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Abstract:   
We extend the Consumption-based CAPM (C-CAPM) model to representative agents 
with different risk attitudes. We first use the concept of expectation dependence and 
show that for a risk averse representative agent, it is the first-degree expectation 
dependence (FED) rather than the covariance that determines C-CAPM’s riskiness. We 
extend the assumption of risk aversion to prudence and propose the measure of 
second-degree expectation dependence (SED) to obtain the values of asset price and 
equity premium. These theoretical results are linked to the equity premium puzzle. Using 
the same dataset as in Campbell (2003), the estimated measures of relative risk 
aversion from FED and SED approximations are much lower than those obtained in the 
original study and correspond to the theoretical values often discussed in the literature. 
The theoretical model is then generalized to higher-degree risk changes and higher-
order risk averse representative agents. 
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1 Introduction

The consumption-based capital asset pricing model (C-CAPM), developed in Rubinstein (1976),

Lucas (1978), Breeden (1979) and Grossman and Shiller (1981), relates the risk premium on

each asset to the covariance between the asset’s return and a decision maker’s intertemporal

marginal rate of substitution. The most important comparative static results for C-CAPM is

how an asset’s price or equity premium changes as the quantity and price of risk change. The

results of comparative statics analysis thus form the basis for much of our understanding of the

sources of changes in consumption (macroeconomic) risk and risk aversion that drive asset prices

and equity premia.

The three objectives of this study are to propose a new theoretical framework for C-CAPM,

to extend its comparative statics, and to verify empirically how our framework can be useful to

solve the equity premium puzzle. We use general utility functions and probability distributions

to investigate C-CAPM. Our model provides insight into the basic concepts that determine asset

prices and equity premia and generate reasonable empirical measures of relative risk aversion.

The C-CAPM pricing rule is sometimes interpreted as implying that the price of an as-

set with a random payoff falls short of its expected payoff if and only if the random payoff

positively correlates with consumption. Liu and Wang (2007) show that this interpretation of

C-CAPM is generally inadequate by presenting a counterexample. We use more powerful sta-

tistical tools to obtain the appropriate dependence between asset payoff and consumption. We

first discuss the concept of expectation dependence developed by Wright (1987) and Li (2011).

We show that, with general distributions and utility functions, for a risk averse representa-

tive agent, it is the first-degree expectation dependence (FED) between the asset’s payoff and

consumption rather than the covariance that determines C-CAPM’s riskiness. Our result also

reinterprets the covariance between an asset’s payoff and the marginal utility of consumption

in terms of the expectation dependence between the asset’s payoff and consumption itself. We

extend the assumption of risk aversion to prudence and propose the measure of second-degree

expectation dependence (SED) to obtain the values of asset price and equity premium. We
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interpret C-CAPM in a general setting: for the ith-degree risk averse representative agent,1 with

i = 2, .., N+1, it is the N th-order expectation dependence that determines C-CAPM’s riskiness.

We also provide bivariate log-normal and truncated standardized bivariate normal distribution

examples to measure first-degree expectation dependence and second-degree expectation depen-

dence empirically, and to construct shifts in distributions that satisfy the comparative statics.

Examples of nonelliptical distributions are also provided. Our empirical results are linked to

the equity premium puzzle. Using the same dataset as in Campbell (2003), the estimated mea-

sures of relative risk aversion, using FED and SED approximations, are much lower than those

obtained in the original study.

Our contribution is also linked to the recent literature on higher-order risk preferences and

higher-order moments and comoments in finance developed by Harvey and Siddique (2000),

Dittmar (2002), Mitton and Vorkink (2007), Chabi-Yo et al. (2007), and Martellini and Zier-

mann (2010). We provide a theoretical foundation for the pricing kernel model based on higher

comoments than the covariance by suggesting a more general definition of dependence between

consumption and asset payoff, and propose a general pricing formula not restricted to specific

utility functions.

Our study also relates to Gollier and Schlesinger (2002), who examine asset prices in a

representative-agent model of general equilibrium, with two differences. First, we study asset

price and equity premium driven by macroeconomic risk as in the traditional C-CAPM model,

while Gollier and Schlesinger’s model considers the relationship between the riskiness of the

market portfolio and its expected return. Second, Gollier and Schlesinger’s model is a one-

period model whereas our results rest on a two-period framework.

Finally, our study extends the literature that examines the effects of higher-degree risk

changes on the economy. Eeckhoudt and Schlesinger (2006) investigate necessary and sufficient

conditions on preferences for a higher-degree change in risk to increase saving. Our study

provides necessary and sufficient conditions on preferences for a higher-degree change in risk to

set asset prices, and sufficient conditions on preferences for a higher-degree change in risk to set

equity premia.

1Risk aversion in the traditional sense of a concave utility function is indicated by i = 2, whereas i = 3

corresponds to downside risk aversion in the sense of Menezes, Geiss and Tressler (1980). ith-degree risk aversion

is equivalent to preferences satisfying risk apportionment of order i. See Ekern (1980) and Eeckhoudt and

Schlesinger (2006) for more discussions.
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The paper proceeds as follows. Section 2 introduces several concepts of dependence. Section

3 provides a reinterpretation of C-CAPM for risk averse representative agents. Section 4 extends

the results of Section 3 to prudent and higher-order risk averse agents respectively. Section 5

discusses the results in relation to local indexes of risk aversion and higher-order moments and

comoments. Section 6 shows empirically how our model can help to mitigate the equity premium

puzzle. Section 7 concludes the paper.

2 Concepts of dependence

The concept of correlation coined by Galton (1886) had served as the only measure of dependence

for the first 70 years of the 20th century. However correlation is too weak to obtain meaningful

conclusions in many economic and financial applications. For example, covariance is a poor tool

for describing dependence for non-normal distributions. Since Lehmann’s introduction of the

concept of quadrant dependence in 1966, stronger definitions of dependence have received much

attention in the statistical literature2.

Suppose x̃ × ỹ ∈ R × R are two continuous random variables. Let F (x, y) denote the joint

and Fx(x) and Fy(y) the marginal distributions of x̃ and ỹ. Lehmann (1966) introduces the

following concept to investigate positive dependence.

Definition 2.1 (Lehmann, 1966) (x̃, ỹ) is positively quadrant dependent, written as PQD(x̃, ỹ),

if

F (x, y) ≥ Fx(x)Fy(y) for all (x, y) ∈ R×R. (1)

The above inequality can be rewritten as

Fx(x|ỹ ≤ y) ≥ Fx(x) (2)

and Lehmann provides the following interpretation of definition (2.1): “knowledge of ỹ being

small increases the probability of x̃ being small.” PQD is useful to model dependent risks because

it can take into account the simultaneous downside (upside) evolution of risks. The marginal and

the conditional CDFs can be changed simultaneously.3 We notice that there are many bivariate

2For surveys of the literature, we refer to Joe (1997), Mari and Kotz (2001) and Embrechts (2009).
3Portfolio selection problems with positive quadrant dependency have been explored by Pellerey and Semeraro

(2005) and Dachraoui and Dionne (2007), among others. Pellerey and Semeraro (2005) assert that a large subset

of the elliptical distributions class is PQD.
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random variables other than elliptical or Gaussian distributions being PQD. For examples of

such distributions, see Joe (1997) or Balakrishnan and Lai (2009).

Wright (1987) introduced the concept of expectation dependence in the economics literature.

The following definition uses a weaker definition of dependence than PQD.

Definition 2.2 If

FED(x̃|y) = [Ex̃− E(x̃|ỹ ≤ y)] ≥ 0 for all y ∈ R, (3)

then x̃ is positive first− degree expectation dependent on ỹ.

The family of all distributions F satisfying (3) will be denoted by F1. Similarly, x̃ is negative

first-degree expectation dependent on ỹ if (3) holds with the inequality sign reversed. The

totality of negative first-degree expectation dependent distributions will be denoted by G1.

Wright (1987, page 113) interprets negative first-degree expectation dependence as follows:

“when we discover ỹ is small, in the precise sense that we are given the truncation ỹ ≤ y, our

expectation of x̃ is revised upward.” First-degree expectation dependence is a stronger definition

of dependence than correlation, but a weaker definition than quadrant dependence. Therefore,

bivariate random variables being positive (negative) quadrant dependent are also first-degree

expectation dependent. However, as the next example shows, positive (negative) correlated

random variables are not necessary positive (negative) first-degree expectation dependent.

Example 2.3 Let x̃ be normally distributed with Ex̃ = µ > 0 and var(x̃) = σ2. Let ỹ = x̃2.

Since Ex̃2 = µ2 + σ2 and Ex̃3 = µ3 + 3µσ2, then

cov(x̃, ỹ) = Ex̃ỹ − Ex̃Eỹ (4)

= Ex̃3 − Ex̃Ex̃2

= µ3 + 3µσ2 − µ(µ2 + σ2) = 2µσ2 > 0.

By definition,

FED(ỹ| −
√
µ2 + σ2) = Ex̃2 − E(x̃2|x̃ ≤ −

√
µ2 + σ2) (5)

= µ2 + σ2 − E(x̃2|x̃ ≤ −
√
µ2 + σ2) < 0,

and we obtain (ỹ, x̃) /∈ F1.

First-degree expectation dependence can be applied to log-normal random variables.
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Example 2.4 Consider bivariate log-normal random variables (x̃, ỹ) with joint probability dis-

tribution F (x, y) such that

 log(x̃)

log(ỹ)

 ∼ N


 µ1

µ2

 ,


σ2

1 σ12

σ12 σ2
2




(6)

where indexes 1 and 2 are used for log(x̃) and log(ỹ) respectively. We know that (see Lien 1985,

p244-245)

E(x̃|ỹ ≤ y) = exp(µ1 +
σ2

1

2
)
Φ( log(y)−µ2−σ12

σ2
)

Φ( log(y)−µ2
σ2

)
, (7)

where Φ(x) is the cumulative density function of a standardized normal random variable evalu-

ated at x,

cov(x̃, ỹ) = Ex̃ỹ − Ex̃Eỹ = exp(µ1 + µ2 +
σ2

1 + σ2
2

2
)[exp(σ12)− 1] (8)

and

FED(x̃|y) = Ex̃− E(x̃|ỹ ≤ y) = exp(µ1 +
σ2

1

2
)(1−

Φ( log(y)−µ2−σ12
σ2

)

Φ( log(y)−µ2
σ2

)
), (9)

So σ12 ≥ 0⇔ cov(x̃, ỹ) ≥ 0⇔ FED(x̃|y) ≥ 0.

We can also relate FED(x̃|y) to the correlation coefficient ρ .

Example 2.5 Consider a truncated standardized bivariate normal distribution with h < x̃ <∞,

−∞ < ỹ < ∞ and correlation coefficient ρ. From Balakrishnan and Lai (2009, p532-533), we

know that the marginal density of ỹ is Φ(y)
Ψ(−h)Ψ(−h+ρy√

1−ρ2
), where Ψ the cumulative distribution

function of the standardized univariate normal distribution. Let ET denote the mean after

truncation. Then (see Balakrishnan and Lai 2009, p532-533)

ET (x̃) =
Φ(h)

Ψ(−h)
(10)

and

ET (x̃|ỹ = y) = ρy +
√

1− ρ2

Φ( h−ρy√
1−ρ2

)

Ψ(−h+ρy√
1−ρ2

)
. (11)
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Hence

ET (x̃|ỹ ≤ y) (12)

=

∫ y

−∞
ET (x̃|ỹ = t)dFy(t)

= ρ

∫ y

−∞
t

Φ(t)

Ψ(−h)
Ψ(
−h+ ρt√

1− ρ2
)dt+

√
1− ρ2

∫ y

−∞

Φ( h−ρt√
1−ρ2

)

Ψ( −h+ρt√
1−ρ2

)

Φ(t)

Ψ(−h)
Ψ(
−h+ ρt√

1− ρ2
)dt

=
ρ

Ψ(−h)

∫ y

−∞
tΦ(t)Ψ(

−h+ ρt√
1− ρ2

)dt+

√
1− ρ2

Ψ(−h)

∫ y

−∞
Φ(t)Φ(

h− ρt√
1− ρ2

)dt

and

FED(x̃|y) = ET (x̃)− ET (x̃|ỹ ≤ y) (13)

=
1

Ψ(−h)
[Φ(h)− ρ

∫ y

−∞
tΦ(t)Ψ(

−h+ ρt√
1− ρ2

)dt−
√

1− ρ2

∫ y

−∞
Φ(t)Φ(

h− ρt√
1− ρ2

)dt].

Therefore, we can see that ρ > 0 cannot guarantee FED(x̃|y) > 0.

Li (2011) proposes the following weaker definition of dependence:

Definition 2.6 If

SED(x̃|y) =

∫ y

−∞
[Ex̃− E(x̃|ỹ ≤ t)]Fy(t)dt (14)

=

∫ y

−∞
FED(x̃|t)Fy(t)dt ≥ 0 for all y,

then x̃ is positive second-degree expectation dependent on ỹ.

The family of all distributions F satisfying (14) will be denoted by F2. Similarly, x̃ is negative

second-degree expectation dependent on ỹ if (14) holds with the inequality sign reversed, and

the totality of negative second-degree expectation dependent distributions will be denoted by

G2.

It is obvious that F1 ⊆ F2 and G1 ⊆ G2 but the converse is not true. Because x̃ and ỹ are

positively correlated when (see Lehmann 1966, lemma 2)

cov(x̃, ỹ) =

∫ +∞

−∞

∫ +∞

−∞
[F (x, y)− Fx(x)Fy(y)]dxdy =

∫ +∞

−∞
FED(x̃|t)Fy(t)dt ≥ 0, (15)

again we see that cov(x̃, ỹ) ≥ 0 is only a necessary condition for (x̃, ỹ) ∈ F2 but the converse is

not true. Therefore, we notice there are many bivariate random variables other than elliptical

or Gaussian distributions being FED or SED, because all the PQD distributions are also FED
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and SED. Comparing (14) and (15), we know that cov(x̃, ỹ) is the 2nd central cross moment of

x̃ and ỹ, while SED(x̃|y) is related to the 2nd central cross lower partial moment of x̃ and ỹ

which can be explained as a measure of downside risk computed as the average of the squared

deviations below a target.

The following two examles relate SED(x̃|y) to the covariance and the correlation coefficient.

Example 2.7 For bivariate log-normal random variables (x̃, ỹ) defined in (6),

SED(x̃|y) =

∫ y

−∞
exp(µ1 +

σ2
1

2
)[1−

Φ( log(t)−µ2−σ12
σ2

)

Φ( log(t)−µ2
σ2

)
]Φ(

log(t)− µ2

σ2
)dt (16)

= exp(µ1 +
σ2

1

2
)

∫ y

−∞
[Φ(

log(t)− µ2

σ2
)− Φ(

log(t)− µ2 − σ12

σ2
)]dt,

So σ12 ≥ 0⇔ cov(x̃, ỹ) ≥ 0⇔ SED(x̃|y) ≥ 0.

Example 2.8 Considering the truncated standardized bivariate normal distribution defined in

Example 2.5, we can verify that ρ > 0 does not guarantee SED(x̃|y) > 0.

For our purpose of extending the C-CAPM model, comparative expectation dependence

has to be defined. We propose the following definition to quantify comparative expectation

dependence.

Definition 2.9 Distribution F (x, y) is more first-degree expectation dependent than H(x, y) if

and only if FEDF (x̃|y)Fy(y) ≥ FEDH(x̃|y)Hy(y) for all y. Distribution F (x, y) is more second

order expectation dependent than H(x, y), if FEDF (x̃) ≥ FEDH(x̃), and

SEDF (x̃|y) ≥ SEDH(x̃|y) for all y. (17)

Example 2.10 Consider bivariate log-normal random variables (x̃, ỹ) with probability distribu-

tion F (x, y) such that

 log(x̃)

log(ỹ)

 ∼ N


 µ1

µ2

 ,


σ2

1 σ12

σ12 σ2
2




(18)
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and random variables (x̃′, ỹ′) and with probability distribution H(x′, y′) such that

 log(x̃′)

log(ỹ′)

 ∼ N


 µ′1

µ′2

 ,


σ′1

2 σ′12

σ′12 σ′2
2



. (19)

Then

FEDF (x̃|y)Fy(y) ≥ FEDH(x̃|y)Hy(y) (20)

⇔ exp(µ1 +
σ2

1

2
)[Φ(

log(y)− µ2

σ2
)− Φ(

log(y)− µ2 − σ12

σ2
)]

≥ exp(µ′1 +
σ′1

2

2
)[Φ(

log(y)− µ′2
σ′2

)− Φ(
log(y)− µ′2 − σ′12

σ′2
)]

and

SEDF (x̃|y) ≥ SEDH(x̃|y) (21)

⇔ exp(µ1 +
σ2

1

2
)

∫ y

−∞
[Φ(

log(t)− µ2

σ2
)− Φ(

log(t)− µ2 − σ12

σ2
)]dt

≥ exp(µ′1 +
σ′1

2

2
)

∫ y

−∞
[Φ(

log(t)− µ′2
σ′2

)− Φ(
log(t)− µ′2 − σ′12

σ′2
)]dt.

3 C-CAPM for a risk averse representative agent

3.1 Consumption-based asset pricing model

Suppose that an investor can freely buy or sell an asset with random payoff x̃t+1 at a price

pt. The investor’s preference can be represented by a utility function u(.). We assume that all

derivatives for u(.) exist. Denote ξ as the amount of the asset the investor chooses to buy. Then,

his decision problem is to

max
ξ
u(ct) + βEt[u(c̃t+1)] (22)

s.t. ct = et − ptξ

c̃t+1 = et+1 + x̃t+1ξ,

where et and et+1 are the original consumption levels, β is the subjective discount factor, ct is

the consumption in period t, and c̃t+1 is the consumption in period t+ 1.

From the first order condition of this problem, we can obtain the well-known consumption-

based asset pricing model which can be expressed by the following two equations (see e.g.
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Cochrane 2005, page 13-14).4

pt =
Etx̃t+1

Rf
+ β

covt[u
′(c̃t+1), x̃t+1]

u′(ct)
, (23)

and

EtR̃t+1 −Rf = −covt[u
′(c̃t+1), R̃t+1]

Etu′(c̃t+1)
(24)

where 1 + R̃t+1 = x̃t+1

Pt
is defined as the asset’s gross return in period t+ 1, 1 +Rf is defined as

the gross return of the risk-free asset, u′(·) is the marginal utility function, ER̃t+1 − Rf is the

asset’s risk premium.

The first term on the right-hand side of (23) is the standard risk-free present value formula.

This is the asset’s price for a risk-neutral representative agent or for a representative agent when

asset payoff and consumption are independent. The second term is a risk aversion adjustment.

(23) states that an asset with random future payoff x̃t+1 is worth less than its expected payoff

discounted at the risk-free rate if and only if cov[u′(c̃t+1), x̃t+1] ≤ 0. (24) shows that an asset

has an expected return equal to the risk-free rate plus a risk adjustment under risk aversion.

When the representative agent’s utility function is the power function, u(ct) =
c1−γt −1

1−γ where

γ is the coefficient of relative risk aversion and c̃t+1 and x̃t+1 are conditional lognormally dis-

tributed, (24) becomes (Campbell 2003, page 819)

Etr̃t+1 − rf +
vart(r̃t+1)

2
= γcovt(log c̃t+1, r̃t+1), (25)

where r̃t+1 = log(1 + R̃t+1) and rf = log(1 +Rf ).

(25) states that the log risk premium is equal to the product of the coefficient of relative risk

aversion and the covariance of the log asset return with consumption growth. We now provide

a generalization of these results.

From Theorem 1 in Cuadras (2002), we know that covariance can always be written as

covt[u
′(c̃t+1), x̃t+1] =

∫ +∞

−∞

∫ +∞

−∞
[F (ct+1, xt+1)− Fct+1(ct+1)Fxt+1(xt+1)]u′′(ct+1)dxt+1dct+1.(26)

Because we can write∫ +∞

−∞
[Fxt+1(xt+1|c̃t+1 ≤ ct+1)− Fxt+1(xt+1)]dxt+1 = Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ ct+1),

4Equations (23) and (24) can also be obtained in a muti-period dynamic framework from Euler equations. For

more details, see Constantinides and Duffie (1996).
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(see, e.g., Tesfatsion (1976), Lemma 1), hence, we have

covt[u
′(c̃t+1), x̃t+1] (27)

=

∫ +∞

−∞
[Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ ct+1)]Fct+1(ct+1)u′′(ct+1)dct+1

=

∫ +∞

−∞
FED(x̃t+1|ct+1)u′′(ct+1)Fct+1(ct+1)dct+1.

(27) allows us to break the covariance out in terms of the FED and agents’ preferences5.

Using (27), (23) can be rewritten as

pt =
Etx̃t+1

Rf︸ ︷︷ ︸
risk−free present value effect

−β
∫ +∞

−∞
FED(x̃t+1|ct+1)Fct+1(ct+1)[−u

′′(ct+1)

u′(ct)
]dct+1︸ ︷︷ ︸

first−degree expectation dependence effect

(28)

=
Etx̃t+1

Rf
− β

∫ +∞

−∞
FED(x̃t+1|ct+1)Fct+1(ct+1)AR(ct+1)MRSct+1,ctdct+1,

where AR(x) = −u′′(x)
u′(x) is the Arrow-Pratt absolute risk aversion coefficient, and MRSx,y = u′(x)

u′(y)

is the marginal rate of substitution between x and y.6

We can also rewrite (24) as

EtR̃t+1 −Rf =

∫ +∞

−∞
FED(R̃t+1|ct+1)Fct+1(ct+1)︸ ︷︷ ︸

consumption risk effect

[− u′′(ct+1)

Etu′(c̃t+1)
]︸ ︷︷ ︸

price of risk effect

dct+1 (29)

Because Rf = 1
β

u′(ct)
Etu′(c̃t+1) (see e.g. Cochrane 2005, page 11), we also have

EtR̃t+1 −Rf = βRf
∫ +∞

−∞
FED(R̃t+1|ct+1)Fct+1(ct+1)AR(ct+1)MRSct+1,ctdct+1 (30)

(28) shows that an asset’s price involves two terms. The effect, measured by the first term

on the right-hand side of (28), is the “risk-free present value effect.” This effect depends on

the expected return of the asset and the risk-free interest rate. The sign of the risk-free present

value effect is the same as the sign of the expected return. This term captures the “direct” effect

of the risk-free present expected return, which characterizes the asset’s price for a risk-neutral

representative agent.

The second term on the right-hand side of (28) is called “first-degree expectation depen-

dence effect.” This term involves the subjective discount factor, the expectation dependence

5When (c̃t+1, x̃t+1) is joint normal distribution, Stein’s lemma can be applied to compute covt[u
′(c̃t+1), x̃t+1] =

covt(c̃t+1, x̃t+1)Et(U
′′(c̃t+1)) (see e.g. Cochrane 2005, page 163).

6Andersen et al. (2011) propose a multi-attribute risk aversion model that allows one to separate the intertem-

poral risk aversion coefficient into the risk aversion coefficient and the MRS
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between the random payoff and consumption, the Arrow-Pratt risk aversion coefficient and the

intertemporal marginal rate of substitution. The sign of the first-degree expectation depen-

dence indicates whether the movements on consumption tend to reinforce (positive first-degree

expectation dependence) or to counteract (negative first-degree expectation dependence) the

movements on an asset’s payoff.

(29) states that the expected excess return on any risky asset over the risk-free interest rate

can be explained as the sum of the quantity of consumption risk times the price of this risk.

The quantity of consumption risk is measured by the first-degree expectation dependence of the

excess stock return with consumption, while the price of risk is the Arrow-Pratt risk aversion

coefficient times the intertemporal marginal rate of substitution.

We obtain the following proposition from (28) and (29).

Proposition 3.1 Suppose F (xt+1, ct+1) and F (Rt+1, ct+1) are continuous, then the following

statements hold:

(i) pt ≤ Etx̃t+1

Rf
for any risk averse representative agent (u′′ ≤ 0) if and only if (x̃t+1, c̃t+1) ∈

F1;

(ii) pt ≥ Etx̃t+1

Rf
for any risk averse representative agent (u′′ ≤ 0) if and only if (x̃t+1, c̃t+1) ∈

G1;

(iii) EtR̃t+1 ≥ Rf for any risk averse representative agent (u′′ ≤ 0) if and only if (R̃t+1, c̃t+1) ∈

F1;

(iv) EtR̃t+1 ≤ Rf for any risk averse representative agent (u′′ ≤ 0) if and only if (R̃t+1, c̃t+1) ∈

G1.

Proof See Appendix A.

Proposition 3.1 states that, for a risk averse representative agent, an asset’s price is low-

ered (or equity premium is positive) if and only if its payoff is positively first-degree expec-

tation dependent with consumption. Conversely, an asset’s price is raised (or equity pre-

mium is negative) if and only if its payoff is negatively first-degree expectation dependent

with consumption. Therefore, for a risk averse representative agent, it is the first-degree

expectation dependence rather than the covariance that determines its riskiness. Because

(x̃t+1, c̃t+1) ∈ F1(G1) ⇒ covt(x̃t+1, c̃t+1) ≥ 0(≤ 0) and the converse is not true, we conclude

that a positive (negative) covariance is a necessary but not sufficient condition for a risk averse

agent paying a lower (higher) asset price (or having a positive (negative) equity premium).
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Example 3.2 For bivariate log-normal (x̃t+1, c̃t+1) = (x̃, ỹ) defined in (6), σ12 ≥ 0, if and only

if pt ≤ Etx̃t+1

Rf
for any risk averse representative agent.

3.2 Comparative risk aversion

The assumption of risk aversion has long been a cornerstone of modern economics and finance.

Ross (1981) provides the following strong measure for comparative risk reversion:

Definition 3.3 (Ross 1981) u is more Ross risk averse than v if and only if there exists λ > 0

such that for all x, y

u′′(x)

v′′(x)
≥ λ ≥ u′(y)

v′(y)
. (31)

More risk averse in the sense of Ross guarantees that the more risk averse decision-maker is

willing to pay more to benefit from a mean preserving contraction.

Our important comparative statics question is: Under which condition does a change in the

representative agent’s risk preferences reduce the asset price? To answer this question let us

consider a change in the utility function from u to v. From (28), for agent v, we have

pt =
Etx̃t+1

Rf
− β

∫ +∞

−∞
FED(x̃t+1|ct+1)FCt+1(ct+1)[−v

′′(ct+1)

v′(ct)
]dct+1. (32)

Intuition suggests that if asset return and consumption are positive dependent and agent v

is more risk averse than agent u, then agent v should have a larger risk premium than agent u.

This intuition can be reinforced by Ross risk aversion and first-degree expectation dependence,

as stated in the following proposition.

Proposition 3.4 Let put and pvt denote the asset’s prices corresponding to u and v respectively.

Suppose u′, v′, u′′ and v′′ are continuous, then the following statements hold:

(i) put ≥ pvt for all (x̃t+1, c̃t+1) ∈ F1 if and only if v is more Ross risk averse than u;

(ii) put ≥ pvt for all (x̃t+1, c̃t+1) ∈ G1 if and only if u is more Ross risk averse than v;

Proof See Appendix A.

Proposition 3.4 indicates that when an asset’s payoff is first-degree positive (negative) ex-

pectation dependent on consumption, an increase in risk aversion in the sense of Ross decreases

(increases) the asset price.

Example 3.5 For bivariate log-normal (x̃t+1, c̃t+1) = (x̃, ỹ) defined in (6), if σ12 ≥ 0, then the

order of risk aversion in the sense of Ross is equivalent to the order of asset price.
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3.3 Changes in joint distributions

The question dual to the change in risk aversion examined above is: Under which condition does

a change in the joint distribution of random payoff and consumption increase the asset’s price?

We may also ask the same question for the risk premium by using the joint distribution of an

asset’s gross return and consumption. To address these questions, let us denote EHt and FEDH

as the expectation and first-order expectation dependency under distribution H(x, y). Let pFt

and pHt denote the corresponding prices under distributions F (x, y) and H(x, y) respectively.

From (28), we have

pHt =
EHt x̃t+1

Rf
− β

∫ +∞

−∞
FEDH(x̃t+1|ct+1)HCt+1(ct+1)[−u

′′(ct+1)

u′(ct)
]dct+1. (33)

From (28) and (33), we obtain the following result.

Proposition 3.6 (i) Suppose F (xt+1, ct+1) is continuous and EFt x̃t+1 = EHt x̃t+1, then pFt ≤

pHt for all risk averse representative agents if and only if F (xt+1, ct+1) is more first-degree

expectation dependent than H(xt+1, ct+1);

(ii)Suppose F (Rt+1, ct+1) is continuous, then for all risk averse representative agents, F (Rt+1, ct+1)

is more first-degree expectation dependent than H(Rt+1, ct+1) if and only if the risk premium

under F (Rt+1, ct+1) is greater than under H(Rt+1, ct+1).

Proof See Appendix A.

Proposition 3.6 shows that a pure increase in first-degree expectation dependence repre-

sents an increase in asset riskiness for all risk averse investors. The next corollary considers a

simultaneous variation in expected return and dependence.

Corollary 3.7 For all risk averse representative agents, EFt x̃t+1 ≤ EHt x̃t+1 and F (xt+1, ct+1)

is more first-degree expectation dependent than H(xt+1, ct+1) imply pFt ≤ pHt .

Proof The sufficient conditions are directly obtained from (28) and (33).

Corollary 3.7 states that, for all risk averse representative agents, a decrease in the expected

return and an increase in the first-degree expectation dependence between return and consump-

tion will decrease the asset’s price. Again, the key available concept for prediction is comparative

first-degree expectation dependence.

Example 3.8 For bivariate log-normal (R̃t+1, c̃t+1) = (x̃, ỹ) and (R̃′t+1, c̃
′
t+1) = (x̃′, ỹ′) defined

in (18) and (19), if (20) holds, then, for all risk averse representative agents, pFt ≤ pHt .
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4 C-CAPM for a higher-order risk averse representative agent

4.1 C-CAPM for a risk averse and prudent representative agent

The concept of prudence and its relationship to precautionary savings was introduced by Kimball

(1990). Since then, prudence has become a common and accepted assumption in the economics

literature (Gollier 2001). All prudent agents dislike any increase in downside risk in the sense of

Menezes et al. (1980) (see also Chiu, 2005.). Deck and Schlesinger (2010) conduct a laboratory

experiment to determine whether preferences are prudent, and show behavioral evidence for

prudence. In this section, we will demonstrate that we can get dependence conditions for

asset price and equity premium in addition to first-degree expectation dependence, when the

representative agent is risk averse and prudent.

We can integrate the right-hand term of (27) by parts and obtain:

covt[u
′(c̃t+1), x̃t+1] =

∫ +∞

−∞
FED(x̃t+1|ct+1)u′′(ct+1)Fct+1(ct+1)dct+1 (34)

=

∫ +∞

−∞
u′′(ct+1)d(

∫ ct+1

−∞
[Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ s)]Fct+1(s)ds)

= u′′(ct+1)

∫ ct+1

−∞
[Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ s)]Fct+1(s)ds|+∞−∞

−
∫ +∞

−∞

∫ ct+1

−∞
[Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ s)]Fct+1(s)dsu′′′(ct+1)dct+1

= u′′(+∞)

∫ +∞

−∞
[Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ s)]Fct+1(s)ds

−
∫ +∞

−∞

∫ ct+1

−∞
[Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ s)]Fct+1(s)dsu′′′(ct+1)dct+1

= u′′(+∞)covt(x̃t+1, c̃t+1)−
∫ +∞

−∞
SED(x̃t+1|ct+1)u′′′(ct+1)dct+1.

From equation (15), we know that a positive SED implies a positive cov(x̃t+1, c̃t+1) but the

converse is not true. Hence, we have from (34) that covt(x̃t+1, c̃t+1) ≥ 0 is a necessary but not

sufficient condition for covt[u
′(c̃t+1), x̃t+1] ≤ 0 for all u′′ ≤ 0 and u′′′ ≥ 0. With a positive SED

function, prudence is also necessary.

(23) and (24) can be rewritten as:

pt =
Etx̃t+1

Rf︸ ︷︷ ︸
risk−free present value effect

−βcovt(x̃t+1, c̃t+1)[−u
′′(+∞)

u′(ct)
]︸ ︷︷ ︸

covariance effect

(35)

−β
∫ +∞

−∞
SED(x̃t+1|ct+1)[

u′′′(ct+1)

u′(ct)
]dct+1︸ ︷︷ ︸

second−degree expectation dependence effect
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or

pt =
Etx̃t+1

Rf
− βcovt(x̃t+1, c̃t+1)AR(+∞)MRS+∞,ct (36)

−β
∫ +∞

−∞
SED(x̃t+1|ct+1)AP (ct+1)MRSct+1,ctdct+1,

where AP (x) = u′′′(x)
u′(x) is the index of absolute prudence7, and

EtR̃t+1 −Rf (37)

= covt(R̃t+1, c̃t+1)[− u′′(+∞)

Etu′(c̃t+1)
]︸ ︷︷ ︸

consumption covariance effect

+

∫ +∞

−∞
SED(R̃t+1|ct+1)

u′′′(ct+1)

Etu′(c̃t+1)
dct+1︸ ︷︷ ︸

consumption second−degree expectation dependence effect

or

EtR̃t+1 −Rf (38)

= βRfcovt(R̃t+1, c̃t+1)AR(+∞)MRS+∞,ct

+βRf
∫ +∞

−∞
SED(R̃t+1|ct+1)AP (ct+1)MRSct+1,ctdct+1.

Condition (35) includes three terms. The first one is the same as in condition (28). The second

term on the right-hand side of (35) is called the “covariance effect.” This term involves β, the

covariance of asset return and consumption, the Arrow-Pratt risk aversion coefficient and the

marginal rates of substitution. The third term on the right-hand side of (35) is called “second-

degree expectation dependence effect,” which reflects the way in which second-degree expectation

dependence of risk affects asset’s price through the intensity of downside risk aversion. Again

(35) affirms that positive correlation is only a necessary condition for all risk averse and prudent

agents to pay a lower price. Equation (37) shows that a positive SED reinforces the positive

covariance effect to obtain a positive risk premium.

We state the following propositions without proof. The proofs of these propositions are

similar to the proofs of Propositions in Section 3, and are therefore skipped. They are available

from the authors.

Proposition 4.1 Suppose F (xt+1, ct+1) and F (Rt+1, ct+1) are continuous, then the following

statements hold:

(i) pt ≤ Etx̃t+1

Rf
for any risk averse and prudent representative agent (u′′ ≤ 0 and u′′′ ≥ 0) if

and only if (x̃t+1, c̃t+1) ∈ F2;

7Modica and Scarsini (2005), Crainich and Eeckhoudt (2008) and Denuit and Eeckhoudt (2010) propose u′′′(x)
u′(x)

instead of −u′′′(x)
u′′(x) (Kimball, 1990) as an alternative candidate to evaluate the intensity of prudence.
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(ii) pt ≥ Etx̃t+1

Rf
for any risk averse and prudent representative agent (u′′ ≤ 0 and u′′′ ≥ 0) if

and only if (x̃t+1, c̃t+1) ∈ G2;

(iii) EtR̃t+1 ≥ Rf for any risk averse and prudent representative agents (u′′ ≤ 0 and u′′′ ≥ 0)

if and only if (R̃t+1, c̃t+1) ∈ F2;

(iv) EtR̃t+1 ≤ Rf for any risk averse and prudent representative agents (u′′ ≤ 0 and u′′′ ≥ 0)

if and only if (R̃t+1, c̃t+1) ∈ G2.

Modica and Scarsini (2005) provide a comparative statics criterion for downside risk in the

spirit of Ross (1981).

Definition 4.2 (Modica and Scarsini 2005) u is more downside risk averse than v if and only

if there exists λ > 0 such that for all x, y

u′′′(x)

v′′′(x)
≥ λ ≥ u′(y)

v′(y)
. (39)

More downside risk aversion can guarantee that the decision-maker with a utility function

that has more downside risk aversion is willing to pay more to avoid the downside risk increase

as defined by Menezes et al. (1980). We can therefore extend Proposition 3.4 as follows:

Proposition 4.3 Suppose u′, v′, u′′′ and v′′′ are continuous, then the following statements hold:

(i) put ≥ pvt for all (x̃t+1, c̃t+1) ∈ F2 if and only if v is more Ross and downside risk averse

than u;

(ii) put ≥ pvt for all (x̃t+1, c̃t+1) ∈ G2 if and only if u is more Ross and downside risk averse

than v;

We also obtain the following results for changes in joint distributions.

Proposition 4.4 (i) Suppose F (xt+1, ct+1) is continuous and EFt x̃t+1 = EHt x̃t+1, then pFt ≤ pHt

for all risk averse and prudent representative agents if and only if F (xt+1, ct+1) is more second-

degree expectation dependent than H(xt+1, ct+1);

(ii) Suppose F (Rt+1, ct+1) is continuous, then for all risk averse and prudent representative

agents, F (Rt+1, ct+1) is more second-degree expectation dependent than H(Rt+1, ct+1) if and

only if the risk premium under F (Rt+1, ct+1) is greater than under H(Rt+1, ct+1).

Corollary 4.5 For all risk averse and prudent representative agents, EFt x̃t+1 ≤ EHt x̃t+1 and

F (xt+1, ct+1) is more second-degree expectation dependent than H(xt+1, ct+1) implies pFt ≤ pHt ;
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4.2 C-CAPM for a higher-order representative agent

Ekern (1980) provides the following definition to sign the higher-order risk attitude.

Definition 4.6 (Ekern 1980) An agent u is N th degree risk averse, if and only if

(−1)Nu(N)(x) ≤ 0 for all x, (40)

where u(N)(·) denotes the N th derivative of u(x).

Ekern (1980) shows that all agents having utility function with N th degree risk aversion

dislike a probability change if and only if it produces an increase in N th degree risk. Risk

aversion in the traditional sense of a concave utility function is indicated by N = 2. When

N = 3, we obtain u′′′ ≥ 0, which means that marginal utility is convex, or implies prudence.

Eeckhoudt and Schlesinger (2006) derive a class of lottery pairs to show that lottery preferences

are compatible with Ekern’s N th degree risk aversion.

Jindapon and Neilson (2007) generalize Ross’ risk aversion to higher-order risk aversion.

Definition 4.7 (Jindapon and Neilson 2007) u is more N th-degree Ross risk averse than v if

and only if there exists λ > 0 such that for all x, y

u(N)(x)

v(N)(x)
≥ λ ≥ u′(y)

v′(y)
. (41)

Li (2009) and Denuit and Eeckhoudt (2010) provide context-free explanations for higher-

order Ross risk aversion. In Appendix B, we generalize the results of Section 3 and 4 to higher-

degree risks and higher order representative agents.

5 Pricing with two local absolute indexes of risk attitude

If we assume that c̃t and c̃t+1 are close enough, then we can use the local coefficient of risk

aversion and local downside risk aversion (see Modica and Scarsini, 2005) to obtain the following

approximation formulas for (28) and (35):

pt ≈
Etx̃t+1

Rf
+ β

u′′(ct)

u′(ct)

∫ +∞

−∞
FED(x̃t+1|ct+1)Fct+1(ct+1)dct+1 (42)

=
Etx̃t+1

Rf
− βAR(ct)covt(x̃t+1, c̃t+1)
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and

pt ≈
Etx̃t+1

Rf
+ β

u′′(ct)

u′(ct)
covt(x̃t+1, c̃t+1)− βu

′′′(ct)

u′(ct)

∫ +∞

−∞
SED(x̃t+1|ct+1)dct+1 (43)

=
Etx̃t+1

Rf
− βAR(ct)covt(x̃t+1, c̃t+1)− βAP (ct)

∫ +∞

−∞
SED(x̃t+1|ct+1)dct+1.

When the variation of consumption is small, (42) implies that absolute risk aversion and covari-

ance determine asset prices while (43) implies that absolute risk aversion, absolute prudence,

covariance and SED determine asset prices. We mentioned before that SED(x̃|y) is related

to the 2nd central cross lower partial moment of x̃ and ỹ, hence (43) provides a theoretical

explanation of the importance of higher-order risk preferences, higher-order moments and co-

moments in finance. Note that we obtain only approximations of asset prices when we use the

Arrow-Pratt measure of risk aversion and the extended measure of prudence as in Modica and

Scarsini (2005).

To analyze the equity premium puzzle, it is helpful to compute similar approximation for-

mulas for (29) and (37):

EtR̃t+1 −Rf ≈ −u
′′(ct)

u′(ct)

∫ +∞

−∞
FED(R̃t+1|ct+1)Fct+1(ct+1)dct+1 (44)

= AR(ct)covt(R̃t+1, c̃t+1)

and

EtR̃t+1 −Rf ≈ −u
′′(ct)

u′(ct)
covt(R̃t+1, c̃t+1) +

u′′′(ct)

u′(ct)

∫ +∞

−∞
SED(R̃t+1|ct+1)dct+1 (45)

= AR(ct)covt(R̃t+1, c̃t+1) +AP (ct)

∫ +∞

−∞
SED(R̃t+1|ct+1)dct+1.

For a given preference function and data on stock return and aggregate consumption, the

above approximations yield risk aversion estimates. These estimates allow one to gauge whether

the extended C-CAPM we propose improves the understanding of the equity premium puzzle.

6 Equity premium puzzle for a higher-order representative agent

6.1 Implications of our results on the equity premium puzzle

The major discrepancy between the C-CAPM model predictions and previous empirical reality

is identified as the equity premium puzzle in the literature. As mentioned in Section 3, the
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key empirical observations of the equity premium puzzle based on (25) can be summarized as

follows:

When the representative agent’s utility function is the power function, and c̃t+1 and x̃t+1

are conditional lognormally distributed, the observed equity premium can be explained only

by assuming a very high coefficient of relative risk aversion. It is also difficult to explain ob-

served high risk premia with the covariance because of the smoothness of consumption over

time. However, the equity premium puzzle conclusion is built on specific utility functions and

return distributions. Our theoretical results show that, for general utility functions and distri-

butions, covariance is not the key element of equity premium prediction. It is very easy to find

counterintuitive results. For example, given positively correlated gross return and consumption

distributions, a lower Arrow-Pratt coefficient of relative risk aversion may result in a higher

equity premium. Alternatively, given a representative agent’s preference, a lower covariance

between gross return and consumption may result in a higher equity premium. Therefore, (25)

is not a robust theoretical prediction of equity premia.

Our results prove that asset pricing’s comparative statics imply the following robust predic-

tions:

(a) expectation dependence between payoff and consumption determines asset riskiness

rather than covariance;

(b) when a representative agent’s risk preference satisfies higher-order risk aversion, more

expectation dependence between payoff and consumption is equivalent to a lower price.

(c) when a representative agent’s risk preference satisfies higher-order risk aversion, more

expectation dependence between gross return and consumption is equivalent to a higher equity

premium.

(d) when payoff and consumption are positive expectation dependent, higher risk aversion

in the sense of Ross is equivalent to a lower equity price.

We now test how our model can be useful to study the equity premium puzzle.

6.2 Consumption-based asset pricing with exponential utility

Does accounting for higher-order risk attitude and higher-order risk measure help mitigate the

equity premium puzzle? To answer this question, we assume that there is a representative agent

endowed with an exponential utility function defined over aggregate consumption ct. This is a
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significant departure from other classic papers on the equity premium puzzle, which consider

either the power utility preference (Mehra and Prescott, 1985; Hansen and Singleton, 1983;

Campbell, 2003), or the Epstein and Zin (1989, 1991) and Weil (1989) recursive utility function

(Kandel and Stambaugh, 1991; Campbell, 2003). To be coherent with (44) and (45), we choose

the exponential utility function u (ct) = −e−λct , which entails a constant absolute risk aversion

coefficient λ in the sense of Arrow-Pratt, and a constant absolute prudence index λ2 in the sense

of Modica and Scarsini (2005).

Because the consumption level ct is known at time t, it follows from (44) that

EtR̃t+1 −Rf ≈ λcovt(R̃t+1,∆c̃t+1) (46)

where R̃t+1 is the asset’s net return, Rf is the net return of the risk-free asset8, and ∆c̃t+1 =

c̃t+1 − ct is the differenced consumption level.

Similarly, (45) is rewritten as

EtR̃t+1 −Rf ≈ λcovt(R̃t+1,∆c̃t+1) + λ2

∫ +∞

−∞
SED(R̃t+1|ct+1)dct+1︸ ︷︷ ︸

integrated consumption SED

. (47)

We compare the risk aversion estimates between (46) and (47) to assess the equity premium

puzzle improvement resulting from the inclusion of higher-order risk measures. To this end, we

compute both the covariance and the integrated second-degree expectation dependence between

the return and the differenced consumption series. Then, we solve for the absolute risk aversion

coefficient AR = λ. At a given time period t, the relative risk aversion is equal to the absolute risk

aversion multiplied by the current consumption. Thus, we compute an unconditional estimate

of the relative risk aversion RR as the absolute risk aversion AR times the average9 aggregate

consumption level c.

To calculate the integrated consumption second-degree expectation dependence, we proceed

as follows. Assume that the consumption level c̃ ∈ [c, c] takes n increasingly ordered values over

its support, where c = c(1) ≤ · · · ≤ c(i) ≤ · · · ≤ c(n) = c. Then, the integrated consumption

second-degree expectation dependence can be approximated as a sum of the products between

8Using gross returns
(

1 + R̃t+1

)
and

(
1 +Rf

)
rather than net returns amounts to a location shift in the

returns distribution, which changes neither the risk quantity nor the risk premium.
9Using the median rather than the average aggregate consumption gives similar relative risk aversion estimates.
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lower partial covariances and changes in increasingly ordered consumption levels:∫ c

c
SED

(
R̃t+1|ct+1

)
dct+1 ≈

n∑
i=2

SED
(
R̃t+1|c̃t+1 = c(i)

)
×
[
c(i) − c(i−1)

]
(48)

=
n∑
i=2

covt

(
R̃t+1, c̃t+1|c̃t+1 ≤ c(i)

)
×
[
c(i) − c(i−1)

]
=

n∑
i=2

covt

(
R̃t+1,∆c̃t+1|c̃t+1 ≤ c(i)

)
︸ ︷︷ ︸

lower partial covariance

×
[
c(i) − c(i−1)

]
︸ ︷︷ ︸

consumption change

.

For convenience, we summarize the estimation procedure of the absolute and relative risk

aversion coefficients with second-degree expectation dependence in 5 steps:

(step 1) sort the consumption level series in ascending order
{
c(i)
}n
i=1

, then find the corre-

sponding net returns R̃ and differenced consumption levels ∆c̃ observations;

(step 2) calculate n−1 consecutive lower partial covariances between the sorted series of net

returns R̃ and differenced consumption levels ∆c̃, starting with the observations corresponding

to the two lowest levels of consumption, and adding one new observation for each subsequent

covariance;

c(1) ≤ c(2)︸ ︷︷ ︸
cov(R̃,∆c̃|c̃≤c(2))

≤ c(3)

︸ ︷︷ ︸
cov(R̃,∆c̃|c̃≤c(3))

≤ · · · ≤ c(n)

...︸ ︷︷ ︸
cov(R̃,∆c̃|c̃≤c(n))

;

(step 3) evaluate the integrated consumption SED in (48) as the sum of the products between

the n− 1 lower partial covariances and the changes in sorted consumption levels;

(step 4) solve the second-order equation (47) in λ to get an estimate of the absolute risk

aversion coefficient AR;

(step 5) compute an implied relative risk aversion proxy RR = AR× c.

The integrated consumption SED involves lower partial comovements between market port-

folio returns and consumption, and can be interpreted as a measure of downside consumption

risk (Hogan and Warren, 1974; Bawa and Lindenberg, 1977; Price, Price and Nantell, 1982).

For instance, a positive integrated consumption SED is obtained when there are “more” posi-

tive lower partial covariances between the returns and the consumption. That is, when stock

market portfolio returns are “more” positively correlated with consumption in the left part of

the consumption distribution. In that case, the stock market portfolio does not offer a hedge
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against the downside consumption risk. Thus, the representative investor requires a premium

as a compensation for bearing this risk.

The next subsection presents international evidence for the risk premium puzzle. Our results

advocate for higher-order expectation dependence measures in the consumption-based capital

asset pricing model.

6.3 Empirical results

For our empirical analysis, we use the same dataset as in Campbell (2003). The data can be

downloaded from Campbell’s website. This international developed-country dataset combines

Morgan Stanley Capital International (MSCI) stock market data with macroeconomic data on

consumption, interest rates, and the price index from the International Financial Statistics (IFS)

of the International Monetary Fund. The data allow us to construct quarterly series of stock

market return, risk-free rate and per capita consumption spanning the early 1970s through the

late 1990s for 11 countries: Australia, Canada, France, Germany, Italy, Japan, the Netherlands,

Sweden, Switzerland, UK and USA. Longer annual series are also available for Sweden (1920-

1998), the UK (1919-1998) and the U.S. (1891-1998). We refer the reader to Campbell’s (2003)

chapter, for a full data description.

We begin by replicating the risk premium puzzle results in Campbell (2003). We use these

relative risk aversion estimates as benchmark values for the C-CAPM extension we propose in

this paper. Table 1 presents some descriptive statistics for international stock market returns

and consumption. Specifically, Table 1 shows the mean, standard deviation, and first-order

serial correlation for the real returns on the stock market index, the risk-free asset and the per

capita real consumption growth. While the top panel reports the results for quarterly data from

all 11 countries, the bottom panel presents longer annual sample data results for Sweden, UK

and USA only. At least six major empirical regularities emerge from Table 1:

(i) stock market real returns have been historically high, averaging above 4.5% in most

countries except Australia and Italy;

(ii) by contrast, real risk-free rates have been low, generally under 3% except for Germany

and the Netherlands;

(ii) stock market annualized volatility is found between 15% and 27%, while the returns are

weakly autocorrelated;
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(iv) risk-free rates have shown low annualized volatility, never exceeding 3% for quarterly

data and 9% for annual data;

(vi) consumption growth has been smooth for all countries, with annualized standard devi-

ation barely reaching 3%;

(vii) the correlation and, thus, the covariance between stock market real returns and con-

sumption growth has been weak for most countries, even negative for France, Italy and Switzer-

land.

Table 1: International stock, Tbill log returns and per capita consumption growth

Country Sample period re σ (re) ρ (re) rf σ (rf ) ρ (rf ) ∆ log c σ (∆ log c) ρ (∆ log c) ρ (re,∆ log c)

USA 1947.2-1998.4 8.085 15.645 0.083 0.891 1.746 0.507 1.964 1.073 0.216 0.231

AUL 1970.1-1999.1 3.540 22.700 0.005 2.054 2.528 0.645 2.099 2.056 -0.324 0.158

CAN 1970.1-1999.2 5.431 17.279 0.072 2.713 1.856 0.667 2.082 1.971 0.105 0.183

FR 1973.2-1998.4 9.023 23.425 0.048 2.715 1.837 0.710 1.233 2.909 0.029 -0.099

GER 1978.4-1997.4 9.838 20.097 0.090 3.219 1.152 0.348 1.681 2.431 -0.327 0.027

ITA 1971.2-1998.2 3.168 27.039 0.079 2.371 2.847 0.691 2.200 1.700 0.283 -0.028

JAP 1970.2-1999.1 4.715 21.909 0.021 1.388 2.298 0.480 3.205 2.554 -0.275 0.112

NTH 1977.4-1998.4 14.407 17.384 -0.037 3.523 1.535 -0.173 1.763 2.488 -0.215 0.030

SWD 1970.1-1999.3 10.648 23.840 0.022 1.995 2.835 0.260 0.962 1.856 -0.266 0.016

SWT 1982.2-1999.1 13.745 21.828 -0.128 1.393 1.498 0.243 0.524 2.112 -0.399 -0.119

UK 1970.1-1999.2 8.156 21.190 0.084 1.301 2.957 0.478 2.203 2.507 -0.006 0.123

USA 1970.1-1998.4 6.929 17.556 0.051 1.485 1.685 0.571 1.812 0.907 0.374 0.289

SWD 1920-1998 6.561 18.262 0.069 2.167 6.189 0.667 1.727 2.831 0.169 0.213

UK 1919-1998 7.398 22.098 -0.024 1.227 5.800 0.588 1.466 2.827 0.284 0.413

USA 1891-1998 6.670 18.372 0.024 1.970 8.779 0.402 1.769 3.211 -0.117 0.449

Clearly, high stock market returns with low risk-free rates and weak covariance between stock

returns and consumption growth, yield high relative risk aversion coefficients for an aggregate

investor who maximizes a time-additive power utility function. This finding provides insight

into the equity premium puzzle presented in Table 2. For each country, Table 2 reports the

quantities required to compute the relative risk aversion in equation (25). The first column

shows the annualized percentage average excess log return inflated by one-half of the variance of

the excess log return as an adjustment for Jensen’s Inequality. Because we use quarterly series

to compute the top panel results, we multiply the values by 400. To express the bottom panel
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results in annualized percentage points, we multiply the values by 100 given that they come from

annual series. The second and third columns report the standard deviation of the market excess

log return and the consumption growth. To annualize the standard deviations, we multiply the

quarterly numbers by 200. Correlations and covariances between the excess log return and the

consumption growth are presented in the fourth and fifth columns. The two last columns give

relative risk aversion estimates based on sample correlations (RR (1)) and assuming a maximum

correlation of one (RR (2)). The latter counterfactual assumption induces lower levels of relative

risk aversion.

Table 2: The equity premium puzzle with covariance as per equation (25)

Country Sample period aere σ (ere) σ (∆ log c) ρ (ere,∆ log c) cov (ere,∆ log c) Campbell 2003

RR (1) RR (2)

USA 1947.2-1998.3 8.074 15.272 1.072 0.205 3.358 240.442 49.293

AUL 1970.1-1998.4 3.885 22.403 2.060 0.144 6.629 58.609 8.435

CAN 1970.1-1999.1 3.968 17.266 1.920 0.202 6.871 57.743 11.659

FR 1973.2-1998.3 8.308 23.175 2.922 -0.093 -6.288 < 0 12.322

GER 1978.4-1997.3 8.669 20.196 2.447 0.029 1.437 603.375 17.657

ITA 1971.2-1998.1 4.687 27.068 1.665 -0.006 -0.258 < 0 10.186

JAP 1970.2-1998.4 5.098 21.498 2.561 0.112 6.154 82.842 9.285

NTH 1977.4-1998.3 11.628 17.082 2.486 0.039 1.643 707.834 27.357

SWD 1970.1-1999.2 11.540 23.518 1.851 0.015 0.675 1708.667 26.431

SWT 1982.2-1998.4 14.898 21.878 2.123 -0.112 -5.154 < 0 32.243

UK 1970.1-1999.1 9.169 21.198 2.512 0.093 4.921 186.329 17.255

USA 1970.1-1998.3 6.359 16.979 0.909 0.274 4.224 150.531 41.308

SWD 1920-1997 5.879 18.192 2.826 0.165 8.523 68.973 11.413

UK 1919-1997 8.301 20.644 2.752 0.338 19.747 42.035 14.223

USA 1891-1997 6.329 17.968 3.211 0.490 28.283 22.377 10.971

aere = re − rf + var (ere) /2 and cov (ere,∆ log c) is in %2.

Consistent with Campbell (2003), our estimations yield implausible relative risk aversion

coefficients RR (1). These coefficients are negative for France, Italy and Switzerland while

ranging from 57.7 to 1708.7 for the other countries. Even though the risk aversion numbers

from annual series seem lower than the positive ones from quarterly data, they all exceed 22.

This stylized fact illustrates the equity premium puzzle in the basic C-CAPM.

We now present the empirical evidence on the equity premium puzzle with expectation depen-

dence as per equations (46) and (47). In our extended C-CAPM framework, the representative
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investor is equipped with an exponential utility function instead of a power utility preference

as in the basic C-CAPM studied in Campbell (2003). Moreover, we employ “net” real excess

returns and “differenced” real per capita consumption rather than “log” excess returns and real

per capita consumption “growth”. Table 3 presents the means, standard deviations and first-

order autocorrelations for the stock market index net return, the net return on the risk-free asset

and the differenced consumption. The average net return values in Table 3 are slightly higher

than the average log returns in Table 1 due to Jensen’s Inequality. Note that the stylized facts

(i)-(iv) broadly hold for net returns series as well.

Table 3: International stock, Tbill net returns and differenced per capita consumption

Country Sample period Re σ (Re) ρ (Re) Rf σ (Rf ) ρ (Rf ) ∆c σ (∆c) ρ (∆c)

USA 1947.2-1998.4 9.381 15.476 0.092 0.907 1.744 0.508 201.976 106.067 0.327

AUL 1970.1-1999.1 6.005 21.401 0.004 2.091 2.528 0.647 262.104 237.865 -0.233

CAN 1970.1-1999.2 6.931 16.940 0.070 2.739 1.863 0.667 264.206 234.242 0.092

FR 1973.2-1998.4 11.836 23.263 0.054 2.741 1.847 0.710 710.758 1856.763 0.025

GER 1978.4-1997.4 11.899 19.195 0.124 3.238 1.160 0.347 338.385 477.527 -0.310

ITA 1971.2-1998.2 6.893 28.210 0.071 2.418 2.843 0.693 261.735 185.779 0.347

JAP 1970.2-1999.1 7.105 21.668 0.031 1.417 2.287 0.478 48.238×103 41.908×103 -0.380

NTH 1977.4-1998.4 16.163 17.183 -0.023 3.551 1.547 -0.173 352.418 479.193 -0.194

SWD 1970.1-1999.3 13.642 24.150 0.060 2.040 2.841 0.260 610.491 1068.867 -0.227

SWT 1982.2-1999.1 16.293 21.135 -0.133 1.406 1.499 0.243 145.099 552.346 -0.398

UK 1970.1-1999.2 10.534 22.259 0.036 1.346 2.932 0.481 121.591 124.522 0.061

USA 1970.1-1998.4 8.506 17.278 0.061 1.502 1.694 0.570 230.745 114.609 0.353

SWD 1920-1998 8.519 19.399 0.057 2.391 6.665 0.667 786.308 1184.255 0.136

UK 1919-1998 10.196 23.620 -0.074 1.405 6.011 0.585 56.743 100.789 0.437

USA 1891-1998 8.622 18.843 0.003 2.382 9.110 0.400 99.139 132.508 0.222

Re and Rf are net returns in %. ∆c is the differenced consumption also in %.

Furthermore, the differenced consumption series ∆c exhibits patterns that are similar to the

consumption growth series ∆ log c:

(vii) first-order autocorrelations are weak, while as shown in Figure 1, the coefficients of

variation10 for these two series are almost identical and do not exceed 2 except for France and

Switzerland.

10The coefficient of variation is the ratio of the standard deviation to the mean.
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Figure 1: Coefficients of variation for consumption growth and differenced consumption series

It is noteworthy to mention that the extended C-CAPM we propose can easily accommodate

higher-order risk attitudes without any particular restriction on the choice of the utility function

or the joint distribution of the return and consumption. Table 4 turns to equations (46) and

(47) to estimate the coefficient of relative risk aversion in the C-CAPM under expectation

dependence. The two first columns in Table 4 report the annualized average excess returns

and per capita consumption levels expressed in percentage points. The third column gives the

covariance between the net return and the differenced consumption. The fourth column gives

the integrated second-degree expectation dependence between the net return and the differenced

consumption, which is computed according to (48). For nearly all countries, the covariance and

the integrated SED have the same sign. As argued in Campbell (2003), the negative covariance

and integrated SED for France and Switzerland may arise from short-term measurement errors in

consumption. Interestingly, for Italy, the covariance between the net return and the differenced

consumption is negative, whereas the integrated SED appears positive. By focusing only on the

covariance, one might fail to capture the downside risk and thus, miss an important part of the

equity premium. We now discuss the empirical evidence supporting this argument.
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The right part of Table 4 presents two groups of four columns each. The first group headed

FED uses (46) to compute the implied absolute risk aversion, dividing the average excess return

by the covariance between the net return and the differenced consumption. In this group, the

column headed AR (1) reports the absolute risk aversion. The column headed AR (2) sets the

correlation to a maximum value of one before computing the absolute risk aversion. The next

two columns headed RR (1) and RR (2) report relative risk aversion estimates, resulting from

the product between corresponding absolute risk aversion coefficients and average consumption

levels. The implied relative risk aversion coefficients estimated from the first-degree expectation

dependence C-CAPM (46) are similar to the ones from the basic C-CAPM presented in Table

2. The equity premium puzzle seems robust across all 11 countries with huge relative risk

aversion numbers. Even when we consider a maximum correlation of one between return and

consumption, estimated relative risk aversion coefficients are still big for the U.S., Germany, the

Netherlands, Sweden, and Switzerland. The results are similar to those presented in Table 2,

which supports our methodology.

The second column group headed “FED with SED” gives the absolute risk aversion coeffi-

cients by solving the second-order equation (47). The absolute risk aversion coefficient is the

only unknown in (47), because the estimated average excess return, covariance and integrated

SED are readily available. The second group of four columns has the same structure as the

previous one. The columns headed AR (1) and AR (2) show implied absolute risk aversion coef-

ficients based on empirical correlation or assuming a maximum correlation of one. These implied

absolute risk aversion values are then multiplied by average consumption levels to calculate the

corresponding relative risk aversion coefficients RR (1) and RR (2). In contrast with the re-

sults from the FED C-CAPM (46), the relative risk aversion coefficients estimated from the

FED-SED C-CAPM (47) appear much closer to plausible numbers. The relative risk aversion

coefficients are still negative for France and Switzerland, but now range from 7.9 to 95.1 for

the other countries. Clearly, we notice a sharp reduction in the relative risk aversion estimates

when the C-CAPM includes the consumption second-degree expectation dependence effect. The

FED-SED implied relative risk aversion coefficients are 63, 32, 24, 14, 12, 11 times smaller than

their FED implied counterparts for Sweden, Germany, the Netherlands, USA, UK, and Japan.

Further, the relative risk aversion estimate shifts from a negative value to become positive (18.5)

for Italy. The RR (2) values vary from 2.6 to 15.3 in the last column, which correspond to the
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theoretical values often proposed in the literature.

In a nutshell, accounting for the integrated SED improves the C-CAPM estimation dra-

matically and delivers reasonable risk aversion coefficients. Our empirical findings illustrate the

need to include higher-order risk attitudes associated with higher-degree expectation dependence

measures in the C-CAPM analysis. Beyond its theoretical appeal, the concept of expectation

dependence helps bridge the gap between real-world data and the consumption-based capital

asset pricing model.
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7 Concluding remarks

We have proposed a new theoretical framework for solving the equity premium puzzle. Our

contribution emphasizes the importance of measuring the dependence between agregate con-

sumption and asset returns adequately. We use the concept of expectation dependence and

show that taking into account higher degrees of risk dependence and orders of risk behavior

than covariance and risk aversion is the key to understanding the variations in asset returns and

the corresponding equity premia. Our empirical results confirm that using more general mea-

sures of risk dependence and risk behavior reduce the implicit measures of relative risk aversion

and partly solve the equity premium puzzle.

Because the comparative Ross risk aversion is fairly restrictive upon preference, some readers

may regard the comparative risk aversion results as a negative result, because no standard utility

functions satisfy such condition on the whole domain. However, some utility functions satisfy

comparative Ross risk aversion in some domain. For example, Crainich and Eeckhoudt (2008)

and Denuit and Eeckhoudt (2010) assert that (−1)N+1 u(N)

u′ is an appropriate local index of

N th order risk attitude. Nonetheless, some readers may think that because no standard utility

functions satisfy these conditions, experimental methods to identify these conditions may need

to be developed. Ross (1981), Modica and Scarsini (2005), Li (2009) and Denuit and Eeckhoudt

(2010) provide context-free experiments for comparative Ross risk aversion. Denuit et al (2011)

found a relationship between Ross risk aversion and one-switch utility function. More recently,

Dionne and Li (2012) verified that decreasing cross risk aversion gives rise to the utility function

family belonging to the class of n-switch utility functions. More research is needed in both

directions to develop the theoretical foundations for C-CAPM. This paper takes a first step

in that direction. We have proposed a new unified interpretation to C-CAPM, which we have

related to the equity premium puzzle problem. Our results are important because C-CAPM

shares the positive versus normative tensions that prevail in finance and economics to explain

asset prices and equity premia.
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8 Appendix A: Proofs of propositions

8.1 Proof of Proposition 3.1

(i): The sufficient conditions are directly obtained from (28) and (29). We prove the necessity

using a contradiction. Suppose that FED(x̃t+1|ct+1) < 0 for c0
t+1. Because of the continuity of

FED(x̃|y), we have FED(x̃t+1|c0
t+1) < 0 in interval [a,b]. Choose the following utility function:

ū(x) =



αx− e−a x < a

αx− e−x a ≤ x ≤ b

αx− e−b x > b,
(49)

where α > 0. Then

ū′(x) =



α x < a

α+ e−x a ≤ x ≤ b

α x > b
(50)

and

ū′′(x) =



0 x < a

−e−x a ≤ x ≤ b

0 x > b.
(51)

Therefore,

pt =
Etx̃t+1

Rf
− β 1

u′(ct)

∫ b

a
FED(x̃t+1|ct+1)FCt+1(ct+1)e−ct+1dct+1 >

Etx̃t+1

Rf
. (52)

This is a contradiction.

(ii) (iii) and (iv): We can prove them using the same approach used in (i).

8.2 Proof of Proposition 3.4

(i): The sufficient conditions are directly obtained from (28), and (32). We prove the necessity

by a contradiction. Suppose that there exists some ct+1 and ct such that u′′(ct+1)
v′′(ct+1) > u′(ct)

v′(ct)
.

Because u′, v′, u′′ and v′′ are continuous, there exists a neighborhood [γ1, γ2], such that

u′′(ct+1)

v′′(ct+1)
>
u′(ct)

v′(ct)
for all (ct+1, ct) ∈ [γ1, γ2], (53)
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hence

−u′′(ct+1)

−v′′(ct+1)
>
u′(ct)

v′(ct)
for all (ct+1, ct) ∈ [γ1, γ2], (54)

and

−u
′′(ct+1)

u′(ct)
> −v

′′(ct+1)

v′(ct)
for all (ct+1, ct) ∈ [γ1, γ2]. (55)

If F (x, y) is a distribution function such that FED(x̃t+1|ct+1)FY (y) is strictly positive on interval

[γ1, γ2] and is equal to zero on other intervals, then we have

put − pvt = β

∫ γ2

γ1

FED(x̃t+1|ct+1)FY (y)[
u′′(ct+1)

u′(ct)
− v′′(ct+1)

v′(ct)
] < 0. (56)

This is a contradiction.

(ii): We can prove them using the same approach used in (i).

8.3 Proof of Proposition 3.6

(i) The sufficient conditions are directly obtained from (28), and (33). We prove the necessity us-

ing a contradiction. Suppose FEDF (x̃t+1|ct+1)FCt+1(ct+1) < FEDH(x̃t+1|ct+1)HCt+1(ct+1) for

c0
t+1. Owing to the continuity of FEDF (x̃t+1|ct+1)FCt+1(ct+1)− FEDH(x̃t+1|ct+1)HCt+1(ct+1),

we have FEDF (x̃t+1|c0
t+1)FCt+1(c0

t+1) < FEDH(x̃t+1|c0
t+1)HCt+1(c0

t+1) in interval [a,b]. Choose

the following utility function:

ū(x) =



αx− e−a x < a

αx− e−x a ≤ x ≤ b

αx− e−b x > b,
(57)

where α > 0. Then

ū′(x) =



α x < a

α+ e−x a ≤ x ≤ b

α x > b
(58)

and

ū′′(x) =



0 x < a

−e−x a ≤ x ≤ b

0 x > b.
(59)
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Therefore,

pFt − pHt (60)

= β
1

u′(ct)

∫ b

a
[FEDH(x̃t+1|ct+1)FCt+1(ct+1)− FEDF (x̃t+1|y)FCt+1(ct+1)]e−ct+1dct+1 > 0.

(ii): We can prove them using the same approach used in (i).

9 Appendix B: Higher-order risks and higher order representa-

tive agents

In this section, we suppose x̃ × ỹ ∈ [a, b] × [d, e], where a, b, d and e are finite. Rewriting

1thED(x̃|y) = FED(x̃|y), 2thED(x̃|y) = SED(x̃|y) =
∫ y
d FED(x̃|t)FY (t)dt, repeated integrals

yield:

N thED(x̃|y) =

∫ y

d
(N − 1)thED(x̃|t)dt, for N ≥ 3. (61)

Definition 9.1 (Li 2011) If kthED(x̃|e) ≥ 0, for k = 2, ..., N − 1 and

N thED(x̃|y) ≥ 0 for all y ∈ [d, e], (62)

then x̃ is positive N th-order expectation dependent on ỹ (N thED(x̃|y)).

The family of all distributions F satisfying (62) will be denoted by FN . Similarly, x̃ is

negative N th-order expectation dependent on ỹ if (62) holds with the inequality sign reversed,

and the totality of negative N th-order expectation dependent distributions will be denoted by

GN . From this definition, we know that FN−1 ⊆ FN and GN−1 ⊆ GN but the converse is

not true. N th-order expectation dependence is related to N th-order central cross lower partial

moment of x̃ and ỹ (See, Li (2011) for more details). Several recent studies in finance have

focused on estimators of higher-order moments and comoments of the return distribution (i.e.

coskewness and cokurtosis) and showed that these estimates generate a better explanation of

investors’ portfolios (see, Martellini and Ziemann (2010) for more details).

Definition 9.2 Define ithEDF and ithEDH , for i = 1, .., N , as the ith expectation dependence

under distribution F (x, y) and H(x, y) respectively. Distribution F (x, y) is more first-degree
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expectation dependent than H(x, y), if and only if FEDF (x̃|y)FY (y) ≥ FEDH(x̃|y)HY (y) for

all y ∈ [d, e]. Distribution F (x, y) is more N th-order expectation dependent than H(x, y) for

N ≥ 2, if kthEDF (x̃|e) ≥ kthEDH(x̃|e), for k = 2, ..., N − 1 and

N thEDF (x̃|y) ≥ N thEDH(x̃|y) for all y ∈ [d, e]. (63)

Suppose (x̃t+1, R̃t+1, c̃t+1) ∈ [x, x]× [R,R]× [c, c]. We integrate the right-hand term of (27)

by parts repeatedly until we obtain:

cov[u′(c̃t+1), x̃t+1] =

N∑
k=2

(−1)ku(k)(c)kthED(x̃t+1|c) (64)

+

∫ c

c
(−1)N+1u(N+1)(ct+1)N thED(x̃t+1|ct+1)dct+1, for n ≥ 2.

Then (23) and (24) can be rewritten as:

pt =
Etx̃t+1

Rf︸ ︷︷ ︸
discounted present value effect

−β
N∑
k=2

kthED(x̃t+1|c)[(−1)k+1u
(k)(c)

u′(ct)
]︸ ︷︷ ︸

higher−order cross moments effect

(65)

−β
∫ c

c
N thED(x̃t+1|ct+1)[(−1)N+2u

(N+1)(ct+1)

u′(ct)
]dct+1︸ ︷︷ ︸

Nth−order expectation dependence effect

=
Etx̃t+1

Rf
− β

N∑
k=2

kthED(x̃t+1|c)AR(k)(c)MRSc,ct

−β
∫ c

c
N thED(x̃t+1|ct+1)AR(k+1)(ct+1)MRSct+1,ctdct+1

where AR(k)(x) = (−1)k+1 u
(k)(x)
u′(x) is the absolute index of kth order risk aversion, and

EtR̃t+1 −Rf (66)

=
N∑
k=2

kthED(R̃t+1|c)[(−1)k+1 u(k)(c)

Etu′(c̃t+1)
]︸ ︷︷ ︸

consumption cross moments effect

+

∫ c

c
N thED(R̃t+1|ct+1)[(−1)N+2u

(N+1)(ct+1)

Etu′(c̃t+1)
]︸ ︷︷ ︸

Nth degree expectation dependence effect

dct+1

= βRf
N∑
k=2

kthED(R̃t+1|c)AR(k)(c)MRSc,ct

+βRf
∫ c

c
N thED(R̃t+1|ct+1)AR(k+1)(ct+1)MRSct+1,ctdct+1.
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Condition (65) includes three terms. The first one is the same as in condition (28). The second

term on the right-hand side of (65) is called the “higher-order cross moments effect.” This term

involves β, the intensity of higher-order risk aversion, the marginal rates of substitution and the

higher-order cross moments of asset return and consumption. The third term on the right-hand

side of (65) is called “N th − degree expectation dependence effect,” which reflects the way in

which N th-degree expectation dependence of risks affects asset price through the intensity of

absolute N th risk aversion and the marginal rates of substitution.

We state the following propositions without proof (The proofs of these propositions are

similar to the proofs of propositions in Section 3, and are therefore skipped. They are however

available from the authors.).

Proposition 9.3 Suppose F (xt+1, ct+1) and F (Rt+1, ct+1) are continuous, then the following

statements hold:

(i) pt ≤ Etx̃t+1

Rf
for any ith risk averse representative agent with i = 2, ..., N + 1 if and only

if (x̃t+1, c̃t+1) ∈ FN ;

(ii) pt ≥ Etx̃t+1

Rf
for any ith risk averse representative agent with i = 2, ..., N + 1 if and only

if (x̃t+1, c̃t+1) ∈ GN ;

(iii) EtR̃t+1 ≥ Rf for any ith risk averse representative agents with i = 2, ..., N + 1 if and

only if (R̃t+1, c̃t+1) ∈ FN ;

(iv) EtR̃t+1 ≤ Rf for any ith risk averse representative agents with i = 2, ..., N + 1 if and

only if (R̃t+1, c̃t+1) ∈ GN .

Proposition 9.3 suggests that, for an ith-degree risk averse representative agent with i =

1, .., n = 1, an asset’s price is lowered if and only if its payoff N th-order is positively expectation

dependent on consumption. Conversely, an asset’s price is raised if and only if it N th-order

is negatively expectation dependent on consumption. Therefore, for ith-degree representative

agents with i = 1, .., N + 1, it is the N th-order expectation dependence that determines its

riskiness. The next two propositions and Corollary 9.6 have a similar general intuition when

compared with those in Section 3.

Proposition 9.4 Suppose u′, v′, uN+1 and vN+1 are continuous, then the following statements

hold:

(i) put ≥ pvt for all (x̃t+1, c̃t+1) ∈ FN if and only if v is more ith risk averse than u for

i = 2, ..., N + 1;
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(ii) put ≥ pvt for all (x̃t+1, c̃t+1) ∈ GN if and only if u is more ith risk averse than v for

i = 2, ..., N + 1;

Proposition 9.5 (i) Suppose F (xt+1, ct+1) is continuous and EFt x̃t+1 = EHt x̃t+1, then pFt ≤ pHt

for all ith risk averse representative agents with i = 2, ..., N + 1 if and only if F (xt+1, ct+1) is

N th more expectation dependent than H(xt+1, ct+1);

(ii) Suppose F (Rt+1, ct+1) is continuous, then for all ith risk averse representative agents

with i = 2, ..., N + 1,, F (Rt+1, ct+1) is more ith-degree expectation dependent than H(Rt+1, ct+1)

if and only if the risk premium under F (Rt+1, ct+1) is greater than H(Rt+1, ct+1).

Corollary 9.6 For all ith risk averse representative agents with i = 2, ..., N + 1, EFt x̃t+1 ≤

EHt x̃t+1 and F (xt+1, ct+1) is more N th-degree expectation dependent than H(xt+1, ct+1) implies

pFt ≤ pHt ;
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