Grid values

To compute the minimal expected penalty Ψn and optimal portfolio position ~θn+1 from

Theorem 3.4, one resorts to a grid whose nodes correspond to a discrete subsample of all

possible values of (Yn, ηn, Vn). For each state variable, the largest and smallest values in the

grid must be set. One can use the [0, 1] bounds for ~η since it contains probabilities. Variables

Vn and Yn are unbounded. Therefore, grid bounds for Vn and Yn are found numerically using

a Monte-Carlo simulation. To this end, 105 sample paths of cumulative returns Y0:N are

simulated. This yields the approximate distribution of Yn for all n. The case of the portfolio

value Vn is di�erent since the optimal hedging strategy is not yet known. However, a proxy

11



V
(BS)
n is built for Vn using the Black-Scholes delta hedging as described in Section 5.4.1. Let

Yn,α, and V
(BS)
n,α be the αth sample quantiles. De�ne

Yn,mid :=
1

2
(Yn,0.25% + Yn,99.75%) and V

(BS)
n,mid :=

1

2
(V

(BS)
n,0.25% + V

(BS)
n,99.75%)

as the mid-points of two extreme quantiles. The largest and smallest values for the grid at

time n are chosen to be

Y (small)
n := (1 + λ

(small)
Y )(Yn,0.25% − Yn,mid) + Yn,mid

Y (large)
n := (1 + λ

(large)
Y )(Yn,99.75% − Yn,mid) + Yn,mid

V (small)
n := (1 + λ

(small)
V )(V

(BS)
n,0.25% − V

(BS)
n,mid) + V

(BS)
n,mid

V (large)
n := (1 + λ

(large)
V )(V

(BS)
n,99.75% − V

(BS)
n,mid) + V

(BS)
n,mid.

where (λ
(small)
Y , λ

(large)
Y , λ

(small)
V , λ

(large)
V ) are positive stretching factors.

4.3 Algorithm solving the Bellman equation

A numerical algorithm allowing for the computation of the minimal expected penalty and

the optimal portfolio position at each time step is given in this section. First, de�ne two

grids of di�erent sizes (one �ner and one coarser) containing a discrete subset of values for

(Yn, ~ηn, Vn).

4.3.1 On the coarse grid

Assume that (Yn, ~ηn, Vn) = (y, ~η, v) . According to Theorem 3.4, the goal is to evaluate

Equation (9) at each node (y, ~η, v) of the grid:

Ψy,~η,v
n = min

~θn+1

E
[

Ψn+1

(
Yn+1, ~ηn+1, Vn+1(~θn+1)

) ∣∣∣ (Yn, ~ηn, Vn) = (y, ~η, v)
]
.

From Theorem 3.1, ~ηn+1 is a function of (Yn+1, Yn, ~ηn). Seen from node (y, ~η, v), it may

be denoted ~ηy,~ηn+1 (Yn+1) . Because the amount invested in the riskless asset is the value of

the portfolio minus the investment in the risky asset, the time-(n + 1) value of the hedging

portfolio, seen from the grid point (Yn, ~ηn, Vn) = (y, ~η, v), is

Vn+1

(
~θn+1

)
= θ

(1)
n+1 exp (r (n+ 1) ∆t) + θ

(2)
n+1S

(2)
0 exp (Yn+1)

= exp (r∆t)
(
v − θ(2)

n+1S
(2)
0 exp (y)

)
+ θ

(2)
n+1S

(2)
0 exp (Yn+1)

= V y,v
n+1

(
~θn+1, Yn+1

)
.
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Therefore, the expected penalty at time n and at grid point (y, ~η, v) satis�es

Ψy,~η,v
n = min

~θn+1

E
[

Ψn+1

(
Yn+1, ~η

y,~η
n+1 (Yn+1) , V y,vn+1

(
~θn+1, Yn+1

))∣∣∣ (Yn, ~ηn, Vn) = (y, ~η, v)
]

= min
~θn+1

H∑
j=1

ηj,nE
[

Ψn+1

(
Yn+1, ~η

y,~η
n+1 (Yn+1) , V y,vn+1(~θn+1, Yn+1)

)∣∣∣ (hn, Yn, ~ηn, Vn) = (j, y, ~η, v)
]

(from Equation (20))

= min
~θn+1

H∑
j=1

ηj,n

∫ ∞
−∞

Ψy,~η,v
n+1

(
~θn+1, z

)
fYn+1|Yn,~ηn,Vn,hn

(z|y, ~η, v, j) dz

= min
~θn+1

H∑
j=1

ηj,n

∫ ∞
−∞

Ψy,~η,v
n+1

(
~θn+1, z

)
fYn+1|Yn,hn

(z|y, j)dz (Markov property and Lemma A.1)

where

Ψy,~η,v
n+1

(
~θn+1, z

)
= Ψn+1

(
z, ~ηy,~ηn+1 (z) , V y,v

n+1

(
~θn+1, z

))
.

In general, there is no closed-form solution for this integral and it is evaluated numerically.

Therefore, the support of Yn+1 is partioned in M intervals with boundaries −∞ = z0 < z1 <

... < zM−1 < zM =∞ and z∗i ∈ [zi−1, zi] acts as a representative of the interval [zi−1, zi] .∫ ∞
−∞

Ψy,~η,v
n+1

(
~θn+1, z

)
fYn+1|Yn,hn (z |y, j ) dz

=
M∑
i=1

∫ zi

zi−1

Ψy,~η,v
n+1

(
~θn+1, z

)
fYn+1|Yn,hn (z |y, j ) dz

∼=
M∑
i=1

Ψy,~η,v
n+1

(
~θn+1, z

∗
i

)∫ zi

zi−1

fYn+1|Yn,hn (z |y, j ) dz (10)

=
M∑
i=1

Ψy,~η,v
n+1

(
~θn+1, z

∗
i

)
ωy,j,ni

where the weights ωy,j,ni are

ωy,j,ni = FYn+1|Yn,hn (zi |y, j )− FYn+1|Yn,hn (zi−1 |y, j ) ,

FYn+1|Yn,hn being the cumulative distribution function of Yn+1 given (Yn, hn). In general,

the approximation (10) is good if the distances between the zi are small and the Ψn+1

function is relatively smooth. The zi are chosen to be quantiles of the conditional distribution

FYn+1|Yn,hn . To better capture the impact of extreme events, particular attention is paid to

the tails of the distribution. The left (right) tail is de�ned as the smallest (largest) 5%

values of the distribution. The M(1) smallest zi's correspond to quantiles of level k 5%
M(1)

,

k ∈
{

1, 2, ...,M(1)

}
. The central part of the distribution is proxied by M(2) quantiles of level

k 90%
M(2)

+ 5%, k ∈
{

1, 2, ...,M(2)

}
, while the right tail is represented by M(3) quantiles whose
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level lies in ]95%, 100%] . Consequently, the weights ωy,j,ni are 5%
M(1)

, 90%
M(2)

or 5%
M(3)

depending

on which part of the distribution zi belongs to. Among possible speci�cations, z∗i are chosen

as quantiles whose level is the mean between the levels of zi−1 and zi. This is illustrated by

Figure 1.

Figure 1: Quadrature illustration

This �gure illustrates the quadrature for the log-return distribution.

Because the maximization is time-consuming, especially if it must be done at all nodes

of the lattice, the research area is reduced to a discrete set O of values:

Ψn(y, ~η, v) ∼= min
~θn+1∈O

M∑
i=1

Ψy,~η,v
n+1

(
~θn+1, z

∗
i

)
ωy,~η,ni . (11)

Since the backward induction on time leads to a numerical approximation Ψ̂n+1 of Ψn+1, the

latter is replaced by former in Equation (11) in applications.

Step 1: Rough estimate of optimal hedging strategy

A rough estimate of the optimal hedging strategy is

θ̂y,~η,vn+1 = arg min
θn+1∈O

M∑
i=1

Ψ̂y,~η,v
n+1

(
~θn+1, z

∗
i

)
ωy,~η,ni .

By construction, the z∗i do not match the grid's discretization of next period return Yn+1.

For this reason, interpolation is required to evaluate each of the Ψ̂y,~η,v
n+1

(
~θn+1, z

∗
i

)
whose

arguments most likely lie between the grid nodes. This step proceeds with multivariate

linear interpolation.8

8This approximation of Ψ̂n+1 is not involved in further iterations. Therefore, while high precision is not

a crucial issue at this step, computational speed is.
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4.3.2 On the �ner grid

Step 2 : Smoothing of the hedging strategy

From step 1, one gets an approximate portfolio position θ̂∗n+1 for every node of the coarse

grid at time n. For every value of (y, ~η, v) on the �ner grid, one computes the hedging

portfolio position ϑ̂y,~η,vn+1 using smoothing splines based on θ̂n+1. ϑ̂n+1 is now used as the �nal

estimation of the optimal hedging portfolio position.

Step 3 : Recalculation of the value function

A �ner partition of the distribution of Yn+1 and the corresponding weights, denoted by z̃∗i

and ω̃i, i = 1, ..., M̃ , serve for the approximation of the minimal expected penalty function

with the new portfolio position ϑ̂n+1. Thus, mimicking Equation (11),

Ψ̂n(y, ~η, v) =
M̃∑
i=1

Ψ̂y,~η,v
n+1

(
ϑ̂y,~η,vn+1 , z̃

∗
i

)
ω̃y,~η,ni .

The subsequent iteration of the three-step algorithm will call this new approximation for Ψ̂n.

Thus, to minimize the accumulation of errors, the interpolation is performed with natural

splines.9

5 Numerical results

5.1 The model

As in Hamilton (1989), the regime process is assumed to be a Markov chain, implying

that the conditional distribution of hn+1 given Fn is the same as if it were conditioned

upon hn. The model can accomodate a regime shift timeframe which is coarser than the

rebalancing schedule. In that context, τ represents the number of periods between two

possible regime transitions and {hn}Nn=0 becomes a time inhomogenuous Markov chain with

probability transition matrix

P (n)(y) =

P if (n+ 1) mod τ = 0

IH×H otherwise,

where IH×H is the identity matrix.

9Natural splines in three dimensions are implemented through the interp3 matlab function.
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A basic model based on two regimes (H = 2) serves as benchmark to test the proposed

algorithm. Conditioned on the actual regime hn = i, the one-period log-return εn+1 =

Yn+1 − Yn has a Gaussian distribution with mean µi∆t and variance σ2
i ∆t.

The application of Theorem 3.4 relies on the following relations:

Yn+1 = Yn + εn+1

Vn+1 = Vne
r∆t + θn+1S0e

Yn(eεn+1 − er∆t)

η1,n+1 =

∑H
j=1 P

(n)
j,1 ηj,n fεn+1|hn(εn+1|j)∑H

u=1

∑H
j=1 P

(n)
j,u ηj,n fεn+1|hn(εn+1|j)

,

where η2,n = 1− η1,n and fεn+1|hn(εn+1|j) is the Gaussian density function

fεn+1|hn(εn+1|j) =
1√

2π∆tσj
exp

(
−1

2

(εn+1 − µj∆t)
2

σ(j)2
∆t

)
. (12)

The conditional distribution of εn+1|(Yn, ηn, Vn) is a mixture of two Gaussian distribu-

tions:

P(εn+1 ≤ x|Yn, ηn, Vn) = P(εn+1 ≤ x|hn = 1)η1.n + P(εn+1 ≤ x|hn = 2)(1− η1,n)

= Φ

(
x− µ1

σ1

)
η1,n + Φ

(
x− µ2

σ2

)
(1− η1,n),

where Φ is the standard normal cumulative distribution function.

Moreover, the following boundaries can be used for η in the algorithm of Section 4:

Proposition 5.1 For all j, n, min
i∈H

P
(n)
i,j ≤ ηj,n+1 ≤ max

i∈H
P

(n)
i,j .

The proof is in Appendix B.

5.2 Estimation

Regime switches potentially occur each week and rebalancing is performed weekly (∆t =

1/52, τ = 1) or daily (∆t = 1/260, τ = 5). Maximum likelihood with the EM algorithm of

Dempster et al. (1997) is applied to a sample of S&P 500 weekly log-returns from January

1, 2000 to December 31, 2010. Parameter estimates are reported in Table 1.

A p-value of 34.4% for the Cramer-Von-Mises parametric bootstrap goodness-of-�t test

(see Genest & Rémillard, 2008) for the regime-switching process indicates that the model

is not rejected. The �rst (second) regime represents an economy in expansion (recession):

returns exhibit a positive (negative) mean with a low (high) volatility. The risk-free rate is

set to r = 2%.
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Table 1: Estimated parameters of the Gaussian regime switching model

Parameter Regime 1 Regime 2

µj .0718 −.2884

σj .1283 .3349

Pj,j .9736 .9091

The annualized estimated parameters of the model of Section 5 are presented. A time series from January

1, 2000 to December 31, 2010 of the weekly price of the S&P 500 is used. Estimation is performed with the

EM algorithm.

5.3 Hedging strategies

The option to be hedged is a European at-the-money call option with payo� φ(SN) =

max(0, SN −E). The initial index value is S0 = 1,257.64, which is the value of the S&P 500

on December 31, 2010. The option strike is E = 1,257. The maturity of the option is 12

weeks.10

The initial probability of being in regime 1 is set to η0 = 0.2318. This value is chosen

instead of the estimated value on the S&P 500 time series because it leads to the same

call option price under the Black-Scholes and Hardy models (see Sections 5.4.1 and 5.4.2,

respectively). Thus, both these hedging methodologies use the same initial capital, which

makes the numerical results comparable. The initial hedging capital, which is the option

price under those models, is V0 = 62.4316.

The following penalty functions are under consideration:

g(x) = x2 quadratic, (13)

g(x) = x21{x>0} short quadratic, (14)

g(x) = x21{x<0} long quadratic, (15)

where x represents the hedging error φ̃(YN)−VN . The quadratic penalty sanctions departures

from the option payo�. The short (long) quadratic penalty is designed for the option seller

(buyer), since it does not penalize pro�ts; only losses are sanctioned.

10That is, N = 60 periods for daily rebalancing and N = 12 for weekly rebalancing.
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The restrictions considered on the portfolio positions are that ∀n, θn ∈ [0, 1], thereby

preventing short sales and excessive leverage.

5.4 Benchmarks

In order to compare the hedging model presented in this paper, benchmarks must be set. In

the following, the optimal hedging strategy presented in Section 3 is referred to as "minimal

expected penalty hedging" (MEPH).

The most common hedging strategy relies on delta hedging. In this case, a pricing kernel

is required to compute the deltas. The �rst two benchmarks examine two pricing models.

5.4.1 Black-Scholes delta hedging (BSDH)

The classic Black-Scholes delta with a modi�ed volatility determines the position held in the

underlying asset:

θ
(BSDH)
n+1 = Φ

(
log(Sn/E) + (r + .5ζ2)∆t(N − n)

ζ
√

∆t(N − n)

)
,

where ζ is the asymptotic stationary volatility of log-returns εn in the case τ = 1:

ζ =

√√√√( H∑
j=1

P ∗j (σ(j)2
+ µ(j)2

)

)
+

(
H∑
j=1

P ∗j µ
(j)

)2

, (16)

P ∗ is the stationary distribution associated with the transition matrix P . In the case τ > 1,

the stationary distribution for the regimes does not exist in general because of the cyclical

nature of the Markov chain transition probabilities. Nevertheless, Equation (16) is used as

the presumed market volatility. The characterization of the hedging position is explicit and

does not require a lattice approximation.

The initial capital used for hedging is the option price given by the Black-Scholes formula

with the volatility given by (16). The Black-Scholes hedging methodology can be seen as a

naive benchmark that would be applied by a hedger who ignores the presence of regimes in

the market.
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5.4.2 Hardy delta hedging (HDH)

In Hardy (2001)'s two-regime model, the risk-neutral dynamics of one-period log-returns εn+1

follow a mixture of Gaussian distributions. The delta hedging strategy commands that:11

θ
(HDH)
n+1 =

2∑
j=1

ηj,n

N−n∑
R=0

Φ

(
log(Sn/E) + (N−n)r∆t + (Rσ2

1/2 + (N−n−R)σ2
2/2)∆t)√

(Rσ2
1 + (N − n−R)σ2

2)

)
f in(R),

where f in(R) is the probability, given current regime i, that the number of periods between

times n and N spent in the �rst regime is R. Probabilities f in(R) can be computed recursively

(see Hardy, 2001). With this benchmark, the initial capital used for hedging is the option

price. The hedger acknowledges the existence of regimes, but assigns an arbitrary risk

premium to price options.

5.4.3 Forecast regime quadratic hedging (FRQH)

Besides delta hedging, Rémillard & Rubenthaler (2009) propose a global hedging risk mini-

mization approach. The hedging strategy θ minimizes the expected terminal squared error

of hedging with respect to complete information F . This implies perfect knowledge of the

current and all past regimes. Since in practice the states h are not observable, Rémillard et

al. (2010a) forecast them with the most likely regime.

Let Θ̄ be the set of all F -predictable self-�nancing strategies.12 The FRQH strategy

solves

min
θ∈Θ̄

E
[
(φ(SN)− VN)2

]
.

With this benchmark, the hedging problem is based on the terminal date. Therefore, no

assumption related to the risk premium is needed, which implies in particular that this

strategy works with any initial capital. However, it comes at the price of using a lattice ap-

proach to compute the strategy. The hedger acknowledges the existence of regimes. However,

the hedging objective is restricted to the quadratic penalty. Furthermore, the uncertainty

surrounding regime forecasts is not taken into account.

11Delta hedging under this model is investigated in Augustyniak & Boudreault (2012).
12By contrast, the MEPH strategy is G-predictable.
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5.5 Lattice parameters

The grid's stretching factors are (λ
(small)
Y , λ

(large)
Y , λ

(small)
V , λ

(large)
V ) = (.6, .6, 1, 1). For step 1

of the algorithm in Section 4.3, M(1) = M(3) = 100 and M(2) = 200. For step 3, M̃(1) =

M̃(3) = 200 and M̃(2) = 300. Putting more points near the tails is used to better capture the

extreme events which contribute more heavily to the hedging penalty. The discrete set O

over which the θn are optimized in step 1 of the algorithm is O = {j/99 | j = 0, ..., 99}.

The number of grid nodes for each variable on the �ner grid (step 3) is:

(#Yn,#ηn,#Vn) =

(200, 100, 200) if n = N − 1

(150, 100, 150) otherwise

(17)

More nodes are put on the �rst step of the recursion as it can be computed faster because

of explicit formulas.13 For the coarse grid in step 1, only a subset of the nodes of the �ner

grid in step 3 are retained. The proportion of nodes kept in the coarse grid from the �ner

grid across dimensions Yn, ηn and Vn is 1/3, 1/3 and 1/4.

5.6 A simulation study

The numerical e�ciency of the current paper's hedging algorithm is validated by means

of Monte-Carlo simulations. The MEPH and FQRH strategies are implemented through a

lattice. Hedging errors φ̃(YN)− VN and hedging penalties g(φ̃(YN)− VN) are computed for

I = 106 simulated paths of the underlying returns.

Tables 2 and 3 report estimates of the expected penalty and their standard error for

each hedging methodology. Note that only the MEPH strategy is a�ected by the choice of

penalty function. For the three benchmarks, the hedging strategy remains the same, but the

calculated penalty di�ers.

A �rst observation is that the MEPH grid estimate is relatively close to the simulated

expected penalty. This con�rms the accuracy of the numerical implementation.

In all six cases considered, the MEPH strategy signi�cantly reduces the expected penalty.

The magnitude of the penalty dispersion is comparable across all hedging strategies.

13An explicit expression for ΨN−1 exists for the quadratic penalty. For the short (long) quadratic penalty,

an explicit expression for E[Ψ∗N (θN )|GN−1] also exists. Details are available on request.
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Table 2: Estimated expected penalties (weekly rebalancing)

MEPH BSDH HDH FRQH

Quadratic Penalty

Grid Estimate 622.57 - - -

Expected Penalty 622.70 662.13 670.05 664.87

Standard Error 1.010 1.082 1.052 1.148

Short Quadratic Penalty

Grid Estimate 325.15 - - -

Expected Penalty 325.39 372.16 392.02 374.75

Standard Error 0.9493 1.065 1.066 1.149

Long Quadratic Penalty

Grid Estimate 268.11 - - -

Expected Penalty 267.35 289.97 278.03 290.12

Standard Error 0.4365 0.5043 0.4346 0.4640

This table reports estimated expected penalties and standard errors for the optimal hedging versus the

benchmarks for penalty functions (13)-(15). 106 paths of the stock price are simulated under the Gaussian

market of Section 5 with parameters of Table 1, and the hedging algorithms are applied to each path.

The models compared are the minimal expected penalty hedging (MEPH), the Black-Scholes delta hedging

(BSDH), the Hardy delta hedging (HDH) and the forecast regime quadratic regime (FRQH). The grid

estimate of expected penalties for the optimal hedging is taken directly from the solution of the Bellman

Equation (Ψ̂0(Y0, η0, V0)). The simulation parameters are found in Section 5.2, 5.3, and 5.5.

As for the quadradic penalty, the MEPH reduces the expected penalty by 6.0% in the

weekly case and by 0.9% in the daily case with respect to the best benchmark, namely BSDH

for weekly and FRQH for daily. The short (long) quadratic penalty is speci�cally designed

for the call option seller (buyer). The MEPH reduces the expected penalty by 12.6% (3.8%)

in the weekly case and by 4.5% (3.7%) in the daily case with respect to the best benchmark.

The latter di�ers across penalties and rebalancing frequencies. For the weekly case, the

second best strategy is HDH for the long quadratic penalty and BSDH otherwise. In the

daily case, as regime forecasts are more accurate, the FRQH method performs better than

the other two benchmarks.
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Table 3: Estimated expected penalties (daily rebalancing)

MEPH BSDH HDH FRQH

Quadratic Penalty

Grid Estimate 417.88 - - -

Expected Penalty 418.77 457.16 442.40 422.57

Standard Error 0.5804 0.5605 0.4556 0.5191

Short Quadratic Penalty

Grid Estimate 191.01 - - -

Expected Penalty 193.71 222.15 220.32 202.90

Standard Error 0.5321 0.4980 0.4345 0.4726

Long Quadratic Penalty

Grid Estimate 214.87 - - -

Expected Penalty 211.62 235.01 222.07 219.66

Standard Error 0.3577 0.4129 0.3416 0.3678

This table reports estimated expected penalties and standard errors for the optimal hedging versus the

benchmarks for penalty functions (13)-(15). The grid estimate of expected penalties for the optimal hedging

is taken directly from the solution of the Bellman Equation (Ψ̂0(Y0, η0, V0)). 106 paths of the stock price are

simulated under the Gaussian market of Section 5 with parameters of Table 1, and the hedging algorithms

are applied to each path. The models compared are the minimal expected penalty hedging (MEPH), the

Black-Scholes delta hedging (BSDH), the Hardy delta hedging (HDH) and the forecast regime quadratic

regime (FRQH). The simulation parameters are found in Section 5.2, 5.3, and 5.5.

Hedging errors drive hedging penalties and are therefore worthy of investigation. How-

ever, descriptive statistics about hedging errors should not be the sole basis on which to judge

the performance of hedging strategies. Nevertheless, analyzing those quantities sheds light on

how the penalty performance is achieved. Figure 2 displays the hedging error distributions

for the quadratic MEPH and the three benchmarks. All distributions exhibit bimodality

with similar mode locations but di�erent frequencies. The distribution behaviour, especially

in the tails, is better described by Tables 4 and 5.

In terms of RMSE, the quadratic MEPH strategy slightly dominates all other benchmarks

for both weekly and daily rebalancing. This is consistent with the quadratic objective of

reducing the occurrence of large deviations of the hedging portfolio from the derivative.
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Figure 2: Density plot of hedging errors for MEPH versus benchmarks

This �gure illustrates empirical densities of hedging errors for the optimal hedging and the benchmarks. 106

paths of the stock price are simulated, and the hedging algorithms are applied to each path. The models

compared are the quadratic minimal expected penalty hedging (quadratic MEPH), the Black-Scholes delta

hedging (BSDH), the Hardy delta hedging (HDH) and the forecast regime quadratic regime (FRQH). The

simulation parameters are found in Section 5.2, 5.3, and 5.5.

As far as Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) are concerned, the picture

is not as clear. The short quadratic MEPH used by a call seller performs slightly better than

the other hedging strategies.14 For the call option buyer, MEPH is the second best behind

HDH for both VaR and TVaR risk measures.

These equivocal results are due mainly to the mismatch between the penalty function and

these risk measures. If a speci�c risk measure is the ultimate objective, the penalty function

should be designed accordingly. Indeed, our methodology precisely permits to adapt the

14The 95th and 99th percentiles and TVaR are smaller than those of all benchmarks (except for the 99%

TVaR of the HDH with daily rebalancing).

23



hedging strategy to the desired performance criterion.

To illustrate this �exibility, Figure 3 shows the e�ect of the penalty choice on the MEPH

hedging error distribution.

Table 4: Descriptive statistics for hedging errors (weekly rebalancing)

MEPH MEPH MEPH BSDH HDH FRQH

(Quadratic) (Long) (Short)

Mean −0.6787 0.2152 −0.7834 0.1199 0.1695 −0.7741

Standard Deviation 24.945 31.543 25.686 25.732 25.885 25.774

RMSE 24.954 31.544 25.698 25.732 25.885 25.785

Skewness 0.5824 2.3438 0.2844 0.5479 0.6509 0.7566

Excess Kurtosis 0.6937 9.7892 0.4501 0.6640 0.4487 1.0720

99th Percentile 67.595 128.67 65.117 70.887 71.388 72.869

95th Percentile 41.431 58.540 40.272 43.762 45.292 44.219

Median −0.9649 −3.7258 0.7948 −0.0248 −1.4455 −2.7079

5th Percentile −36.555 −35.124 −42.559 −38.133 −34.730 −36.428

1st Percentile −43.988 −42.834 −50.357 −46.463 −41.933 −43.614

Upper TVaR 99% 84.481 163.48 81.574 87.608 86.899 91.001

Upper TVaR 95% 57.768 98.176 55.795 60.591 61.424 62.128

Lower TVaR 5% −41.047 −39.790 −47.352 −43.183 −39.054 −40.840

Lower TVaR 1% −46.788 −45.883 −52.414 −49.051 −44.938 −46.575

This table reports descriptive statistics for hedging errors for the optimal hedging with penalties (13)-(15)

and the benchmarks. 106 paths of the stock price are simulated, and the hedging algorithms are applied

to each path. The models compared are the minimal expected penalty hedging (MEPH), the Black-Scholes

delta hedging (BSDH), the Hardy delta hedging (HDH) and the forecast regime quadratic regime (FRQH).

The simulation parameters are found in Section 5.2, 5.3, and 5.5. For RMSE, extreme percentiles and TVaRs,

the �gure in bold characters indicates the best performing strategy.
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Table 5: Descriptive statistics for hedging errors (daily rebalancing)

MEPH MEPH MEPH BSDH HDH FRQH

(Quadratic) (Long) (Short)

Mean −0.6067 0.7418 −0.8713 −0.0877 0.0063 −0.6306

Standard Deviation 20.455 31.951 22.800 21.381 21.033 20.547

RMSE 20.464 31.960 22.816 21.381 21.033 20.557

Skewness 0.1459 3.5405 −0.5902 0.0477 0.0769 0.1436

Excess Kurtosis −0.0621 20.905 0.8132 −0.4963 −0.9393 −0.4742

99th Percentile 46.337 139.87 44.619 49.132 45.341 47.335

95th Percentile 31.617 50.569 31.011 33.540 32.562 32.138

Median 2.1453 −2.0499 3.3012 3.1464 2.5295 1.6114

5th Percentile −32.851 −32.322 −45.839 −34.544 −30.521 −32.475

1st Percentile −37.966 −37.809 −62.017 −41.267 −34.507 −38.363

Upper TVaR 99% 55.126 195.84 53.215 57.680 52.204 55.742

Upper TVaR 95% 40.850 105.89 39.585 43.142 40.423 41.529

Lower TVaR 5% −36.063 −35.801 −55.737 −38.626 −32.949 −36.182

Lower TVaR 1% −39.745 −39.767 −68.407 −43.477 −36.396 −41.247

This table reports descriptive statistics for hedging errors for the optimal hedging with penalties (13)-(15)

and the benchmarks. 106 paths of the stock price are simulated, and the hedging algorithms are applied

to each path. The models compared are the minimal expected penalty hedging (MEPH), the Black-Scholes

delta hedging (BSDH), the Hardy delta hedging (HDH) and the forecast regime quadratic regime (FRQH).

The simulation parameters are found in Section 5.2, 5.3, and 5.5. For RMSE, extreme percentiles and TVaRs,

the �gure in bold characters indicates the best performing strategy.
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Figure 3: Density plot of hedging errors for MEPH

This �gure illustrates empirical densities of hedging errors for the MEPH hedging with penalties (13)-(15).

106 paths of the stock price are simulated, and the hedging algorithms are applied to each path. The

simulation parameters are found in Section 5.2, 5.3, and 5.5.

6 Conclusion

A �exible and tractable methodology is presented for the hedging of contingent claims in

the presence of regimes. It accommodates various hedging objectives through the penalty

function speci�cation. Constraints on trading strategies, such as no short-selling, can be

incorporated.

Path dependency issues are tackled by the addition of a state variable, making the hedging

problem suitable for dynamic programming. The approach is implemented with the standard

Gaussian two-regime model estimated from weekly S&P 500 returns. Based on the hedging

of an at-the-money call option, the current methodology compares favourably with three

relevant alternatives.

Since the current paper's algorithm involves lattices, the curse of dimensionality prevents

the use of a large number of underlying assets and regimes. The addition of a single dimension

(transaction costs, a three-regime model or stochastic interest rates) remains feasible at a

substantial numerical cost.
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The modeling design voluntarily avoids the identi�cation of the pricing measure. Nev-

ertheless, if one wishes to determine the pricing kernel (at the cost of a speci�cation error),

several extensions become feasible: option tracking, hedging American options and hedging

with other derivatives.

A Appendix

Lemma A.1 is used in the proofs of Corollaries 3.1 and 3.2.

Lemma A.1 Let I ⊆ J ⊆M be sigma-algebras and Z be a random variable.

If E [Z|I] = E [Z|M] , then E [Z|J ] = E [Z|M] = E [Z|I] .

Proof of Lemma A.1

E [Z|J ] = E
[
E [Z|M]

∣∣J ] (Law of iterated expectations)

= E
[
E [Z|I]

∣∣J ]
= E [Z|I] . (Law of iterated expectations)

QED

Proof of Theorem 3.1

ηi,n+1 = fhn+1|Y0:n+1 (i |Y0:n+1 )

=
fhn+1,Y0:n+1 (i, Y0:n+1)

fY0:n+1 (Y0:n+1)

=

∑H
j=1 fhn+1,hn,Y0:n+1 (i, j, Y0:n+1)∑H

k=1

∑H
`=1 fhn+1,hn,Y0:n+1 (k, `, Y0:n+1)

=

∑H
j=1 fhn+1,Yn+1|hn,Y0:n (i, Yn+1 |j, Y0:n ) fhn|Y0:n (j |Y0:n ) fY0:n (Y0:n)∑H

k=1

∑H
`=1 fhn+1,Yn+1|hn,Y0:n (k, Yn+1 |`, Y0:n ) fhn|Y0:n (` |Y0:n ) fY0:n (Y0:n)

=

∑H
j=1 fhn+1,Yn+1|hn,Y0:n (i, Yn+1 |j, Y0:n ) ηj,n∑H

k=1

∑H
`=1 fhn+1,Yn+1|hn,Y0:n (k, Yn+1 |`, Y0:n ) η`,n

.

The Markov property of (Y, h) and Lemma A.1 complete the proof since

fhn+1,Yn+1|hn,Y0:n (i, Yn+1 |j, Y0:n ) = fhn+1,Yn+1|hn,Yn (i, Yn+1 |j, Yn ) .

QED
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Proof of Corollary 3.1. Applying the Law of iterated expectations,

P (hn = i |~ηn ) = E (P (hn = i|Gn) |~ηn ) = E (ηi,n |~ηn ) = ηi,n = P (hn = i|Gn) . (18)

By Lemma A.1, since σ(~ηn) ⊆ σ(Yn, ~ηn) ⊆ Gn,

P
(
hn = i

∣∣Gn) = P
(
hn = i

∣∣Yn, ~ηn) . (19)

Moreover, since {Yn, hn, ~ηn}Nn=0 has the Markov property with respect to F , then for any

Borel set D ⊆ R×[0, 1]H ,

P [ (Yn+1, ~ηn+1) ∈ D| Gn]

= E [P [ (Yn+1, ~ηn+1) ∈ D|Fn]| Gn] (Law of iterated expectations)

= E [P [ (Yn+1, ~ηn+1) ∈ D|Yn, hn, ~ηn]| Gn] (Markov property)

=
H∑
j=1

P [ (Yn+1, ~ηn+1) ∈ D|Yn, hn = j, ~ηn]P [hn = j| Gn]

=
H∑
j=1

P [ (Yn+1, ~ηn+1) ∈ D|Yn, hn = j, ~ηn]P [hn = j|Yn, ~ηn] (Eq. (19))

= P [ (Yn+1, ~ηn+1) ∈ D|Yn, ~ηn] (Bayes' Law).

QED

Proof of Corollary 3.2. For any admissible strategy, because of the self-�nancing restric-

tion, its time-(n+ 1) value satis�es

Vn+1 = Vn + ~θ>n+1

(
~Sn+1 − ~Sn

)
= Vn + θ

(1)
n+1 (exp(r(n+ 1)∆t)− exp(rn∆t)) + θ

(2)
n+1S

(2)
0 (exp(Yn+1)− exp(Yn)) .

Hence, Vn+1 is σ
(
Yn+1, Yn, Vn, ~θn+1

)
−measurable. Furthermore, by Equation (18), Lemma

A.1 and the fact that σ(~ηn) ⊆ σ(Yn, ~ηn, Vn, ~θn+1) ⊆ Gn,

P
(
hn = i

∣∣Gn) = P
(
hn = i

∣∣Yn, ~ηn, Vn, ~θn+1

)
. (20)
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Therefore, for any Borel set D ⊆ R× [0, 1]H × R,

P
[
(Yn+1, ~ηn+1, Vn+1) ∈ D

∣∣Gn]
= E [P [ (Yn+1, ~ηn+1, Vn+1) ∈ D|Fn]| Gn] (Law of iterated expectations)

= E
[
P
[

(Yn+1, ~ηn+1, Vn+1) ∈ D|Yn, hn, ~ηn, Vn, ~θn+1

]∣∣∣Gn] (Corollary 3.1)

=
H∑
j=1

P
[

(Yn+1, ~ηn+1, Vn+1) ∈ D|Yn, hn = j, ~ηn, Vn, ~θn+1

]
P [hn = j| Gn]

=
H∑
j=1

P
[

(Yn+1, ~ηn+1, Vn+1) ∈ D|Yn, hn = j, ~ηn, Vn, ~θn+1

]
P
[
hn = j|Yn, ~ηn, Vn, ~θn+1

]
(Eq. (20))

= P
[

(Yn+1, ~ηn+1, Vn+1) ∈ D|Yn, ~ηn, Vn, ~θn+1

]
(Bayes' Law).

QED

Proof of Theorem 3.2. In the following, all minimizations are performed over the set of

admissible hedging strategies Θ. The hedging penalty Ψ∗N depends on the initial prices ~S0,

the initial portfolio value V0, the cumulative returns Y1:N , and the portfolio position ~θ1:N ,

that is,

Ψ∗N = g(φ(~SN)− VN) = Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)
.

For any n ∈ {0, ..., N − 2}, de�ne

~ϑ(n+2):N := arg min
~θn+2:N

E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn+1

]
, (21)

implying that

Ψ∗n+1 = min
~θn+2:N

E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn+1

]
= E

[
Ψ∗N

(
~S0, V0, Y1:N , ~θ1:n+1, ~ϑ(n+2):N

)∣∣∣Gn+1

]
. (22)

First direction. Therefore, for any admissible strategy ~θ1:N ,

Ψ∗n+1 = E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:n+1, ~ϑn+2:N

)∣∣∣Gn+1

]
≤ E

[
Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn+1

]
.

Consequently, by monotonicity of the conditional expectation operator,

min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] ≤ min
~θn+1

E
[
E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn+1

]∣∣∣Gn]
= min

~θn+1

E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn] (Law of iterated expectations).

29



Because the left-hand side of the previous inequality does not depend on ~θn+2:N , then

min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] = min
~θn+1:N

E
[
Ψ∗n+1

∣∣Gn] ≤ min
~θn+1:N

E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn] = Ψ∗n

where the last equality arises from De�nition (4).

Second direction.

Ψ∗n = min
~θn+1:N

E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn] (De�nition (4)) (23)

= min
~θn+1:N

E
[
E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:N

)∣∣∣Gn+1

]∣∣∣Gn] (Law of iterated expectations)

≤ min
~θn+1

E
[
E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:n+1, ~ϑn+2:N

)∣∣∣Gn+1

]∣∣∣Gn] (Reducing optimization domain)

= min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] (De�nition (22)).

Therefore, Ψ∗n = min
~θn+1

E
[
Ψ∗n+1

∣∣Gn], establishing Equation (5).

Furthermore, de�ne ~θ∗n+1 for any n ∈ {0, ..., N − 1} as a solution of

~θ∗n+1 := arg min
~θn+1

E
[
Ψ∗n+1

∣∣Gn] . (24)

Then,

Ψ∗n = min
~θn+1

E
[
Ψ∗n+1|Gn

]
(Equation (5))

= E
[
Ψ∗n+1(~θ∗n+1)

∣∣Gn] (Equation (24))

= E
[
E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:n, ~θ

∗
n+1,

~ϑ(n+2):N

)∣∣∣Gn+1

]∣∣∣Gn] (Equation (22))

= E
[

Ψ∗N

(
~S0, V0, Y1:N , ~θ1:n, ~θ

∗
n+1,

~ϑ(n+2):N

)∣∣∣Gn] (Law of iterated expectations).

Therefore, by Equation (4),

~ϑ(n+1):N :=

(
arg min
~θ(n+1)

E
[
Ψ∗n+1

∣∣Gn] , ~ϑ(n+2):N

)

is a solution (possibly not the only one) to the following equation:

~ϑ(n+1):N := arg min
~θn+1:N

E [Ψ∗N | Gn] . (25)

Hence, if Equation (24) is satis�ed ∀n ∈ {0, ..., N − 1}, a recursive argument implies that

θ∗ :=
(
~θ∗1, ...,

~θ∗N

)
solves Problem (1).

QED
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Proof of Theorem 3.3.

The proof hinges on a backward induction over time. Clearly, Ψ∗N = g
(
φ̃(YN)− VN

)
is

σ (YN , ~ηN , VN)−measurable. Assume that Ψ∗n+1 is σ (Yn+1, ~ηn+1, Vn+1)−measurable. From

Corollary 3.2 , there is a Borel-measurable function ϕ such that

Ψ∗n = min
~θn+1∈Gn

E
[
Ψ∗n+1

∣∣Gn] (Equation (5))

= min
~θn+1∈Gn

E
[
Ψ∗n+1

∣∣∣Yn, ~ηn, Vn, ~θn+1

]
(Corollary 3.2)

= min
~θn+1∈Gn

ϕ
(
Yn, ~ηn, Vn, ~θn+1

)
.

Therefore, a necessary and su�cient condition for ~θ∗n+1 = arg min
~θn+1

E
[
Ψ∗n+1|Gn

]
is to min-

imize ξ (·) := ϕ (Yn, ~ηn, Vn, ·) which only depends on (Yn, ~ηn, Vn). Consequently, there ex-

ists ~θ∗n+1 which is σ (Yn, ~ηn, Vn)−measurable. Hence, Ψ∗n = ϕ
(
Yn, ~ηn, Vn, ~θ

∗
n+1

)
is also

σ (Yn, ~ηn, Vn)−measurable and

~θ∗n+1 = argmin
~θn+1∈σ(Yn,~ηn,Vn)

E
[
Ψ∗n+1 |Gn

]
= argmin

~θn+1∈σ(Yn,~ηn,Vn)

E
[
Ψ∗n+1 |Yn, ~ηn, Vn

]
,

that is, the set of admissible hedging strategies Θ may be restricted to keep only strategies

that also satisfy that θn+1 is σ (Yn, ~ηn, Vn)−measurable.

QED

B Appendix

The following proof applies to the simple market of Section 5.

Proof of Proposition 5.1.

ηj,n+1 = P(hn+1 = j|Gn)

= E
[
P(hn+1 = j|hn)

∣∣Gn]
=

H∑
i=1

P(hn+1 = j|hn = i)P(hn = i|Gn)

=
H∑
i=1

P
(n)
i,j ηi,n ≥

H∑
i=1

min
u∈H

P
(n)
u,j ηi,n = min

u∈H
P

(n)
u,j

The case ηj,n+1 ≤ max
u∈H

Pu,j is similar.

QED
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