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Résumé / Abstract 
 

Les agents font face à un risque ambigu quant à la survie de la biodiversité ainsi qu’à des pertes 

espérées ambiguës de par leur extinction. En tant que collectivité, les agents ont la possibilité de 

financer, à titre privé, la protection de la biodiversité à des fins de recherche biomédicale. Nous 

proposons deux modèles évolutionnaires de jeu du bien public avec seuil et de marché des options sur 

bien public, où nous considérons la dynamique des populations composées de contributeurs – à 

hauteur de leur juste part proportionnelle – et de passagers clandestins. Dans le premier modèle, nos 

résultats montrent que les agents contribuent aussi bien dans les scénarios de survie nulle que de survie 

ambiguë. Dans le second modèle, le bien public est fourni lorsque les agents négociant les contrats 

d’options sont identiquement divisés entre acheteurs et vendeurs. Ce résultat se vérifie pour une 

croyance spécifique du marché sur la survie des espèces. Néanmoins, l’absence de surplus capté sur le 

marché des options condamne sa raison d’être. Un risque faible provoquera un comportement de 

passager clandestin inconditionnel dans les deux modèles. 

 

Mots clés : biodiversité, ambiguïté, biens publics avec seuil, marchés d’options, 

marchés de prédiction, théorie des jeux évolutionnaires. 

 

Agents face an ambiguous risk of biodiversity survival as well as ambiguous expected losses from its 

extinction. As a collectivity, agents are faced with the option of privately funding the protection of 

biodiversity for biomedical research. We propose two evolutionary models of threshold public goods 

game and public goods option market, where we consider population dynamics with proportional fair-

share contributors versus free-riders. In the first model, we find that agents contribute both in null and 

ambiguous survival scenarios. In the second model, in case of ambiguous survival, the public good is 

provided when the agents exchanging option contracts are equally divided into buyers and sellers. 

This result holds for a specific market belief over the species survival. However, the absence of surplus 

captured on the option market condemns its raison d’être. Low risk will provoke unconditional social 

free-riding in both models. 

 

Keywords: biodiversity, ambiguity, threshold public goods, option markets, 

prediction markets, evolutionary game theory. 
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1. Introduction 

 

As a collectivity, agents are faced with the option of privately funding the protection from 

extinction of biodiversity. Presently, 1.7 million species have been identified, but this number 

is believed to be to a great extent higher. Climate change has produced shifts in the 

distribution and abundance of species (Thomas et al. 2004, Wright and Muller-Landau 2006); 

a number of species are likely to become extinct and some of them face extinction before 

being identified and studied (Schelling 1992). Yet, species conservation can be beneficial 

(Polasky and Solow 1995), that is, they have an important quasi-option value (Arrow and 

Fisher 1974) or the value of the future option made available through their preservation. 

Weitzman (1998) terms it the information content of diversity, which includes medicines or 

foods. Indeed, the loss of species deprives of tools for biomedical research and precludes new 

medicines for untreatable human diseases (Chivian and Bernstein 2004).  

 Are agents willing to reduce an ambiguous risk by collectively contributing to a 

threshold public good? To estimate the monetary value of changes in probabilities of health 

risks, economists mostly use contingent valuation and stated-preference methods (Acton 

1973, Jones-Lee et al. 1985, Thompson et al. 1984) where the metric is the willingness-to-pay 

to reduce the risk (Pratt and Zeckhauser 1996). As such, Weinstein et al. (1980) find that the 

willingness-to-pay for a mortality reduction is contingent on the reduction amount and the 

initial probability level. Further, values vary depending on whether the valuation is ex ante 

(health insurance, environmental health) or ex post (medical care). Despite a positive 

expected value of reductions in the risk, papers show a significant diminishment of this value 

(Viscusi et al. 1987, Hammitt and Graham 1999). On the one side, increased threshold 

uncertainty increases the equilibrium contributions if the public good’s value is sufficiently 

high (McBride 2006) or under low social uncertainty (Wit and Wilke 1998). On the other 

side, ambiguity aversion affects the agents’ monetary-equivalents with ambiguous mortality 

risks (Treich 2010). Also, agents are discouraged by environmental uncertainty and the fear 

that their contributions be a waste (Au 2004). This leads to the sequential collapse of 

contributions (Gangadharan and Nemes 2009).  

 In principle, rational agents have an incentive to avoid contributing and to free-ride on 

others’ provisions, that is, they attempt to exploit the common enterprise, as contributors 

provide benefit to the others while inflicting a personal sacrifice. This rationale leads to the 

well-known social dilemmas (Hauert et al. 2006) and settles on underfunding and the 

abandonment of the public good. 
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 In this paper, we are interested in the capacity of agents to jointly produce threshold 

public goods when they face ambiguous risks and losses, through the population dynamics in 

replication. Evolutionary dynamics is helpful as it introduces cooperation. Indeed, an agent 

has to reduce her wealth for another to increase hers (Dreber and Nowak 2008). In public 

goods games, population dynamics is relevant, for the reason that the intervention of the 

entire population is necessary to produce the threshold public good. We confront proportional 

fair-share contributors – under the distribution of disease in the population – who donate the 

minimum average amount with free-riders who provide null contributions.  

 First, we propose a model of threshold public goods game with ambiguous risk of the 

species survival and individual ambiguous expected salvage of wealth from saving the 

species. This work is inspired by the literature on collective social dilemmas (Bach et al. 

2006, Milinski et al. 2008, Wang et al. 2009, Wang et al. 2010). To lower ambiguous losses, 

agents can jointly produce public goods if they attain the threshold level of cost to produce the 

public good. Specifically, public goods are provided if joint fair-share contributions equal or 

exceed the required threshold level of provisions; otherwise, no public good is provided. 

 In the static threshold public goods game, our results show that free-riding dominates 

in case of null survival of the species, and contributing dominates if the proportional fair-

share is less than the expected salvage of wealth in case of ambiguous survival. In the 

dynamic threshold public goods game, we find that contributing is in steady state if the 

proportional fair-share is less than the level of wealth in both cases of null and ambiguous 

survival of the species. In both scenarios, there exists a unique unstable Nash equilibrium 

where the trade-off between the proportional fair-share and the level of wealth determines 

whether the model-agent ends up contributing or free-riding. Whatever the game or the 

scenario, while a common disease can induce social cooperation, a rare disease will provoke 

unconditional social free-riding. 

 Second, we propose an evolutionary game of an option or a prediction market for the 

public good. Prediction markets are markets where agents exchange contracts whose payoffs 

are tied to the outcomes of unknown events. Prediction markets can be used for policy 

analysis. Link and Scott (2005) show that a prediction market with private investors can be 

used to value the success of governmental research projects. Prediction markets can also assist 

public institutions in managing social risks such as environmental disasters (Arrow et al. 

2008). In an efficient prediction market, the market price best predicts the event (Wolfers and 

Zitzewitz 2004). The issue of any market is its performance as a predictive tool. In the 

political domain, Berg et al. (2008) document that the Iowa Electronic Markets yield accurate 
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predictions. Nevertheless, a widespread behavioral bias of agents is to trade according to their 

subjective beliefs and desires, rather than objective probability assessments (Forsythe et al. 

1999). This is all the more interesting in our case, for the probability of species survival is 

ambiguous. By entering the market, the agent who decides to trade at a certain probability 

level reveals her beliefs over the species survival and threshold attainment. 

 In the static public goods option market game, we find that selling option contracts 

dominates in case of null survival of the species. In ambiguity, agents exchanging option 

contracts at the market equilibrium equally split between buyers and sellers – which in turn 

enables to fund the public good – if the proportional fair-share amounts to the expected 

salvage of wealth at the market price. Option prices are either negative or quasi-null, which 

implies the absence of surplus captured on the option market. In the dynamic public goods 

option market game, sellers of option contracts are in steady state when the probability of 

species survival is null. In case of ambiguous survival of the species, agents exchanging 

option contracts at the market equilibrium are in steady state if, given the market liquidity, the 

proportional fair-share is less than the expected salvage of wealth relative to the population. 

There exists a unique stable Nash equilibrium where agents exchanging option contracts at 

the market equilibrium are in steady state if, given the market liquidity, the proportional fair-

share is greater than the level of wealth relative to the population, i.e. where the market 

provision is less expensive. The market is then fully efficient and the public good is provided. 

This result holds when the market belief over the species survival is certain. Still, the results 

show that no surplus can be captured at the equilibrium, which will put a stop to exchanging. 

Indeed, while a high probability induces quasi-null option prices, low probability induces 

negative option prices, which implies a willingness-to-protect oneself from the probable loss. 

Like in the threshold public goods game, rare diseases unconditionally induce social free-

riding. In all cases, the option market is doomed to disappear. 

 Section 2 contextualizes the ambiguity. Section 3 introduces the threshold public 

goods games, both in the static and dynamic contexts. Likewise, we present a static then a 

dynamic model of an option market for threshold public goods in Section 4. Conclusive 

remarks are given in Section 5. 

 

2.  Compound probability 

 

Let us first identify the subject of species survival for biomedical research in terms of 

probabilities. The reasoning is more complex than it seems on the surface. In fact, the agent 
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has to deal with three consecutive bets. The first is on the existence of the unidentified species 

capable of supplying medicinal substances; the second is on the survival of such a species 

given its ambiguous survival; and the third is of whether the agent willing to fund the species 

protection will ever benefit from medical treatment in her lifetime. Therefore, we consider 

three independent lotteries A, B and C which respond to the three following questions: 

- Does the species exist? Lottery A 

- Will the species survive? Lottery B 

- Will the species be of use rapidly enough? Lottery C 

 

 

Fig. 1 Three-stage lottery 

 

We have a three-stage lottery of : ( , ;0,1 )A B   , : ( , ;0,1 )B C p p  and : ( , ; 0,1 )C w q q . If 

the compound probability axiom holds, we can transform this multi-stage lottery into a 

reduced compound lottery 3D  with a single stage (Figure 2) such as
1
  

 

3D : [ , ; 0, (1 );0, (1 ); 0,1 ]w pq p q p         (1) 

 

 

Fig. 2 Compound lottery 

                                                 
1
 We ignore the case of (1 )p   on purpose. Indeed, contrary to   and q, the probability p of species survival 

depends on whether the agent decides to contribute to the public good. This bet is under her control. 

w

pq

(1 )p q 

3
D

1 

0 

 p q 

1  1 p 1 q

A B C

0 0 

w

0 

0 
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The probability of realization of the public good and thus the expected salvage of wealth 

amounts to 

     

(1 )(0) (1 )(0) ( ) ( ) ( )p q pq w pq w w          3D ,   (2) 

          

Where pq  . Nonetheless, the probability of existence and the probability of usefulness of 

the species do not affect its probability of survival, so the joint probability of survival given 

the other events is simply p.  So ( | )p q p  , and ( )w  reduces to ( )p w . In other words, an 

agent who decides to act on the species survival and thus to affect its probability considers its 

existence and usefulness as granted. Otherwise, her reasoning has no sense.  

 We consider the context of ambiguity by way of [0,1]p , because the probability of 

survival remains ambiguous after the agent contributed to the public good. The contributing 

agent ignores whether there is a free-rider, who might have jeopardized the threshold 

attainment and thus the probability of survival of the species, among all other agents in the 

population. 

 

3. Threshold public goods game 

 

3.1.Static game 

 

Let 0w   be the agent’s endowment or amount of wealth and g her contribution to the public 

good. To satisfy Nash equilibria, her contribution in the population of size N  is bounded by 

the constraints of efficiency Ng G  and rationality g w . The population is composed of 

contributors n and N n  free-riders. All agents must contribute their proportional fair-share 

1 1 1 0gk Gk N     to attain the threshold. The proportional fair-share is a fair-share in view 

of the spread of disease [0,1]k  in the population. The proportional threshold then amounts 

to 
1 1Gk Ngk  . By means of prevalence proportion, we know that the probability of an 

agent, randomly picked from the population, of being at risk is equal to the proportion of the 

population which is at risk. When 1k  , the whole population is at risk of suffering from a 

disease, so the proportional fair-share equals 
1GN 
. As 0k  , the proportion of the 

population at risk rarefies and it is more and more costly for an agent to fund the public good.  
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Now consider the following expected payoff matrix. 

 

 
Contributor Free-rider 

Contributor 1( )p w gk ; 1( )p w gk  1(1 )( )p w gk  ; (1 )p w  

Free-rider (1 )p w ; 1(1 )( )p w gk   (1 )p w ; (1 )p w  

 

If all agents contribute their proportional fair-share, we have n N . The threshold is attained 

and the survival becomes certain 1p  . In this case, the analysis ceases, since the purpose of 

collective contributing is to increase the probability of survival of the species. Some agents 

may free-ride. In this case, we have ( / ) 0ng G n G N G N n      . The probability of 

survival is then ambiguous. The payoffs of a contributor and a free-rider are 

 

1 1(1 )( ) ( )

(1 )

c

f

p w gk p w gk

p w





      


 
.   (3) 

 

If there is a free-rider, the threshold cannot be attained. The probability that a contributor 

salvages her wealth given her contribution is p, and 1 p  that she does not in presence of a 

free-rider. An agent who free-rides runs a risk of 1 p  to fail savaging her wealth, not without 

reminding that she compromises p for every other contributing agent in the population. 

Simulations of g given p and k are presented in Table A. 

 

3.1.1. Null survival 

 

When the survival of species, i.e. probability of realization of the public good, is null or 0p   

(3) reduces to 

1

c

f

w gk

w





  



.   (4) 

 

We see that 
1w w gk  . Free-riding always dominates because it provides a higher expected 

payoff. 
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Proposition 1. In case of null survival of the species, free-riding always dominates. 

 

3.1.2. Ambiguous survival 

 

When the survival of species is ambiguous or [0,1]p , the outcome depends on the tradeoff 

between the proportional fair-share and the salvage of wealth in expectation. Two outcomes 

arise. If 
c f  , we have 

1gk pw  , so free-riding dominates because the proportional fair-

share is greater than the expected benefit from contributing or the expected salvage of wealth. 

If
 c f  , we have 

1gk pw  , so contributing dominates because the cost of contributing to 

the public good is less than the expected benefit obtained from its production. 

 

Proposition 2. In case of ambiguous survival of the species, contributing dominates when the 

proportional fair-share is less than the expected salvage of wealth. Otherwise, the agent is 

better off free-riding. 

 

Let us now linger on the k parameter. When the risk is high or 1k  , the trade-off 

1gk pw
 reduces to g pw  and now depends on the fair-share level compared to the 

expected salvage of wealth. As 0k  , the constraint against contributing gets unbounded or 

1

0limk gk

  , whereas pw w . The trade-off is constrained by the endowment level, 

whereas low k  provokes a proportional cost of contributing beyond the expected salvage of 

wealth. Thenceforth, when the probability of being at risk is low, the proportional fair-share 

exceeds the expected level of wealth, i.e. 
1gk pw  . The fair-share stands out insufficient 

which induces collective underfunding of the public good.  

 

Proposition 3. Low k provokes social underprovision and disinterest in the public good. 

 

This result is consistent with the dead-anyway effect (Pratt and Zeckhauser, 1996), which 

states that willingness-to-pay increases with the level of risk to which the agent is exposed. 

The effect can be important in magnitude when the risk tends to one (Treich 2010). 

 

3.2. Dynamic game 
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Following the work by Wang et al. (2009), we now combine game theory and population 

dynamics in a replicator equation. We consider infinite populations consisting of x 

contributors and y free-riders, where 1x y  , that is, the sum denotes a normalized 

population density such that 0 corresponds to a null population density and 1 is the maximal 

population density. According to replicator dynamics (Hofbauer and Sigmund 1998) the 

evolution of the system is given by the following differential equations 

 

( )

( )

c

f

x x f f

y y f f

  


 

,   (5) 

 

The system in (5) establishes the expected payoffs of contributors cf  and free-riders ff  in 

time, given the average expected payoff in the population 
c ff xf yf  . This payoff is 

determined by the interactions in randomly formed groups of contributors and free-riders. The 

groups are formed by interpreting densities as probabilities for drawing either strategy. We 

study the interactions of model-agents or average agents issued from those random groups.  

 Let us set a mixed population where N agents are randomly chosen according to the 

Binomial probability function. Following Bailey et al. (2005), Hauert et al. (2006) and Wang 

et al. (2009), the probability that there are n contributors among the 1N   other agents in the 

population of size N in which the model-contributor or model-free-rider finds herself is 

determined by 

 

  11
( | 1, ) n N nN

f n N x x y
n

 
  .   (6) 

 

This probability is independent of whether the model-agent is a contributor or a free-rider. 

Every model-agent encounters the same expected number of contributors, and hence the same 

expected payoff from others during the game. The only determinant of success in the well-

mixed populations is the payoff that the model-agent herself receives.  

 The expected payoffs of a model-contributor and a model-free-rider are 

 

1 1 1

1

(1 )( ) ( )

(1 ) (1 )

N

c

N

f

f p w gk p w gk x

f p w x

  



     


  

,   (7) 
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where 1Nx   and 11 Nx   are the random variables that the model-agent issued from the 

Binomial distribution is respectively a contributor and a free-rider. Agents adopt the strategy 

of the model-agent with a probability proportional to the difference between her payoff and 

their own. Substituting 1y x   into the differential equations yields a single differential 

equation 

 

(1 )( )c fx x x f f   ,   (8) 

 

So the dynamic evolution of ( )x t  amounts to 

 

1 1 1 1(1 )[ ( ) (1 )( ) (1 ) (1 ) ]N Nx x x p w gk x p w gk p w p wx             .   (9) 

 

3.2.1. Null survival 

 

When the survival of species is null or 0p  , we obtain 

 

1 1(1 )( )Nx x x wx gk     . (10) 

 

Solving 0x   gives two fixed points of the replicator dynamics which cancel out (1 )x x : 

0x   and 1x  . We now proceed to the study of stability of steady states by the Lyapunov 

method. The derivative of ( )F x  is 

 

1 1 2( ) (1 2 )( ) (1 )( 1)N NF x x wx gk x x N wx         . (11) 

 

At 0x  , (0) 0F  , that is, a stable equilibrium. Since 0 (0)x F x   if 0x  , a deviation 

brings x back to 0. At 1x  , (1) 0F . If 
1w gk , (1) 0F  . On the contrary, if 

1w gk , 

(1) 0F   (Table 1). In the latter case, a deviation removes x from 1 and every agent free-

rides. Figure 3 illustrates the dynamics with null survival. 
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Proposition 4. In case of null survival of the species, contributing is in steady state if the 

proportional fair-share is less than the level of wealth. Otherwise, the model-agent is better 

off free-riding. 

 

Let us now prospect the interior equilibrium. We reduce ( )x t  to the function ( ) c fT x f f   

 

1 1( ) NT x wx gk   .      (12) 

 

The interior equilibrium is the root of ( )T x  in the interval [0,1] . Thus 
1w gk , and (1) 0T   

so there is no interior equilibrium. At (0)T , [0,1]p  verifies (0) 0T  . Up to now, the 

fulfilled conditions are necessary but not sufficient. At last, we have 

 

2( ) ( 1) NT x N wx    .       (13) 

 

( ) 0T x   is increasing which ends the proof. There is a unique root of ( ) 0T x   situated in 

[0,1]  and it equals 

 

1

1* N
gk

x
w



 .        (14) 

 

At *x x , ( *) 0T x  , that is, an unstable equilibrium (Table 1). 

 

Table 1 Stability of equilibria for 0p 
 

 
1gk w   

1gk w   

0x     stable [●] 

*x x  
  

unstable [○] 

1x   unstable [○] stable  [●] 

 

Proposition 5. In case of null survival of the species, there is a unique unstable Nash 

equilibrium *x  where the trade-off between the proportional fair-share and the level of 

wealth determines whether the model-agent ends up contributing or free-riding. 
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Fig. 3 Dynamics of x and y for 0p  . 

 

Species being unlikely to survive or their risk of extinction is certain, agents suffer from their 

shortfall of survival. Regardless of the null probability of survival, agents will free-ride only if 

the cost of contributing exceeds their endowment constraint. In other words, agents continue 

to contribute with respect to their rationality constraint. This result appears counterintuitive, 

but can be explained by means of two behavioral concepts. The first is known as the illusion 

of control (Langer 1975), which is the penchant to overestimate the ability to control events. 

It here resumes to the collective illusion of control and manipulation of p. The second is the 

human tendency to act irrationally in despair (Buss 2004). By reason of the detrimental 

consequences of species extinction on biomedical finds and expected cures, agents at risk are 

willing to attempt anything and still contribute to the public good. 

 

3.2.2. Ambiguous survival 

 

When the survival of species is ambiguous or 0 1p  , we have 

 

1 1 1 1(1 )[ ( ) (1 )( ) (1 ) (1 ) ]N Nx x x p w gk x p w gk p w p wx             .     (15) 

 

Fixing 0x   gives two fixed points of the replicator dynamics: 0x   and 1x  . We look at 

the derivative of ( )F x  which is 

 

1 1 1 1

2 1 2

( ) (1 2 )[ ( ) (1 )( ) (1 ) (1 ) ]

(1 )[( 1) ( 1) ]

N N

N N

F x x p w gk x p w gk p w p wx

x x N wx N pgk x

   

  

          

    
.     (16) 

 

x

y

1

1

*x

0
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At 0x  , (0) 0F  , that is, a stable equilibrium. At 1x  , (1) 0F . Just as with the case of 

null survival, if 
1w gk , (1) 0F   which implies a steady state. If 

1w gk , the equilibrium 

is unstable (Table 2). 

 

Proposition 6. In case of ambiguous survival of the species, contributing is in steady state if 

the proportional fair-share is less than the level of wealth. Otherwise, the model-agent is 

better off free-riding. 

 

Let us now prospect the interior equilibrium. We reduce ( )x t  to the function ( ) c fT x f f   

 

1 1 1 1( ) ( ) (1 )( ) (1 ) (1 )N NT x p w gk x p w gk p w p wx            .      (17) 

 

We have (0) 0T   and (1) 0T  . At last, we have  

 

1 2( ) ( 1)( ) NT x N w pgk x     .       (18) 

 

Given the rationality constraint, ( ) 0T x  . The root of ( ) 0T x   equals 

 

1 1

1
1

* N
gk pgk

x
w pgk

 








.        (19) 

 

At *x x , ( *) 0T x  , that is, an unstable equilibrium (Table 2). Figures 4 and 5 show the 

ambiguous survival dynamics. Simulations of g at *x  are presented in Table B. 

 

Table 2 Stability of equilibria for [0,1]p
 

 
1gk w   

1gk w   

0x     stable  [●] 

*x x    unstable  [○] 

1x   unstable   [○] stable  [●] 
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Fig. 4 Dynamics of x and y 

for [0,1]p  and 
1gk w   

 

Fig. 5 Dynamics of x and y 

for [0,1]p  and 
1gk w   

 

Proposition 7. In case of ambiguous survival of the species, there is a unique unstable Nash 

equilibrium *x  where the trade-off between the proportional fair-share and the level of 

wealth determines whether the model-agent ends up contributing or free-riding. 

 

Despite the ambiguous survival of species and hence the ambiguous benefits from the species 

conservancy, agents will contribute with respect to their rationality constraint. Once again, the 

agents’ illusion of being fully in control of the ecosystems in the face of uncertainty, 

ignorance and risk (Frissell and Bayles 1996) explains our results. 

 When the risk is high or 1k  , the trade-off 
1gk w

 depends on the level of 

wealth. As the risk turns low or 0k  , the constraint against contributing gets unbounded or 

1

0limk gk

  . In parallel, we have w . Thenceforth, when the risk is low, the 

proportional fair-share exceeds the level of wealth. We have 
1gk w  . This result 

invalidates the argument defended by Olson (1968) and Marwell and Ames (1979) who state 

that public goods are provided by groups in which an individual has an interest in the good 

that is greater than the cost of the good. The high interest of an agent at risk does not suffice 

to cover the cost of the public good. The only case where their argument could hold water is if 

the model-agent is the agent at stake. 

 

4. Public goods option market game 

 

4.1.Static game 

 

Now consider an option market for the public good, where agents exchange option contracts 

on public goods by buying and selling until the market price is settled. The option market 

x

y

1

1

*x

0x

y

1

1

0



14 

 

price can reveal the social probability of species survival and of the attainment of the 

threshold. We assume the market-efficiency hypothesis. For that reason, the threshold can 

only be attained at the market equilibrium where all possible exchanges are cleared at the 

market price. The market then equally splits between buyers and sellers. In this case, the 

proportional fair-share equals the expected payoff from salvaging wealth at the market price. 

 Because exchanges are based upon predictions of the probability of species survival, 

our option market is a prediction market. The prediction market can be considered a 

representative person with a set of expectations (Wolfers and Zitzewitz 2004). Even though 

the equilibrium price does not reveal the mean belief that agents hold, it yields a bound on the 

mean belief (Manski 2006). The equilibrium reveals the position of the model-agent. The 

agent is defined a buyer if she believes that 0.5p  , and a seller otherwise.  

 Yet, there is a difference between the standard prediction market and ours. The latter 

does not produce outcomes tied to events exogenous to the market. Indeed, option exercises 

depend on the number of betting exchanges cleared on the market. If agents conclude an 

insufficient number of option contracts, they fail to sufficiently provide the public good and 

the species survival is jeopardized. In turn, buyers fall salvaging their wealth through, and 

sellers lose their premium from bearing the risk of species extinction.  

 

In terms of the expected payoff matrix, we have 

 

 
Buyer Seller 

Buyer 1(1 )( )p w gk  ; 1(1 )( )p w gk   1( )p w gk ; (1 )p w p   

Seller (1 )p w p  ; 1( )p w gk  (1 )p w ; (1 )p w  

 

Buyers willing to increase the species probability of survival offer to buy option contracts at 

their willingness-to-pay, i.e. their proportional fair-share, whereas sellers unconvinced of the 

survival likelihood propose selling contracts at their willingness-to-accept. If a buyer happens 

to meet a buyer, their contracts are not exchanged and both face the risk of 1 p  of losing 

their wealth. Likewise, if both agents propose asks, they are exposed by 1 p  to the wealth 

disappearance. Otherwise, the buyer salvages her wealth at p by bidding her proportional fair-

share and the seller receives a premium of p  for her asking price, which here corresponds to 

the option price: the survival probability times the offer. 
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 The market of size M is divided between m buyers and M m  sellers. If all the bid-

ask spreads are zero and buyers’ and sellers’ bids and offers match or 

/ 2m M m m M    , the option market is fully efficient and the threshold is attained. If 

m M m   and / 2m M , the payoffs of a buyer and a seller facing an ambiguous 

probability of species survival are 

 

1 1(1 )( ) ( )

(1 )

b

s

p w gk p w gk

p w p



 

      


  
. (17) 

 

4.1.1. Null survival 

 

When the survival of species is null or 0p  , (17) reduces to 

 

1

b

s

w gk

w





  



. (18) 

 

We have 
1w w gk  . Selling the option contract of the species survival provides a higher 

expected payoff so traders are net sellers. 

 

Proposition 8. In case of null survival of the species, selling option contracts always 

dominates. 

 

4.1.2. Ambiguous survival 

 

When [0,1]p , the outcome depends on the tradeoff between the proportional fair-share and 

the expected salvage of wealth at the market price. We have two possible outcomes. If 

b s   then 
1 ( )gk p w    , that is, the cost of contributing is greater than the expected 

payoff from salvaging wealth at the market price; the option price is greater than the expected 

payoff from contributing, so agents are net sellers. If
 b s   we have 

1 ( )gk p w    . The 

expected payoff from contributing is less than the expected benefit from salvaging wealth at 

the market price so agents are net buyers. Finally, at 
1p pw gk   , buyers and sellers 
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equalize their payoffs or b s   and the market is fully efficient. Therefore, the public good 

will be provided by the option market for 
1 1( )p gk w    . 

 

Proposition 9. In case of ambiguous survival of the species, agents exchanging option 

contracts at the market equilibrium equally split between buyers and sellers for

1 1( )p gk w    . Otherwise, either buying or selling option contracts dominates. 

 

Simulations in Table C show that for levels of k and p close to zero, the unbounded constraint 

against contributing yields negative option prices. The risk premium turns out to be negative. 

Despite appearances, this result is not absurd, and is known to exist in the capital asset pricing 

model. Analyzing premiums for public good losses resumes to studying the agents’ behavior 

in a context where property rights are passed over. In our case, the agent has to consider 

herself the owner of the public good from which she loses her wealth. Asking for 

compensation demanded for the public loss, even in case of private fatalities, makes de facto 

selling agents creditors of the public good. And we know, for example, that risk premium can 

be negative with credit default option swap contracts. As a result, when agents decide to sell 

an option contract on the public good, the option price reveals that they ask the market to 

protect them from their potential loss of wealth in exchange of a premium. Buyers of option 

contracts become the sellers of the protection contracts they demand. Since scarcity is highly 

valued on markets, the rarer the disease is, the higher the premium gets. As a result, the cost 

of protecting oneself on an option market, given the smallness of k, is exorbitant. 

 On the contrary, when k and p tend to 1, option prices are close to the level of wealth: 

buyers’ expected benefit from providing the public good approximates their proportional fair-

share. Therefore, the option market fails to be surplus-generating. The game is solved with 

public demand and supply which never meet. Given that no buyer will accept to contribute 

unless her benefit from the public good overpasses her cost of funding it, and given that no 

seller will accept to exchange at a negative price unless she asks the market to protect her 

from the risk of wealth loss, only a non-market provision at a fiscal capitation relative to the 

society’s risk aversion seems feasible. Although the option market mechanism can be 

efficient enough to equalize expected benefits and costs and thus to produce the public good, 

it produces null surpluses at the equilibrium and thus fails to fulfill the role it has been 

assigned. 
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Proposition 10. Low k and/or low p induce negative option prices, i.e. sellers of the option 

contract demand protection for the probable loss. High k and p induce quasi-null option 

prices, i.e. buyers’ expected payoff at the market price equals their proportional fair-share. 

The results imply the absence of surplus captured on the option market. 

 

4.2. Dynamic game 

 

We now consider infinite populations of x buyers and y sellers, where 1x y  . Let /z x y  

denote the ratio of buyers to sellers. The evolution of the system is given by the following 

differential equations 

 

( )

1 (1 )( )

b

s

z z f f

z z f f

  

   

, (19) 

 

where z and 1 z  establish the market surpluses of the demand bf  
and supply sf  sides, given 

the average surplus in the market (1 )b sf zf z f   . Let us set a mixed population where M 

agents are randomly chosen. In large markets, the probability that a buyer faces m buyers in 

the population of size M at a particular seller is given by the Binomial distribution 

 

  11
( | 1, ) (1 )m M mM

f m M z z z
m

 
   . (20) 

 

In the population, the probability for a model-buyer to be allocated the exchange is 
1( 1)m  . 

Indeed, the model-seller chooses a model-buyer at random when more than one. Following 

the work of Bach et al. (2006) and Julien et al. (2008), the probability for a buyer to be served 

when selecting a seller is given by 

 

1[1 (1 ) ]( )Mz Mz   . (21) 

 

(1 )Mz  is the probability that model-agents do not match, i.e. all the surplus is captured by 

the supply side, so 
1[1 (1 ) ]( )Mz Mz    is the probability that the model-buyer finds the right 

model-seller, given the agents available on the market. The probability that the model-seller 
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sells an option contract is [1 (1 ) ]Mz  . The average payoffs of a model-buyer and a model-

seller become 

 

1 1 1(1 )( ) ( )[1 (1 ) ]( )

(1 ) [1 (1 ) ]

M

b

M

s

f p w gk p w gk z Mz

f p w p z

         


    

. (22) 

 

The differential equations yield a single formulation in form of 

 

(1 )( )b sz z z f f   , (23) 

 

So the dynamic evolution of ( )z t  amounts to 

 

1 1 1(1 )[ [( )[1 (1 ) ]( ) [1 (1 ) ]] (1 ) ]M Mz z z p w gk z Mz z p gk            . (24) 

 

4.2.1. Null survival 

 

When the survival of species is null or 0p  , we obtain 

 

1(1 )z z z gk   . (25) 

 

Solving 0z   gives two fixed points of the replicator dynamics which cancel out (1 )z z : 

0z   and 1z  . The derivative of ( )F z  is 

 

1 1( ) 2F z gk zgk     . (26) 

 

At 0z  , (0) 0F  , that is, a stable equilibrium. At 1z  , (1) 0F  , which implies an 

unstable equilibrium (Table 3).  Figure 6 points up the dynamics. 
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Fig. 6 Dynamics of z  and 1 z  for 0p   

 

Proposition 11. In case of null survival of the species, sellers of option contracts are in 

steady state and the public good fails to be provided. 

 

Table 3 Stability of equilibria for 0p   

 

0z   stable [●] 

1z   unstable [○] 

 

4.2.2. Ambiguous survival 

 

When the survival of species is ambiguous or 0 1p  , we have 

 

1 1 1(1 )[ [( )[1 (1 ) ]( ) [1 (1 ) ]] (1 ) ]M Mz z z p w gk z Mz z p gk            .     (27) 

 

Fixing 0z   gives two fixed points: 0z   and 1z  . The derivative of ( )F z  is 

 

1 1 1

2 1 1 1 1

( ) (1 2 )[ [( )[1 (1 ) ]( ) [1 (1 ) ]] (1 ) ]

(1 )[ [ [ (1 ) [(1 ) 1] ]( ) (1 ) ]]

M M

M M M

F z z p w gk z Mz z p gk

z z p z z z z M w gk M z





  

    

          

        
.     (28) 

 

At 0z  , (0) 0F  , that is, a stable equilibrium. At 1z  , (1) 0F . If the inequality 

1 1 1 1( )[ (1 ) 1]gk p wM p M M        is verified, (1) 0F   and we are in presence of a 

steady state. If 
1 1 1 1( )[ (1 ) 1]gk p wM p M M        the equilibrium is unstable (Table 4). 

The expression 
1(1 ) 1p M M    corresponds to the market liquidity, that is, the opportunity 

z

1 z

1

1

0
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to complete the transaction without significant movements in the market price. Simulations of 

p  are presented in Table D. 

 

Proposition 12. In case of ambiguous survival of the species, agents exchanging option 

contracts at the market equilibrium are in steady state if, given the market liquidity, the 

proportional fair-share is less than the expected salvage of wealth. 

 

However, to verify the inequality of inferiority of the steady state, the option price must be 

close to zero, that is, sellers sell option contracts to buyers for free. Therefore, this result is 

highly unlikely.  

 

We then reduce ( )z t  to the function ( ) b sS z f f   

 

1 1 1( ) [( )[1 (1 ) ]( ) [1 (1 ) ]] (1 )M MS z p w gk z Mz z p gk           .      (29) 

 

The interior equilibrium has a root of ( )S z  in [0,1] . We have 0z   or (0) 0S  . In parallel, at

1z  , (1) 0S   if 
1 1 1( )[ (1 ) 1]gk p wM p M M      , and (1) 0S   if inferior. Derivation 

yields  

 

2 1 1 1 1( ) [ [ (1 ) [(1 ) 1] ]( ) (1 ) ]M M MS z p z z z z M w gk M z              .       (30) 

 

Given that 2 1 1

1lim [ (1 ) [(1 ) 1] ] 0M M

z z z z z M   

       and 1

1lim (1 ) 0M

z M z  

    we have 

( ) 0S z   when 
1 (0 / 0 ) (0 / 0 )gk w        which is always verified. Given that 0M   and 

0z  , ( ) 0S Z   reduces to 

 

1

1

( )
(1 )

( )

M p w gk
z

p w pgk









 
 

 
.        (31) 

 

By substituting (1 )z  with Z, the root of ( ) 0S Z   is a complex number equal to  

 

Re[ ] 0M  , * 0Z  .        (32) 
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At * 0Z  , ( *) 0S Z   and the equilibrium is stable (Table 4). Since * (1 )*Z z  , we have 

1z   or / 1x y   which implies that x y . Figures 7 and 8 illustrate the dynamics depending 

on the trade-off rule. At 1z  , we have 
1 1gk pgk   or 1p  . Simulations of p  at the 

equilibrium are presented in Table E. 

 

Proposition 13. There is a unique stable Nash equilibrium *z  where agents exchanging 

option contracts at the market equilibrium are in steady state if, given the market liquidity, 

the proportional fair-share is greater than the expected salvage of wealth. The market is then 

fully efficient or x y  and the public good is provided. This result holds only for 1p  . 

 

Table 4 Stability of equilibria for [0,1]p
 

 

1

1

( )1

(1 ) 1

p wM

p M M
gk







 
  

1

1

( )1

(1 ) 1

p wM

p M M
gk







 
  

0z   stable  [●] stable   [●] 

*z z  stable  [●]   

1z   unstable  [○] stable   [●] 

 

  

 

Fig. 7 Dynamics of z  and 1 z  for 

[0,1]p  and 
1

1

( )1

(1 ) 1

p wM

p M M
gk







 
  

 

Fig. 8 Dynamics of z  and 1 z  for 

[0,1]p  and 
1

1

( )1

(1 ) 1

p wM

p M M
gk







 
  

 

Both low and high levels of k yield low negative or quasi-null option prices. Low negative 

option prices reveal that the proportional fair-share is to some extent greater than the salvage 

of wealth at the market price. Quasi-null option prices imply that the payoff from salvaging 

wealth at the market price equals the proportional fair-share. The null option price result is 

consistent with Plummer (1986) who shows that if the project attainment fails to change the 

probability of supply of the public good (and thus remains ambiguous), option price is zero. 

1

z

1 z

1

*z

0z

1 z

1

1

0
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Market prices close to zero reflect the fact that model-agents only exchange for 1p  . 

Therefore, buyers and sellers will withdraw from the option market, because they do not 

expect a higher benefit from the public good than the cost of funding it. Given that no surplus 

is captured at the equilibrium, the option market will remain inert and therefore collapse. 

 

5. Conclusion 

 

Our static threshold public goods game first reveals that agents free-ride in case of null 

survival of the species. Then, the game shows coexistence of free-riders and contributors in 

case of ambiguous survival of the species. Agents contribute if their proportional fair-share is 

less than their expected salvage of wealth. From the cost-benefit analysis, it simply states that 

agents are willing to contribute to the public good if their expected benefit from the public 

good exceeds the cost of producing it. Our dynamic threshold public goods game shows that 

contributing is in steady state if the proportional fair-share is less than the level of wealth, be 

it within null or ambiguous survivals of the species. We can notice that the expectation over 

the level of wealth disappears in the dynamic analysis where the rationality constraint 

accounts only. The result appears to be consistent with Bernheim (1984) who shows that 

dynamic rationality imposes restrictions that lead to boundedly rational behaviors. Given the 

infinite time length in dynamic settings, it is understandable that agents will abstain from 

making expectations on their outcomes. As a final point, we find that in case of rare diseases, 

social free-riding is unavoidable. Ultimately, the results of our games show that agents tend to 

contribute to the public good in ambiguity, as long as they bear the risk of suffering personal 

losses. The result is conforming to the results by Bailey et al. (2005), who find less free-riding 

in ambiguity in presence of large populations.   

 As regards the static option market for public goods, when the probability of survival 

of the species is zero, agents are net sellers. When the probability is ambiguous, the market is 

fully efficient, i.e. the public good is provided, only if the proportional fair-share is equal to 

the expected payoff from salvaging wealth at the market price. This result holds for a specific 

market belief over the species survival. Sellers face negative option prices, meaning that they 

are in demand for protection for running the probable loss of wealth. On the demand side of 

the market, option market prices are close to zero, signifying that the expected payoff from 

salvaging wealth at the market price equals the proportional fair-share. Provided the absence 

of surplus realized on the market, agents have no incentive to exchange contracts. The option 

market is doomed to disappear, which condemns the species survival. The results from the 
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dynamic public goods option market game are similar, except that the market efficiency 

occurs when the market belief over the species survival is one. This explains why most 

market prices are quasi-null at the equilibrium. Henceforth, the mainspring for the option 

market no longer runs. In all cases, providing ambiguous environmental public goods by 

option markets is socially inefficient. 
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Table A Simulations in dollars of the contributor’s static fair-share g given p and k for 10w  : g pwk  
 

p / k           0.01             0.10            0.20            0.30            0.40            0.50            0.60            0.70            0.80            0.90            0.99              1.00    

0.00          0.00             0.00            0.00            0.00            0.00            0.00            0.00             0.00            0.00            0.00            0.00            0.00    

0.01             0.00             0.01            0.02            0.03             0.04            0.05            0.06             0.07            0.08             0.09            0.10             0.10    

0.10           0.01             0.10            0.20            0.30            0.40            0.50            0.60             0.70            0.80            0.90            0.99            1.00    

0.20             0.02             0.20            0.40            0.60            0.80            1.00            1.20             1.40            1.60            1.80            1.98            2.00    

0.30             0.03             0.30            0.60            0.90            1.20            1.50            1.80             2.10            2.40            2.70            2.97            3.00    

0.40             0.04             0.40            0.80            1.20            1.60            2.00            2.40             2.80            3.20            3.60            3.96            4.00    

0.50             0.05             0.50            1.00            1.50            2.00            2.50            3.00             3.50            4.00            4.50            4.95            5.00    

0.60             0.06             0.60            1.20            1.80            2.40            3.00            3.60             4.20            4.80            5.40            5.94            6.00    

0.70             0.07             0.70            1.40            2.10            2.80            3.50            4.20             4.90            5.60            6.30            6.93            7.00    

0.80             0.08             0.80            1.60            2.40            3.20            4.00            4.80             5.60            6.40            7.20            7.92            8.00    

0.90             0.09             0.90            1.80            2.70            3.60            4.50            5.40             6.30            7.20            8.10            8.91            9.00    

0.99             0.10             0.99            1.98            2.97            3.96            4.95            5.94             6.93            7.92            8.91            9.80           9.90    

1.00             1.00             1.00            2.00            3.00            4.00            5.00            6.00             7.00            8.00            9.00            9.90         10.00    
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Table B Simulations in dollars of the contributor’s dynamic fair-share g at the equilibrium ( * 1x  ) given k and 10w  : g wk  
 

p / k           0.01             0.10            0.20            0.30            0.40            0.50            0.60            0.70            0.80            0.90            0.99              1.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    

1.00           0.10             1.00            2.00            3.00            4.00            5.00            6.00            7.00            8.00            9.00            9.90            10.00    
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Table C Simulations in dollars of static option prices p  given p and k for 100w  : 
1p pw gk    

 

 p / k           0.01             0.10            0.20            0.30            0.40            0.50            0.60            0.70            0.80            0.90            0.99            1.00    

0.00  –200.00     –20.00    –10.00     –6.67     –5.00     –4.00     –3.33     –2.86     –2.50     –2.22     –2.02     –2.00    

0.01  –199.99     –19.90      –9.90     –6.57     –4.90     –3.90     –3.23     –2.76     –2.40     –2.12     –1.92     –1.90    

0.10  –199.00     –19.00      –9.00    –5.67     –4.00     –3.00     –2.33     –1.86     –1.50     –1.22     –1.02     –1.00    

0.20  –198.00     –18.00      –8.00    –4.67     –3.00     –2.00     –1.33     –0.86     –0.50     –0.22     –0.02       0.00    

0.30  –197.00     –17.00      –7.00    –3.67     –2.00     –1.00     –0.33       0.14        0.50       0.78       0.98       1.00    

0.40  –196.00     –16.00      –6.00    –2.67     –1.00       0.00       0.67       1.14        1.50       1.78       1.98       2.00    

0.50  –195.00     –15.00      –5.00    –1.67       0.00        1.00       1.67       2.14        2.50       2.78       2.98       3.00    

0.60  –194.00     –14.00      –4.00    –0.67       1.00       2.00       2.67       3.14        3.50       3.78       3.98       4.00    

0.70  –193.00     –13.00      –3.00      0.33       2.00       3.00       3.67       4.14        4.50       4.78       4.98       5.00    

0.80  –192.00     –12.00      –2.00      1.33       3.00       4.00       4.67       5.14        5.50       5.78       5.98       6.00    

0.90  –191.00     –11.00      –1.00      2.33       4.00       5.00       5.67       6.14        6.50       6.78       6.98       7.00    

0.99  –190.10     –10.10      –0.10      3.23       4.90       5.90       6.57       7.04        7.40       7.68       7.88       7.90    

1.00  –190.00     –10.00        0.00      3.33       5.00       6.00       6.67       7.14        7.50       7.78       7.98       8.00    
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Table D Simulations in dollars of dynamic option prices p  given p, k for 10w   and 100M G  : 
1 1 1[ (1 ) 1]p pwM gk p M M        

 

p / k           0.01             0.10            0.20            0.30            0.40            0.50            0.60            0.70            0.80            0.90            0.99            1.00    

0.01  –198.02     –19.80      –9.90     –6.60     –4.95     –3.96     –3.30     –2.83     –2.47     –2.20     –2.00     –1.98    

0.10  –180.19     –18.01      –9.00     –6.00     –4.50     –3.59     –2.99     –2.56     –2.24     –1.99     –1.81     –1.79    

0.20  –160.38     –16.02      –8.00     –5.33     –3.99     –3.19     –2.65     –2.27     –1.99     –1.76     –1.60     –1.58    

0.30  –140.57     –14.03      –7.00     –4.66     –3.49     –2.78     –2.31     –1.98     –1.73     –1.53     –1.39     –1.38    

0.40  –120.76     –12.04      –6.00     –3.99     –2.98     –2.38     –1.97     –1.69     –1.47     –1.30     –1.18     –1.17    

0.50  –100.95     –10.05      –5.00     –3.32     –2.48     –1.97     –1.63     –1.39     –1.21     –1.07     –0.97     –0.96    

0.60    –81.14       –8.06      –4.00     –2.65     –1.97     –1.56     –1.29     –1.10     –0.96     –0.84     –0.76     –0.75    

0.70    –61.33       –6.07      –3.00     –1.98     –1.47     –1.16     –0.95     –0.81     –0.70     –0.61     –0.55     –0.54    

0.80    –41.52       –4.08      –2.00     –1.31     –0.96     –0.75     –0.61     –0.51      –0.44     –0.38     –0.34     –0.34    

0.90    –21.71       –2.09      –1.00     –0.64     –0.46     –0.35     –0.27     –0.22     –0.18     –0.15     –0.13     –0.13    

0.99      –3.88       –0.30      –0.10      –0.03      –0.00       0.02       0.03       0.04       0.05       0.05       0.06       0.06    

1.00      –1.90       –0.10        0.00         0.03       0.05       0.06       0.07       0.07       0.08       0.08       0.08       0.08    
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Table E Simulations in dollars of dynamic market prices at the equilibrium ( 1p  ) given k, 10w   and 100M G  : 
1 1( )w gk M     

 

p / k           0.01             0.10            0.20            0.30            0.40            0.50            0.60            0.70            0.80            0.90            0.99            1.00    

1.00     –1.90     –0.10       0.00       0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

1.00     –1.90  –0.10       0.00    0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

1.00     –1.90  –0.10       0.00    0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

1.00     –1.90  –0.10       0.00    0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

1.00     –1.90  –0.10       0.00    0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

1.00     –1.90  –0.10       0.00    0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

1.00     –1.90  –0.10       0.00    0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

1.00     –1.90  –0.10       0.00    0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

1.00     –1.90  –0.10       0.00    0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

1.00     –1.90  –0.10       0.00    0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

1.00     –1.90  –0.10       0.00    0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

1.00     –1.90  –0.10       0.00    0.03    0.05    0.06    0.07    0.07    0.08    0.08    0.08    0.08 

 

 

 

 

 




