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Abstract:  
We provide sufficient conditions for the first-order approach in the principal-agent 
problem when the agent’s utility has the non-separable form u(y - c(a)) where y is the 
contractual payoff and c(a) is the money cost of effort. We first consider a decision-
maker facing prospects which cost c(a) with distributions of returns y that depends on a. 
The decision problem is shown to be concave if the primitive of the cumulative 
distribution of returns is a convex function, a condition we call Concavity of the 
Cumulative Quantile (CCQ). Next we apply CCQ to the distribution of outcomes (or their 
likelihood-ratio transforms) in the principal-agent problem and derive restrictions on the 
utility function that validate the first-order approach. We also discuss a stronger 
condition, log-convexity of the distribution, and show that it allows binding limited liability 
constraints, which CCQ does not. 
 
Keywords: Principal-agent models, moral hazard, stochastic decision problem, quantile 
function, information systems 

 

JEL Classification: D81, D82, D86 
 



1 Introduction

The principal-agent problem is central to the economics of moral hazard. Yet

the theoretical literature has focused on a particular version of the problem.

In this version, the agent�s utility has the additively separable form v(y; a) =

u(y)� (a) where u(y) is a utility of income function and  (a) is the disutility
of e¤ort. The reason is tractability and the convenience of the so-called �rst-

order approach in characterizing the optimal contract. Standard conditions

validating the approach rely on additive separability.

Many situations clearly do not �t the restriction. It is particularly awk-

ward when the agent is a pro�t-maximizing �rm whose actions are more

appropriately viewed as involving unveri�able money costs; for instance, the

cost incurred by a subcontractor operating at arm�s length or that of work-

place safety measures under an experience rated industrial insurance plan.

The agent�s utility is then v(y; a) = u(y�c(a)), where c(a) is the money cost
of e¤ort, y is the gross payo¤which may depend on the contract signed with

the principal, and y � c(a) is net pro�t. We provide su¢ cient conditions for

the validity of the �rst-order approach when e¤ort entails a money cost.1

The approach replaces the incentive compatibility constraint with the

�rst-order condition of the agent�s maximization problem. When the agent�s

utility is additively separable, it is well-known that such an approach is valid

when the distribution of outcomes satis�es the monotone likelihood ratio

property (MLR) and the convexity of the distribution function condition

(CDF); see Rogerson (1985). The CDF condition is generally considered as

1By contrast, there is a large applied literature where the agent�s utility is precisely of

the form u(y�c(a)). Borrowing from Holmstrom and Milgrom (1987), this literature draws
on the simplicity of the LEN model (for Linear Exponential Normal). The applications are

many, e.g., procurement and subcontracting (McAfee and McMillan 1986; Kawasaki and

McMillan 1987) or public-private partnerships (Martimort and Pouyet 2008). Contracts

are restricted to be linear in outcome, so the validity of the �rst-order approach is not an

issue.
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quite restrictive: it is not satis�ed by most of the probability distributions

commonly used and is di¢ cult to reconcile with outcomes generated by a

stochastic production function exhibiting decreasing marginal returns. Jewitt

(1988) proposed an alternative set of conditions avoiding CDF and relying on

the curvature of the contract; the trade-o¤ is then that restrictions need to

be imposed on the agent�s utility of income function. Most of the literature

has borrowed from one set of conditions or the other (e.g., Sinclair-Desgagné

1994; Carlier and Dana 2005; Jewitt and al. 2008; Conlon 2009).

When utility is nonseparable, however, a risk-averse agent�s preferences

over income lotteries will generally depend on his action. Grossman and

Hart (1983) remark that random incentive schemes may then be superior to

deterministic schemes. Similar observations are made by Arnott and Stiglitz

(1988). More recently, Kadan et al. (2011) investigated the existence of op-

timal contracts in very general environments allowing a nonseparable utility.

They do not discuss the �rst-order approach but give conditions under which

randomization is unnecessary.

Alvi (1997) provides a set of su¢ cient conditions in the nonseparable

case v(y; a). Given MLR and CDF conditions, he shows that the �rst-order

approach is valid if � vyy=vy is nondecreasing in a and vya � 0. The �rst

condition means that the agent�s absolute risk aversion over income lotteries

is nondecreasing in e¤ort; the second is interpreted as normality of leisure

(with a as work e¤ort). However, when e¤ort entails a money cost, v(y; a) =

u(y � c(a)) so that � vyy=vy = �u00=u0. Alvi�s �rst condition then reduces
to nonincreasing absolute risk aversion (NIARA) but his second condition

cannot be met because vya = �u00c0 > 0.
Another related paper is Abraham et al. (2011). They consider a two-

period principal-agent problem with hidden borrowing and lending. In our

notation, the agent�s utility is [u(w0�s)� (a)]+�u(y+s). The expression in
brackets is the �rst-period utility, where w0 is initial wealth and s is saving;

the other term is the present value of the second-period utility with � as
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discount factor. The agent chooses his e¤ort in the �rst period and receives

a contractual payment y contingent on the outcome observed in the second

period. Because the agent simultaneously chooses s and a, both of which

are unobservable, the principal faces two incentive compatibility constraints.

As in our one-period problem, the agent�s preferences over income lotteries

then depend on his actions. Abraham et al. (2011) show that the �rst-

order approach is valid if the utility function u satis�es NIARA and the

distribution of outcomes satis�es the MLR condition and is log-convex in the

agent�s e¤ort, a condition obviously stronger than CDF.

We proceed as follows. We �rst abstract from the intricacies of the

principal-agent problem and consider risk-averse decision-makers facing ran-

dom prospects indexed by a. The gross return is y and the cost of the

prospects is c(a), an increasing convex function. We seek conditions for the

decision-makers�problem to be concave in the action a. This question is of

interest in itself and is common in the �nance and economics of risk litera-

ture. For instance, Jullien et al. (1998), Eeckhoudt and Gollier (2005) and

Meyer and Meyer (2011) consider the case where c(a) refers to prevention

expenditure against accidental losses. Conditions are given for the problem

to be concave in a two-outcome prospect, but no equivalent conditions are

proposed for the many-outcome case.

We show that the decision-maker�s problem is concave if the primitive

of the cumulative distribution of returns is jointly convex in a and y. The

condition amounts to a decreasing marginal returns property and is satis�ed

by many common probability distributions under an appropriate parameter-

ization. In �nancial jargon, it is equivalent to the requirement is that, at

any con�dence level, the expected tail return (or average Value at Risk) is

concave in a. For reasons that will become clear, we refer to this condition

as Concavity of the Cumulative Quantile (CCQ).

Next we apply the CCQ condition to the principal-agent problem when

e¤ort entails a money cost. The gross returns are now determined by the
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incentive scheme designed by the principal as a function of the observable

outcomes. The validity of the �rst-order approach then boils down to whether

the approach yields a payment scheme with the appropriate stochastic prop-

erties. We discuss various conditions on the distributions of outcomes, all of

which include standard MLR property.

The weakest condition is in terms of likelihood-ratio transforms of the

observable outcome, the requirement being that the probability distribution

of the transforms satis�es the CCQ condition. The interpretation is that the

agent faces decreasing marginal returns to e¤ort in the generation of �fa-

vorable information�. Again, such a condition is satis�ed by many common

probability distributions. The validity of the �rst-order approach then fol-

lows if, roughly speaking, the agent�s utility function is such that absolute

prudence is less than twice absolute risk aversion and does not decrease too

fast as the agent�s wealth increases. This trivially holds when absolute risk

aversion is constant.

Finally, we note that the conditions in Abraham et al. (2011) � that

is, NIARA and log-convexity of the distribution of outcomes with respect to

the agent�s action � are indeed also su¢ cient for our problem. We show

that they are consistent with binding payment restrictions such as can arise

when the agent faces a limited liability constraint, thus extending the results

obtained by Jewitt and al. (2008) for the separable case. By contrast, the

weaker CCQ condition does not allow a binding downward bounded payment

constraint.

2 Conditions on the Distribution of Returns

A decision-maker faces random prospects de�ned by the cumulative distri-

bution functions G(y j a) where y is the gross return and a 2 [0; a] is the
action taken. To simplify notation, the cost of the prospects is c(a) � a so

that �nal wealth is w = y � a. All our results also hold for c(a) increasing
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and convex.

For all a, the support of G is an interval contained in [y; y] where y and

y need not be �nite. G(y j a) is twice-continuously di¤erentiable in a; for y
in the open interval (y; y), G(y j a) is twice-continuously di¤erentiable in a
and y with density g(y j a) � Gy(y j a). The utility of �nal wealth is u(w), a
smooth function with u0 > 0 and u00 � 0; the domain is an interval containing
[y � a; y].

The setup is consistent with an absolutely continuous probability dis-

tribution or with a mixed distribution with probability masses at y or y.

Speci�cally, G(y j a) = 0 for y < y and

G(y j a) = G(y j a) +
Z y

y

g(y j a) dy for y 2 [y; y); G(y j a) = 1: (1)

Note that the support need not be invariant in a.

Many situations of interest involve mixed distributions. For example, the

expenditure a refers to prevention measures bearing on accidental losses; the

return is y = w0 � z where w0 is initial wealth and z � 0 is the loss. The

distribution has a discontinuity at y = w0 if the no-loss event has positive

probability. There is a discontinuity at y if y = max(w0 � z; y) and losses

larger than w0 � y have positive probability; for instance, y captures the

protection provided by social security or the decision-maker�s limited liability

in an investment context. Mixed distributions can also arise in the principal-

agent framework when contracts are subject to exogenous bounded payment

constraints.

The individual chooses a to maximize expected utility

U(a) �
Z y

y

u(y � a) dG(y j a): (2)

We seek conditions for the �rst-order condition U 0(ba) = 0 to be su¢ cient

for a maximum at ba. What is needed is some form of decreasing marginal

returns. In a stochastic environment, this may be characterized in several

ways.
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Concavity of the Cumulative Quantile (CCQ). We consider a con-
dition expressed in terms of the primitive of the cumulative distribution of

returns,

eG(y; a) � Z y

y

G(z j a) dz.

The condition is eG(y; a) jointly convex in a and y. Note that this is stronger
than mere convexity in a, a condition which has has been discussed in the

principal-agent literature (see Section 3).
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Figure 1. The Quantile Function

The interpretation is straightforward when the distribution is expressed

in terms of its quantile function. This is de�ned by

Q(p; a) = inffy j G(y j a) � pg; p 2 (0; 1):

Our assumptions imply that the quantile is a continuous function, although

it may be only piece-wise di¤erentiable. Figure 1 gives an illustration in

the (p; y) plane when both the lower and upper bound of the support have

a probability mass. In the interior of the support, the quantile is de�ned

by G (Q(p; a) j a) � p. When the distribution is absolutely continuous, the

identity holds everywhere and the curve has no ��at spots�.
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Lemma 1 eG(y; a) convex in (y; a) is equivalent to R p
0
Q(�; a) d� concave in

a for all p.

In view of Lemma 1, we henceforth refer to the condition as Concavity of

the Cumulative Quantile (CCQ). It is equivalent to

E (Y j a;G(Y j a) � p) =

Z p

0

Q(�; a)

p
d�

concave in a. In words, the average return below any p-percentile is concave

in a. Letting p tend to unity, the overall expected return is also concave.

In terms of the quantile function, expected utility is

U(a) �
Z 1

0

u(Q(p; a)� a) dp: (3)

If Q(p; a) is concave in a, so is the integrand in (3) and therefore the expected

utility. A concave quantile function obviously implies CCQ. The latter turns

out to be su¢ cient for the concavity of the decision-maker�s problem.

Proposition 1 Expected utility is concave in a if the distribution of returns

satis�es CCQ.

When the distribution is absolutely continuous, G(y j a) quasiconvex in
a and y is equivalent to Q(p; a) concave in a for all p (see Jewitt 1988).

The return can then be interpreted as generated by a stochastic production

function y = '(a; ") that is concave in a in each state of the world ". The

CCQ condition then corresponds to the weaker requirement that marginal

returns to investment are on average decreasing in bad states.

Many common probability distributions satisfy CCQ given an appropriate

parameterization. To illustrate, if returns have the exponential distribution

with a mean that is concave in a, the quantile function is also concave in a and

therefore CCQ holds. If returns are normally distributed with mean �(a) and

standard deviation �(a), then y = �(a)+�(a)" where " is the standard normal
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variable. Its quantile isQ"(p) so that
R 1
0
Q"(p) dp = 0. The quantile of returns

is then Q(p; a) = �(a)+�(a)Q"(p). When the standard deviation is constant,

�00(a) � 0 implies that the quantile of returns is concave. When the standard
deviation varies with a, the quantile cannot be concave because Q"(p) varies

between minus and plus in�nity. However, because
R p
0
Q"(�) d� � 0,Z p

0

Qaa(�; a) d� = �00(a) + �00(a)

Z p

0

Q"(�) d� � 0

if the mean is a concave function and dispersion is convex. The same argu-

ment also holds if " is a continuous but otherwise arbitrary random variable.

Two points need to be emphasized. First, the convexity of eG is incon-

sistent with a probability mass at the lower bound of the support, except in

the particular case where the probability does not vary with a.2 Second, the

same condition is required for the quasiconvexity of G to imply the concavity

of the quantile in a. Indeed, the CCQ condition implies that Q(p; a) is con-

cave in a for p su¢ ciently small. This is easily shown to be consistent with

a probability mass at the lower bound only if the probability is constant.3

Log-Convexity of the Distribution Function (LCDF). We now
discuss a more restrictive set of conditions. By contrast with CCQ, how-

ever, they are compatible with a non-constant probability mass at the lower

bound of the support. The distribution of returns satis�es LCDF if lnG

is convex in a. We combine this property with the condition that the

2For instance, G(y j a) is always equal to zero. An example with a positive constant is
the case of accidental losses when the probability of no accident does not depend on pre-

vention expenditures, although prevention a¤ects the severity of losses should an accident

occur.
3To illustrate, let G(y j a) = 1 � '(a) exp (� (y= (a))) where y � 0 with '(a) 2

(0; 1) and  (a) twice di¤erentiable and nondecreasing concave. Conditional on y > 0,

the distribution of returns has the exponential density with mean  (a). The quantile is

Q(p; a) = 0 if '(a) � 1�p and Q(p; a) = � (a) ln ((1� p)='(a)) otherwise. Qaa(p; a) � 0
whenever '(a) 6= 1� p. The distribution is quasiconvex but the quantile is not concave in
a unless '(a) is a constant.
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decision-maker�s utility function satis�es NIARA; that is, absolute risk aver-

sion r(w) � �u00(w)=u0(w) is nonincreasing.

Proposition 2 Expected utility is concave in a if G satis�es LCDF and the

utility function satis�es NIARA.

The proof is similar to that in Abraham et al. (2011) except that we allow

probability masses at the bounds of the support. LCDF is stronger than CDF

(i.e., G convex in a), itself a restrictive condition as already noted. In the

Appendix we show that, because of wealth e¤ects, CDF is not su¢ cient to

ensure that expected utility is concave.4

LCDF has the following interpretation in terms of decreasing marginal

returns. The ratio g=G is the reverse hazard rate, the probability of the

realization y conditional on the outcome being no more than y. It is easily

seen that

� ln(G(y j a)) =
Z y

y

g(� j a)
G(� j a) d�: (4)

LCDF means that the cumulative reversed hazard rate is concave in a. When

a larger expenditure increases returns in the sense of �rst-order stochastic

dominance, the cumulative reversed hazard rate is increasing in a. LCDF

imposes that it increases at a decreasing rate.

3 The Principal-Agent Problem

The random return facing the individual, henceforth the agent, now origi-

nates from the contract designed by the principal. The observable outcome

is x distributed according to F (x j a), a twice-continuously di¤erentiable dis-
tribution with density f(x j a); the support is [x; x] for all a. We make the

4An example of a distribution satisfying LCDF is the function used in Rogerson (1985)

to illustrate CDF, G(y j a) = (y=y)a, y 2 [0; y], a > 0.
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standard assumption that the distribution satis�es the strict MLR condition,

fa(x j a)=f(x j a) strictly increasing in x for all a. We also assume that the
likelihood ratio is bounded below. This precludes near-forcing contracts as in

Mirrlees (1999). When the agent faces a limited liability constraint, it also

allows for the possibility that the constraint is not binding in the optimal

contract.5

A contract is a piece-wise di¤erentiable function y(x). This describes

a deterministic scheme. In a general framework permitting nonseparable

utility, Kadan et al. (2011) show that randomization is unnecessary when

the principal and agent have �weakly con�icting preferences�over rewards.

The condition is trivially satis�ed in our setup.6

The agent�s expected utility is

U(a; y) �
Z x

x

u(y(x)� a)f(x j a) dx: (5)

The agent is strictly risk averse and the principal is risk neutral. We consider

the cost to the principal of implementing some level of e¤ort ba 2 (0; a).

Equivalently, one could look for the contract that maximizes the agent�s

expected utility subject to the principal�s pro�t constraint.

The agent�s participation constraint is

U(ba; y) � u0; (IR)

where u0 is reservation utility. His incentive compatibility constraint is

ba 2 max
a2[0;a]

U(a; y): (IC )

5We focus on the case where F is absolutely continuous in order to simplify the expo-

sition. Our results also hold when F is discontinuous at x. For instance, in the insurance

context, x = � z where z is the accidental loss and the no-loss event has positive proba-
bility.

6In a two-outcome framework with the nonseparable utility v(y; a), Arnott and Stiglitz

(1988) show that a su¢ cient condition for the suboptimality of randomizing contracts is

that vyya � 0. In our setting, vyya = �u000. Arnott and Stiglitz�condition would therefore
follow from NIARA.
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Payments are constrained by the bounded payment conditions

y � y(x) � y for all x: (BP)

The lower bound will be referred to as the agent�s limited liability constraint.

The principal�s cost minimization problem, denoted P , is

min
y
C(ba; y) � Z x

x

y(x)f(x j ba) dx s.t. IR, IC, and BP. (P)

The relaxed problem. The �rst-order approach replaces IC with the

necessary �rst-order condition of the agent�s problem, Ua(ba; y) = 0. In val-
idating the approach, it has been common to look at the (doubly) relaxed

problem where IC is replaced by

Ua(ba; y) � 0: (ICR)

We assume that the relaxed problem is nondegenerate; that is, there exists

piecewise di¤erentiable contracts such that the constraints are strictly slack.

Let y(x) denote a solution to the relaxed problem, henceforth problem

R. Given the strict MLR condition, a contract can equivalently be written

as a function of the transformed variable l � fa(x j ba)=f(x j ba). Abusing
notation, we denote this representation of the contract by y(l). De�ne

�(y; �) � 1 + �u00(y � ba)
u0(y � ba) : (6)

A solution y(l) to the relaxed problem satis�es

�(y(l); �) =

8><>:
�(y; �) if �+ �l < �(y; �);

�+ �l if �(y; �) � �+ �l � �(y; �);
�(y; �) if �+ �l > �(y; �);

(7)

for some multipliers � � 0 and � � 0 satisfying the complementary slackness
conditions � (U(ba; y)� u0) = 0 and �Ua(ba; y) = 0. Clearly � > 0, otherwise
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condition (7) implies a constant payment, which is inconsistent with ICR.

Hence, Ua(ba; y) = 0, meaning that the solution to the relaxed problem

satis�es the �rst-order condition of the true incentive-compatibility condition

IC.7

Lemma 2 Let y(l) be a solution to problem R. Then y(l) is nondecreasing.

The proof does not rely on the Lagrangian conditions (see the Appendix).8

Combined with (7), the lemma implies that the set of l values for which BP

does not bind is an interval. If the lower bound binds, it does so only at

realizations below some critical l0; if the upper bound binds, it does only

above some critical l1. Moreover, when BP does not bind, y(l) cannot be

constant; by Lemma 2, it is therefore strictly increasing.

So far, nothing ensures that y(l) is continuous. One possibility is illus-

trated in Figure 2. When BP does not bind, condition (7) requires that

y satis�es �(y; �) = � + �l. Lemma 2 implies that the solution is on the

increasing portions of the curve represented in the �gure. As shown, y(l)

is discontinuous at l = lc. Payments then belong to the intervals [y; y0] or

(y00; y].

Contracts satisfying the constraints of problem P also satisfy those of

problem R. If a solution to the relaxed problem satis�es the true incentive-

compatibility condition IC, it is therefore also a solution to the original prob-

lem. Su¢ cient conditions are that the contract solving R yields a a random

payment satisfying the conditions set out in Section 2. The agent�s expected

utility is then concave and IC is therefore satis�ed.

7The IR constraint need not be binding, possibly because of a binding limited liability

constraint. Thiele and Wambach (1999) remark that, in a nonseparable setting, IR may

be slack irrespective of bounded payment constraints.
8In the separable case, v(y; a) = u(a) �  (e). The solution to the relaxed problem

satis�es the condition (7) but with �(y; �) � 1=u0(y). That y(l) is increasing then follows
directly from (7). This is no longer so in our problem because �(y; �) as de�ned in (6)

need not be increasing in y.
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Figure 2. A Solution to the Relaxed Problem

Validity of the �rst-order approach. The �rst set of conditions is
in the spirit of Proposition 1. As in Jewitt (1988) for the separable setting,

the conditions rely on the curvature of the contract. In Jewitt�s analysis,

the conditions on the distribution of outcomes include the so-called concave

MLR condition, fa(x j a)=f(x j a) increasing and concave in x for all a,

together with one of the following two:

(a) F (x j a) is quasiconvex in (x; a),
(b)

R x
x
F (� j a) d� is convex in a for all x and

R x
x
xf(x j a) dx is concave

in a.

We will substitute the CCQ condition for (a) or (b). CCQ is weaker than

(a) but implies (b). In order to apply Proposition 1 while allowing for an

upward bounded payment constraint, we need the following lemma.

Lemma 3 If the random variable Z satis�es the CCQ condition, then the

variable min('(Z); k) also satis�es CCQ for any constant k and ' nonde-

creasing concave and twice di¤erentiable.
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In the separable setting, the conditions in Jewitt (1988) are not su¢ cient

when the lower bound on payments is binding. The same is true of our

second set of conditions for the nonseparable case. A binding limited liability

constraint implies that the distribution of payments has a probability mass

at y. Recalling section 2, this is inconsistent with CCQ. In what follows,

p(w) � �u000(w)=u00(w) is absolute prudence.

Proposition 3 Let y(x) be a solution to problem R. Su¢ cient conditions

for y(x) to solve problem P are:

(i) y(x) > y;

(ii) F satis�es the CCQ and concave MLR conditions;

(iii) p(w) � 2r(w) and p0(w) � min [0; (r(w)� p(w))(2r(w)� p(w)] for all

w 2 [y � a; y].

Condition (i) states that the lower bound on payments is not binding

in the solution to the relaxed problem. Condition (iii), which is further dis-

cussed below, implies that�(y; �) is convex in y whenever it is nondecreasing.

Condition (ii) then implies that the random payment satis�es the CCQ con-

dition, so Proposition 1 applies. See the Appendix for details. In the next

subsection we discuss how both the CCQ and concave MLR conditions can

be relaxed.

In condition (iii), the inequality p � 2r is equivalent to 1=u0 convex in

wealth.9 This is satis�ed, for instance, if relative risk aversion is not less

than unity and is nondecreasing. Roughly speaking, the second inequality

in condition (iii) states that prudence does not decrease too fast over the

domain of feasible wealth levels. It su¢ ces that prudence be nondecreasing.

9This condition was used by Grossman and Hart (1983) in the separable setting to

ensure that the wage is a concave function of the likelihood ratio. Jewitt (1988) imposes

only that u(v(z)) be concave in z, where v(z) � (u0)�1(1=z). This is equivalent to p � 3r.
See Conlon (2009) for a discussion.
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However, noting that r0 = r(r � p), the condition is also consistent with

decreasing prudence when absolute risk aversion is itself decreasing.10

To illustrate, consider the family of utility functions with constant pru-

dence, p(w) = � > 0 for all w. Solving the di¤erential equation yields

u(w) = �w � e��w where � � 0. When � = 0, this is the CARA util-

ity function with absolute risk aversion equal to �, which obviously satis�es

condition (iii). When � > 0, risk aversion is

r(w) =
�2

� + �e�w

and is decreasing in wealth. The condition p(w) � 2r(w) then amounts to

�e�w � �. For � < �, the condition is satis�ed as long as w � ln (�=�) =�.
Thus, it su¢ ces that the upper bound y be less than this quantity. Another

class of utility functions that is easily seen to satisfy condition (iii) consists

of functions with marginal utility satisfying

u0(w) = (�� �w), � > 0, � > 0,  � 1, 0 � w � �=�:

For  = 1, this is the quadratic utility function, hence prudence is zero.

The second set of conditions is with respect to Proposition 2. As in Jewitt

et al. (2008) for the separable case, the following holds under both downward

and upward bounded payments constraints.

Corollary 1 Suppose that the agent�s utility function satis�es NIARA and

that F satis�es the MLR and LCDF conditions. Then the solution to R is

also the solution to the original problem P.

The proof follows from the observation that, if a random variable satis-

�es LCDF, so does any nondecreasing transformation. MLR together with

Lemma 2 therefore imply that the distribution of payments satis�es the con-

dition of Proposition 1.

10The condition p0 � (r � p)(2r � p) is easily seen to be equivalent to r00 � 0.
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Information systems. Jewitt (1988) and Conlon (2009) interpret the
concave MLR condition as meaning that variations in output become �less

informative�at high levels of output. Yet in many situations the outcome

is a pure signal. When it satis�es the MLR condition, so does any strictly

increasing transformation. Moreover, the transformed signal provides the

same information. Unless the transformation is concave, properties such as

CCQ and concave MLR need not be preserved. Nevertheless, if a contract

conditioning on the original signal solves the principal�s problem, a suitably

speci�ed contract conditioning on the transformed signal will do the same.

For validating the �rst-order approach, one should therefore also look for

properties that are robust to arbitrary strictly increasing transformations of

the signal. Such properties will be referred to as informational because they

characterize the underlying information system.

LCDF is preserved under increasing transformations. The condition on

the signal distribution in Corollary 1 is therefore informational. We look for

informational properties to substitute for the non informational properties

in condition (ii) of Proposition 3.

De�nition 1 Let X be distributed according to F (x j a) with associated
density f(x j a) satisfying the MLR condition. F satis�es Likelihood-CCQ

if, for all a0, the distribution of fa(X j a0)=f(X j a0) satis�es CCQ.

The random variable fa(X j a0)=f(X j a0) will be referred to as the
likelihood ratio transform at a0. Note that its distribution depends on the

agent�s e¤ort a.

Corollary 2 If X satis�es the MLR and Likelihood-CCQ conditions, so does

any strictly increasing transformation. Moreover, condition (ii) in Proposi-

tion 3 can be replaced by: F satis�es the MLR and Likelihood-CCQ condi-

tions.
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The second claim follows from the fact that the agent�s wage will then

satisfy CCQ when the other conditions in Proposition 3 hold. The �rst claim

states that Likelihood-CCQ is an informational property. To see this, let

Z � '(X) where ' is strictly increasing. The distribution of the transformed

signal is F ('�1(z) j a). Its likelihood ratio transform at a0 is the random

variable

fa('
�1(Z) j a0)=f('�1(Z) j a0):

Clearly this has the same distribution as the likelihood ratio transform at a0

of the original signal.

The condition means that the agent faces decreasing marginal returns

to e¤ort in the generation of �favorable information�. If X satis�es both

the CCQ and concave MLR conditions, then it satis�es Likelihood-CCQ.

Any strictly increasing transformation will then also satisfy Likelihood-CCQ,

although the transformed signal need not satisfy CCQ or the concave MLR

condition. To illustrate, suppose the signal has the Weibull distribution

F (x j a) = 1 � exp (x=a)k, where  and k are positive parameters and

x � 0. The signal satis�es CCQ if  � 1 and the concave MLR condition if
k � 1. Likelihood-CCQ is the weaker condition k � 1.

4 Concluding remarks

There will obviously be cases where the �rst-order approach is valid even

though the above su¢ cient conditions are not met; that is, the solution to the

relaxed problem is nevertheless the solution to the true problem. Lemma 2

shows that the payment to the agent is then increasing with �more favorable�

information, as in the standard model where utility is additively separable in

income and e¤ort. The principal�s cost is then increasing in the e¤ort level

that is to be implemented, an important property of the �rst-order approach.

The CCQ condition or the weaker Likelihood-CCQ may be appealing

in the additively separable case as well. When the agent�s limited liability
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condition is not binding, Likelihood-CCQ ensures the validity of the �rst-

order approach under Jewitt�s (1988) conditions with respect to the agent�s

utility of income function. Because Proposition 3 speci�es more restrictive

conditions, they are also su¢ cient in the mixed case where e¤ort entails both

psychological disutility and money expenditure; that is, the agent�s utility

function is u(y � c(a)) �  (a) where the money cost and the disutility are

both increasing convex functions.

Appendix

Non su¢ ciency of CDF. We give an example showing that U 0(a) = 0

characterizes a global minimum even though the distribution of returns sat-

is�es CDF. The decision-maker�s utility function is CARA with u(w) =

� exp(�rw). The return is the function y(X) of the random variable X

with support [0; 1] and cdf F (x j a) = x� �(x)(a), where �(x) = x(1� x),

(a) = (1 � k)a + k ln(1 + a); k 2 [0; 1]. The cdf belongs to a family of
distributions satisfying both the MLR and CDF conditions; see LiCalzi and

Spaeter 2003. Because these properties are robust to arbitrary increasing

transformations, the returns satisfy MLR if y(�) is an increasing function.
Let r = k = 0:1 and y(X) = bX. We consider U(a) for a 2 [0; 1]. Figure
A1 depicts the graph for b = 6; the curve is convex with a maximum at

a = 1 and a global minimum at a = 0:285. In Figure A2, b = 5:85; the curve

is again convex but with a maximum at a = 0 and a global minimum at

a = 0:769.
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Figure A2: b = 5:85

Proof of Lemma 1. De�ne

eQ(p; a) � Z p

0

Q(�; a) d� and eG(y; a) � Z y

y

G(z j a) dz:

Because the quantile is the convex conjugate of the cumulative distribution,

for all p 2 (0; 1) we have

eQ(p; a) = pQ(p; a)� eG(Q(p; a); a) (8)

� py � eG(y; a) for all y 2 [y; y]: (9)

We �rst show that the convexity of eG(y; a) implies the concavity of eQ(p; a)
in a. Let a = �a0+(1��)a00 and y = �y0+(1��)y00 where � 2 (0; 1). From
(8) and (9), eG(y; a) � � eG(y0; a0) + (1� �) eG(y00; a00)
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implies

eQ(p; a) � �(py0 � eG(y0; a0)) + (1� �)(py00 � eG(y0; a00)):
Therefore, setting y0 = Q(p; a0) and y00 = Q(p; a00) yields

eQ(p; a) � � eQ(p; a0) + (1� �) eQ(p; a00):
Next we show that eQ(p; a) concave in a implies the convexity of eG(y; a).

From (8) and (9),

� eG(y0; a0) + (1� �) eG(y00; a00) � py � (� eQ(p; a0) + (1� �) eQ(p; a00))
� py � eQ(p; a);

where the second inequality follows from the concavity of eQ(p; a) in a. Setting
p = G(y j a), the right-hand side in the string of inequalities equals

G(y j a)y � eQ(G(y j a); a) = eG(y; a);
implying that eG(y; a) is convex. QED
Proof of Proposition 1. We �rst prove a preliminary result.
Step 1. For p 2 [0; 1] and a 2 [0; a], let w(p; a) be a continuous function,

nondecreasing in p and piecewise di¤erentiable with respect to p and a. De�ne

ew(p; a) � Z p

0

w(�; a) d� and U(p; a) �
Z p

0

u(w(�; a)) d�.

We show that U(p; a) is concave in a if ew(p; a) is concave in a. Observe

that ew(p; a) and U(p; a) are di¤erentiable with respect to a. Recall that u
is increasing concave and twice-continuously di¤erentiable. The concavity

implies that, for any a and a�,

u(w(�; a))� u(w(�; a�)) � u0(w(�; a))(w(�; a)� w(�; a�))

and therefore

U(p; a)� U(p; a�) �
Z p

0

u0(w(�; a))(w(�; a)� w(�; a�)) d�: (10)
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Denote by wp+(p; a) the right-hand derivative of w(p; a) with respect to p.

Integrating by parts, the right-hand side of (10) equals

u0(w(p; a)) ( ew(p; a)� ew(p; a�))
�
Z p

0

u00(w(�; a))wp+(�; a)( ew(�; a)� ew(�; a�)) d�:
Substituting in (10) and noting that the concavity of ew(p; a) implies

ew(�; a)� ew(�; a�) � ewa(�; a)(a� a�),

we obtain

U(p; a)� U(p; a�)

� (a� a�)

�
u0(w(p; a)) ewa(p; a)� Z p

0

u00(w(�; a))wp+(�; a) ewa(�; a) d�� :
Integrating by parts the expression in the parentheses,

U(p; a)�U(p; a�) � (a� a�)
�Z p

0

u0(w(�; a))wa(�; a) d�

�
= (a� a�)Ua(p; a):

Hence U(p; a) is concave in a for all p.

Step 2. We now turn to the claim in the proposition. Write the expected

utility using the quantile formulation (3). By Lemma 1, CCQ implies thatR p
0
(Q(�; a)�a) d� is concave in a. Letting w(p; a) � Q(p; a)�a and applying

Step 1 then completes the proof. QED

Proof of Proposition 2. We start with a preliminary result. LetH(y; a) be
a positive continuous function, di¤erentiable and increasing in y 2 (y0; y1) �
(y; y) and log-convex in a. De�ne

U(a; y0; y1; H) � u(y0 � a)H(y0; a) + u(y1 � a)(1�H(y1; a))

+

Z y1

y0

u(y � a)Hy(y; a) dy:
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Integrating by parts,

U(a; y0; y1; H) = u(y1 � a)�
Z y1

y0

u0(y � a)H(y; a) dy: (11)

When r(w) is nonincreasing, u0(y � a) is log-convex in a. It follows that

u0(y � a)H(y; a) is also log-convex in a, hence the integral in (11) is convex,

implying that U(a; y0; y1; H) is concave.

Now consider the expected utility in (2) and assume NIARA. We discuss

the cases where the support ofG is either unbounded at both ends or bounded

at both ends; the argument for the mixed cases is similar. When y = �1
and y = +1,

U(a) = lim
y1!+1
y0!�1

U(a; y0; y1; G):

Therefore, if G is log-convex in a, U(a) is concave. For the case of a bounded

support, let y0 = y and y1 = y with

H(y; a) = G(y j a) +
Z y

y

g(z j a) dz; y 2 [y; y]:

Hence H(y; a) = G(y j a) for y < y and H(y; a) � G(y j a), where the
inequality is strict if there is a jump at the upper bound. It follows that

U(a) = U(a; y; y;H). If G is log-convex in a, so is H and therefore U(a) is

concave. QED

Proof of Lemma 2. If y(x) solves problem R, the agent�s expected utility

is

U(ba; y) = Z x

x

u(y(x)� ba)f(x j ba) dx � u0

and marginal expected utility satis�es

Ua(ba; y) = Z x

x

u(y(x)� ba)fa(x j ba) dx� Z x

x

u0(y(x)� ba)f(x j ba) dx = 0:
The cost to the principal is

C(ba; y) � Z x

x

y(x)f(x j ba) dx:
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Let QX(p; a) be the quantile of the signal. De�ne

l(p) � fa(QX(p;ba) j a)=f(QX(p;ba) j ba):
Strict MLR implies that l(p) is strictly increasing. Let w(p) � y(l(p)). The

above expressions can then be rewritten as

U(ba; w) = Z 1

0

u(w(p)� ba) dp;
Ua(ba; w) = Z 1

0

u(w(p)� ba)l(p) dp� Z 1

0

u0(w(p)� ba) dp: (12)

C(ba; w) � Z 1

0

w(p) dp:

If y(l) is not nondecreasing, the same is true of w(p). Hence, there exists

two disjoint intervals [p0; p0 + �] � [0; 1] and [p00; p00 + �] � [0; 1], p0 + � < p00,

such that w(p) > w(ep) for all p 2 [p0; p0 + �] and ep 2 [p00; p00 + �]. Consider

the contract

bw(p) =
8><>:

w(p) if p =2 [p0; p0 + �] [ [p00; p00 + �];

w(p00 � p0 + p) if p 2 [p0; p0 + �];

w(p0 � p00 + p) if p 2 [p00; p00 + �]:

For any function ', Z 1

0

'( bw(p)) dp = Z 1

0

'(w(p)) dp:

IndeedZ p0+�

p0
'( bw(p)) dp =

Z �

0

'( bw(p0 + �)) d�

=

Z �

0

'(w(p00 + �)) d� =

Z p00+�

p00
'(w(p)) dp,Z p00+�

p00
'( bw(p)) dp =

Z �

0

'( bw(p00 + �)) d�

=

Z �

0

'(w(p00 + �)) d� =

Z p0+�

p0
'(w(p)) dp.
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Expected utility and the principal�s cost are therefore unchanged underbw(p). The same is true of the second term on the right-hand side of (12.

However, Ua(ba; bw) > Ua(ba; w) becauseZ 1

0

u( bw(p)� ba)l(p) dp > Z 1

0

u(w(p)� ba)l(p) dp;
To see this, u(p) = u(w(p)� ba), bu(p) = u( bw(p)� ba) and observe thatZ p0+�

p0
bu(p)l(p) dp = Z �

0

bu(p0 + �)l(p0 + �) d� =

Z �

0

u(p00 + �)l(p0 + �) d�;Z p00+�

p00
bu(p)l(p) dp = Z �

0

bu(p00 + �)l(p
00
+ �) d� =

Z �

0

u(p0 + �)l(p00 + �) d�:

ThereforeZ 1

0

bu(p)l(p) dp� Z 1

0

u(p)l(p) dp

=

Z �

0

(u(p00 + �)� u(p0 + �))
�
l(p0 + �)� l(p

00
+ �)

�
d�:

On the right-hand side, both factors in the integrand are negative, so the

expression is positive.

Finally, Ua(ba; bw) > Ua(ba; w) implies that w(p) cannot be a solution to
problem R. Let "(p) � bw(p) � C(ba; w) so that R 1

0
"(p) dp = 0. Consider the

contracts ew(p) � C(ba; w) + �"(p), � 2 [0; 1]:

All these contracts yield the same costs to the principal when the agent�s

e¤ort is ba. Denote expected utility and marginal expected utility by U(ba; �)
and Ua(ba; �) respectively. For all � < 1, U(ba; �) > U(ba; 1) = u0 because � is

a mean preserving decrease in risk. From the previous argument Ua(ba; 1) > 0.
Therefore , by continuity, for some � < 1 both the IR and ICR constraints

are slack. For � positive but small enough, they will remain slack under the

contract ew(p) � C(ba; w) + �"(p)� �
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which costs less than C(ba; w). QED
Proof of Lemma 3. Denote by QZ(p; a) the quantile function of Z. The
quantile of '(Z) is then Q'(p; a) � '(QZ(p; a)). First, observe that the dis-

tribution of '(Z) satis�es CCQ when Z does. To see this, use the argument

in Step 1 of Proposition 2 with QZ(p; a) � w(p; a) and ' � u. Next we that

the distribution of min('(Z); k) also satis�es CCQ. Its quantile function is

Qm(p; a) � min('(QZ(p; a)); k). Obviously

eQm(p; a) � Z p

0

Qm(p; a) d� � eQ'(p; a) � Z p

0

Q'(p; a) d�:

It su¢ ces to show that the concavity of eQ'(p; a) in a implies that of eQm(p; a).
Let bp(a) be the the solution to Q'(bp(a); a) = k. When p � bp(a), � 2 [0; 1]
and a = �a0 + (1� �)a00 imply

eQm(p; a) = eQ'(p; a)
� � eQ'(p; a0) + (1� �) eQ'(p; a00)
� � eQm(p; a0) + (1� �) eQm(p; a00): (13)

For p > bp(a) , eQm(p; a) = eQ'(bp(a); a) + (p� bp(a))k:
Observe that

(p� bp(a))k � �

Z p

bp(a)Qm(�; a
0) d� + (1� �)

Z p

bp(a)Qm(�; a
00) d�:

Combining with (13) yields

eQm(p; a) = eQ'(bp(a); a) + (p� bp(a))k
� � eQm(bp(a); a0) + (1� �) eQm(bp(a); a00)

+�

Z p

bp(a)Qm(�; a
0)d� + (1� �)

Z p

bp(a)Qm(�; a
00)d�

� � eQm(p; a0) + (1� �) eQm(p; a00);
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which completes the proof. QED

Proof of Proposition 3. Write the contract solving R as y(l), l 2 [l; l]
where l = fa(x j ba)=f(x j ba), l = fa(x j ba)=f(x j ba).
Step 1. Suppose that y(l) is continuous and the BP constraints are not

binding for l 2 [l0; l1] � [l; l]. By Lemma 2 and because �(y(l); �) = �+ �l ,

it follows that y(l) is strictly increasing in that interval. Hence, �y(y; �) � 0
for y 2 [y(l0); y(l1)] with strict inequality almost everywhere. We show that
condition (iii) then implies �yy(y; �) � 0 for y 2 (y(l0); y(l1)). For y in this
interval,

�y(y; �) =
�u000u0 � u00(1 + �u00)

(u0)2
� 0: (14)

Then

�yy(y; �) =
�u0000u0 � u000(1 + �u00)

(u0)2
� 2u00�u

000u0 � u00(1 + �u00)

(u0)3

=
�u0000u0 � u000(1 + �u00)

(u0)2
+ 2

�
�u

00

u0

�
�y(y; �): (15)

Note that p0 = (u000=u00)2 � (u0000=u00). Hence u0000 � (u000)2=u00 is equivalent to
p0 � 0. Under this condition,

�yy(y; �) �
�

�
(u000)2

u00

�
u0 � u000(1 + �u00)

(u0)2
+ 2

�
�u

00

u0

�
�y(y; �)

= (2r � p)�y(y; �):

Hence, p � 2r and p0 � 0 are su¢ cient for �yy � 0 whenever �y � 0. Noting
that r0 = r(r � p), di¤erentiating (14) once more is easily seen to yield

�yy(y; �) =
r (2r � p)

u0
� �r [(r � p)(2r � p)� p0] :

Hence, p � 2r and p0 � r0(2� p=r) are also su¢ cient for �yy � 0.
Step 2. Condition (i) implies that y(l) is an interior solution solving

�(y; �) = �+�l for all l 2 [l; l1] for some l1 2 (l; l]. Without loss of generality,
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we can discard the possibility that y(l) is discontinuous at l (otherwise it is

an isolated point). Thus, y(l) is continuous in a right neighborhood of l and

Step 1 therefore applies; that is, for y(l) in a right neighborhood of l, y(l) is

strictly increasing, �y(y(l); �) � 0 with strict inequality almost everywhere
and �yy(y(l); �) � 0 . But this then implies that the same is true for all

y > y(l). Hence the contract satis�es

y(l) = min
�
��1(�+ �l); y

�
;

where��1 is the inverse of�(y; �) with respect to its �rst argument. Because

��1 is increasing concave and applying Lemma 3, the distribution function

of the payment then satis�es CCQ if the distribution of fa(X j ba)=f(X j ba)
does. The latter, again using Lemma 3, is ensured by condition (ii). QED
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