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Résumé / Abstract 
 

Nous construisons un estimateur de volatilité intégrée qui se présente sous la forme d’une combinaison 

linéaire optimale d’autres estimateurs, dans le cadre d’un modèle semi-paramétrique de type moyenne 

mobile postulé pour le bruit de microstructure. L’ordre de ce processus moyen mobile est une fonction 

croissante de la fréquence des observations, ce qui implique que l’autocorrélation d’ordre 1 du bruit de 

microstructure tend vers l’unité lorsque la fréquence tend vers l’infini. Des estimateurs sont proposés 

pour les paramètres identifiables du modèle et leurs bonnes propriétés sont confirmées par simulation. 

Les résultats d’une application empirique basée sur des actifs du DJI suggèrent qu’en général, l’ordre 

du processus moyen mobile postulé pour le bruit de microstructure augmente moins vite que la racine 

carrée de la fréquence des observations. 

 

Mots clés : Volatilité intégrée, méthode des moments, bruit de microstructure, 

estimateur à noyaux réalisés, combinaison linéaire optimale d’estimateurs. 

 

 

 

A shrinkage estimator of the integrated volatility is derived within a semiparametric moving average 

microstructure noise model specified at the highest frequency. The order the moving average is 

allowed to increase with the sampling frequency, which implies that the first order autocorrelation of 

the noise converges to one as the sampling frequency goes to infinity. Estimators are derived for the 

identifiable parameters of the model and their good properties are confirmed in simulation. The 

results of an empirical application with stocks listed in the DJI suggest that the order of the moving 

average model postulated for the noise typically increases slower than the square root of the sampling 

frequency. 

 

Keywords: Integrated Volatility, method of moment, microstructure noise, realized 

kernel, shrinkage. 
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1 Introduction

To estimate the monthly variance of a financial asset, Merton (1980) proposes to use “the sum of the
squares of the daily logarithmic returns on the market for that month with appropriate adjustments
for weekends and holidays and for the ‘no-trading’ effect which occurs with a portfolio of stocks”.
Unfortunately, the daily data available to Merton does not span a long enough period for the
purpose of his study. He circumvents this diffi culty by using a moving average of monthly squared
logarithmic return. In the same vein, French, Schwert and Stambaugh (1987) estimate the monthly
variances by the sum of squared returns plus twice the sum of product of adjacent returns to
correct for the first order autocorrelation bias. Andersen and Bollerslev (1998) are the first support
their empirical use of the realized volatility (RV) as an estimator of integrated volatility (IV) by a
rigorous consistency argument taken from Karatzas and Shreve (1988). Since then, many authors
including Jacod (1994), Jacod and Protter (1998) and Barndorff-Nielsen and Shephard (2002) have
well established the consistency of the RV for the IV when prices are observed without error or
jumps.

However, it is commonly admitted that recorded stock prices are contaminated with “market
microstructure noise”(henceforth “noise”). As pointed out by Andersen and Bollerslev (1998), “...
because of discontinuities in the price process and a plethora of market microstructure effects, we
do not obtain a continuous reading from a diffusion process...”. Barndorff-Nielsen and Shephard
(2002) show that in the presence of jumps that cause the price to be exhibit discontinuities, the
RV is consistent for the total quadratic variation of the price process. But the presence of noise in
measured prices causes the RV computed with very high frequency data to be a biased estimator
of the object of interest. The sources of noise are discussed for example in Stoll (1989, 2000) or
Hasbrouck (1993,1996). In the words of Hasbrouck (1993), the pricing errors are mainly due to
“... discreteness, inventory control, the non-information based component of the bid-ask spread, the
transient component of the price response to a block trade, etc.”.

Many approaches have been proposed in the literature to deal with this curse. One of them
consists in choosing in an ad-hoc manner a moderate sampling frequency at which the impact of
the noise is suffi ciently mitigated1. Zhou (1996) and Hansen and Lunde (2006) propose a bias cor-
rection approach while Bollen and Inder (2002) and Andreou and Ghysels (2002) advocate filtering
techniques. Under the assumption that the volatility of the high frequency returns are constant
within the day, Ait-Sahalia, Mykland and Zhang (2005) derive a maximum likelihood estimator of
the IV that is robust to both IID noise and distributional mispecification. Zhang, Mykland, and
Ait-Sahalia (2005) propose another consistent estimator in the presence of IID noise which they
called the two scale realized volatility. This estimator has been adapted in Ait-Sahalia, Mykland
and Zhang (2006) to deal with dependent noise. Since then, other consistent estimators have be-
come available among which the realized kernels of Barndorff-Nielsen, Hansen, Lunde and Shephard
(2008a) and the pre-averaging estimator of Podolskij and Vetter (2006)2. An alternative line of re-
search pursued by Corradi, Distaso and Swanson (2008) advocates the nonparametric estimation of
the predictive density and confidence intervals for the IV rather than focusing on point estimates.

In a simulation study, Gatheral and Oomen (2007) find that consistent estimators often perform
poorly at the sampling frequencies commonly encountered in practice. Our simulations of Section
6 show that this finding strongly depends on the size of the variance of the microstructure noise
relative to the discretization error. In fact, the inconsistent estimator tends to perform better than
the consistent one only when the variance of the microstructure noise is small. We also note that
even when the variance of the inconsistent estimator is higher, it can still be optimally combined
with the consistent estimator to obtain a new one that performs better than both. The weight of
the linear combination is selected in order to minimize the variance and the resulting estimator is
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termed “shrinkage estimator”.
However, an unbiased estimator of the IV must be designed in accordance with the dependence

properties of the noise. This leads us to propose a model for the microstructure noise that depart
from the usual IID assumption. More precisely, we specify at the highest frequency a parsimonious
relation between the microstructure noise on the one side, and the effi cient return and the latent
volatility process on the other side. We assume a general and flexible type of noise that includes an
independent endogenous part ε∗t and an L-dependent exogenous part εt, with the autocovariance
structure of εt depending on the highest frequency m at which the data are recorded. It is assumed
that the maximum lag at which the autocorrelation of εt dies out is increasing in m when measured
in number of observations, while this lag goes to zero when measured in calendar time. The latter
assumption has the implication that the first order autocorrelation of εt goes to one as m goes to
infinity, contrary to what would imply an AR(1) with constant autoregressive root. We provide an
intuitive economic interpretation of this implication of our model.

We derive the properties of common realized measures under the new model. We find that the
realized kernels of Barndorff-Nielsen and al. (2008a) is still delivering its best performance at the
highest frequency, but its variance converges to a quantity of similar order of magnitude as the
variance of the microstructure noise. While this quantity can be arbitrary small and negligible, it
does not converge to zero. This suggests that a variance reduction technique can be useful if the
noise displays the particular type of dependence assumed in our model. We propose to linearly
combine the standard realized kernels of Barndorff-Nielsen and al. (2008a) with an alternative
unbiased kernel estimator. The resulting estimator is termed “shrinkage realized kernels”, as it
shares some feature with the Stein (1956) estimator and other model averaging techniques. Finally,
a method-of-moment approach is proposed to estimate the correlogram of the exogenous noise. We
illustrate by simulation the good performance of the various estimators proposed in the paper. An
empirical application based on fifteen stocks listed in the Dow Jones Industrials shows evidences of
correlation in the noise process and between the noise and the latent returns. If our model for the
noise is true, the empirical results suggest that the memory parameter L grows slower than

√
m in

general.
The rest of the paper is organized as follows. The next section presents our assumptions on the

frictionless price and our model for the microstructure noise. In section 2, we study the properties
of three standard IV estimators in light our theoretical framework. In Section 3, we present and
discuss the properties of a kernel type shrinkage estimator for the IV when the noise is L-dependent.
Inference procedures about the noise parameters are presented in section 4. Sections 5 and 6 present
respectively a simulation study and an empirical application based on twelve stocks listed in the
Dow Jones Industrials. Section 7 concludes. The mathematical proofs are left in appendix.

2 The Framework

Firstly, we present a standard model for the effi cient price that allows for leverage effect. Next, we
argue that our analysis can be performed by ignoring the leverage effect and jumps with no loss of
generality. Finally, we present our model for the microstructure noise.

2.1 A General Model for the Effi cient Price

Let p∗s denote a latent (or effi cient) log-price of an asset and ps its observable counterpart. Assume
that the latent log-price obeys the following stochastic differential equation:

dp∗s = µsds+ σsdWs; p∗0 = 0, (1)
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where µs is the drift function, σs is the spot volatility and Ws is a standard Brownian motion. We
assume that the volatility process {σs}s≥0 is càdlàg, implying that all powers of the volatility process
are locally integrable with respect to the Lebesgue Measure3. The drift function µs is smooth and
adapted to the filtration generated by {Wu, σu, u < s}. In turn, the spot volatility obeys a stochastic
differential equation of the following form:

dσs = fsds+ gsdBs,

where fs and gs are adapted to the filtration generated by {Wu, Bu, u < s} and fs is smooth. We
allow for leverage effect by assuming that:

E (dWs, dBs) = ρds.

Without loss of generality, we condition all our analysis on the volatility path but the condi-
tioning is removed from the notations for simplicity. Unless otherwise mentioned, all expectations,
variances and covariances are conditioned on {σs}s≥0. Accordingly, all deterministic transforma-
tions of the volatility process are treated as constant objects. In particular, the integrated volatilities
IVt =

∫ t
t−1 σ

2
sds, t = 1, 2, 3, ...T are fixed parameters that we aim to estimate. By definition, the

microstructure noise equals us = ps − p∗s, that is, the difference between the observed log-price
and the effi cient log-price. Let r∗t denote the latent log-return at period t, and rt its observable
counterpart. We consider a sampling scheme where the unit period is normalized to one in calendar
time. Under the above conditions, the daily return is:

rt ≡ pt − pt−1 = r∗t + ut − ut−1, and (2)

r∗t =

∫ t

t−1
µsds+

∫ t

t−1
σsdWs. (3)

Suppose that we have access to a large number m of intra-period returns rt,1, rt,2, ..., rt,m, where
t = 1, ..., T are the period labels, m is the number of recorded prices in each period and rt,j is the jth

observed return during the period [t− 1, t]. In the sequel, we use the expression “record frequency”
to refer to the frequency m at which the data has been recorded. For simplicity, we assume that
the high frequency observations are equidistant in calendar time. The jth high frequency observed
return within day t is given by:

rt,j = r∗t,j + ut,j − ut,j−1,

where:

r∗t,j ≡ p∗t−1+j/m − p
∗
t−1+(j−1)/m =

∫ t−1+j/m

t−1+(j−1)/m
σsdWs, and

ut,j ≡ ut−1+j/m.

The noise-contaminated (observed) and true realized volatility (latent) computed at frequency m
are:

RV
(m)
t =

m∑
j=1

r2t,j and RV
∗(m)
t =

m∑
j=1

r∗2t,j . (4)

In the absence of leverage effect (ρ = 0), Barndorff-Nielsen and Shephard (2002) show that
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RV
∗(m)
t converges to IVt and derived the asymptotic distribution:

RV
∗(m)
t − IVt√
2
3

∑m
j=1 r

∗4
t,j

→ N (0, 1) , (5)

asm goes to infinity. Meddahi (2002) studied the finite frequency behavior of the discretization error
RV

∗(m)
t − IVt with a focus on the specific case where the true model belongs to the Eigenfunction

Stochastic Volatility family. Gonçalves and Meddahi (2009) proposed some bootstrap procedures as
alternative inference tools to analyze the asymptotic behavior of realized measures. In both papers,
no microstructure noise is assumed. In the presence of microstructure noise, RV ∗(m)t is not feasible.

2.2 Simplifying the Model for the Effi cient Price

Here we argue that the leverage effect (and jumps) may be ignored for the purpose of our analysis.
In fact, the expression of the high frequency effi cient return is given by:

r∗t,j =

∫ t−1+j/m

t−1+(j−1)/m
µsds+

∫ t−1+j/m

t−1+(j−1)/m
σsdWs.

By adding and streaking µt−1+(j−1)/m and σt−1+(j−1)/m to the drift and volatility respectively, we
obtain:

r∗t,j = µt−1+(j−1)/m

∫ t−1+j/m

t−1+(j−1)/m
ds+ σt−1+(j−1)/m

∫ t−1+j/m

t−1+(j−1)/m
dWs

+

∫ t−1+j/m

t−1+(j−1)/m

(
µs − µt−1+(j−1)/m

)
ds+

∫ t−1+j/m

t−1+(j−1)/m

(
σs − σt−1+(j−1)/m

)
dWs.

For the first term, we have:

µt−1+(j−1)/m

∫ t−1+j/m

t−1+(j−1)/m
=
µt−1+(j−1)/m

m
(6)

The second term satisfies:

σt−1+(j−1)/m

∫ t−1+j/m

t−1+(j−1)/m
dWs = σt−1+(j−1)/m

(
Wt−1+j/m −Wt−1+(j−1)/m

)
(7)

For the third term, we use the fact that µs is smooth by assumption so that µs − µt−1+(j−1)/m =

O
(
1
m

)
. We have: ∫ t−1+j/m

t−1+(j−1)/m

(
µs − µt−1+(j−1)/m

)
ds = O

(
m−2

)
, (8)

For suffi ciently large m, we have the following Euler-type approximation for σs − σt−1+(j−1)/m:

σs − σt−1+(j−1)/m ' ft−1+(j−1)/m

(
s− t+ 1− j − 1

m

)
+gt−1+(j−1)/m

(
Bs −Bt−1+(j−1)/m

)
,
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for s ∈
[
t− 1 + j−1

m , t− 1 + j
m

]
. Replacing this into the fourth term yields:

∫ t−1+j/m

t−1+(j−1)/m

(
σs − σt−1+(j−1)/m

)
dWs

' ft−1+(j−1)/m

∫ t−1+j/m

t−1+(j−1)/m

(
s− t+ 1− j − 1

m

)
dWs

+gt−1+(j−1)/m

∫ t−1+j/m

t−1+(j−1)/m

(
Bs −Bt−1+(j−1)/m

)
dWs.

Next, we use the following type of approximation:∫ t−1+j/m

t−1+(j−1)/m
φ (s) dWs ' [φ (t− 1 + j/m)− φ (t− 1 + (j − 1) /m)]

[
Wt−1+j/m −Wt−1+(j−1)/m

]
This leads to ∫ t−1+j/m

t−1+(j−1)/m

(
σs − σt−1+(j−1)/m

)
dWs

'
ft−1+(j−1)/m

m

(
Wt−1+j/m −Wt−1+(j−1)/m

)
+gt−1+(j−1)/m

(
Bt−1+j/m −Bt−1+(j−1)/m

) (
Wt−1+j/m −Wt−1+(j−1)/m

)
The leverage effect assumption implies:(

Bt−1+j/m −Bt−1+(j−1)/m
) (
Wt−1+j/m −Wt−1+(j−1)/m

)
' ρ

m

so that finally, we obtain for the fourth term:∫ t−1+j/m

t−1+(j−1)/m

(
σs − σt−1+(j−1)/m

)
dWs ' (9)

ft−1+(j−1)/m
m

(
Wt−1+j/m −Wt−1+(j−1)/m

)
+
ρgt−1+(j−1)/m

m

The approximation of the high frequency return is obtained by taking the sum of (6), (7), (8)
and (9. We see that the term with dominant variance in the high frequency return is given by (7).
The dominant term above does not depend on the functions µs, fs, gs nor on the leverage effect
parameter ρ. This shows that in the presence of leverage effect, the effi cient log-price may be simply
treated as if it were a semi-martingale with the additional drift term ρgs. Hence without loss of
generality and for sake of parsimony, we will assume in subsequent developments that:

µs = ρ = 0,

or equivalently, that:
dp∗s = σsdWs; p∗0 = 0,

where σs is independent of Ws.
It is maintained throughout the paper that there is no jump in the effi cient price. However,

our analysis of the microstructure noise remains valid if jumps that are uncorrelated with all other
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randomness are present in the model. In this case, the estimators we consider for the IV is now
designed for the quadratic variation. Separating the IV from the contribution of the jumps in the
quadratic variation would then be the relevant issue in practice.

2.3 A Semiparametric Model for the Microstructure Noise

Our approach to model the noise is based on the assumption that the time series properties of
the microstructure noise may depend on the frequency at which the prices have been recorded.
With this in mind, we specify a link between the noise ut,j and the latent return r∗t,j at the highest
frequency and then deduce the properties of the realized volatility computed at lower frequencies.
We assume that the noise process evolves in calendar time according to:

ut,j = at,jr
∗
t,j + εt,j , j = 1, 2, ...,m, for all t, (10)

where at,j is a deterministic but time varying coeffi cient and εt,j is independent of the effi cient high
frequency return r∗t,j . In the words of Hasbrouck (1993), εt,j is the information uncorrelated or
exogenous pricing error and at,jr∗t,j is the information correlated or endogenous pricing error. For
sake of parsimony, our model assumes that time dependence in the noise process can only be due
to its information uncorrelated part.

The following assumptions are maintained throughout the paper.
Assumption E0. at,j = β0 + β1√

mσ∗2t,j
, where β0 and β1 are constants and

σ∗2t,j = V ar
(
r∗t,j
)
≡
∫ t−1+j/m

t−1+(j−1)/m
σ2sds.

Assumption E1. For fixed m, we have:
E1(a) The process εt,j is discrete time stationary with zero mean, and independent of {σs}

and r∗t,j .

E1(b) E |ut,jut,j−h|4+ε <∞, for some ε > 0, for all h.
Assumption E2. E(εt,jεt,j−h) = ω

(
h
m

)
≡ ωm,h, 0 ≤ h

m ≤
L
m < 1 and ωm,h = 0 for all h > L.

Assumption E3. ω (0) ≡ ωm,0 = ω0 for all m, ωm,h − ωm,h+1 = ω0O(m−α) for some α > 0,
h = 0, ..., L− 1.

Assumption E4. L ∝ mδ for some δ, and 0 ≤ δ ≤ min (α, 2/3), where the notation “∝”means
“proportional to”.

Assumption E5. For fixed m, V ar
(
n−1/2m−1/2

∑t′+n
t=t′+1

∑m
j=1 rt,jrt,j−h

)
→ qh, uniformly in

any t′, as n→∞, where rt,j = r∗t,j + ut,j − ut,j−1 is the observed return.
Assumption E0 is aimed at introducing endogeneity in the microstructure noise process in such

a way that both homoscedasticity (β0 = 0) and heteroscedaticity (β1 = 0) are allowed. This
assumption implies that the variance of the endogenous part of the noise goes to zero at rate m
since:

V ar
(
at,jr

∗
t,j

)
= β0σ

∗2
t,j + 2β0β1

√
σ∗2t,j
m

+
β21
m
.

Assumption E1(a) is quite standard in the literature. Assumption E1(b) is stronger than needed to
show the finiteness of the variance of the IV estimators. It is used in conjunction with E2 and E5
to derive an asymptotic theory for the estimators of the autocovariances of εt,j in Section 4.

The semi-parametric nature of the microstructure noise model comes from Assumption E2 which
only stipulates that εt,j is L-dependent without specifying a parametric family for the distribution
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of εt,j . Hansen and Lunde (2006) construct a Haussman-type test to detect time dependence in the
noise process. After applying their test to real data, they concluded that the noise process is time
dependent, correlated with latent return, and possibly heteroscedastic. More recently, Ubukata and
Oya (2009) proposed some procedures to test for dependence in the noise process with irregularly
spaced and asynchronous bivariate data.

Assumption E3 implies that:

Cov (εt,0, εt,j)− ω0 = −
j−1∑
h=0

(ωm,h − ωm,h+1) = O(jm−α). (11)

Hence for any fixed j, Cov (εt,0, εt,j) converges to the constant variance ω0 as m goes to infinity.
If α = 0, then Assumption E4 implies that δ = 0 so that εt,j is an MA(L) process with fixed

L. More generally, L may grow with the record frequency m. In this case, if j = bLcc for some
constant c ∈ (0, 1) (where bxc denote the largest integer that is smaller than x), then we have:

Cov (εt,0, εt,j)− ω0 = O(mδ−α). (12)

We see that δ ≤ α as assumed in E4 is a necessary condition for Cov (εt,0, εt,j) to be bounded. Also,
the requirement that δ < 2/3 is needed for the convergence of the realized kernels with Bartlett
kernel. The lag L is longer for larger δ, but the time length L

m after which the correlation dies out
converges to zero as m goes to infinity.

Finally, Assumption E5 is analogue to the Assumption 2 of Ubukata and Oya (2009) and is
needed for the central limit theorem of Politis, Romano and Wolf (1997) to obtain. This assumption
is likely to be satisfied if the volatility increment process σ∗2t,j is stationary and mixing.

In summary, the proposed model has the implication that the first order autocorrelation of εt
converges to one as m goes to infinity. This implication follows from the previous assumptions
and should not be considered as an assumption in its own. Interestingly, this implication has an
intuitive economic interpretation. In fact, transaction decisions are made by agents based on the
information flow to which they have access to. For the econometrician, the information held by
agents is latent but has observable consequences (including, but not limited to the bid-ask spread).
As a deviation from the frictionless equilibrium price, the microstructure noise certainly incorporate
the quality of the aggregate information process that drives the market. We may thus formally view
the microstructure noise as being a function of this information process. If the information flow
varies smoothly through time, we can reasonably expect two consecutive realizations of the noise
to be correlated, and the closer the two realizations are in calendar time the higher the correlation
is. Sudden and large variations of the information flow translate in jumps in the effi cient price and
are unlikely to go unnoticed. This interpretation implies that εt is generated endogenously by the
aggregated trade flow even though independent of the effi cient price process.

Imposing β0 = β1 = δ = 0 in our model leads to ut,j = εt,j where εt,j is a moving average
model of fix order L for ut,j . This case has been considered in Hansen and Lunde (2006). Further
imposing L = 0 results in an uncorrelated noise, such as the IID noise considered by Ait-Sahalia,
Mykland and Zhang (2005). One gets a version of Roll’s model (1984) from our specification by
setting β0 = β1 = 0 and εt,j = ±Qt,j/2, where Qt,j is the bid-ask spread. The model of Roll can
thus be regarded as nested within our specification with the difference that εt,j is now observable.
Hasbrouck (1993) used the restriction β1 = 0 with εt,j IID to model the microstructure noise
contaminating daily returns. This particular case results in anMA(1) representation for ut,j which,
as a function of the original parameters, is identifiable if one further imposes the restriction εt,j = 0
used in Beveridge and Nelson (1981) or the restriction β0 = 0 used by Watson (1986). Ait-Sahalia,
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Mykland and Zhang (2006) considered an exogenous noise with general mixing properties. Kalnina
and Linton (2008) advocated a microstructure noise model that features endogeneity and diurnal
heteroscedaticity. These two models cannot be nested within our specification.

3 Properties of Three IV Estimators

We study successively the traditional realized variance, the kernel estimator of Hansen and Lunde
(2006) and the realized kernels of Barndorff-Nielsen, Hansen, Lunde and Shephard (2008a). All
three estimators admit the following decomposition:

ÎV t = fr∗
({
r∗t,j
}m
j=1

)
+ fr∗,u

({
r∗t,j , ut,j

}m
j=1

)
+ fu

(
{ut,j}mj=1

)
, (13)

where

E
[
fr∗
({
r∗t,j
}m
j=1

)]
= IVt, (14)

E
[
fr∗,u

({
r∗t,j , ut,j

}m
j=1

)]
= 0, (15)

and
fr∗,u

({
r∗t,j , 0

}m
j=1

)
= fu

(
{0}mj=1

)
= 0, (16)

and the three terms in (13) are uncorrelated. This decomposition will be used in Section 4 to
enhance our arguments in favor of a shrinkage estimator for the IV

3.1 The Realized Volatility

The realized volatility RV (m)t sampled at the highest frequency satisfies (13) with:

fr∗
({
r∗t,j
}m
j=1

)
=

m∑
j=1

r∗2t,j ,

fr∗,u

({
r∗t,j , ut,j

}m
j=1

)
= 2

m∑
j=1

(ut,j − ut,j−1) r∗t,j and

fu

(
{ut,j}mj=1

)
=

m∑
j=1

(ut,j − ut,j−1)2 .

Under IID noise, RV (m)t is biased and inconsistent and its bias and variance are linearly increas-
ing in m. See for example Zhang, Mykland and Ait-Sahalia (2005) and Hansen and Lunde (2006).
Here the estimator of interest is the sparsely sampled realized variance given by:

RV
(mq)
t =

mq∑
k=1

r̃2t,k, (17)

where r̃t,k is the sum of q consecutive returns, that is:

r̃t,k =

qk∑
j=qk−q+1

rt,j , k = 1, ...,mq =
m

q
, q ≥ 1. (18)

9



Hence if r∗t,j is a series of one minute returns for instance, then r̃t,k would be a sequence of q minutes
return. Figure 1 illustrates the corresponding subsampling scheme which is quite standard in this
literature.

Figure 1: The subsampling scheme.

If the noise process is correctly described at the highest frequency by equation (10), then the
expression of r̃t,k is given by:

r̃t,k =

(
1 + β0 +

β1
σ∗t,qk

)
r∗t,qk +

qk−1∑
j=qk−q+1

r∗t,j −
(
β0 +

β1
σ∗t,qk−q

)
r∗t,qk−q (19)

+ (εt,qk − εt,qk−q) ,

for k = 1, ...,mq and for all t, with the convention that
∑qk−1

j=qk−q+1 r
∗
t,j = 0 when q = 1. The

covariance between r̃t,k and r̃t,k−1 is given by:

cov(r̃t,k, r̃t,k−1) = −
(
β0 +

β1
σ∗t,qk−q

)(
1 + β0 +

β1
σ∗t,qk−q

)
σ∗2t,qk−q (20)

−ω0 + 2ωm,q − ωm,2q.

The next theorem gives the bias and variance of RV (mq)
t . The expression of the bias will be

useful for the estimation of the correlogram of the microstructure noise in Section 4.

Theorem 1 Assume that the noise process evolves according to equation (10), and let RV (mq)
t =∑mq

k=1 r̃
2
t,k with mq = m

q , q ≥ 1 and m the record frequency. Then we have:

E
[
RV

(mq)
t

]
= IVt + 2mq (ω0 − ωm,q)︸ ︷︷ ︸

bias due to exogenous noise

+
2β21
q

+
2β1 (2β0 + 1)√

m

mq∑
k=1

σ∗t,qk + 2β0 (β0 + 1)

mq∑
k=1

σ∗2t,qk︸ ︷︷ ︸
bias due to endogenous noise

+β20
(
σ∗2t,0 − σ∗2t,m

)
+

2β0β1√
m

(
σ∗t,0 − σ∗t,m

)
︸ ︷︷ ︸

end eff ects

, and

10



V ar
[
RV

(mq)
t

]
= mqκ+

16β21
q (ω0 − ωm,q) +

12β41
qm

+8
[
(3+5β0)β

3
1

m
√
m

+ 2(1+β0)β1√
m

+ 2β0β1√
m

(ω0 − ωm,q) +
β0β

3
1

m
√
m

]∑mq

k=1 σ
∗
t,qk

+4
(
1 + 2β0 + 2β20

) [7(1+2β0+2β20)β21
m + 2 (ω0 − ωm,q)

]∑mq

k=1 σ
∗2
t,qk

+8
(1+4β0+6β20+4β30)β1√

m

∑mq

k=1 σ
3
t,qk + 2

∑mq

k=1

(∑qk
j=qk−q+1 σ

∗2
t,j

)2
+
16β0(1+β0)β

2
1

m

∑mq

k=1 σ
∗
t,qk−qσ

∗
t,qk + 8(1+β0)β1√

m

∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗
t,qk

+
8β20(1+β0)β1√

m

∑mq

k=1 σ
∗2
t,qk−qσ

∗
t,qk + 8β0(1+β0)

2β1√
m

∑mq

k=1 σ
∗
t,qk−qσ

∗2
t,qk

+8β0β1√
m

∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗
t,qk−q + 2

(
4β0 + 8β20 + 8β30 + 4β40

)∑mq

k=1 σ
4
t,qk

+4
(
2β0 + β20

)∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗2
t,qk + 4β20

∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗2
t,qk−q

+4β20 (1 + β0)
2∑mq

k=1 σ
∗2
t,qk−qσ

∗2
t,qk + 8 (ω0 − ωm,q)

(
β20 + 2β0β1√

m

)
+O(m−1),

where κ = 1
mq
V ar

[∑mq

k=1 (εt,kq − εt,kq−q)2
]
.

Assumption E1(b) ensures that κ is finite, and computing explicitly its exact expression is not
of direct interest in our analysis. Note that the dominant terms of the bias and of the variance of
RV (mq) are O(mq). In the case where εt,j is IID, replacing β0 = β1 = 0 in the above expressions
yields the result of Lemma 4 of Hansen and Lunde (2006) up to some changes in notations:

E
[
RV

(mq)
t

]
= IVt + 2mqω0, and (21)

V ar
[
RV

(mq)
t

]
= mqκ+ 8ω0IVt + 2

mq∑
k=1

 qk∑
j=qk−q+1

σ∗2t,j

2 ,
where mqκ = 4mqE

[
ε4t,j

]
+ 2

(
ω20 − E

[
ε4t,j

])
when εt,j is IID.

We see that the volatility signature plot may not be able to reveal the presence of the noise in
the data if εt,j = 0, since in this case the bias is equal to:

2β21
q

+ 2β1 (2β0 + 1)
1√
m

mq∑
k=1

σ∗t,qk + 2qβ0 (β0 + 1)

mq∑
k=1

σ∗2t,qk = O(1) for all mq.

Moreover, this bias can be negative at some sampling frequencies provided that β1 < 0 or β0 < 0.
Finally, note that the total bias of the RV sampled at the highest frequency may diverge at a lower
rate than m, since:

2m (ω0 − ωm,1) = O(m1−α).

The bias of the realized provides one of the moment conditions that will be used in Section 5
to estimate the correlogram of the microstructure noise. In the next section, we pursue with the
examination of the implication of the microstructure noise model for two kernel-based estimators.
This preliminary exercise if a useful step in the process of designing a good shrinkage estimator for
the IV.
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3.2 Hansen and Lunde (2006)

Hansen and Lunde (2006) proposed the following flat kernel estimator:

RV
(AC,m,L+1)
t =

m∑
j=1

r2t,j +
L+1∑
h=1

m∑
j=1

rt,j (rt,j+h + rt,j−h) , (22)

where L is the memory of the noise as defined in E2. Note that when L = 0 so that εt,j is IID,

RV
(AC,m,L+1)
t coincides with the estimator of French and al. (1987) and Zhou (1996):

RV
(AC,m,1)
t =

m∑
j=1

r2t,j + 2
m∑
j=1

rt,jrt,j−1 + (rt,m+1rt,m − rt,1rt,0)︸ ︷︷ ︸
end effects

. (23)

Note that RV (AC,m,1)t satisfies (13) with:

fr∗
({
r∗t,j
}m
j=1

)
=

m∑
j=1

r∗2t,j +

m∑
j=1

r∗t,j
(
r∗t,j+1 + r∗t,j−1

)
,

fr∗,u

({
r∗t,j , ut,j

}m
j=1

)
= 2

m∑
j=1

∆ut,jr
∗
t,j +

m∑
j=1

∆ut,j
(
r∗t,j+1 + r∗t,j−1

)
+

m∑
j=1

r∗t,j (∆ut,j+1 + ∆ut,j−1) and

fu

(
{ut,j}mj=1

)
=

m∑
j=1

∆u2t,j +

m∑
j=1

∆ut,j (∆ut,j+1 + ∆ut,j−1) ,

where ∆ut,j = ut,j − ut,j−1.
Under IID noise, it is shown in Hansen and Lunde (2006) that RV (AC,m,1)t is unbiased for IV

while its variance is linearly increasing in m. Bandi and Russell (2006) and Hansen and Lunde
(2006) derived optimal sampling frequencies for RV (m)t and RV (AC,m,1)t based on a signal-to-noise

ratio maximization. The variance of RV (AC,m,L+1)t is hard to derive in the general case. However,
assuming that εt,j is IID and neglecting the end effects in (23) leads to the following result for

RV
(AC,m,1)
t .

Theorem 2 Assume that the noise process evolves according to Equation (10). If εt,j is IID, we
have:

E
[
RV

(AC,m,1)
t

]
= IVt +

(
β20 + 2β0

) (
σ∗2t,m − σ∗2t,0

)
− 2β1(1+β0)√

m

(
σ∗t,m − σ∗t,0

)
, and

V ar
[
RV

(AC,m,1)
t

]
= 8mω20 + 2

∑m
j=1 σ

∗4
t,j + 2

(
E
[
ε4t,j

]
− ω20

)
+
β41+6β

2
1ω0

m +
8β41
m2 + 8β1√

m

[
(β0+1)

2β21
m + β1√

m
+ 2ω0 (1 + 2β0)

]∑m
j=1 σ

∗
t,j

+8
[
β20β

2
1

m +
(
β21
m + ω0

)
(1 + β0)

2 + 2ω0β
2
0

]∑m
j=1 σ

∗2
t,j

+
8β21
m

(
1 + 2β0 + 2β20

)∑m
j=1 σ

∗
t,jσ
∗
t,j−1 +

16β0β
2
1

m (1 + β0)
∑m

j=1 σ
∗
t,jσ
∗
t,j−2

+8β0β1√
m

(
1 + β0 + β30

)∑m
j=1 σ

∗2
t,jσ
∗
t,j−1 + 8β1√

m

(
1 + 2β0 + 2β20 + β30

)∑m
j=1 σ

∗2
t,j−1σ

∗
t,j

+
8β1(1+β0)β

2
0√

m

∑m
j=1 σ

∗2
t,j−2σ

∗
t,j + 8β1β0(1+β0)

2

√
m

∑m
j=1 σ

∗2
t,jσ
∗
t,j−2

+4
(
1 + 2β0 + 3β20 + 2β30 + β40

)∑m
j=1 σ

∗2
t,j−1σ

∗2
t,j
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+4β20 (1 + β0)
2∑m

j=1 σ
∗2
t,jσ
∗2
t,j−2 + β0O

(
m−1/2

)
.

Replacing β0 = β1 = 0 in this theorem yields a known result (Lemma 5 of Hansen and Lunde,
2006):

E
[
RV

(AC,m,1)
t

]
= IVt,

V ar
[
RV

(AC,m,1)
t

]
' 8mω20 + 8ω0IVt − 6ω2m,0 + 2

m∑
j=1

σ∗4t,j + 4
m∑
j=1

σ∗2t,jσ
∗2
t,j−1.

When the exogenous noise is absent (εt,j = 0) and β0 6= 0 or β1 6= 0, the estimator RV (AC,m,1)t is
slightly biased and the bias vanishes at rate O

(
m−1

)
.

E
[
RV

(AC,m,1)
t

]
− IVt =

(
β20 + 2β0

) (
σ∗2t,m − σ∗2t,0

)
− 2β1 (1 + β0)√

m

(
σ∗t,m − σ∗t,0

)
.

By examining each of the individual terms in the expression of the variance of RV (AC,m,1)t , it is seen

that RV (AC,m,1)t converges to IVt at rate
√
m when εt,j = 0. In summary, Theorem 2 permits to see

that the presence of the endogenous noise alone does not jeopardize the consistency of RV (AC,m,1)t .
This allows us to study the properties of the next estimator under the exogenous noise only.

3.3 Barndorff-Nielsen, Hansen, Lunde and Shephard (2008a)

We consider the realized Kernel of Barndorff-Nielsen, Hansen, Lunde and Shephard (2008a) given
by:

KBNHLS
t = γt,0 (r) +

H∑
h=1

k

(
h− 1

H

)(
γt,h (r) + γt,−h (r)

)
, (24)

for a kernel function k
(
h−1
H

)
such that k (0) = 1 and k (1) = 0. where:

γt,h (x) =

m∑
j=1

xt,jxt,j−h, (25)

for all variable x and h. If we further define:

γt,h (x, y) =

m∑
j=1

xt,jyt,j−h,

Kt (x) = γt,0 (x) +

H∑
h=1

k

(
h− 1

H

)[
γt,h (x) + γt,−h (x)

]
and

Kt (x, y) = γt,0 (x, y) +
H∑
h=1

k

(
h− 1

H

)[
γt,h (x, y) + γt,−h (x, y)

]
,
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then KBNHLS
t satisfies (13) with:

fr∗
({
r∗t,j
}m
j=1

)
= Kt (r∗) ,

fr∗,u

({
r∗t,j , ut,j

}m
j=1

)
= Kt (r∗,∆u) +Kt (∆u, r∗) and

fu

(
{ut,j}mj=1

)
= Kt (∆u) ,

where ∆ut,j = ut,j − ut,j−1.
Barndorff-Nielsen and al. (2008a) show that KBNHLS

t is consistent for IVt in the presence of
microstructure noise under various choice of kernel function. For example, setting k (x) = 1−x (the
Bartlett kernel) and H ∝ m2/3 leads to KBNHLS

t −IVt = Op
(
m−1/6

)
under IID noise. Furthermore,

this estimator is robust to special forms of endogeneity and serial correlation in the microstructure
noise process4. As we can see, the expression of KBNHLS

t is reminiscent of the long run variance
estimators of Newey and West (1987) and Andrews and Monahan (1992). For practical purpose,
we shall rewrite this as:

KBNHLS
t =

1

2

(
KBNHLS
t,Lead +KBNHLS

t,Lag

)
= KBNHLS

t,Lead +
1

2

(
KBNHLS
t,Lag −KBNHLS

t,Lead

)
,

where

KBNHLS
t,Lead = γt,0 (r) + 2

H∑
h=1

k

(
h− 1

H

)
γs,h (r) , and

KBNHLS
t,Lag = γt,0 (r) + 2

H∑
h=1

k

(
h− 1

H

)
γs,−h (r) .

In studying the asymptotic properties of KBNHLS
t , the remainder 12

(
KBNHLS
t,Lag −KBNHLS

t,Lead

)
is

diffi cult to handle. However, KBNHLS
t,Lead and KBNHLS

t,Lag have the same expectation and asymptotic
variances. This implies that:

E
[
KBNHLS
t,Lag −KBNHLS

t,Lead

]
= 0, and

V ar
(
KBNHLS
t

)
≤ V ar

(
KBNHLS
t,Lead

)
.

For simplicity, we shall thus ignore the remainder 12

(
KBNHLS
t,Lag −KBNHLS

t,Lead

)
in subsequent analysis.

By letting Kt (x) and Kt (x, y) represent their “Lead”versions, we are able to write:

KBNHLS
t = Kt (r∗) +Kt (r∗,∆u) +Kt (∆u, r∗) +Kt (∆u) ,

where

rt,j = r∗t,j + ∆ut,j and

∆ut,j =

(
β0 +

β1√
mσ∗t,j

)
r∗t,j −

(
β0 +

β1√
mσ∗t,j−1

)
r∗t,j−1 + (εt,j − εt,j−1) .
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Interestingly, KBNHLS
t has the following representation:

KBNHLS
t = RV

(AC,m,1)
t +

H∑
h=2

k

(
h− 1

H

)(
γt,h (r) + γt,−h (r)

)
,

where
∑H

h=2 k
(
h−1
H

) (
γt,h (r) + γt,−h (r)

)
is unbiased and consistent for zero when εt,j = 0. In

fact, the observed log-return rt,j is not autocorrelated beyond lag one in this case while V ar (rt,j)
= O(m−1). As a result, KBNHLS

t is robust to the type of endogenous noise assumed here. For
simplicity and with no loss of generality, we shall thus focus below on the asymptotic behavior of
KBNHLS
t under β0 = β1 = 0. We have the following theorem.

Theorem 3 Assume β0 = β1 = 0 and that E1 to E4 are satisfied with δ 6= 0. Further let k (x) =
1− x (the Bartlett kernel). As m goes to infinity and H = mb for some b ∈ (0, 1), we have:

Kt (r∗)− IVt = Op(H
1/2m−1/2),

V ar [Kt (r∗,∆u)] ' 2ω0
H

+ 4
L∑
h=1

(ωm,h − ωm,h+1)
[

1− (h+ 1)2

H2

]
and

Kt (∆u) = −ε2t,0 + ε2t,m −
4

H

m∑
j=1

εt,jεt,j−H −
2

H

m∑
j=1

εt,jεt,j−H−1

− 2

H

H−1∑
h=2

(εt,0εt,−h − εt,mεt,m−h) +
2

H
(εt,0εt,−H − εt,mεt,m−H) .

where we recall that ωm,L+1 = 0 in the expression of V ar [Kt (r∗,∆u)].

In the IID noise case, we have ωm,h = 0 for all h ≥ 1. Hence settingH ∝ m2/3 yields immediately
the same result as in Barndorff-Nielsen and al (2008a) up to the end effects:

KBNHLS
t − IVt = −ε2t,0 + ε2t,m +Op(m

−1/6).

The estimator KBNHLS
t is thus consistent for IVt if we are willing to neglect the end effects −ε2t,0+

ε2t,m
5. In the dependent case, we have:

V ar [Kt (r∗,∆u)]

ω0
→ 4ωm,L

ω0

[
1− (L+ 1)2

H2

]
+O

(
m−α

L∑
h=1

[
1− (h+ 1)2

H2

])
(26)

as m goes to infinity, where:

L∑
h=1

[
1− (h+ 1)2

H2

]
= O(mδ)

ω0 − ωm,L = O(mδ−α)

The first approximation stems from E4 while the second follows from (12). This implies that:

V ar [Kt (r∗,∆u)]

ω0
→ 4 +O(mδ−α) = O(1) (27)

This shows that the asymptotic variance of V ar [Kt (r∗,∆u)] is proportional to ω0. In summary,
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KBNHLS
t is not consistent in the strict sense when the noise obeys our model, but this estimator

delivers its best performance at the highest frequency.

4 Shrinkage Estimators for the IV

Basically, a shrinkage estimator is an optimal linear combination of several estimators (see Hansen,
2007). In the current paper, an estimator is said to be optimal if it minimizes the mean square error
(MSE). We have seen in the previous section that the asymptotic variance of our best estimator,
KBNHLS
t , is proportional to ω0. While ω0 can be arbitrary small, it does not converge to zero. In

the current context, an application of a variance reduction technique is fully justified. To further
motivate shrinkage estimators for the IV, we examine the contribution of the discretization error
and the microstructure noise to the MSEs of the three estimators considered in the previous section.
More precisely, we try to understand the trade-offs at play as one moves from a biased estimator to
an unbiased estimator on the one hand, and from an unbiased estimator to a consistent estimator
on the other hand.

4.1 Discretization Error versus Microstructure Noise

In this subsection, we examine the relative contribution of the discretization error and the mi-
crostructure noise to the MSE of an arbitrary estimator ÎV t that satisfies (13). We first consider
the bias term:

E
[
ÎV t

]
− IVt = E

[
fu

(
{ut,j}mj=1

)]
. (28)

As the additive terms in (13) are uncorrelated, the variance of ÎV t is given by:

V ar
[
ÎV t

]
= V ar

[
fr∗
({
r∗t,j
}m
j=1

)]
+ V ar

[
fr∗,u

({
r∗t,j , ut,j

}m
j=1

)]
+V ar

[
fu

(
{ut,j}mj=1

)]
.

Hence the overall MSE is:

MSE
[
ÎV t

]
= V ar

[
fr∗
({
r∗t,j
}m
j=1

)]
+ V ar

[
fr∗,u

({
r∗t,j , ut,j

}m
j=1

)]
(29)

+V ar
[
fu

(
{ut,j}mj=1

)]
+ E

[
fu

(
{ut,j}mj=1

)]2
.

As fr∗,u

({
r∗t,j , 0

}m
j=1

)
= fu

(
{0}mj=1

)
= 0, the above MSE reduces to the variance of fr∗

({
r∗t,j

}m
j=1

)
when there is no noise in the data. Based on this argument, we adopt the following definition.

Definition 4 The contribution of the microstructure noise to the MSE of ÎV t is:

MSEu

[
ÎV t

]
= V ar

[
fr∗,u

({
r∗t,j , ut,j

}m
j=1

)]
+ V ar

[
fu

(
{ut,j}mj=1

)]
(30)

+E
[
fu

(
{ut,j}mj=1

)]2
.

Accordingly, we define the MSE due to discretization as:

MSEr∗
[
ÎV t

]
= V ar

[
fr∗
({
r∗t,j
}m
j=1

)]
. (31)
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This definition imputes to the microstructure noise the part of the MSE of ÎV t that vanishes
when there is actually no microstructure noise in the data. In Table 1, we examine the expression

of fr∗
({

r∗t,j

}m
j=1

)
for the three estimators listed in the examples. It is seen that this expression

includes more and more terms as one moves from the top to the bottom of the table. In fact,
RV

(AC,m,1)
t kills of the bias of its ancestor RV (m)t at the expense of a higher discretization error.

Likewise, KBNHLS
t brings consistency upon conceding a higher discretization error with respect to

the unbiased estimator RV (AC,m,1)t .

fr∗

({
r∗t,j

}m
j=1

)
V ar

[
fr∗

({
r∗t,j

}m
j=1

)]
RV

(m)
t

∑m
j=1 r

∗2
t,j 2

∑m
j=1 σ

∗4
t,j

RV
(AC,m,1)
t

∑m
j=1 r

∗2
t,j +

∑m
j=1 r

∗
t,j

(
r∗t,j+1 + r∗t,j−1

)
2
∑m

j=1 σ
∗4
t,j

+4
∑m

j=1 σ
∗2
t,jσ
∗2
t,j−1 +O(m−2)

KBNHLS
t

∑m
j=1 r

∗2
t,j +

∑m
j=1 r

∗
t,j

(
r∗t,j+1 + r∗t,j−1

)
2
∑m

j=1 σ
∗4
t,j + 4

∑m
j=1 σ

∗2
t,jσ
∗2
t,j−1

+
∑H

h=2 k
(
h−1
H

)∑m
j=1 r

∗
t,j

(
r∗t,j+h + r∗t,j−h

)
+4
∑H

h=2 k
(
h−1
H

)∑m
j=1 σ

∗2
t,jσ
∗2
t,j−h

+O(Hm−2)

Table 1: Part of the MSE due to discretization

We now turn to discuss the MSE due to IID microstructure noise. Unlike RV (m)t whose bias

equals 2mE
[
u2t,j

]
, the estimators RV (AC,m,1)t and KBNHLS

t are unbiased. As a consequence, the

MSE of RV (m)t increases at rate m2 while those of RV (AC,m,1)t and KBNHLS
t are only linear in

m. On the other hand, the consistency of KBNHLS
t ensures that its variance eventually becomes

smaller than that of RV (AC,m,1)t as m goes to infinity. But there is at least two situations where

RV
(AC,m,1)
t can have lower variance than KBNHLS

t . The first situation is the one in which the
sampling frequency m is not large enough to make the asymptotic results for KBNHLS

t reliable. In
fact, the variance of KBNHLS

t can be arbitrarily high in fixed frequency although it diminishes as m
goes to infinity. The second situation is the case where the variance of the microstructure noise is
so small that it contributes very little to the MSE. In this case, the MSE of the estimators basically

reduces to the variance of fr∗
({

r∗t,j

}m
j=1

)
which happens to be larger for KBNHLS

t .

Our intuitions are supported by a simulation study by Gatheral and Oomen (2007). These au-
thors implemented twenty realized measures that aim to estimate the IV. Their main finding is that
even though inconsistent, kernel-type estimators like RV (AC,m,1)t often deliver good performances
in term of MSE at sampling frequencies commonly encountered in practice. This result stems from
the fact that an inconsistent estimator necessarily delivers its best performance at moderate fre-
quency while a consistent estimator may require quite high frequency data in order to perform well6.
Unfortunately, there is no clear rule indicating the minimum sampling frequency required for the
asymptotic theory of KBNHLS

t to be usable. Moreover, the microstructure noise is not observed so
that it is diffi cult to tell whether or not its size is small compared to the effi cient returns. In the
next section, we propose to combine linearly the two unbiased estimators RV (AC,m,1)t and KBNHLS

t

in order to achieve an optimal signal-to-noise trade off.
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4.2 Shrinkage Realized Kernels

Let us consider the decomposition:

KBNHLS
t = θ

(L)
1,t + θ

(L)
2,t (32)

where

θ
(L)
1,t = γt,0 (r) +

L+1∑
h=1

k

(
h− 1

H

)(
γt,h (r) + γt,−h (r)

)
and (33)

θ
(L)
2,t =

H∑
h=L+2

k

(
h− 1

H

)(
γt,h (r) + γt,−h (r)

)
, (34)

Note that θ(L)1,t is a smoothed version of RV
(AC,m,L+1)
t and is thus unbiased for the IV when k (x) =

1− x.
We consider a linear combinations of the form:

K$
t = $KBNHLS

t + (1−$)θ
(L)
1,t , $ ∈ R, (35)

= θ
(L)
1,t +$θ

(L)
2,t .

Note that K$
t is a realized kernels with kernel function given by:

g (x) = k (x) , 0 ≤ x ≤ L

H
, and

g (x) = $k (x) ,
L

H
< x ≤ 1

The kernel function g (x) is discontinuous at x = L
H unless $ = 1.

As both estimators are unbiased, the weight $ that minimizes the variance of K$
t conditional

on the volatility path is given:

$∗t = arg min
$
E
[
(K$

t − IVt)
2 | {σ}

]
.

= −
Cov

(
θ
(L)
1,t , θ

(L)
2,t | {σ}

)
V ar

(
θ
(L)
2,t | {σ}

)
The resultingK$∗

t is termed “shrinkage realized kernels”, as it is obtained by shrinking the unbiased
estimator in the direction of the consistent estimator. The effi ciency gain of the shrinkage estimator
with respect to KBNHLS

t is:

V ar
(
KBNHLS
t | {σ}

)
− V ar

(
K$∗
t | {σ}

)
=

(
ρ1,2,t

√
V ar (θ1,t| {σ}) +

√
V ar (θ2,t| {σ})

)2
≥ 0.

where ρ1,2,t denotes the conditional correlation between θ
(L)
1,t and θ

(L)
2,t . Hence the shrinkage estimator

inherits the good properties of KBNHLS
t at high frequency while performing better than θ(L)1,t .

The shrinkage weight $∗t is in fact unfeasible, as the conditional moments involved in its expres-
sion are typically unknown. A simple strategy is to look for a constant shrinkage weight $∗ that
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minimizes the marginal variance of K$
t . By the law of total variance, we have:

V arTotal (K
$
t ) = V ar [E (K$

t | {σ})] + E [V ar (K$
t | {σ})]

= V ar [IVt] + E [V ar (K$
t | {σ})] .

Therefore, choosing $ to minimize the marginal variance of K$
t is equivalent to choosing $ to

minimize the expected conditional variance of K$
t . We estimate the constant weight by:

$̂∗ = −
1
T

∑T
t=1

(
θ
(L)
1,t − θ

(L)
1,T

)
θ
(L)
2,t

1
T

∑T
t=1

(
θ
(L)
2,t

)2 . (36)

where θ(L)1,T =
∑T

t=1 θ
(L)
1,t . Even though $

∗ does not converge to $∗t , it achieves on average the goal
assigned to the ideal weight $∗t .

To guess the asymptotic behavior of the constant $∗, we write it as follows:

$∗ =
1− ρ1,2x

1− 2ρ1,2x+ x2

where x =

√
V ar(KBNHLS

t )
V ar

(
θ
(L)
1,t

) , ρ1,2 is the unconditional correlation between θ
(L)
1,t and K

BNHLS
t and

the variances are also unconditional. When KBNHLS
t is consistent or Op (1), we have z = O

(
m−1

)
so that $∗ converges to one at rate m. Hence K$∗

t and KBNHLS
t are asymptotically equivalent.

Hence the effi ciency gain of K$∗
t over KBNHLS

t is higher at moderate of low frequency.
Here is advocated a simple framework where the loss function is the MSE and the shrinkage

weight is constant and independent of the estimatorsKBNHLS
t and RV (AC,m,1)t . Stein (1956) derived

a shrinkage estimator for the mean of a multivariate normal distribution that outperforms the usual
empirical mean. The Stein estimator is obtained by shrinking the empirical mean toward zero using
a shrinkage weight that is a nonlinear in the empirical mean itself. Other shrinkage estimators
involving different loss functions are discuss in Hansen (2007, 2008). More specifically, our estimator
K$∗
t is related to the estimator proposed in Ghysels, Mykland and Renault (2008) that consists of

shrinking the current period estimator of IVt toward its optimal forecast from the previous period.
Finally, the shrinkage method can be used independently of the postulated microstructure noise
model.

5 Inference on the Microstructure Noise Parameters

From now one, the notation γt,h is used for γt,h (r) where the latter is defined in (25). We note
from (20) that:

E
[
γt,1
]

= −
m∑
j=1

(
β0 +

β1√
mσ∗t,j−1

)(
1 + β0 +

β1√
mσ∗t,j−1

)
σ∗2t,j−1

+m (−ω0 + 2ωm,1 − ωm,2) ,

where we recall that ωm,h is the hth autocovariance of εt,j when observed at frequency m.

Let b(m)t = E
[
RV

(m)
t − IVt

]
denote the bias of the realized volatility computed at the record

19



frequency. It follows from Lemma 7 in appendix that when q = 1, we have:

b
(m)
t = 2

m∑
j=1

(
β0 +

β1√
mσ∗t,j−1

)(
1 + β0 +

β1√
mσ∗t,j−1

)
σ∗2t,j−1

+2m (ω0 − ωm,1) + β20
(
σ∗2t,0 − σ∗2t,m

)
+

2β0β1√
m

(
σ∗t,0 − σ∗t,m

)
.

The endogenous parameters β0 and β1 hidden in the expression of the bias b
(m)
t are unfortunately

unidentified. We shall thus focus on the estimation of the bias as a whole rather that tackling β0
and β1 individually. In subsection 4.1, we discuss the estimation of b

(m)
t and {ωm,h}Lh=0 while in

subsection 4.2 we deal with the memory parameters (L,α, δ).

5.1 Estimation of the Correlogram

By neglecting the O(m−1) end terms in the expression of the bias b(m)t , we obtain the following
moment conditions:

E
[
RV

(m)
t − b(m)t − IVt

]
= 0, and (37)

E
[
b
(m)
t +

(
γt,1 + γt,−1

)
− 2m (ωm,1 − ωm,2)

]
= 0. (38)

We also have:

E
[(
γt,h+1 + γt,−h−1

)
− 2m (−ωm,h + 2ωm,h+1 − ωm,h+2)

]
= 0, 1 ≤ h ≤ L. (39)

Given that ωm,h = 0 for h > L, we have L+ 2T moment conditions to estimate L+ 2T parameters.
Estimating these parameters by the method of moments is straightforward. First solving for

ωm,L and then proceeding by backward substitution yields:

ω̂m,h = − 1

2Tm

T∑
s=1

L−h+1∑
l=1

l
(
γs,h+l + γs,−h−l

)
, h = 1, ...L, (40)

b̂
(m)
t = −γt,1 − γt,−1 −

1

T

T∑
s=1

L+1∑
l=2

(
γs,l + γs,−l

)
and (41)

RV
(AC,m,L+1)
t = γt,0 + γt,1 + γt,−1 +

1

T

T∑
s=1

L+1∑
l=2

(
γs,l + γs,−l

)
, (42)

where ω̂m,h, b̂
(m)
t and RV

(AC,m,L+1)
t are unbiased estimators of ωm,h, b

(m)
t and IVt respectively7. It

is seen that RV
(AC,m,L+1)
t is a bias corrected version of the standard realized variance which uses

the data available at all periods to estimate the IV of each period. To estimate the variance ω0, we
use the expression of the bias of the RV sampled at the highest frequency. We have:

ω̂0 =
1

2mT

T∑
t=1

b̂
(m)
t + ω̂m,1 (43)
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To estimate the covariance matrix of ω̂m = (ω̂m,0, ω̂m,1, ..., ω̂m,L)′, we define:

γt,j,(2,L+1) =
(
γt,j,2, ..., γt,j,L+1

)′
,

where γt,j,h = 1
2rt,j (rt,j−h + rt,j+h) for all t and h. Then we have:

(ω̂m,1, ..., ω̂m,L)′ =
1

mT

T∑
t=1

m∑
j=1

P−1γt,j,(2,L+1),

where P is the L × L matrix with elements: Pi,i = −1, Pi,i+1 = 2, Pi,i+2 = −1, and Pi,j = 0
otherwise 1 ≤ i, j ≤ L. If we further define:

ω̂t,j,0 = −1

2

L+1∑
h=1

(
γt,j,h + γt,j,−h

)
+
(
P−1γt,j,(2,L+1)

)
1
and (44)

(ω̂t,j,1, ..., ω̂t,j,L)′ =
(
P−1γt,j,(2,L+1)

)′
, (45)

with
(
P−1γt,(2,L+1)

)
1
being the first element of P−1γt,(2,L+1), then we are able to write:

ω̂m,h =
1

mT

T∑
t=1

m∑
j=1

ω̂t,j,h, for all h.

We have the following convergence result.

Theorem 5 Define the subsampled variance Q̂h as:

Q̂h =
m

T

T∑
t=1

 1

m

m∑
j=1

ω̂t,j,h − ω̂m,h

2

Then under Assumptions E1, E2 and E5, we have:

(mT )1/2 (ω̂m,h − ωm,h)√
Q̂h

→ N (0, 1)

as T goes to infinity and m is fixed.

This Central Limit Theorem holds under general conditions (See Politis, Romano and wolf
1997, 1999). The steps of the proof are the same as for the Theorem 1 in Ubukata and Oya (2009).
However, our result stresses that m is fixed and only T goes to infinity. This precision is important
because the number of daily observations available to estimate an autocovariance of order h (for
fixed h) is finite event if m goes to infinity.

The knowledge of L is required to estimate the correlogram of the microstructure noise. A
simple way to estimate L is to perform a significance test for ωm,h. Under the null hypothesis that
ωm,h = 0, then

τ̂h =
(mT )1/2 ω̂m,h√

Q̂h

→ N (0, 1) (46)
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The above statistics diverges under the alternative. Our estimator L̂ of L is the maximum lag at
which the null is rejected. Note that L̂ is consistent for L to the extent that this significance test is
powerful, that is:

h ≤ L⇔ Pr (|τ̂h| > 1.96)→ 1

We now turn to discuss the estimation of α and δ under the assumption that E3 and E4 are satisfied.

5.2 Assessing the values of α and δ

Assumption E3 stipulates that ω0 is constant for all m while ωm,h − ωm,h+1 = O(m−α) for h =
0, ..., L− 1. We can thus write:

ωm,h − ωm,h+1
ω0

' Chm−α, with Ch ∈
[
C,C

]
.

Taking the logs of both side of the equality and averaging over h yields:

α ' −1

L logm

L−1∑
h=0

log

(
ωm,h − ωm,h+1

ω0

)
+

1

L logm

L−1∑
h=0

logCh,

where 1
L logm

∑L−1
h=1 logCh ∈

[
logC
logm ,

logC
logm

]
so that this term goes to zero as m goes to infinity. If m

is fixed but suffi ciently high to make logC
logm and logC

logm negligible, a good estimator of α is given by:

α̂ =
1

logm

[
log ω̂0 −

1

L

L−1∑
h=0

log (ω̂m,h − ω̂m,h+1)
]
. (47)

The estimator α̂ enjoys the consistency property of ω̂m,h, being a smooth function of the latter
which is consistent according to Theorem 5. Using the Delta method, we obtain:

√
mT logm (α̂− α)→ N

(
0, (∇α)′Qω (∇α)

)
, (48)

as T goes to infinity and m is fixed, where

Qω =
m

T

T∑
t=1

 1

m

m∑
j=1

ωt,j − ω

 1

m

m∑
j=1

ωt,j − ω

′ ,
ωt,j = (ω̂t,j,0, ω̂t,j,1, ..., ω̂t,j,L)′ and

ω =
1

mT

T∑
t=1

m∑
j=1

ωt,jωt,j .

The elements of the vector ∇α are given by:

(∇α)1 =
1

ω0
− 1

L (ω0 − ω1)
,

(∇α)h =
1

L (ωm,h−2 − ωm,h−1)
− 1

L (ωm,h−1 − ωm,h)
; 2 ≤ h ≤ L and

(∇α)L+1 =
1

L (ωL−1 − ωL)
.
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Provided that the conditions of Theorem 5 hold, the asymptotic distribution (48) is valid even when
E3 and E4 are not satisfied. This is true because the distribution is derived under fixed m.

To estimate δ, we exploit Assumption E4 according to which L = Cmδ. Our estimator of δ is:

δ̂ =
log L̂

logm
, (49)

where L̂ stems from the significance test based on (46) andm is large enough to make logClogm negligible.

The estimator δ̂ inherits the asymptotic properties of L̂. Finally, note that both α̂ and δ̂ are Hill
(1975) type estimators.

6 Monte Carlo Simulation

The aim in this subsection is to assess the performance of the shrinkage estimator of IV and the

quality of the estimators of {ωm,l}L̂l=0 by simulations.

6.1 Simulation Design

We assumed that the effi cient log-price process evolves according to the model of Heston (1993):

dp∗t = σtdW1,t and (50)

dσ2t = κ
(
α− σ2t

)
dt+ γσt

[
ρdW1,t +

√
1− ρ2dW2,t

]
, (51)

where W1,t and W2,t are independent Brownian motions and the parameter ρ captures the so-called
leverage effect. Following Zhang and al. (2005), we set the parameters values as follows:

κ = 5;α = 0.04; γ = 0.5; ρ ∈ {0,−0.5} ,

where ρ = 0 corresponds to the no leverage assumption made in deriving our theoretical results.
The case ρ = −0.5 is used to check the robustness of our conclusions. In the specification above,
the unit period is one year.

We simulated data for T = 1000 days using Euler discretization scheme at one second. Assuming
that the market opens from 9:30 am to 4:00 pm, this yields 23400 discretization points within each
day. We then consider four frequencies at which the price can be observed: 30 seconds, one minute,
two minutes and five minutes. This yields four data sets with respectively m = 780, 390, 195 and 78
observations per day. Each data set is contaminated with a microstructure noise process simulated
according to the following model:

ut,j =

(
β0 +

β1√
mσ∗t,j

)
r∗t,j + εt,j , j = 1, ...,m,

where the exogenous noise εt,j is an MA(3).

εt,j = vt,j + α1vt,j−1 + α2vt,j−2 + α3vt,j−3 and

vt,j
IID∼ N(0, α0).
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We set the following values for the noise parameter:

β0 = 0.5; β1 = 0.5;

α1 = 0.5; α2 = 0.2; α3 = 0.05.

In order to make this simulation design less arbitrary, we will vary α0 in order to increase or decrease
the autocovariances of εt,j . In fact, we have:

ω0 ≡ E
(
ε2t,j
)

= α0
(
1 + α21 + α22 + α23

)
= 1.2925α0,

ωm,1 ≡ E (εt,jεt,j−1) = α0 (α1 + α1α2 + α2α3) = 0.61α0,

ωm,2 ≡ E (εt,jεt,j−2) = α0 (α2 + α1α3) = 0.225α0,

ωm,3 ≡ E (εt,jεt,j−2) = α0α3 = 0.05α0 and

ωm,h ≡ E (εt,jεt,j−h) = 0 for all h ≥ 4.

Because the link between ω0 and α0 is one-to-one, we will directly vary ω0 within the range:

ω0 ∈
{

2.25× 10−8; 2.5× 10−7; 2.25× 10−6; 2.5× 10−5
}
.

The value ω0 = 2.5×10−7 has been used in Zhang and al. (2005) at five minute sampling frequency
while ω0 = 2.25× 10−6 has served in Ait-Sahalia and al. (2005) at frequencies that range from one
minute to thirty minutes.

We consider three IV estimators: the unbiased estimator θ(L)1,t (Equation (33)), the consistent
estimator KBNHLS

t with Bartlett kernel and the shrinkage estimator K$∗
t with constant weight.

After several trials, the bandwidth H =
⌊
0.4m2/3

⌋
seems to work well for KBNHLS

t . In order to
estimate the noise autocovariances, a first guess of the maximum lag L is needed. Although L = 3
for the simulated noise, we set L̂ = 4 in the subsequent computations. A discussion on how to
formulate the first guess of L in practice is provided in the empirical section.

6.2 Simulation Results

First, we consider the volatility signature plots, that is, the curve of 1T
∑T

t=1RV
(mq)
t plotted against

q = m
mq
. Figure 2.1 describes one simulated sample without noise while Figure 2.2 describes a

noisy version of the same data. It is seen that the volatility signature plots (at the top) are quite
informative about the presence of the noise.
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Figure 2.1. Data with no noise. Figure 2.2. Data with MA(3) noise.
Figure 2: Volatility Signature Plots.
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For any arbitrary estimator ÎV t of IVt, the empirical MSE of ÎV t is given by:

MSE(ÎV t) =
1

T

T∑
t=1

(
ÎV t − IVt

)2
. (52)

This MSE converges to the marginal variance of ÎV t. Table 2 displays the MSE of θ
(L)
1,t , K

BNHLS
t

and K$∗
t for the effi cient price model with no leverage while Table 3 shows the results when leverage

is included. Interestingly, we note that the introduction of leverage slightly reduces the variance in
all the scenarios. Otherwise, the two tables display qualitatively similar results.

Variance of εt,j Frequency MSE (×10−6) Shrinkage weight

ω0 m KBNHLS
t θ

(L)
1,t K$∗

t $̂∗

2.25× 10−8 780 0.0016 0.0009 0.0009 0.2525
390 0.0022 0.0018 0.0015 0.3988
195 0.0029 0.0028 0.0025 0.4721
78 0.0050 0.0052 0.0047 0.6036

2.5× 10−7 780 0.0017 0.0017 0.0012 0.4962
390 0.0022 0.0022 0.0017 0.5125
195 0.0030 0.0033 0.0026 0.5719
78 0.0051 0.0055 0.0049 0.6438

2.25× 10−6 780 0.0049 0.0165 0.0048 0.9263
390 0.0045 0.0113 0.0044 0.8955
195 0.0050 0.0095 0.0049 0.8387
78 0.0071 0.0092 0.0070 0.8546

2.5× 10−5 780 0.3572 1.6563 0.3571 1.0040
390 0.2314 0.7405 0.2314 1.0014
195 0.1597 0.3862 0.1596 0.9845
78 0.1126 0.1674 0.1126 0.9714

Table 2: Evaluating the performance of the shrinkage estimators of IVt by Monte Carlo: Case with no
Leverage Effect.

25



Variance of εt,j Frequency MSE (×10−6) Shrinkage weight

ω0 m KBNHLS
t θ

(L)
1,t K$∗

t $̂∗

2.25× 10−8 780 0.0016 0.0008 0.0007 0.2223
390 0.0021 0.0016 0.0014 0.3172
195 0.0029 0.0028 0.0025 0.4583
78 0.0048 0.0055 0.0047 0.7701

2.5× 10−7 780 0.0016 0.0014 0.0010 0.4359
390 0.0022 0.0022 0.0017 0.4867
195 0.0030 0.0031 0.0026 0.5216
78 0.0050 0.0057 0.0049 0.7724

2.25× 10−6 780 0.0047 0.0173 0.0046 0.9108
390 0.0044 0.0113 0.0042 0.8696
195 0.0048 0.0088 0.0047 0.8685
78 0.0065 0.0084 0.0064 0.8679

2.5× 10−5 780 0.3461 1.5821 0.3461 0.9997
390 0.2217 0.8107 0.2217 1.0065
195 0.1554 0.3740 0.1554 0.9976
78 0.1083 0.1529 0.1077 0.9249

Table 3: Evaluating the performance of the shrinkage estimators of IVt by Monte Carlo: Case with
Leverage Effect.

The effi cient return data has been contaminated with a Gaussian MA(3) microstructure noise
driven by the same parameters regardless of the sampling frequency. Hence for a given ω0, the
signal-to-noise ratio deteriorates as the sampling frequency increases. Likewise for a fixed sampling
frequency, the signal-to-noise ratio deteriorates as ω0 increases. It turns out that the optimal weight
$∗ allocated to the consistent estimator heavily depends on the variance of the microstructure noise.
In general, $∗ is increasing in ω0. In large ω0 scenarios, the weight is close to one and decreases very
slowly as m increases. By contrast, the weight is smaller in small ω0 scenarios and increases quite
fast asm decreases. Overall, the relative effi ciency gain of the shrinkage estimator over the consistent
estimator is large when m is large and ω0 is small. Note that compared to the consistent estimator
KBNHLS
t , the MSE of K$∗

t is smaller by more than one half in the scenario (ω0 = 2.25 × 10−7,
m = 780) and by about one third for (ω0 = 2.25× 10−7, m = 390).

Not surprisingly, the inconsistent estimator θ(L)1,t performs better than the consistent estimator

in small ω0 scenarios (ω0 = 2.25× 10−7). In the large ω0 scenarios (ω0 > 2.25× 10−7), θ(L)1,t is not

preferred to KBNHLS
t at all the sampling frequencies while the best performance of θ(L)1,t is achieved

at lower frequencies. This is consistent with the fact that the larger the noise variance ω0, the lower
the frequency that achives the optimal signal-to-noise ratio for θ(L)1,t . For a discussion on optimal
sampling frequencies in the IID noise context, see for example Bandi and Russell (2006).

Tables 4.1 and 4.2 show the estimation results for the correlogram of the noise in the scenarios
(ω0 = 2.25 × 10−7; m = 780) and (ω0 = 2.25 × 10−7; m = 390) respectively. In these tables, the
column labeled “True” contains the true values of the parameters. The estimates are computed
using the Equation (44) while the standard deviations are computed from Equation (45) with ten
lags. Firstly, we note that the estimator of ω0 is biased upward and the bias decreases as the record
frequency increases. In fact, the bias of ω̂0 is due to the presence of endogenous noise. Under the
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assumption that σ∗t,qk is stationary, the unconditional bias of ω̂0 is given by:

E [ω̂0]− ω0 =
β21
m

+
β1 (2β0 + 1)√

m
E
[
σ∗t,qk

]
+ β0 (β0 + 1)E

[
σ∗2t,qk

]
.

Hence while ω̂0 is biased for the variance of the exogenous noise, it does reflect the actual size of
the total noise contaminating the price.

True (x10−7) Estimate (x10−7) Std. Dev. (x10−7) Student-t

ω̂0 2.2500 3.8423 0.4218 9.1095

ω̂1 1.0619 1.0722 0.1224 8.7595

ω̂2 0.3917 0.3946 0.0512 7.7072

ω̂3 0.0870 0.0932 0.0210 4.4365

ω̂4 0.0000 0.0082 0.0098 0.8432

Table 4.1. m = 780
True (x10−7) Estimate (x10−7) Std. Dev. (x10−7) Student-t

ω̂0 2.2500 5.4195 0.5989 9.0489

ω̂1 1.0619 1.0885 0.1386 7.8517

ω̂2 0.3917 0.4109 0.0689 5.9660

ω̂3 0.0870 0.1006 0.0375 2.6806

ω̂4 0.0000 0.0021 0.0212 0.0995

Table 4.2. m = 390
Table 4: Estimated correlogram of the noise (Simulated Data).

The results suggest that the autocovariances estimators {ω̂l}4l=1 are unbiased. The Student-t
statistics displayed in the last column indicate that the null hypothesis ω4 = 0 cannot be rejected
at level 5%. This suggests that upon formulating a good initial guess of L, a standard t-test can be
reliably used to assess the significance of the noise autocovariances.

7 Empirical Application

In the first subsection, we describe the data and discuss some methodological aspects of the empirical
study. The results are presented in the second subsection.

7.1 Data and Methodology

For this application, we use the data on twelve stocks listed in the Dow Jones Industrial8. The
prices are observed every one minute from January 1st, 2002 to December 31th, 2007 (1510 trading
days). In a typical trading day, the market is open from 9:30 am to 4:00 pm, and this results in
m = 390 observations per day. There are a few missing observations (less than 5 missing data per
day) which we filled in using the previous tick method.

While our theoretical model assumes no jumps, the conclusions of many studies strongly suggest
its presence in observed prices (see e.g Eraker (2004)). By assuming that the jumps are uncorrelated
with both the effi cient price and the noise, we can perform our analysis by ignoring their presence.
This does not affect the estimators of the noise parameters, but the estimators K$∗

t , KBNHLS
t
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and θ(L)1,t are now designed the total quadratic variation which is equal to the IVt plus the jump
contribution. To deal with outliers, we follow an intuition given in Barndorff-Nielsen and al (2008b)9

by applying the following cleaning rule:

rNEWt,j =

{ rOLDt,j if
∣∣∣rOLDt,j

∣∣∣ ≤ 50× rOLD

sign
(
rOLDt,j

)
× 50× rOLD otherwise

,

where rOLDt,j is the initial data and rOLD is the empirical median of
∣∣∣rOLDt,j

∣∣∣ across t and j. The
resulting rNEWt,j is treated as our initial observed return rt,j ≡ rNEWt,j . This approach assumes that
a jump must cannot be 50 times larger than the absolute median of the data. It has three main
advantages. Firstly, it preserves the structure of dependence of the microstructure noise which is

of interest in our analysis. Secondly, the process
∣∣∣rOLDt,j

∣∣∣ contains substantial information about the
normal range of the data, including the jumps. And thirdly, the median is known to be robust to
outliers. Figure 3 show examples of the impact of this preprocessing on the data.
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Figure 3: Preprocessing the data. Left: Realized volatility of rOLDt,j . Right: Realized volatility of rNEWt,j .

We have suggested that L can be estimated by testing the significance of {ωm,h}Lh=1. However,
the computation of these autocovariances requires the prior knowledge of L. We circumvent this
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vicious circle by using the following information criterion to obtain an initial guess of L:

L̂ = arg min
0≤l≤H−1

{
∆(l) =

1

T

T∑
t=1

(
KH,T
t −RV (AC,m,l+1)t

)2}
, H ∝ m2/3, (53)

where RV
(AC,m,l+1)
t is defined as in (42) and:

KH,T
t = RV

(Ac,m,1)
t +

1

T

T∑
s=1

H∑
h=2

(
1− h− 1

H

)(
γs,h + γs,−h

)
.

To see the intuition underlying the choice of this criterion, note that ∆(l) satisfies:

E [∆(l)] = V ar
(
KH,T
t −RV (AC,m,l+1)t

)
+
[
E
(
KH,T
t −RV (AC,m,l+1)t

)]2
where the moments are taken unconditionally. On the one hand, RV

(AC,m,l+1)
t is obtained by

truncating the expression of ÎV t to l autocovariance terms and is thus unbiased for IVt when l ≥ L.
On the other hand, KH,T

t is a smoothed version of RV
(AC,m,H)
t which is also unbiased for IVt due

to L < H ∝ m2/3. Hence E
(
KH,T
t −RV (AC,m,l+1)t

)
is decreasing in l in the area l < L and equals

zero in the area l ≥ L. As the variance of KH,T
t −RV (AC,m,l+1)t is increasing in l, there is a trade-off

between bias and variance that results in a L-shaped curve ∆(l). See figure 4.1.
The initial guess L̂ given by (53) is used to compute the estimators of ωm,h, h = 1, ..., L̂+ 1. If

the significance test indicates that the last two or three noise autocovariances are not significantly
different from zero, then the initial guess becomes our final estimator. Otherwise, we increment L̂ by
+1 and repeat the process until the significance test fails to reject the null for the last autocovariance.

7.2 Empirical Results

We follow three basic steps in conducting this empirical study. In the first step, we estimate the
memory parameter L. Next, the estimator L̂ is used to compute the estimators of {ωm,h}Lh=1, α and
δ along with the relevant Student-t statistics. Finally, we compute the shrinkage estimator K$∗

t .
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Figure 4.1: Plot of ∆(l) against l. The minimum of ∆(l) is used as the first guess of L.
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Figure 4.2: The correlogram of the noise {ωm,h}Lh=0 (top) and the pointwise associated Student stats
(bottom).
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Figure 4.3: Estimated Daily Integrated Volatility K$∗
t .
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Figure 4.4: Estimated Bias of the Realized Volatility RV (m).

Figure 4: Estimation Results for 3M Co, Alcoa and AIG.

Figure 4.1. shows the plots of ∆(l) against L while Figure 4.2 shows the estimated noise
autocovariances along with the significance tests for the assets 3M Co, Alcoa and AIG. This figures
suggets that the initial guess of L slightly overestimates the value predicted by the significance test.
The estimated values of L for the other assets are displayed in Table 5. For all the stocks considered,
our results suggest that the noise is L-dependent with values of L lying between 5 minutes (American
Express) and 14 minutes (AIG and General Electric). The finding that the noise is autocorrelated
is not new in the literature10. However, we contribute to the discussion by showing that there is a
vicious circle raised by the determination of L and we propose a way to solve this.

Figure 4.3 and Figure 4.4 show respectively the time series of K$∗
t and the resulting estimated

bias of the RV b̃t = RV (m) − K$∗
t . This alternative formula is preferred for the bias because it

has less variance compared to the natural method of moment estimator b̂(m)t given in (41). To
compute the realized kernels, we set H = 30 for the bandwidth except for the American Express
index (AXP) which necessitates H = 10. These bandwidth values appear to produce better results
than (390)2/3 ' 53. Figure 4.4 suggests that the sign of b̃t is not constant through time. It turns
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out that when the correlogram is positive as we found for 3M Co, Alcoa and AIG, a negative bias
can only be due to a negative correlation between the noise and the latent return. This suggests
that either β0 or β1 is negative.

L̂ α̂ (σ̂α̂) δ̂

3M Co (MMM) 12 0.5301 (0.1841) 0.4165

Alcoa Inc (AA) 12 0.4797 (0.0278) 0.4165

American International Group (AIG) 14 0.4715 (0.0100) 0.4423

Americal Express (AXP) 4 0.3151 (0.0087) 0.2324

Dupont and Dupont (DD) 12 0.4805 (0.0111) 0.4165

Walt Disney (DIS) 9 0.4773 (0.0132) 0.3683

General Electric (GE) 14 0.5303 (0.0267) 0.4423

General Motors (GM) 13 0.5117 (0.0667) 0.4299

IBM 12 0.4802 (0.0126) 0.4165

Intel Corp. (INTC) 11 0.5048 (0.0239) 0.4019

Hewlett-Packard (HPQ) 12 0.4942 (0.0146) 0.4165

Microsoft (MSFT) 11 0.4960 (0.0212) 0.4019

Table 5: Estimates of L, α and δ for twelve stocks listed in the DJI. σ̂α̂ is the estimated standard deviation
of α̂

Table 5 shows the estimates α̂ and δ̂. It is seen that δ̂ < α̂ < 2/3 for all the assets. In our
framework, the fact that the inequality δ̂ < α̂ is satisfied indicates that the noise process has finite
variance, while δ̂ < 2/3 indicates that the estimator of Barndorff-Nielsen and al. (2008a) delivers
its best performance at the highest available frequency. Finally, note that the value of δ̂ can still be
used as a measure of persistence of the microstructure noise even if assumption E4 is not satisfied.

8 Conclusion

This paper proposes a flexible semi-parametric model for the market microstructure noise. We
specify the microstructure noise as the sum of two terms. The first term is correlated with the
latent return and the second term is exogenous. The exogenous noise is modeled as an L-dependent
process, where L is allowed to increase with the frequency at which the prices are recorded. In
light of this model, we study the properties of common realized measures that aim to estimate the
integrated volatility.

We propose a new shrinkage realized kernels which is an optimal linear combination of the con-
sistent realized kernels of Barndorff-Nielsen and al (2008a) and an unbiased estimator constructed
for this purpose. It is shown theoretically that the shrinkage estimator has lower variance than
the consistent estimator in small samples while both estimators are asymptotically equivalent in
large samples. The Monte Carlo simulations show that the relative effi ciency gain of the shrinkage
realized kernels over the standard realized kernel is substantial in situations where the variance of
the microstructure noise is small. When the variance of the noise is large, the inconsistent estimator
is markedly dominated.

Finally, we propose a framework to assess the true values of the noise parameters via the observed
returns. Unfortunately, the endogeneity parameters are not identified. Our empirical findings about
the noise confirm the conclusions of Hansen and Lunde (2006): there is strong evidence that the
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noise is autocorrelated and correlated with the latent returns. If our Assumption E3-E3 are true,
then the rate at which L increases with the sampling frequency is in general slower than

√
m.
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Notes
1See Andersen, Bollerslev, Diebold and Labys (2000); Andersen, Bollerslev, Diebold and Ebens (2001).
2See also Jacod, Li, Mykland, Podolskij and Vetter (2009).
3See e.g Barndorff-Nielsen, Graversen, Jacod and Shephard (2006).
4 In the current context, an endogenous noise is a noise that is correlated with the effi cient price or return.
5See BNHLS (2007) for the treatment of these end effects in practice.
6See Ait-Sahalia, Mykland and Zhang (2005) and Bandi and Russell (2008) for optimal sampling frequencies of

some inconsistent estimators.
7When the data are non equally spaced, the expressions of the autocorrelation estimators are more tedious. See

for example Ubukata and Oya (2009).
8The data we use in this paper have been purchased from a private provider who has ensured its accuracy by

comparision with three other independent financial data providers. Please see Section 9 for the preprocessing details.
9For quote data, BNHLS (2008b) suggest to delete entries for which the spread is more that 50 times the median

spread on that day.
10See for example Hansen and Lunde (2006) and Ubukata and Oya (2009).
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Appendix: Proofs

The following Lemma will be used in the proof of Theorem 1.

Lemma 7 Assume that rt,j = (1 + at,j) r
∗
t,j − at,j−1r∗t,j−1 + (εt,j − εt,j−1) for some deterministic

sequence {at,j} , j = 1, ...,m. Let r̃t,k be the serie of non-overlapping sums of q consecutive obser-
vations of rt,j:

r̃t,k = (1 + at,qk) r
∗
t,qk +

qk−1∑
j=qk−q+1

r∗t,j − at,qk−qr∗t,qk−q + (εt,qk − εt,qk−q)

for k = 1, ...,mq and some positive integer q ≥ 1 such that mq = m/q, with the convention that∑qk−1
j=qk−q+1 r

∗
t,j = 0 if q = 1. Then we have:

E
[
RV (mq)

]
= IVt + 2

∑mq

k=1

(
at,qk + a2t,qk

)
σ∗2t,qk + a2t,0σ

∗2
t,0 − a2t,qmq

σ∗2t,qmq
+ 2mq (ω0 − ωm,q) ,

V ar
[
RV (m)

]
= 2

∑mq

k=1

[
(1 + at,qk)

2 + a2t,qk

]2
σ∗4t,qk + 2

∑mq

k=1

(∑qk−1
l=qk−q+1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗2
t,l

)
+V ar

[∑mq

k=1 (εt,qk − εt,qk−q)2
]

+ 4
∑mq

k=1

∑qk−1
j=qk−q+1 (1 + at,qk)

2 σ∗2t,jσ
∗2
t,qk

+4
∑mq

k=1 (1 + at,qk)
2 a2t,qk−qσ

∗2
t,qk−qσ

∗2
t,qk + 4

∑mq

k=1

∑qk−1
j=qk−q+1 a

2
t,qk−qσ

∗2
t,jσ
∗2
t,qk−q

+8 (ω0 − ωm,q)
∑mq

k=1 (1 + at,qk)
2 σ∗2t,qk + 8 (ω0 − ωm,q)

∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,j

+8 (ω0 − ωm,q)
∑mq

k=1 a
2
t,qk−qσ

∗2
t,qk−q + 2a4t,0σ

∗4
t,0 − 2a4t,qmq

σ∗4t,qmq

−4a2t,qmq

(
1 + at,qmq

)2
σ∗4t,qmq

.

Proof of Lemma 7:

RV (mq) =

mq∑
k=1

r̃2t,k = (1) + (2) + (3) + (4) + (5) + (6) + (7) + (8) + (9)

where
(1) =

∑mq

k=1

[
(1 + at,qk)

2 + a2t,qk

]
r∗2t,qk + a2t,0r

∗2
t,0 − a2t,qmq

r∗2t,qmq
.

(2) =
∑mq

k=1

(∑qk−1
j=qk−q+1 r

∗
t,j

)2
.

(3) =
∑mq

k=1 (εt,qk − εt,qk−q)2 .
(4) = 2

∑mq

k=1

∑qk−1
j=qk−q+1 (1 + at,qk) r

∗
t,jr
∗
t,qk.

(5) = 2
∑mq

k=1 (1 + at,qk) at,qk−qr
∗
t,qk−qr

∗
t,qk.

(6) = 2
∑mq

k=1 (1 + at,qk) (εt,qk − εt,qk−q) r∗t,qk.
(7) = −2

∑mq

k=1

∑qk−1
j=qk−q+1 at,qk−qr

∗
t,jr
∗
t,qk−q.

(8) = 2
∑mq

k=1

∑qk−1
j=qk−q+1 (εt,qk − εt,qk−q) r∗t,j .

(9) = −2
∑mq

k=1 at,qk−q (εt,qk − εt,qk−q) r∗t,qk−q.
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Only squared terms have nonzero expectation:

E
[
RV (mq)

]
= mqE

[
(εt,qk − εt,qk−q)2

]
+

mq∑
k=1

[
(1 + at,qk)

2 + a2t,qk

]
σ∗2t,qk

+

mq∑
k=1

qk−1∑
j=qk−q+1

σ∗2t,j + a2t,0σ
∗2
t,0 − a2t,qmq

σ∗2t,qmq

= 2mq (ω0 − ωm,q) + IVt + 2

mq∑
k=1

(
at,qk + a2t,qk

)
σ∗2t,qk + a2t,0σ

∗2
t,0 − a2t,qmq

σ∗2t,qmq
.

where ωm,q = E [εt,jεt,j−q] is independent of t and j. Also, all the terms involved in the expression
of RV (mq) are uncorrelated and thus:

V ar
[
RV (mq)

]
= V ar((1)) + V ar((2)) + V ar((3)) + V ar((4))

+V ar((5)) + V ar((6)) + V ar((7)) + V ar((8)) + V ar((9)),

where
V ar((1)) = 2

∑mq

k=1
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(1 + at,qk)

2 + a2t,qk

]2
σ∗4t,qk + 2a4t,0σ
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σ∗4t,qmq

− 4a2t,qmq

(
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)2
σ∗4t,qmq

.

V ar((2)) = 2
∑mq

k=1

(∑qk−1
l=qk−q+1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
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.

V ar((4)) = 4
∑mq

k=1

∑qk−1
j=qk−q+1 (1 + at,qk)
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∗2
t,qk.

V ar((5)) = 4
∑mq

k=1 (1 + at,qk)
2 a2t,qk−qσ

∗2
t,qk−qσ

∗2
t,qk.

V ar((6)) = 4
∑mq

k=1 (1 + at,qk)
2 V ar (εt,qk − εt,qk−q)V ar

(
r∗t,qk

)
= 8 (ω0 − ωm,q)

∑m
k=1 (1 + at,qk)

2 σ∗2t,qk.

V ar((7)) = 4
∑mq

k=1

∑qk−1
j=qk−q+1 a

2
t,qk−qσ
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t,jσ
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V ar((8)) = 8 (ω0 − ωm,q)
∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,j .

V ar((9)) = 8 (ω0 − ωm,q)
∑mq

k=1 a
2
t,qk−qσ

∗2
t,qk−q.

Hence:
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[
RV (mq)

]
= 2

∑mq

k=1

[
(1 + at,qk)

2 + a2t,qk

]2
σ∗4t,qk

+2
∑mq

k=1

(∑qk−1
l=qk−q+1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗2
t,l

)
+V ar

[∑mq

k=1 (εt,qk − εt,qk−q)2
]

+ 4
∑mq

k=1

∑qk−1
j=qk−q+1 (1 + at,qk)

2 σ∗2t,jσ
∗2
t,qk

+4
∑mq

k=1 (1 + at,qk)
2 a2t,qk−qσ

∗2
t,qk−qσ

∗2
t,qk + 4

∑mq

k=1

∑qk−1
j=qk−q+1 a

2
t,qk−qσ

∗2
t,jσ
∗2
t,qk

+8 (ω0 − ωm,q)
∑mq

k=1 (1 + at,qk)
2 σ∗2t,qk + 8 (ω0 − ωm,q)

∑mq

k=1

∑qk−1
j=qk−q+1 σ
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+8 (ω0 − ωm,q)
∑mq

k=1 a
2
t,qk−qσ
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t,qk−q + 2a4t,0σ

∗4
t,0 − 2a4t,qmq

σ∗4t,qmq

−4a2t,qmq

(
1 + at,qmq

)2
σ∗4t,qmq

.�
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The following Lemma will be used in the proof of Theorem 2.

Lemma 8 Under the assumptions of Theorem 2, we have:

E
[
RV

(AC,m,1)
t

]
= IVt +

(
2at,m + a2t,m

)
σ∗2t,m −

(
2at,0 + a2t,0

)
σ∗2t,0

V ar
[
RV

(AC,m,1)
t

]
= 2

∑m
j=1 σ

∗4
t,j + 4

∑m
j=1 (1 + at,j + at,jat,j−1)

2 σ∗2t,jσ
∗2
t,j−1

+4
∑m

j=1 (1 + at,j)
2 a2t,j−2σ

∗2
t,jσ
∗2
t,j−2 + 8ω0

∑m
j=1 (1 + at,j)

2 σ∗2t,j

+8ω0
∑m

j=1 a
2
t,jσ
∗2
t,j + 8mω20 + 2

(
E
[
ε4t,j

]
− ω20

)
+ 2

(
2at,0 + a2t,0

)2
σ∗4t,0

+2
(
2at,m + a2t,m

)2
σ∗4t,m + 2

(
2at,m + a2t,m

)
σ∗4t,m + 4a2t,−1a

2
t,0σ
∗2
t,−1σ

∗2
t,0

−8at,m−1at,m (1 + at,m + at,mat,m−1)σ∗2t,m−1σ
∗2
t,m

+4a2t,m−1a
2
t,mσ

∗2
t,m−1σ

∗2
t,m + 8ω0

(
σ∗2t,m−1 − σ∗2t,0
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+8ω0

(
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t,0 + at,mσ

∗2
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)
−8ω0

(
at,m−1σ∗2t,m−1 + a2t,m−1σ

∗2
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.

Proof of Lemma 8: We first note that:

RV
(AC,m,1)
t =

m∑
j=1

r2t,j + 2
m∑
j=1

rt,jrt,j−1

= (I) + (II) + (III) + (IV ) + (V ) + (V I) + (V II) + (V III) + (IX),

where
(I) =

∑m
j=1 r

∗2
t,j +

(
2at,m + a2t,m

)
r∗2t,m −

(
2at,0 + a2t,0

)
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(II) = 2
∑m

j=1 (1 + at,j + at,jat,j−1) r∗t,jr
∗
t,j−1 + 2at,−1at,0r∗t,−1r

∗
t,0 − 2at,m−1at,mr∗t,m−1r

∗
t,m.

(III) = −2
∑m

j=1 (1 + at,j) at,j−2r∗t,jr
∗
t,j−2.

(IV ) = 2
∑m

j=1 (εt,j − εt,j−1) r∗t,j − 2at,0 (εt,0 − εt,−1) r∗t,0 + 2at,m (εt,m − εt,m−1) r∗t,m.
(V ) = 2

∑m
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(V I) = 2
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(V II) = −2

∑m
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∑m
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(IX) =

∑m
j=1 (εt,j − εt,j−1)2 .

Because only squared terms will have nonzero expectation, we have:

E
[
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t

]
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(
2at,m + a2t,m

)
σ∗2t,m −

(
2at,0 + a2t,0

)
σ∗2t,0.

The calculation of that variance is simplified by noting that only the terms (IV ) to (IX) are possibly
correlated. Thus we have:
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∑m

j=1 σ
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(
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)
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= −8ω0IVt − 8ω0
∑m
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The sum of all these terms gives:

V ar
[
RV

(AC,m,1)
t

]
= 2

∑m
j=1 σ

∗4
t,j + 4

∑m
j=1 (1 + at,j + at,jat,j−1)

2 σ∗2t,jσ
∗2
t,j−1

+4
∑m

j=1 (1 + at,j)
2 a2t,j−2σ

∗2
t,jσ
∗2
t,j−2 + 8ω0

∑m
j=1 (1 + at,j)

2 σ∗2t,j

+8ω0
∑m

j=1 a
2
t,jσ
∗2
t,j + 8mω20 + 2

(
E
[
ε4t,j

]
− ω20

)
+ 2

(
2at,0 + a2t,0

)2
σ∗4t,0

+2
(
2at,m + a2t,m

)2
σ∗4t,m + 2

(
2at,m + a2t,m

)
σ∗4t,m + 4a2t,−1a

2
t,0σ
∗2
t,−1σ

∗2
t,0

−8at,m−1at,m (1 + at,m + at,mat,m−1)σ∗2t,m−1σ
∗2
t,m

+4a2t,m−1a
2
t,mσ

∗2
t,m−1σ

∗2
t,m + 8ω0

(
σ∗2t,m−1 − σ∗2t,0

)
+8ω0

(
a2t,−1σ

∗2
t,−1 + 2a2t,0σ

∗2
t,0 + at,mσ

∗2
t,m

)
40
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.�

Proof of Theorem 1: Substituting for at,j = β0 + β1√
mσ∗t,j

in Lemma 7, we get for the expec-

tation:
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For the variance, we have:
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)2 (
1 + β0 + β1√

mσ∗t,m

)2
σ∗4t,m.

In details, we have:

2
∑mq

k=1

[(
1 + β0 + β1√

mσ∗t,qk

)2
+

(
β0 + β1√

mσ∗t,qk

)2]2
σ∗4t,qk =

2
(
1 + 4β0 + 8β20 + 8β30 + 4β40

)∑mq

k=1 σ
∗4
t,qk + 8β1√

m

(
1 + 4β0 + 6β20 + 4β30

)∑mq

k=1 σ
∗3
t,qk

+
16β21
m

(
1 + 3β0 + 3β20

)∑mq

k=1 σ
∗2
t,qk +

16β31
m
√
m

(1 + 2β0)
∑mq

k=1 σ
∗
t,qk +

8β41
qm .

4
∑mq

k=1

∑qk−1
j=qk−q+1

(
1 + β0 + β1√

mσ∗t,qk

)2
σ∗2t,jσ

∗2
t,qk = 4

(
1 + 2β0 + β20

)∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗2
t,qk

+ 8β1√
m

(1 + β0)
∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗
t,qk +

4β21
m IVt.

4
∑mq

k=1

(
1 + β0 + β1√

mσ∗t,qk

)2(
β0 + β1√

mσ∗t,qk−q

)2
σ∗2t,qk−qσ

∗2
t,qk =

4β20 (1 + β0)
2∑mq

k=1 σ
∗2
t,qk−qσ

∗2
t,qk + 8β1√

m
β0 (1 + β0)

2∑mq

k=1 σ
∗
t,qk−qσ

∗2
t,qk

+ 8β1√
m
β20 (1 + β0)

∑mq

k=1 σ
∗2
t,qk−qσ

∗
t,qk +

16β21
m β0 (1 + β0)

∑mq

k=1 σ
∗
t,qk−qσ

∗
t,qk
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+
4β21
m (1 + β0)

2∑mq

k=1 σ
∗2
t,qk +

4β21
m β20

∑mq

k=1 σ
∗2
t,qk−q

+
8β31
m
√
m

(1 + β0)
∑mq

k=1 σ
∗
t,qk +

8β31
m
√
m
β0
∑mq

k=1 σ
∗
t,qk−q +

4β41
qm .

4
∑mq

k=1

∑qk−1
j=qk−q+1

(
β0 + β1√

mσ∗t,qk−q

)2
σ∗2t,jσ

∗2
t,qk−q = 4β20

∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗2
t,qk−q

+ 8β1√
m
β0
∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗
t,qk−q +

4β21
m IVt.

8 (ω0 − ωm,q)
∑mq

k=1

(
1 + β0 + β1√

mσ∗t,qk

)2
σ∗2t,qk = 8 (ω0 − ωm,q) (1 + β0)

2∑mq

k=1 σ
∗2
t,qk

+16β1
m (1 + β0)

∑mq

k=1 σ
∗
t,qk +

8β21
q (ω0 − ωm,q) .

8 (ω0 − ωm,q)
∑mq

k=1

(
β0 + β1√

mσ∗t,qk−q

)2
σ∗2t,qk−q = 8 (ω0 − ωm,q)β20

∑mq

k=1 σ
∗2
t,qk−q

+16β1√
m

(ω0 − ωm,q)β0
∑mq

k=1 σ
∗
t,qk−q +

8β21
q (ω0 − ωm,q) .

Also, V ar
[∑mq

k=1 (εt,kq − εt,kq−q)2
]

= O(mq). We thus define:

κ =
1

mq
V ar

[mq∑
k=1

(εt,kq − εt,kq−q)2
]
.

The sum of all these terms yields:

V ar
[
RV (mq)

]
= mqκ+

16β21
q (ω0 − ωm,q) +

12β41
qm

+8
[
(3+5β0)β

3
1

m
√
m

+ 2(1+β0)β1√
m

+ 2β0β1√
m

(ω0 − ωm,q) +
β0β

3
1

m
√
m

]∑mq

k=1 σ
∗
t,qk

+4
(
1 + 2β0 + 2β20

) [7(1+2β0+2β20)β21
m + 2 (ω0 − ωm,q)

]∑mq

k=1 σ
∗2
t,qk

+8
(1+4β0+6β20+4β30)β1√

m

∑mq

k=1 σ
3
t,qk + 2

∑mq

k=1

(∑qk
j=qk−q+1 σ

∗2
t,j

)2
+
16β0(1+β0)β

2
1

m

∑mq

k=1 σ
∗
t,qk−qσ

∗
t,qk + 8(1+β0)β1√

m

∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗
t,qk

+
8β20(1+β0)β1√

m

∑mq

k=1 σ
∗2
t,qk−qσ

∗
t,qk + 8β0(1+β0)

2β1√
m

∑mq

k=1 σ
∗
t,qk−qσ

∗2
t,qk

+8β0β1√
m

∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗
t,qk−q + 2

(
4β0 + 8β20 + 8β30 + 4β40

)∑mq

k=1 σ
4
t,qk

+4
(
2β0 + β20

)∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗2
t,qk + 4β20

∑mq

k=1

∑qk−1
j=qk−q+1 σ

∗2
t,jσ
∗2
t,qk−q

+4β20 (1 + β0)
2∑mq

k=1 σ
∗2
t,qk−qσ

∗2
t,qk + 8 (ω0 − ωm,q)

(
β20 + 2β0β1√

m

)
+Qm.

where
Qm = 2

(
β0 + β1√

mσ∗t,0

)4
σ∗4t,0−2

(
β0 + β1√

mσ∗t,m

)4
σ∗4t,m−4

(
β0 + β1√

mσ∗t,m

)2 (
1 + β0 + β1√

mσ∗t,m

)2
σ∗4t,m

+
8β31β0
m
√
m

(
σ∗t,0 − σ∗t,qmq

)
+

4β21β
2
0

m

(
σ∗2t,0 − σ∗2t,qmq

)
= O(m−1).�

Proof of Theorem 2: Substituting for at,j = β0 + β1√
mσt,j

in Lemma 8, yield:

E
[
RV

(AC,m,1)
t

]
= IVt +

(
β20 + 2β0

) (
σ∗2t,m − σ∗2t,0

)
− 2β1 (1 + β0)√

m

(
σ∗t,m − σ∗t,0

)
.

For the variance, we have:

V ar
[
RV

(AC,m,1)
t

]
= 2

∑m
j=1 σ

∗4
t,j + 4

∑m
j=1 (1 + at,j + at,jat,j−1)

2 σ∗2t,jσ
∗2
t,j−1

+4
∑m

j=1 (1 + at,j)
2 a2t,j−2σ

∗2
t,jσ
∗2
t,j−2 + 8ω0

∑m
j=1 (1 + at,j)

2 σ∗2t,j

+8ω0
∑m

j=1 a
2
t,jσ
∗2
t,j + 8mω20 + 2

(
E
[
ε4t,j

]
− ω20

)
+Rm.

42



where
Rm = 2

(
2at,0 + a2t,0

)2
σ∗4t,0 + 2

(
2at,m + a2t,m

)2
σ∗4t,m + 2

(
2at,m + a2t,m

)
σ∗4t,m

+4a2t,−1a
2
t,0σ
∗2
t,−1σ

∗2
t,0 − 8at,m−1at,m (1 + at,m + at,mat,m−1)σ∗2t,m−1σ

∗2
t,m

+4a2t,m−1a
2
t,mσ

∗2
t,m−1σ

∗2
t,m + 8ω0

(
σ∗2t,m−1 − σ∗2t,0

)
+8ω0

(
a2t,−1σ

∗2
t,−1 + 2a2t,0σ

∗2
t,0 + at,mσ

∗2
t,m − at,m−1σ∗2t,m−1 − a2t,m−1σ∗2t,m−1

)
.

Rm = 4β41 + 3β21ω0 +O
(
β0β1m

−1/2) .
4
∑m

j=1 (1 + at,j + at,jat,j−1)
2 σ∗2t,jσ

∗2
t,j−1 =

4β41
m +

8β0β
3
1

m
√
m

∑m
j=1 σ

∗
t,j

+
8β21
m

(
1 + β0β1√

m

)∑m
j=1 σ

∗
t,j−1 +

8β21
m

(
1 + 2β0 + 2β20

)∑m
j=1 σ

∗
t,jσ
∗
t,j−1

+
4β20β

2
1

m

∑m
j=1 σ

∗2
t,j +

4β21(1+β0)
2

m

∑m
j=1 σ

∗2
t,j−1 + 8β0β1√

m

(
1 + β0 + β30

)∑m
j=1 σ

∗2
t,jσ
∗
t,j−1

+ 8β1√
m

(
1 + 2β0 + 2β20 + β30

)∑m
j=1 σ

∗2
t,j−1σ

∗
t,j + 4

(
1 + 2β0 + 3β20 + 2β30 + β40

)∑m
j=1 σ

∗2
t,j−1σ

∗2
t,j .

4
∑m

j=1 (1 + at,j)
2 a2t,j−2σ

∗2
t,jσ
∗2
t,j−2 =

4β41
m +

8β0β
3
1

m
√
m

∑m
j=1 σ

∗
t,j−2

+
8(1+β0)β

3
1

m
√
m

∑m
j=1 σ

∗
t,j +

4β20β
2
1

m

∑m
j=1 σ

∗2
t,j−2 +

8β1(1+β0)β
2
0√

m

∑m
j=1 σ

∗2
t,j−2σ

∗
t,j

+
4β21(1+β0)

2

m

∑m
j=1 σ

∗2
t,j +

16β0β
2
1(1+β0)
m

∑m
j=1 σ

∗
t,jσ
∗
t,j−2

+8β1β0(1+β0)
2

√
m

∑m
j=1 σ

∗2
t,jσ
∗
t,j−2 + 4β20 (1 + β0)

2∑m
j=1 σ

∗2
t,jσ
∗2
t,j−2.

8ω0
∑m

j=1 (1 + at,j)
2 σ∗2t,j = 8ω0β

2
1 + 16ω0β1(1+β0)√

m

∑m
j=1 σ

∗
t,j

+8ω0 (1 + β0)
2∑m

j=1 σ
∗2
t,j .

8ω0
∑m

j=1 a
2
t,jσ
∗2
t,j = 8ω0β

2
1 + 16ω0β1β0√

m

∑m
j=1 σ

∗
t,j + 8ω0β

2
0

∑m
j=1 σ

∗2
t,j .

Hence:
V ar

[
RV

(AC,m,1)
t

]
= 8mω20 + 2

∑m
j=1 σ

∗4
t,j + 2

(
E
[
ε4t,j

]
− ω20

)
+
β41+6β

2
1ω0

m +
8β41
m2 + 8β1√

m

[
(β0+1)

2β21
m + β1√

m
+ 2ω0 (1 + 2β0)

]∑m
j=1 σ

∗
t,j

+8
[
β20β

2
1

m +
(
β21
m + ω0

)
(1 + β0)

2 + 2ω0β
2
0

]∑m
j=1 σ

∗2
t,j

+
8β21
m

(
1 + 2β0 + 2β20

)∑m
j=1 σ

∗
t,jσ
∗
t,j−1 +

16β0β
2
1

m (1 + β0)
∑m

j=1 σ
∗
t,jσ
∗
t,j−2

+8β0β1√
m

(
1 + β0 + β30

)∑m
j=1 σ

∗2
t,jσ
∗
t,j−1 + 8β1√

m

(
1 + 2β0 + 2β20 + β30

)∑m
j=1 σ

∗2
t,j−1σ

∗
t,j

+
8β1(1+β0)β

2
0√

m

∑m
j=1 σ

∗2
t,j−2σ

∗
t,j + 8β1β0(1+β0)

2

√
m

∑m
j=1 σ

∗2
t,jσ
∗
t,j−2

+4
(
1 + 2β0 + 3β20 + 2β30 + β40

)∑m
j=1 σ

∗2
t,j−1σ

∗2
t,j+4β20 (1 + β0)

2∑m
j=1 σ

∗2
t,jσ
∗2
t,j−2+β0O

(
m−1/2

)
.�

Proof of Theorem 3:
The result for Kt (r∗) follows from Theorem 1 of Barndorff-Nielsen and al (2008a). Below, we

examine the term KBNHLS
t (r∗,∆ε):

KBNHLS
t (r∗,∆ε) = γt,0 (r∗,∆ε) + 2

H∑
h=1

k

(
h− 1

H

)
γt,h (r∗,∆ε) .

Let us define Φ = (1, k
(
0
H

)
, k
(
1
H

)
, ..., k

(
H−1
H

)
)′. Then, we have:

KBNHLS
t (r∗,∆ε) = Φ′

m∑
j=1

r∗t,j


εt,j − εt,j−1

2 (εt,j−1 − εt,j−2)
...

2 (εt,j−H − εt,j−H−1)

 .
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Note that:

V ar
[
KBNHLS
t (r∗,∆ε)

]
= V ar

[
E
[
KBNHLS
t (r∗,∆ε) | {(εt,j−h − εt,j−h−1)}Hh=0

]]
+E

[
V ar

[
KBNHLS
t (r∗,∆ε) | {(εt,j−h − εt,j−h−1)}Hh=0

]]
= E

[
V ar

[
KBNHLS
t (r∗,∆ε) | {(εt,j−h − εt,j−h−1)}Hh=0

]]
= IVtΦ

′V ar
(
∆εH

)
Φ,

where ∆εH = (εt,j − εt,j−1, 2 (εt,j−1 − εt,j−2) , ..., 2 (εt,j−H − εt,j−H−1)).
We now compute explicitely V ar

(
∆εH

)
:

E
[
(εt,j − εt,j−1)2

]
= 2 (ω0 − ωm,1)

E [(εt,j − εt,j−1) (εt,j−h − εt,j−h−1)] = −ωm,h−1 + 2ωm,h − ωm,h+1
E [(εt,j−h − εt,j−h−1) (εt,j−k − εt,j−k−1)] = −ωm,h−k−1 + 2ωm,h−k − ωm,h−k+1, h > k.

Let ∆ωm,h = ωm,h − ωm,h+1 for all h. Then:

V ar
(
∆εH

)
= 2×

∆ω0 • ... • •
(−∆ω0 + ∆ωm,1) 2∆ω0 ... • •

(−∆ωm,1 + ∆ωm,2) 2 (−∆ω0 + ∆ωm,1) ... • •
... 2 (−∆ωm,1 + ∆ωm,2) ... ... ...
... ... 2∆ω0 •

(−∆ωm,H−1 + ∆ωm,H) 2 (−∆ωm,H−2 + ∆ωm,H−1) ... 2 (−∆ω0 + ∆ωm,1) 2∆ω0


To ease the calculations, a simplified representation of V ar

(
∆εH

)
is needed. To that end, let

us define:

S0
(H+1×H+1)

=


1 −1 • ... •
−1 2 −1 ... ...
0 −1 2 ... •
... ... ... ... −1
0 0 −1 2


Also let Sh be the symmetric matrix of size H + 1 with elements Shj,k = 1 if j = k + h or j = k − h
, Shj,k = −1 if j = k + h + 1 or j = k − h − 1, and Shj,k = 0 otherwise. In fact, Sh is the sparse

matrix with ones on the hth diagonals and minus ones on the h+ 1th diagonals. Finally, let S̃h be
the matrix Sh with the nonzero elements of the first row and first column replaced by zero. Then
we have:

Φ′V ar
(
∆εH

)
Φ = 2 (ω0 − ωm,1) Φ′S0Φ + 2

L∑
h=1

(ωm,h − ωm,h+1) Φ′
(
Sh + S̃h

)
Φ.
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As m→∞ and H = mb for b ∈ (0, 1), we easily check that:

Φ′S0Φ =
H∑
h=0

(
k

(
h+ 1

H

)
− k

(
h

H

))2
→ 1

H

∫ 1

0
k′ (x)2 dx =

1

H
.

Φ′ShΦ + Φ′S̃hΦ = k

(
h

H

)
− k

(
h+ 1

H

)
+

4

H

H−h−1∑
l=0

k

(
l

H

)
,

=
1

H
+ 4

∫ 1−h+1
H

0
k (x) dx =

1

H
+ 2

[
1− (h+ 1)2

H2

]
.

Focusing on the dominant terms, we have:

Φ′V ar
(
∆εH

)
Φ ' 2

H

L∑
h=0

(ωm,h − ωm,h+1) + 4

L−1∑
h=1

(ωm,h − ωm,h+1)
[

1− (h+ 1)2

H2

]

+4ωm,L

[
1− (L+ 1)2

H2

]
,

=
2ω0
H

+ 4
L−1∑
h=1

(ωm,h − ωm,h+1)
[

1− (h+ 1)2

H2

]
+ 4ωm,L

[
1− (L+ 1)2

H2

]
.

This yields the second result. The remaining term to examine is thus KBNHLS
t (∆ε). We have:

KBNHLS
t (∆ε) =

m∑
j=1

(εt,j − εt,j−1)2 + 2
H∑
h=1

k

(
h− 1

H

) m∑
j=1

(εs,j − εs,j−1) (εs,j−h − εs,j−h−1) ,

= V
(AC,m,1)
t + 2

H∑
h=2

k

(
h− 1

H

) m∑
j=1

(εs,j − εs,j−1) (εs,j−h − εs,j−h−1) .

RV
(AC,m,1)
t =

∑m
j=1 (εt,j − εt,j−1)2 + 2

∑m
j=1 (εt,j − εt,j−1) (εt,j−1 − εt,j−2)

= −2
∑m

j=1 εt,j−2 (εt,j − εt,j−1)− ε2t,0 + ε2t,m
= 2

∑m
j=1 εt,j (εt,j−1 − εt,j−2)− ε2t,0 + ε2t,m + 2 (εt,0εt,−1 − εt,mεt,m−1) .

And for h ≥ 2, we have:∑m
j=1 (εt,j − εt,j−1) (εt,j−h − εt,j−h−1) =∑m
j=1 εt,jεt,j−h −

∑m
j=1 εt,j−1εt,j−h −

∑m
j=1 εt,jεt,j−h−1 +

∑m
j=1 εt,j−1εt,j−h−1 =

−
∑m

j=1 εt,jεt,j−h+1 + 2
∑m

j=1 εt,jεt,j−h −
∑m

j=1 εt,jεt,j−h−1
− (εt,0εt,−h+1 − εt,mεt,m−h+1) + (εt,0εt,−h − εt,mεt,m−h).
Summing over H yields:
2
∑H

h=2 k
(
h−1
H

)∑m
j=1 (εt,j − εt,j−1) (εt,j−h − εt,j−h−1)

= −2
∑m

j=1 εt,j (εt,j−1 − εt,j−2)− 4
H

∑m
j=1 εt,jεt,j−H

− 2
H

∑m
j=1 εt,jεt,j−H−1 − 2

H

∑H−1
h=2 (εt,0εt,−h − εt,mεt,m−h)

−2 (εt,0εt,−1 − εt,mεt,m−1) + 2
H (εt,0εt,−H − εt,mεt,m−H).
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Finally, we have:

KBNHLS
t (∆ε) = −ε2t,0 + ε2t,m −

4

H

m∑
j=1

εt,jεt,j−H −
2

H

m∑
j=1

εt,jεt,j−H−1

− 2

H

H−1∑
h=2

(εt,0εt,−h − εt,mεt,m−h) +
2

H
(εt,0εt,−H − εt,mεt,m−H)

= −ε2t,0 + ε2t,m +Op(H
−1m1/2).

�

Proof of Theorem 5:
As ω̂t,j,h is a linear combination of a finite number of terms of type γt,j,h (see Equations 44 and

45), our Assumption E5 ensures that:

V ar

T−1/2m−1/2 T∑
t=1

m∑
j=1

ω̂t,j,h

→ Qh,as T →∞,

for some Qh that depends only on h. Next, we note that our Assumptions E1 and E2 replicate
the Assumption 1 of Ubukata and Oya (2009), which together with E5 ensure that their Lemma 1
holds, that is:

(mT )1/2 (ω̂m,h − ωm,h)

Qh
→ N (0, 1) , as T →∞.

By letting T alone go to inifinity, we ensure that m
mT → 0 as mT goes to infinity. Lemma 2 of

Ubukata and Oya (2009) then guarantee under the same assumptions that Q̂h → Qh in L2. Finally,
we replace Qh by Q̂h above to obtain the desired result.
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