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Abstract:

We show how to bound the effect of belief-dependent preferences on choices in
sequential two-player games without information about the (higher-order) beliefs of
players. The approach can be applied to a class of belief-dependent preferences which
includes reciprocity (Dufwenberg and Kirchsteiger, 2004) and guilt aversion (Battigalli
and Dufwenberg, 2007) as special cases. We show how the size of the bounds can be
substantially reduced by exploiting a specific invariance property common to
preferences in this class. We illustrate our approach by analyzing data from a large
scale experiment conducted with a sample of participants randomly drawn from the
Dutch population. We find that behavior of players in the experiment is consistent with
significant guilt aversion: some groups of the population are willing the pay at least 0.16€
to avoid “letting down” another player by 1€. We also find that our approach produces
narrow and thus very informative bounds on the effect of reciprocity in the games we
consider. Our bounds suggest the model of reciprocity we consider is not a significant
determinant of decisions in our experiment.
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1 Introduction

In recent years there has been a growing interest in using belief-dependent preferences
to explain experimental behavior ad odds with classical assumptions about human pref-
erences (e.g. Charness and Dufwenberg (2006), Falk, Fehr, and Fischbacher (2008) and
Charness and Dufwenberg (2010)). Belief-dependent preferences capture the idea that
psychological factors such as people’s beliefs concerning other people’s intentions and
expectations affect decision making.! Behavior may for example be motivated by the
propensity to avoid feelings of guilt which result from ‘letting down’ others (see e.g. Bat-
tigalli and Dufwenberg, 2007). Guilt averse decision makers form beliefs about what
others expect in order to infer how much these persons can be and are ‘let down’ by their
own decisions. Alternatively, behavior may be motivated by reciprocity, i.e. the propen-
sity to react kindly to perceived kindness and unkindly to perceived unkindness (see e.g.
Dufwenberg and Kirchsteiger (2004)). Reciprocal decision makers form beliefs about the
intentions of others in order to infer the (un)kindness of their behavior.

A natural approach to measure the relevance of belief-dependent preferences has been
to test whether stated beliefs can predict behavior in a way consistent with a given type
of belief-dependent preference. Charness and Dufwenberg (2006) for example ask players
to state their higher-order beliefs in a trust game. They find that stated beliefs correlate
with decisions in a way predicted by models of guilt aversion. More recently, Dhaene and
Bouckaert (2010) measure the relevance of Dufwenberg and Kirchsteiger’s (2004) theory
of sequential reciprocity using stated first- and second-order beliefs and find empirical
support.

Concerns have recently been expressed about the possibility that stated higher-order
beliefs are correlated with preferences in a way which biases the estimated relevance of
belief-dependent preferences. While beliefs and preferences may be correlated for various
reasons, the source of this correlation is most often attributed to the presence of consensus

effects which arise when individuals believe that others feel and think like themselves.

!Geanakoplos, Pearce, and Stacchetti (1989) and Battigalli and Dufwenberg (2009) present general

frameworks to incorporate belief-dependent preferences in economics.



Consensus effects imply that stated beliefs about play in games correlate with preferences.?

Vanberg (2010) uses a specific example to theoretically show that rational belief formation
implies a correlation between preferences and beliefs of any order as long as preferences
of players are correlated across the population. He concludes that we can expect such a
correlation in experimental settings even when behavior is not driven by belief-dependent
preferences. Bellemare, Sebald, and Strobel (2011) empirically investigate how correlation
between preferences and stated beliefs can affect the estimated willingness to pay to avoid
feeling guilty of letting down another player. They estimate this correlation by jointly
modeling decisions and beliefs of players in a sequential trust game. They find that
correlation between preferences and stated beliefs can exaggerate the measured level of
guilt aversion in a population by a factor of two. Blanco, Engelmann, Koch, and Normann
(2011) analyze the interaction between preferences and beliefs in a sequential prisoner’s
dilemma. They exploit data from a within-subject design (with participants playing both
roles) and vary the information provided to players about the play of others to separately
identify the direct impact of beliefs on decisions from consensus effects. They conclude
that consensus effects are the primary determinants of the observed correlation between
stated beliefs and decisions. These results highlight the complexity of measuring the
relevance of belief-dependent preferences when exploiting data on higher-order beliefs.
This paper presents a new approach to learn about the relevance of belief-dependent
preferences which does not require information about beliefs of players. We formally
characterize conditions under which our approach can be used and we propose a simple
two step estimation procedure to perform the required inferences. Although our approach
is not exclusively tailored for experimental investigations, the conditions which have to
be satisfied in order to use the approach proposed make it more suitable for controlled
environments. Hence, we illustrate our approach by conducting an experiment using
simple binary sequential two-player games to analyze the relevance of belief-dependent

guilt aversion and reciprocity.

2Charness and Dufwenberg (2006) discuss the possibility that false consensus effects explain the cor-

relation between decisions and beliefs in their data.



Our approach builds on random utility models to interpret the decisions of players in
games.®> We specify the utility of players as a function of their own monetary payoffs,
their psychological payoffs which capture their belief-dependent preferences, as well as
other unobservable factors. Our main parameter of interest measures the effect of belief-
dependent preferences on behavior. Importantly, the psychological payofts capturing the
belief-dependent preferences are unknown variables without exploiting information on
the beliefs of players. However, they are known to lie within well defined intervals. Our
empirical strategy is to determine what can be learned about belief-dependent preferences
from observing the monetary payoffs and the intervals of the psychological payoffs.

An immediate consequence of interval-measurements of the psychological payoffs is
that the model parameters are set rather than point identified (see Manski and Tamer
(2002)). Set identification implies that a range of parameter values — the identification
region — are consistent with the data given the assumed model. The informativeness of
the data given the model naturally decreases with the size of the identification region.
Existing work has established that identification regions of the parameters of random
utility models with interval measured regressors can be large and uninformative. Manski
(2010) theoretically analyzes the binary random expected utility model when researchers
do not have any information about the expectations of decision makers. He finds that the
identification region of the model parameters is unbounded and thus uninformative when
researchers cannot a priori sign the difference in expectation across both choices. Belle-
mare, Bissonnette, and Kroger (2010) analyze empirically decisions of senders in a binary
trust game and estimate largely uninformative identification regions of their parameters
when they do impose a priori assumptions about the beliefs of players. These results
reveal the important difficulties confronting researchers interested in making inferences
on belief-dependent preferences without using information about the beliefs of players.

One of the main insights of our analysis is that several prominent belief-dependent

preferences satisfy an ‘invariance property’ which can be exploited to substantially reduce

3Random utility models have been extensively used to analyze choice behavior in experiments. See

Cappelan, Hole, Sgrensen, and Tungodden (2007), Bellemare, Kroger, and van Soest (2008).



the size of the identification region in order to produce informative bounds on the relevance
of belief-dependent preferences. This invariance property is best described in the context
of a game with two players — A and B. The invariance property holds if player B’s
decision is unaffected by his/her belief-dependent preferences when his choice cannot
influence the final payoff of player A. To illustrate, suppose player B must choose between
two final allocations, both of which provide player A with the same material payoff.
Then, prominent models of guilt aversion predict that player B cannot feel any guilt
from letting down player A by choosing a specific allocation because player A’s final
payoff is independent of player B’s choice. Similarly, player B cannot act reciprocally if
player A’s payoff is independent of player B’s choice. This is because player B cannot be
(un)kind by providing player A with an (below) above average payoff. It follows that our
empirical strategy involves implementing a sufficiently high number of games in which
the invariance property holds to identify and estimate all other model parameters but
the sensitivity parameter measuring the relevance of belief-dependent preferences. We
show that the ability to recover separate estimates of the remaining parameters is the key
to reduce the size of the identification region and to obtain informative bounds on the
relevance of belief-dependent preferences.

We illustrate our approach by conducting an experiment using simple binary sequen-
tial two-player games. We derive closed form expressions for the bounds of the sensitivity
parameters measuring the relevance of simple guilt aversion (Battigalli and Dufwenberg
(2007)) and reciprocity (Dufwenberg and Kirchsteiger (2004)) in this binary choice set-
ting. We implement our experiment using the LISS panel, a large-scale Internet panel
whose respondents form a representative sample of the Dutch population.* Close to 1500
panel members completed our experiment which involved 500 payoff-wise unique games.
One third of these games satisfied the payoff invariance condition discussed above. We

exploit the unique features of the panel to perform inferences for different socio-economic

4Other experimental studies which have used similar platforms to obtain a representative sample of
participants from the Dutch population include Bellemare and Kroger (2007), Bellemare, Kroger, and

van Soest (2008).



groups, allowing us to asses the heterogeneity in belief-dependent preferences across a
broad population.

Our analysis of guilt aversion suggests that the population willingness to pay to avoid
letting down the other player by 1€ is significantly different from zero and at least greater
or equal to 0.08€. We also find that the lower bound of the willingness to pay to avoid guilt
is higher for several groups of the population. In particular, we find that high educated
individuals are willing to pay at least 0.14€ to avoid letting down the other player by 1€,
while men are willing to pay at least 0.16€ to avoid letting down the other player by 1€.
Our approach also produces very narrow and thus highly informative bounds around the
relevance of reciprocity in our experiment. Our results suggest that reciprocity weakly
predicts the final decisions made in our experiment for all groups of the population we
consider. The narrowness of these bounds also suggests that stated belief data are not
needed to make precise inferences on the relevance of reciprocity in our experiment.

The organization of the paper is as follows. Section 2 presents a class of two-player
extensive form games with belief-dependent preferences (also called ‘psychological games’)
which is used to formally characterize the conditions under which our approach can be
used. Section 3 presents our proposed approach and details how it can be applied to the
analysis of guilt aversion and reciprocity. Section 4 describes our experiment, data, and
presents results for the analysis of guilt aversion and reciprocity. Section 5 discusses the

possibility to make inferences at the individual level and concludes.

2 A class of psychological games

In this section we present a class of two-player extensive form games with belief-dependent
preferences building on Battigalli and Dufwenberg (2009). This class of games represents
the strategic environment and class of preferences which we use in the subsequent sections
to formally characterize the conditions under which our identification approach can be
used.

Formally, let the set of players be N' = {1,2}. Denote as H the finite set of histories



h, with the empty sequence h® € H, and Z the set of terminal histories. Histories
h € H are sequences that describe the choices of players on the path to history h. More
precisely, a history of length z € X is a sequence of actions h = (a',...,a®) where each
a' = (at, ab) represents the profile of actions taken at stage ¢ (1 <t < x). The history
h = (a',...,a") precedes h = (a',...,a®), written h < h, if h is a prefix of h (ie. v<z
and (a',...,a") = (a',...,a")). Turned up side down, we say that h immediately succeeds
hifz =v+1and (a',...,a") = (a',...,a"). At each non-terminal history h € H\Z
each player i € A has a nonempty, finite set of feasible actions A; ;. A typical element
of A, is denoted by a; ;. Note, A;j can be a singleton, meaning that player i is inactive
at history h. In fact, we assume that players do not choose simultaneously. Whenever
a player i € N is active, player 7 € N with j # i is inactive. Let A; be the finite set
of pure strategies of player i € A" and A = [], A be the set of joint pure strategies.
Pure strategies of player ¢ € N and joint pure strategies are respectively denoted by
a; = (a;p)ner\z and a. Furthermore, denote by A;(h) the set of strategies a; of player
i that allow for history h. Terminal histories ((a) € Z depend on joint pure strategies
ac A

To capture belief-dependent preferences like reciprocity and guilt we assume that in

every history players hold
(i) a belief about the strategies of the other player,
(ii) a belief about the belief of the other player,
(iii) a belief about the belief about the belief of the other player etc, and
(iv) we assume players update their beliefs as events unfold.

More specifically, we assume that players hold infinite hierarchies of conditional beliefs.
This means, player i € N holds an updated and revised belief i} (-|h) € A(A;(h)) about
the strategies of the co-player j, where A(A;(h)) denotes the set of behavioral strategies
defined on A;(h). Given this, u; = (u} (:|h))nen represents the system of first-order beliefs

of player 4. In addition, at every history h player i forms expectations p?(h) = EZ(,u]l) over



the system of first-order beliefs of player j, forms expectations p?(h) over the system of
second-order beliefs of player j etc. p? and u? respectively denote the system of second-
and third-order beliefs of player i. More generally, we denote the infinite hierarchy of
conditional probability systems of player i € A” by p; where p; = (uF)?°, and a hierarchy
of conditional probability systems up to order k < oo as uF.

Given this, we can define belief-dependent preferences:’

Definition 1 The belief-dependent utility u of any player i € N from choosing strategy
a; € A;(h) in history h is:

ui(ai, i) = milai, 1) + ¢ Bilai, py) + Aei(as)
where 1,5 € N.

First, m;(a;, u}(h)) denotes player i’s expected material payoff depending on his strategy
and first-order belief. Second, B;(a;, uF) denotes player i’s belief-dependent psychological
payoff depending on his strategy and his hierarchy of beliefs pu¥ up to order k < oo. The
belief-dependent payoff B;(a;, u¥) can, for example, capture belief-dependent reciprocity
as defined by Dufwenberg and Kirchsteiger (2004) or simple guilt aversion as defined
by Battigalli and Dufwenberg (2007). Our parameter of interest ¢ captures player i’s
sensitivity to his/her psychological payoff. Lastly, €;(a;) denotes unobserved preferences
from choosing the strategy a; assumed to be independent of all variables entering the
model, and A denotes a noise parameter.

This brings us to the definition of our class of psychological games

Definition 2 A two-player extensive form game with belief-dependent preferences is a

tuple I' = (N, H, (u;)ien) with u; as defined in Definition 1.

We next present our approach to make inferences on ¢ without information on p?.

5Note, in accordance with the existing literature on belief-dependent preferences we assume that
overall utilities of players are additive in own material and belief-dependent psychological payoffs. In
the framework of Battigalli and Dufwenberg (2009) a more general specification is presented in their

definition 4 [p. 12].



3 The proposed approach

Our objective is to understand whether and under what conditions one can make inferences
on the sensitivity parameter ¢ without information about the set of beliefs p?. Consider
first the following condition in the context of the class of extensive form games with

belief-dependent preferences I' defined in the previous section:

History condition (H) There exists a non-empty set H C # such that

H={heH : A= {a;vh, a;ih} and h is immediately succeeded

by only terminal histories ((a) € Z}.

An extensive form game satisfies condition H if there exists a non-empty set of last non-
terminal histories H C H in which the active player has two pure actions to choose from.

Consider, for example, the two player sequential game in Figure 1.
[Figure 1]

In this simple two-player game, player j can choose either the outside option R and
determine the monetary payoffs for himself and player ¢, or he can choose L and let player
i decide the final allocation. If player j chooses the outside option R, then m;(R), m;(R)
respectively denote the monetary payoffs of players ¢ and j. On the other hand, if he
chooses L, then player ¢ must choose between [ and r at history A' in the game tree. We
denote as m,(r) and m,(l) for z € {i,j} the monetary payoffs when playing r and [ at
history h'. Both histories h” and h' are histories in which the respective active player can
choose between two pure actions, but only history hA' is immediately succeeded by only
terminal histories, i.e. H = {h'}. We say a game does not satisfy condition H whenever
there is no last non-terminal history in this game in which the active player in that history
only has two actions.

Let condition H hold. It follows that the utility of any player 7 € N in history heH

reduces to

ui(ag j, puy) = mi(a, ;) + ¢Bi(ag j, 1f) + Aei(a, ;)



where a,; € {a;ﬁ, a;'ﬁ} and k < oo. Note that m;(a;, u}) = 7;(a;) since player i no longer
faces uncertainty over decisions of player j. Given this, define Au,j; = ui(a; 2= ui(a: i)

) — €;(a’ ;). Assuming expected utility

Amj = mia. ;) — ﬂi(a;:ﬁ), and Ae;; = €i<a;,h i

ih
maximization, player ¢+ will choose to play a; ; in history hif

Auiﬁ = Aﬂ-i,fz + gbABZ-J”L + )‘Aei,ﬁ >0 (1)
The decision rule (1) leads to the following choice probability
Pr(c; = aj;|m, ) = F ([Am;; + 6AB,;]/A) (2)

where 7 is a vector of payoffs for all a,; € A, ; and F(-) denotes the cumulative distri-
bution function of Ae, ;. This is a standard binary choice model when beliefs AB, ; are
observed for all . In the later case, estimation of the model parameters can be performed
by assuming a specific parametric distribution for F'(-) (eg. normal of logistic). Alterna-
tively, semiparametric estimation of the parameters is possible (up to some normalization)
by treating F'(-) as an unknown nonparametric function (see eg. Klein and Spady (1993)).
Unfortunately, the lack of information on p¥ implies that AB,j, is not observed. Hence,
conventional parametric and semiparametric estimators of binary choice models cannot
be used to make inferences on ¢. Define AB,j = infui—“ AB;j, and Fu} = Sup, AB; .

It follows that without information on p¥,

AB;; € [AB;;,AB, ] (3)

Consider the case where ¢ > 0. Then, it follows from equation 3 and the proof of

Proposition 4 in Manski and Tamer (2002) that the following must hold for all 4

Pr(ci = a);lm, AB,;, ABy;) € [F ([A; + 6AB)/)  F (Amj + 65B1/A)] ()
Inverting Pr(c; = a; ilm, AB, 5, AB; ;) in (4) yields an equivalent and useful expression
given by

AW:‘,E + qﬁABi,E < QA< Aﬂ'iﬁ + ¢ABi,B (5)

9



where Q; = F~1(Pr(c; = a;ﬁ|ﬂ', AB@',E’W))' The identification region consists of all
values (¢, A) which are consistenmh either (4) or (5) for all 7. Our particular focus
is on the identification region for ¢. The bounds in (5) fall in the class of monotone-
index models with interval regressors analyzed in Manski and Tamer (2002). They have
established in the Corollary to their Proposition 4 that the identification region for (¢, A)
is convex. Our particular focus in this paper is on the identification region of ¢. Manski
(2010) analyzes the identification in a binary choice monotone-index model when one
covariate is not observable due to lack of information on expectations.

There is a range of values of ¢ which satisfy (5) for each game. The identification
region is given by the intersection of the ranges across all games. To characterize our
main result, consider a set of games I' with each I' € I" satisfying condition H, a history
h € H and define the following 5 mutually exclusive dummy variables distinguishing the

5 types of games possibly present in the set.

such that Z?:1 d) =1 for all i and where 1(A) denotes the indicator function taking a

value of 1 when event A occurs, and 0 otherwise. Let Q; = F~! (Pr(c; = d}|m;)) and
¢§4 = (Qi)‘ - AWU}) /ABU} (7)
¢f = (QzA - Aﬂ-z’,ﬁ) /ABz‘,iL (8)
¢; = max{¢],¢;}

Given this we can state our main proposition:

Proposition 1 Consider a set of games I' such that condition H is satisfied and a history

he M. Assume ¢ > 0 and let (4, #4] denote the identification region of ¢ conditional on

10



A. Furthermore, let D C T denote the set containing games with d; = 1 and games with

&2 =1.

Then, the endpoints of the identification region are given by

& = maxfma]s, 0] )
oy = r%ilgl[nlax[ai,O]] if D is not empty (10)

= o0 otherwise
where

6, = (di+d) o + (& + &) o7 + dig]
¢ = diof + i

Notes. This proposition reveals that the identification region is given by the intersection
of [QZ,EZ] across all games, where o, and ¢; denote the lowest and highest values of ¢
consistent with the game played by player i conditional on A. Which of ¢, ¢F, and ¢¢

will be used to compute ﬂ and ¢; will depend on the signs of AB,j and AB, ;. Take

games with d} = 1 and let ¢ — 0. It follows that the upper bound in (5) will equate Q;\
when ¢ = ¢!. This determines the lowest value of ¢ consistent with that game. Now
let ¢ — oo. It follows that the lower bound in (5) will equate Q;\ when ¢ = ¢Z. This
determines the highest value of ¢ consistent with that game. A similar analysis applies

to the other four game types. We also note that max[¢ , 0] and max[¢;, 0] enter (9) and
(10) to enforce the restriction that ¢ > 0.

It follows from the proposition that knowledge of A can reduce substantially the iden-
tification region and thus allows for more precise inferences on the relevance of belief-
dependent preferences. The main insight of the paper is summarized in the following

three conditions.

"

Invariance condition (I) AB;(u¥) =0 when mi(al ;) = mi(a, ;).

6The proposition is stated for ¢ > 0. The case of ¢ < 0 follows analogously with the endpoints of

the identification region given by ¢} = mag([min[gbi, 0]] if D is not empty and ¢} = —oo otherwise, while
1€ —

§ = minfmin(3,, 0]

11



"

Support condition (S) Pr(wj(a;}l) = wj(aiﬁ)) > 0.
Noise condition (N) A is independent of 7r.

Condition I states that the difference between the psychological payoffs of player ¢ from
his two actions a;ﬁ and a;/ﬁ is zero if the payoffs of player j do not vary with the action
chosen by player ¢. This condition holds for several important preferences discussed in the
literature (see sections 3.1 and 3.2 below). Condition S states that games where condition
I holds should be present in the data. Note that such games can easily be implemented
in an experiment by appropriate selection of player j payoffs. Condition N states that
the noise parameter does not vary with the payoffs of the game. It can however depend
on the observable characteristics of players. Condition N implies that the value of A for
games which satisfy condition S is the same as the corresponding noise level present in
games with some payoff variation for player j. Supportive evidence for condition N can
be obtained by estimating a reduced form version of equation (2), allowing the noise
parameter to vary with the payoffs levels. Section 4.1 discusses this in more detail.
Together, conditions I, S and N allow separate identification of A. In particular, for

preferences satisfying condition I in some history h € #, it follows from (2) that the

choice probabilities for games satisfying condition S are given by
Pr(c; = a;ﬁ\m) = F(7;/\) (11)

where the psychological payoffs drop out of the choice probabilities when Wj(agﬁ) =
ﬂj(a;ﬁ). Equation (11) can thus be used to estimate A\ using only games which satisfy
condition S.

We thus propose a simple two step estimation procedure. In the first step, we estimate
A for preferences satisfying condition I using data from games satisfying condition S. In
the second step we estimate the identification region | l;\,gbg], conditional on the first

step estimate of \. We next discuss in detail prominent examples of belief dependent

preferences which can be tested using our proposed two step procedure.

12



3.1 Example 1: guilt aversion (¢ < 0)

Battigalli and Dufwenberg (2007) propose a model of simple guilt, where players are
assumed to be averse to letting down other players. More specifically, player ¢ ‘lets down’
player j when his strategy provides player j with a final payoff below the payoff expected
by player j. Consider a game I' which satisfies condition H and a history het.

In history & player i has two actions, ¢, and a . Define guilt from both actions as

Bi(a,;, u2(h)) = PMEN%D—%@@ﬂlhA 2 < mlaly)] (12)
Bilas 12 (0) = |Ea(B; (my) = mi(a3)| 1 |mi(alz) > mial)| (13)

where 1[A] denotes an indicator function taking a value of 1 when event A occurs and 0
otherwise, E; (7;) denotes player j's expectation of the own final payoff, and E; (E; (7;))

denotes player i‘s expectation of E; (7). More formally

E; (E; (m))) = Ei(/i](a ﬁ)) (a;,;;
) [ <,p—mwmﬂ+mmm> (14)

|
/-\
Exs

where uf(a;ﬁ%) = El(u;(a;ﬁ\l})) and such that uf(a;ﬁ%) € [0,1]. Assume without loss
of generality that ; (a;ﬁ) < Wj(a;iﬁ). From (13) it follows that player i cannot feel guilt
when choosing a;/ﬁ given the later provides player j with the highest of the two possible
payoffs, i.e. Bi(a;/ﬁ, -) = 0 for all . On the other hand, player i feels guilt when choosing
a, ; as this provides player j with his lowest possible payoff. Hence,

AB;j = [Ez‘(Ej (ﬂ-j))_ﬂj(a;ﬁ)}
= a0 [ms(a) = mia] )]+ mialy) = il ;) (15)

Inspection of (12), (13), and (15) reveals that condition I is satisfied in history h. Without
knowledge of 1 (a’ E|B)’ it follows that

AB,j € [0,m5(a; ;) — mi(a; ;)] (16)

where the lower bound AB,;; = 0 is obtained by setting /%( ! ’;L) = 1, while the upper

bound ABNE = ﬂj(aiﬁ) — Wﬂ'(ai,i}) is obtained by setting u; (a;ﬁ]h) = 0. It follows that all

13



games are of the type 4 presented in (6). This implies that the set D defined in Proposition
1 is empty and thus ¢, = —oo. The conditional identification region of ¢ is then given

by [—o0, ¢}, where

cb&‘:m.in[ e ]
1 m

j(a:ﬁ) T (a;’ﬁ)
3.2 Example 2: reciprocity (¢ > 0)

Dufwenberg and Kirchsteiger (2004) propose a model of reciprocity where the psycho-
logical payoff of player ¢ in the last non-terminal history h, B@'(az,iu pk), is given by the
product PK(h) x K(a;;). The first term PK(h) involves player i’s perception of the
kindness of player j towards him in history h. Let E; <7TZ|iL> denote player j’s expecta-
tion of ¢’s final payoff in history h, and E; (Ej (m\fb)) denote player ‘s expectation of

Ej (7Tz|il) That is

Ei (B (nilh)) = Bilul(a;h)mlal;) + (1 - Euud(al ;|0)mila ;)
(18)

=
=T
—
S
BN
=
Nt
~— Il
1
3
S
~—~
Q
S
=
S~—
3
)
—
IS
SR
>
SN—
—_
3
<
—~
IS
SR
=
N—

R = 5 | (s (B, (7)) + iy (B (B ()}

ajEA;

The equitable payoff is used by player i as a reference point to measure the kindness of
player j towards him. In particular, player ¢’s perceived kindness of player j is given by

the following difference

PE(R) = Ei (B (milh)) - (u3(h))

Expected payoffs E; (Ej <7T2|ﬁ>> higher (lower) than the equitable payoff are thus per-

ceived as kind (unkind). The second term entering the psychological payoff function

“For notational simplicity assume that all of player j’s strategies are efficient as defined by Dufwenberg

and Kirchsteiger (2004) on p. 276.
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involves the kindness of player i towards player 7 when choosing a; 1

K(y) = maly) — 5 [ma ;) +m(al;)]

= [mtap) —may)]
A similar expression follows for K (a;l,ﬁ)’ the kindness when choosing a;'jl. Multiplying
PK(h) with K (a;ﬁ) and K (a;:ﬁ) and rearranging gives

B (R) = 5 [Be (B (mlh)) = m (2] [mtalp) ~mtal)]  (19)
Biao (R = 3 [Be (B (mlh)) = w2 (2] [mlaly) —m(al )] (20)
Differencing (19) and (20) yields
ABy = [Bi (B (mlh)) = 2 (u2()| |mi(al ;) = mia )]
Inspection of (19), (20), and (21) reveals that condition I is satisfied in history h. The

values of AB,;; and AB, j will depend on the signs of two terms,
B (B (mlh) ) =7 (u2(0)| and [m5(a ) = mi(a;5)]

and thus will potentially vary across games. For games where the terms have the same

sign, AB;; is a monotonically increasing function of uf(a; h|fz) Without knowledge of

p(h), it follows that

ABM S [ABi,Bv ABz',ﬁ] (21)
where
AB;;, = min{AB,;} (22)
: 13 (h) 7
AB;;, = max{AB,;} (23)
’ 13 (h) ’

Values in (22) and (23) can be used to estimate the endpoints using (9) and (10).

3.3 Estimation and inference on the bounds of the identification
region

We propose a two step procedure to estimate the endpoints of the conditional identification

region. We estimate A in a first step using the subset of games which satisfy condition
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S by assuming that Ae,j; follows a logistic distribution. This is a standard logit model
which can be estimated by Maximum Likelihood. Let X denote the estimated value
of X\ obtained in this way. The second step consists of estimating the endpoints of the
identification region conditional on the Maximum Likelihood estimate X and the estimated
values of ();. We obtain estimates of (); by inverting estimated choice probabilities derived
from a reduced form model (equation (30) in the following section). Naive estimators of
the endpoints of the conditional identification region are given by the following sample

counterparts to Proposition 1

.

o= o, (24

QAT; = mi,nai (25)
el

where égl and a are the estimated values of @Z and ¢; defined in Proposition 1 (with the
unknown value of A replaced with X) and where I and I denote the set of games which
can be used to estimate the lower and upper endpoints respectively. It is well known that
the estimators (24) and (25) are possibly biased in finite samples. This reflects the fact
that the expectation of the maximum (minimum) of random variables is generally higher
(lower) than the maximum (minimum) of the expectations. We can thus expect qgl)\ to
have an upward finite sample bias while we can expect that g@;\ has a downward finite
sample bias. This implies that naive estimators based on (24) and (25) will on average
tend to produce overly narrow conditional identification regions.

Chernozhukov, Lee and Rosen (2009) (hereafter CLR) propose a median-unbiased
estimator of the endpoints of the identification region and propose a method to construct
confidence intervals which can take into account the two step nature of our approach.
Here, we implement their proposed approach for parametric models (see their appendix

C.1). In particular, we define

(@

;bjj\o = max {(E -
) Zel —1

(0)s(0)} (26)
(0)s(i) } (27)

Qb

0, = min {6, +
’ i€l

where s(i) denotes the estimated standard error of either éz or ¢, Q(@) denotes the
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estimated f—quantile of max { (qg - gb‘) / s(i)}, é(@) denotes the estimated #—quantile
iel LN

of min { <g/b\z — gbZ) / s(z’)}, 7 and T denote estimated sets of games used to make inferences
icl a
on the endpoints. Note that G(#)s(i) represents a bias correction term which intuitively

enters negatively in (26) to correct for the upward bias of the estimator in (24). In a similar

~

way, G/(0)s(i) represents a bias correction term which enters positively in (27) to correct
for the downward bias of the estimator in (25). Both G(6)s(i) and 6(9)3(2) account for
the sampling variability of X and Q:. Details concerning computation of Q(@)s(z) and
é(@)s(z) can be found in CLR.

Under conditions discussed in CLR it can be shown that

lim Pr(o(0) <4},) = (28)
b (< 3) - o

It follows that setting # = 0.5 yields median-unbiased lower and upper endpoint estima-
tors. These estimators are median-unbiased in the sense that the asymptotic probability
that the estimated values lie above their true value is at least a half. Moreover, one sided

~
U

u for the relevant
>\71_p

p% confidence intervals can be obtained by computing gggp and/or
endpoints. Finally, results in CLR imply that a valid p% confidence interval for [¢, ¢}]

can be obtained by computing [@;\’p /o) (Eg,kp /2]-

4 Empirical illustration

4.1 Experimental design and data

Our experiment is based on the sequential game in Figure 1. The experiment was run
in January and February 2010 via the LISS-panel, an Internet survey panel managed by
CentERdata at Tilburg University. In total 2000 members of the panel were invited to
participate in the experiment involving 500 payoffwise different games as shown in Figure
1. Only the associated monetary payoffs of the players differed across the games. The

payoffs of the games randomly chosen from a set of similar games used in Bellemare,
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Sebald, and Strobel (2010). Approximately 1/3 of the 500 payoffwise unique games were
recoded to ensure that condition S holds, that is such that 77(l) = 7/(r) (dark circles in
Figure 1).

Each panel member was initially randomly assigned a role and a payoffwise unique
game in the following way. First, 1500 panel members were assigned the role of player ¢
while 500 panel members were assigned the role of player j. This role assignment allowed
us to gather more decisions of i-players whose behavior is the primary focus of the paper.
Subsequently, we randomly assigned each of the 500 payoff different games to three ¢
players and to one j-player. In other words, each of the 500 games could potentially be
played by three i-players and one j-player.

Given the infrastructure of the LISS-panel, the game was played across two consecutive
survey months. In the first month, only panel members assigned to the role of player ¢ were
contacted and offered the possibility to participate in the experiment. Before revealing
their role and specific game, they were provided general instructions, informed that 50
payoff-wise unique games would randomly be chosen ex-post and paid out two months
later. Furthermore, they were given the possibility to withdraw from the experiment.
After the revelation of their role and game, they were told that they would be making
their decisions before j-players and that decisions would be matched ex-post. 1139 of
the 1500 invited panel members accepted the invitation and completed the experiment in
the role of player 7.8 Panel members who completed the experiment were first presented
their unique game and then asked to send a message to player j. We allowed participants
to send messages in order to increase their awareness concerning the other person they
were grouped with. They could choose between two different messages and not sending a

message:

O | If you let me decide between | and r, I will choose [

O | If you let me decide between | and r, I will choose r

[J | I do not want to send a message

87 more invited panel members logged on but did not complete the experiment.
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Each player i then made his/her decision using the strategy method: i-players chose
between [ and r at history h! before knowing the decision of player j at history h°.

Panel members assigned to the role of player ;7 made their decisions during the second
survey months. All j players were first provided instructions and were informed that
50 payoff-wise unique games would randomly be chosen ex-post and paid out at the
completion of the experiment. Again, before revealing their roles and games, they were
given the possibility to withdraw from the experiment. 328 of the 500 invited panel
members accepted the invitation and completed the experiment in the role of player j.°
For the unique games for which we had more than one complete set of i-players decisions,
we randomly chose one of them to be used in the interaction with player j. Invited panel
members who accepted to participate in the experiment were then presented their unique
game, were given the message of their matched ¢-player, and were asked to chose between
L and R at history A" in the game.

After the second survey month we randomly chose 50 payoff-wise unique games (i.e.
15% of the 328 games that had been completed by one i and one j player) and paid the
participants that had played these games according to the decisions that they had taken
in the game. Average values of 7;(R) and m;(R) were 28.386€ and 21.150€ respectively.
Moreover, average values of 7;(1) and m; (1) were 17.184€ and 25.899€ while corresponding
averages of m;(l) and m;(l) were 18.746€ and 25.933€. Figure 5 illustrates the payoff
variation of both players which follow from history h! in Figure 1. In particular, we plot
Am; = mi(r) — m(l) and An; = 7;(r) — 7;(1) for all 500 randomly chosen games. Games
for which condition S holds (i.e. Am; = 0) are denoted Invariant and are marked by full
circles. All other games are denoted Variant and marked by empty circles. We can see
that the payoff differences for player j lie between -50€ and 50€ while payoff differences
for player ¢ vary between -35€ and 35€.

Our data reveals that 70.45% of j players (first movers) determined the final allocation
by choosing the outside option. We perform a preliminary analysis of the decisions of ¢

players by estimating a logit model relating their decisions (I or r at history h') to the

97 more invited panel members logged on but did not complete the experiment.
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difference in payoffs of both players as well as to their respective outside options. In

particular, we estimate the following equation

Pr(c = r|An;, Am;, mj(R), m;(R)) =

F([AT; + oy Am; + agm;(R) 4 asmi(R)]/N). (30)
where (30) can be interpreted as a reduced form model of equation (2). We find that
the probability that i players chooses r increases significantly with Ax; (&3 = 0.160, se.
= 0.043), suggesting that i players take into account the well being of j players. Not
surprisingly, the size of &; is substantially lower than 1, an indication that ¢ players
value their own well-being more than that of others. Interestingly, we do not find that
any of the outside options have a significant impact on the decisions of i players (dy =
0.103, p-value = 0.221; &3 = -0.006, p-value = 0.928). Finally, we estimated an extended
specification where we allowed the noise parameter A to depend on Am; and Am; by
specifying A = exp(y0 + M1AT; + 12A7;). We found no significant increase in the log-
likelihood function value (p-value = 0.9531), suggesting that the noise level does not
vary with the level of payoff differences of each player in the game. This provides some

indication that condition N is likely to hold in the data.

4.2 Results for guilt aversion

Consider first the model of guilt aversion discussed in section 3.1 in the context of Figure

1, i.e. the strategic environment underlying our experiment. Furthermore, denote by [ the

action of player ¢ which implies the higher payoff for player j, i.e. m;(r) < m;(l). Given

this the conditional identification region of ¢ is given by [—o0, ¢%], where
Qi) — A

mi(l) — m; (T)}

We first assess what can be learned about the model parameters without exploiting the

(31)

7

ﬁzmﬂ

invariance condition. The grey area in Figure 2 presents the estimated identification
region for (¢, \) derived by computing (31) replacing Q; with Q; for different values of

A. The diagonal line presents the locus of values of ¢} for a selected range of values
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of \. We see that ¢} is below zero for values of A\ between 0 and (approximately) 21,
suggesting that players are guilt averse over this range of A values. However, ¢% equals
zero when \ is greater than 21. It follows that the data is largely uninformative about
the relevance of guilt aversion in our experiment when we do not exploit the invariance
condition. This is one illustration of the analysis in Manski (2010) where he argues that
choice data alone are in general insufficient to make meaningful inferences on preferences
without information about the beliefs of players.

We next exploited the invariance condition to estimate (31) by replacing A\ with a
consistent estimate obtained in a first step using games which satisfy condition S. Table 1
presents the results. Column A\ contains the estimated value of the scale parameter while
column (—oo, ggﬂ presents the estimated identification region using the naive endpoint
estimator based on (17). As discussed in section 3.3, the naive estimator is potentially bi-

~

ased downwards in finite samples. Columns ¢ and 5’; 0.95 Present the median-unbiased

2,0.5
estimator and the corresponding one-sided 95% confidence band based on CLR.

The estimated value of A obtained using all games which satisfy condition S is 14.140
and is significant at the 1% level.! This estimate implies that ¢4 is estimated to be -
0.881, suggesting that players are on average willing to pay at least 0.88€ to avoid letting
down player j by 1€. This value can alternatively be derived from Figure 2 which plots
A and the corresponding estimated values of qbi)f Inspection of the Figure illustrates the
identification power of conditions I and S — the identification region is reduced to a single

(vertical) line. Column 5"; o5 Teveals that the downward bias of these estimated upper

endpoints is substantial. In particular, the estimated upper endpoint for the entire sample

10This suggests that a significant proportion of i players chose the option providing them with the
lowest payoff, given the payoff invariance for player j. One interpretation of this result is that Aei,fz
captures noise and sub-optimal decision making. Another interpretation is that part of Aeiﬁ captures
unobserved preferences such as inequity aversion. Then, some players may be selecting the lowest payoff
for themselves in order to reduce the payoff difference with player j. This would be consistent with results
presented in Bellemare, Kroger, and van Soest (2008) who analyze responder behavior in the ultimatum
game in the Dutch population. They found that a substantial proportion of responders were willing reject

overly generous offers which provided them higher payoffs than proposers.
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increases from -0.881 to -0.475 when controlling for the finite sample bias. The last column
of the table presents the estimated one-sided 95% confidence interval for ¢%. Values less
than zero reveal significant guilt aversion. The estimated 95% confidence interval for ¢¥
is -0.077, suggesting significant guilt aversion in the broad population.

We then repeated the analysis for different sub-groups of the population. In particular,
we performed a separate analysis for men and women, for three education levels (low,
intermediate, and high levels), and for two age groups (below or above median sample age).
Finer partitions potentially including other socio-economic variables or their interactions
are in principle possible. However, our chosen partitions ensure that we have sample
sizes which allow us to make meaningful comparisons. We find that the estimated values
of X\ are positive and significant at the 1% level for all sub-populations considered. The
estimated values of o5 vary substantially across the sub-populations. For example, players
with low education levels have the highest estimated upper endpoint (-0.337) while players
with high levels of education have the lowest estimated upper endpoint (-1.306). The bias-
corrected estimated upper endpoints for the other partitions are also substantially higher
then the corresponding estimates based on the naive estimator, suggesting important
finite sample bias for the naive endpoint estimator. Overall, the median bias-corrected
upper endpoints vary from -0.871 (men) to 0.029 (low education). Finally, the estimated
one-sided 95% confidence intervals for ¢} suggest that guilt aversion is significant for men,

high educated players, and players above 47 years of age.

4.3 Results for reciprocity

We now consider the possibility that players have reciprocal preferences as outlined in
section 3.2. Given the strategic environment displayed in Figure 1 the equitable payoff

7y’ and the perceived kindness PK (h') of player i in history k' respectively reduce to

7= 2 B (B (mlhh)) + m(R)].
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with

E, (E; (m/h')) = Eu(rlh)m(r) + (1 — B ()0
= W20 () — m (0] + )

and
PE(HY) = By (B, (mlh')) — 5 [B: (B, (mlh")) + m(R)
= % [ (r| ) [mi(r) — ma(D)] + (D) — mi(R)]

Table 2 presents the results for the same sub-populations used in our analysis of guilt
aversion. All results concerning the estimation of A are identical to the one presented

for guilt aversion. Column [AIA,&;] presents the identification region estimated using

the naive endpoint estimator for both endpoints. Columns QAﬁi\ 05 and al)\ 005 Present

respectively the median-unbiased estimated lower endpoint and the corresponding one-

~

sided 97.5% confidence band using the approach proposed by CLR. Columns qﬁg 05 and

-~

5 0975 Present the corresponding estimates for the upper endpoint of the identification
region. The interval g/gl/\ 0.025" ;57; 0.975 forms a 95% confidence interval for the identification

region ¢}, ¢%.

We find that the naive estimator produces estimated endpoints which cross: the esti-
mated values of qﬁf\ exceed the estimated values of o5 for all sub-populations considered.!!
Moreover, the estimated upper endpoints are censored at zero for all sub-populations.
Both these results can be explained by the fact that naive estimators of the lower (upper)
endpoints are potentially biased upwards (downwards) in finite samples. We find that the
median-unbiased estimator of CLR resolves most of the crossings observed when using
the naive estimators. A notable exception concerns the sub-population of players with
intermediate levels of education. There, the median-unbiased estimated lower endpoint
remains slightly above the median-unbiased estimated upper endpoint. We find that all
95% confidence intervals [gp 5“ | are narrow and are either close to zero or over-

3,0.025° 7'1,0.975
lap with zero. In line with the aforementioned fact that outside options did not have a

1 Crossing of endpoints estimated using ”naive” estimators of the form discussed in this paper are not

uncommon. Chesher (2009) provides further examples.
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significant impact on the decisions of i players, these results suggests that reciprocity is a

weak predictor of decisions of ¢ players in our experiment.

5 Conclusion

We proposed an approach to learn about the empirical relevance of belief-dependent pref-
erences in sequential two-player games without exploiting information about the beliefs of
players. Our approach exploits the natural bounds of the psychological payoffs of players
to make set inferences on the relevance of the underlying belief-dependent preferences.
Existing research has established that the identification regions of the model parame-
ters are typically large an uninformative without information on beliefs. However, we
showed that the identification regions can be substantially reduced by exploiting a simple
invariance property which is embedded in several prominent belief-dependent preferences.

Our approach produced informative bounds for the relevance of belief-dependent pref-
erences in our experiment. In particular, our analysis of guilt aversion suggests that the
population willingness to pay to avoid letting down the other player by 1€ is significantly
different from zero and at least greater or equal to 0.08€. We also found that several
groups of the population are willing to pay more at a minimum. In particular, high edu-
cated individuals are willing to pay at least 0.14€ while men are willing to pay at least
0.16€ to avoid letting down the other player by 1€. We were also able to obtain tight and
very informative bounds around the relevance of reciprocity in our experiment. Our re-
sults suggest that reciprocity weakly predicts the final decisions made in our experiment.
This result holds for all groups of the population we considered.

These results can be interpreted as providing approximate bounds around the average
sensitivity parameter for each of the sub-groups of the population considered. Researchers
may additionally want to conduct an individual-specific analysis to learn about the entire
distribution of the sensitivity parameter within each sub-group of the population. Our
approach can in principle be extended to make individual-specific inferences by exploiting

data from subjects making multiple decisions in games satisfying condition S and games

24



where payoffs of player j vary with the action taken by player ¢. Future work should deter-
mine the properties of the proposed approach in relationship to the number of decisions
available for each subject in order to bound individual sensitivity parameters. Future
work should also try to extend the approach to settings with more than two decisions
as well as to settings where researchers are interested in combining data from different
games.

The approach proposed in this paper ultimately allows researchers to assess the added
value of exploiting data on stated beliefs to learn about the relevance of belief-dependent
preferences in games. Our analysis of reciprocity provides an example where little can
be gained by further exploiting stated belief-data: the estimated identification regions
are narrow and precisely estimated. Our results also suggests that this result is unlikely
to hold in general. Estimated identification regions in the case of guilt aversion remain
large despite revealing significant guilt aversion in various sub-groups of the population.
Researchers requiring more precise information about the exact level of guilt aversion (or
other preferences in the class) must then exploit data on higher-order beliefs to point
identify the sensitivity parameters. This will require more work to carefully address the
possibility that stated beliefs are measured with error and/or correlated with preferences

entering the model.
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Figure 1: The Game

A
0 12 2,
A
151
-3
¢

Figure 2: Estimated identification region for (¢, A) in the case of simple guilt. A de-

notes the value of A\ estimated using all games which satisfy condition S. g/g’; denotes the
estimated upper bound of the identification region of ¢.
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Figure 3: Payoff variation across games for both roles, with Am; = m;(l) — m;(r) on

the horizontal axis and Aw; = 7,;(l) — 7;(r)

on the vertical axis. ”Invariant” denotes

games where Am; = 0 to satisfy condition S. Other games (empty circles) are denoted as

”Variant” .
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