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Abstract 
 

We test for the presence of time-varying parameters (TVP) in the long-run dynamics of energy prices 

for oil, natural gas and coal, within a standard class of mean-reverting models. We also propose 

residual-based diagnostic tests and examine out-of-sample forecasts. In-sample LR tests support the 

TVP model for coal and gas but not for oil, though companion diagnostics suggest that the model is 

too restrictive to conclusively fit the data. Out-of-sample analysis suggests a randomwalk specification 

for oil price, and TVP models for both real-time forecasting in the case of gas and long-run forecasting 

in the case of coal. 
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1. Introduction

It is widely recognized that fluctuations in energy prices have important and lasting effects on the

economies of industrialized countries.1 At the same time, interpreting and predicting the behavior

of energy prices remain challenging problems. In addition to domestic and international supply as

well as demand conditions, non-market-related features (such as regulations, technological advances

and geopolitical considerations) are difficult to characterize. Fully articulated structural models are

difficult to build and may be unreliable. Instead, analysts have proposed simple time-series reduced

forms for various purposes, notably: (i) testing and validating non-renewable resources models such

as the Hotelling rule, or (ii) forecasting. The associated literature is very large and statistical support

is claimed for many different models.2 In this paper, we focus on the class of trend models with

time-varying parameters (TVP) proposed by Pindyck (1999) to derive long-run forecasts for oil,

natural gas and coal prices.

An important feature of Pindyck’s models is the inclusion oftime-varying trend parameters

to reflect alternative assumptions on demand shifts, resource depletion and technological change.

Using a simple Hotelling model, Pindyck argues that long-run energy prices should revert to an

unobservabletrending long-run marginal cost, with continuous random changes in the level and

slope of the trend. Pindyck further proposed a family of econometric models that integrate the

latter feature. Alternative versions of these models were estimated and out-of-sample forecasts

were computed, using Kalman filter techniques and annual data from 1870 to 1996 for crude oil

and bituminous coal, and from 1919 to 1996 for natural gas. Pindyck’s general specifications for

the latter data assume a Gaussian AR(1) process for log-prices, with drift and trend, where the drift

and trend coefficients follow themselves uncorrelated Gaussian AR(1) processes. Such models are

1Work on the linkages between energy prices and financial markets or the macroeconomy is abundant. For critical
discussions, see Hamilton (2003), Hamilton and Herrera (2004), Barsky and Kilian (2004), Kilian (2008b, 2008c, 2008a),
Kilian (2009), Kilian and Park (2009), and Kilian, Rebucci and Spatafora (2009).

2For recent references, statistical results and critical discussions, see Ahrens and Sharma (1997), Berck and Roberts
(1996), Cortazar and Naranjo (2006), Cortazar and Schwartz(2003), Gibson and Schwartz (1990), Lee, List and Strazi-
cich (2006), Moshiri and Foroutan (2006), Pindyck (1999, 2001), Postali and Picchetti (2006), Regnier (2007), Sadorsky
(2006), Schwartz (1997), Schwartz and Smith (2000), Slade (1982, 1988), Tabak and Cajueiro (2007). For a recent survey
related to the Hotelling rule, see Livernois (2009) and the references therein.
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parsimonious yet flexible, allowing both random walks with drift and/or changing trend lines where

prices revert to a possibly moving mean. The forecast exercises conducted by Pindyck yield mixed

results, but on balance, the class of models considered appears to be quite promising.

Pindyck (1999) did not provide statistical tests for the proposed class of models. In particular,

the time-varying parameter specification was not tested statistically. It is worth noting that a zero-

variance restriction on the processes postulated by Pindyck for the drift and trend coefficients leads

to their time invariant counterpart. Given the sample sizesat hand, the decision to use a TVP model,

as opposed to a more common autoregressive or fixed coefficient trend model [such as those used

by Slade (1982)] may have non-negligible finite-sample statistical consequences. The fact remains

that shifts in trends are empirically documented with energy prices.3

TVP models, which capture continuous and unpredictable shifts in slopes and trends through

random coefficients, have obvious appeal from an economic perspective relative to data-driven

change-point methods [see, for example, Lee et al. (2006)].TVP models however raise compu-

tational difficulties. Despite the fact that TVP likelihoods can easily be evaluated using Kalman

filtering, such functions are typically ill-behaved for empirically relevant parameter values. Even

though sophisticated numerical recipes and global maximizers are readily available, it is well known

that maximization may be difficult to achieve in this context. In particular, irregularities can be

linked to parameter space regions where the variances of thestochastic coefficients are “small” or

“close-to-zero”. Unfortunately, if the variances are actually zero, the correspondingt-ratios do not

have a regular asymptotic distribution; it is thus hard to assesshow small is small.4

Statistical tests for TVP are particularly challenging, for at least three reasons. First, under the

null hypothesis of no parameter variation, the parameters describing the distribution of the TVP

processes are not identified. Second, the no-variation hypothesis sets the parameters describing the

TVP processes on the boundary of their permissible domain (the so-called “nesting-at-boundary”

3The above-cited literature provides ample evidence on thisfeature; see especially Lee et al. (2006) and the recent
review of Livernois (2009).

4See Stock and Watson (1998) for an early reference to this problem in the special case where the TVP specification
follows a unit-root.
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problem).5 The third difficulty stems from the coefficient on the lagged price, which shows up as a

nuisance parameter in the no-variation test problem and is subject to usual unit-root type issues.

The above features can cause test sizes to deviate severely from their nominal levels. Usual chi-

square critical points can easily lead to spurious rejections even with fairly large data sets, because

the regularity conditions underlying classical asymptotics fail. Identification-robustTVP tests are as

yet unavailable.6 Furthermore, while the Kalman-filter makes likelihood-based inference possible,

if not always tractable, the associated specifications may provide a poor fit or bad forecasts when the

underlying parametric assumptions are not compatible withavailable data. Careful residual-based

diagnostics are thus required, in particular to assess departures from normality. Residual-based

normality tests which arerobust to estimation effectsare unavailable for TVP models.7

This paper makes three main contributions. First, we propose and apply finite-sample tests for

TVP within the class of models proposed by Pindyck (1999). Wealso show - in a Monte Carlo study

- that using standard asymptotic critical points for these tests can lead to severe size distortions. Sec-

ond, we propose finite-sample residual-based tests to assess the underlying normality assumption;

we also show that diagnostic tests which sidestep parameterestimation uncertainty have sizes that

deviate arbitrarily from their nominal levels. Third, we examine in-sample and out-of-sample fit

for the class of models at hand. Specifically, we complement our in-sample analysis with a fore-

casting exercise. In this case, in addition to a long-run analysis similar to Pindyck’s, we consider a

5Indeed, setting the coefficients on the autoregressive terms to one and the variances to zero in the processes considered
by Pindyck (1999) for the intercept and trend, leads to a constant coefficient autoregressive model with a linear trend and
drift. The latter model is a special case of the TVP model under consideration, yet the unit root as well as the zero
variances lie on the boundary - rather than the interior - of the model parameter space.

6A test is considered robust to identification if its significance level is controlled - at least asymptotically - regardless
of identification, that is irrespective of whether identification holds, holds only weakly, or does not hold. See the reviews
of Stock, Wright and Yogo (2002) and Dufour (2003). These authors use the term “robust to weak instruments” to
designate procedures whose validity is not affected by a setof instruments that does not allow one to identify structural
parameters. Since we consider here a setup where instrumental variables are not explicitly required, we shall employ the
term “identification-robust” which appears sufficiently general to cover the kind of situation studied in this paper.

7A diagnostic test is considered robust to estimation effects if the associated significance level is the same - at least
asymptotically - irrespective of whether disturbances or residuals are used to construct the test statistic. See Godfrey
(1996, section 2) for an asymptotic definition, and Dufour, Farhat, Gardiol and Khalaf (1998), Dufour and Khalaf (2002),
Dufour, Khalaf and Beaulieu (2003), Dufour, Khalaf, Bernard and Genest (2004), Khalaf and Kichian (2005), Bernard,
Idoudi, Khalaf and Yelou (2007), and Dufour, Khalaf and Beaulieu (2010), for a finite sample perspective. In this paper,
and in contrast with the latter finite sample motivated works, residuals from non-linear models are in question, which
raises more pernicious nuisance-parameter dependence problems.
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continuously-updated one-step-ahead approach.

The proposed TVP and normality tests rely on exact simulation-based test procedures, applica-

ble – even with small samples – to highly irregular problems for which standard techniques are not

valid. Specifically, we apply themaximized Monte Carlo(MMC) test technique [Dufour (2006)],

which is based on comparing the maximalp-value of the test (over the nuisance parameters that

are identified under the null hypothesis, obtained by simulation) with the significance level. Conse-

quently, level control is ensured by construction.8 Empirically, the proposed tests allow us to select,

within the suggested family of models, specifications that are statistically justified for crude oil,

coal, and natural gas prices.

In our forecasting exercise, for both long-run and real-time exercises, we produce and analyze

forecasts based on model averaging. The usual model selection practice has recently been some-

what outrun by the concept of model averaging.9 In particular, model averaging seems particularly

useful in accounting for breaks and instabilities, a fact tobe seriously considered for the problem

at hand.10 Model-averaged approaches to analyze trends in energy prices are rare.11 To the best

of our knowledge, model-averaging has not been considered so far in order to assess the Hotelling

rule. While developing a formal inferential procedure to assess out-of-sample fit with and with-

out averaging is beyond the scope of this paper, we believe our analysis for the data set at hand is

empirically worthwhile given the absence of relevant results.

Empirical results can be summarized as follows. Our in-sample Likelihood Ratio (LR) testing

exercise rejects the fixed-coefficient model in favour of Pindyck’s model for coal and gas, though not

for oil. However, independence and normality tests suggestthat Pindyck’s model is too restrictive to

conclusively fit the data. Our out-of-sample exercise selects a random-walk specification for long-

run and real-time forecasting for oil, and Pindyck’s model for both real-time forecasting in the case

8When the null distribution of test statistic depends on nuisance parameters, anα-level is guaranteed in finite samples
[see Lehmann (1986)] when the largestp-value (over all values of the nuisance parameters consistent with the null
hypothesis) is referred toα.

9Seee.g.Hansen (2007, 2008, 2009a).
10See Clark and McCracken (2009) or Hansen (2009a), on models with discrete breaks.
11We thank an anonymous referee for pointing this out.
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of gas and long-run forecasting in the case of coal. Furthermore, in the case of natural gas price,

we also show that accounting for the post eighties market deregulation tends to improve both time

invariant and TVP specifications.

In Section 2, we describe the class of proposed models and thetest method used. Section 3

documents and discusses our empirical in-sample results. In section 4, we report our forecasting

analysis. We conclude in Section 5. The Appendix reports theresults of a small Monte Carlo

experiment which document the unreliability of usual asymptotic approximations.

2. Model and test methods

Pindyck (1999) considers a basic Hotelling model for a depletable resource produced in a competi-

tive market. Under the assumption of constant marginal costof extractionc and isoelastic demand

with unitary elasticity, the price level is given by

Pt = c+ [(cert/(ercR0/A − 1)] (2.1)

whereR0 is the initial stock of the depletable resource,A is a demand shifter, andr is the interest

rate. This implies that the slope of the price trajectory is given by

dPt/dt = rcert/(ercR0/A − 1) , (2.2)

so changes in demand, extraction costs, and reserves all affect this slope. For example, an increase

in A causes the slope to increase, while increases inc orR0 reduce the slope. In addition, increases

in c or A raise the price level, whereas an increase inR0 leads to a decrease in this level. If, as

Pindyck (1999) argues, these factors fluctuate in a continuous and unpredictable manner over time,

then long-run energy prices should revert to a trend which itself fluctuates in the same fashion.

A class of models which integrates the above features is the generalized Ornstein-Uhlenbeck

process. Pindyck (1999) proposes a discretized version of this model as a suitable econometric
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framework for analyzing long-run energy prices.12 This leads to the following AR(1)-type dynamic

model:

Pt = c1 + φ1t + c5t+ φ2tt+ c2Pt−1 + εt , t = 1, . . . , T , (2.3)

wherePt refers to the logarithm of the real price of an energy productand the coefficientsφ1t and

φ2t follow the stochastic processes

φ1t = c3φ1,t−1 + v1t , (2.4)

φ2t = c4φ2,t−1 + v2t . (2.5)

The processes forφ1t andφ2t are unobservable, continuously evolving parameters whichreflect

long-run marginal costs including scarcity rent, in the underlying structural model. Formally,εt,

v1t, andv2t, t = 1, . . . , T, are assumed to be independently and identically normally distributed

with zero means and covariances, and variancesσ2
ǫ , σ

2
v1 , andσ2

v2 , respectively. The lag structure

and reliance on linear trends and uncorrelated unobservable components are dictated by the length

of the sample: the series considered by Pindyck on the U.S. extend from 1870 to 1996 for crude oil

and bituminous coal, and from 1919 to 1996 for natural gas.

Assuming normality ofεt, v1t, andv2t, Pindyck proposes that Kalman filtering be applied to

obtain paths for the state variablesφ1t andφ2t. This means that, starting with initial values for

model parameters and state variables, the filter computes ateach period new values for the state

variables to reflect new information on the observable series. Once the paths of the state variables

are determined, the model can be estimated by maximum likelihood. The reader is referred to

Kim and Nelson (1999, Chapter 3) for details of the Kalman filtering procedure and the associated

likelihood functions. Following Pindyck (1999), we estimate and test this model separately for each

price series considered, and over a long time span, as discussed in section 3.

12Formally, Pindyck suggests the quadratic trend modelPt = c1 + φ
1t

+ c5t + c6t
2
+ φ

2t
t + c2Pt−1 + ǫt , t =

1, . . . , T , yet because of sample size restrictions, the author estimatesPt = c1 + φ
1t

+ φ
2t
t + c2Pt−1 + ǫt , t =

1, . . . , T . Given our emphasis on testing the time-invariant counterpart of this model (we provide further justifications
below), we consider (2.3).
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2.1. Testing for time-varying parameters

In view of assessing the statistical significance of TVP effects, the null hypothesis of interest is a

simple mean-reverting model around a fixed trend line [the trending Ornstein-Uhlenbeck process

given by equation (24) in Pindyck (1999)],i.e.,

Pt = (c1 + φ1) + (c5 + φ2) t+ c2Pt−1 + εt , t = 1, . . . , T . (2.6)

It is clear that the models to be compared statistically are nested at the boundaries of certain para-

meters; formally,

model (2.6)⊆ model (2.3) whenσ2
v1 → 0, σ2

v2 → 0, andc3 = c4 = 1 . (2.7)

In other words, whenσ2
v1 = 0, σ2

v2 = 0 and c3 = c4 = 1, thenφ1t = φ1 andφ2t = φ2,

t = 1, . . . , T , leading to (2.6). As argued above, the zero variances as well as the unit root values

for c3 andc4 lie on the boundary - rather than the interior - of the parameter space associated with

(2.3). Further, it is easy to see that some parameters may notbe identifiable under certain parameter

configurations: for example,c1 is not identified whenc3 = 1 andσ2
v1 = 0, and it is “poorly”

identified when we are close to these values; the same observation holds forc5, whenc4 = 1 and

σ2
v2 = 0.

In this context, one cannot rely on estimated standard errors and standard limiting distributions,

since their use for building tests and confidence sets is not justified even asymptotically. In particu-

lar, the distributions of some widely used test statistics,such ast-type and more generally Wald-type

statistics, may be difficult (if not impossible) to bound under various null hypotheses, so that con-

trolling the level of such tests may not be feasible. By contrast, the distributions of likelihood-ratio-

type statistics appear to be more stable, so such tests provide a more appropriate basis for statistical

7



inference.13 Taking into account these observations, we consider the LR statistic:

LR = 2[LTV P − LFCM ] (2.8)

whereLTV P andLFCM are, respectively, the maximum of the log-likelihood functions associated

with (2.3) and (2.6).

For further reference, let̂εt, v̂1t, and v̂2t, t = 1, . . . , T , refer to post-estimation residuals

associated with (2.3). In addition, denote the vector of parameters that define this model as

ω =
{

c1, c3, c2, c5, c4, σ
2
v1 , σ

2
v2 , σ

2
ǫ

}

(2.9)

and the vector of free parameters under the null hypothesis as

θ =
{

(c1 + φ1) , (c5 + φ2) , c2, σ
2
ǫ

}

. (2.10)

Furthermore, let̂ωTV P andθ̂FCM refer to the maximum-likelihood estimates ofω andθ calculated

from the observed sample, imposing (2.3) and (2.6), respectively. Finally, denote the observed value

of LR (i.e. the value obtained from the observed sample) asLR0.

To obtainp-values for this statistic, we resort to the maximized MonteCarlo (MMC) test tech-

niques [Dufour (2006)]. In what follows, we summarize the technique as it applies to our specific

problem. Mainly, what we need is the possibility of simulating the relevant test statistic under the

null hypothesis. Drawing from the null data-generating process under consideration requires setting

a value forθ; the unidentified nuisance parameters (for example,c3 andc4 under the constant coef-

ficient model) do not matter, because they simply do not appear in the null data-generating process.

So given a specific value forθ, we define ap-value function, denoted̂p(LR0|θ), as follows.

(i) Generate a simulated sample from the null model by drawing from the normal distribution

given the specific choice forθ. Reestimate the restricted and the alternative models (2.6) and

13See Andrews (2000, 2001), Dufour (1997, 2003) and Stock et al. (2002).

8



(2.3) given the simulated data, and using (2.8), compute thecorresponding test statistic.

(iii) Repeat this processN times; this yieldsN simulated test statistics, denotedLRi( θ), i =

1, . . . , N , from a data generating process (DGP) that satisfies the nullhypothesis. In our

notation, the presence ofθ indicates thatLRi(θ) depends on data simulated given a specific

choice forθ.

(iii) Compute the number̂g(LR0 | θ) of LRi( θ) values which are not smaller thanLR0. Then

p̂(LR0 | θ) =
ĝ(LR0 | θ) + 1

N + 1
. (2.11)

The latter empiricalp-value is thus based on the rank ofLR0 relative to its simulated coun-

terparts.

The MMC technique involves maximizinĝp(LR0 | θ) sweeping over combinations of admissi-

ble values ofθ.14 Formally, let

p̂MMC(LR0 ) = sup
θ∈ Θ0

p̂(LR0 | θ)

whereΘ0 refers to the parameter space forθ conformable with the null hypothesis. The resulting

MMC test is significant at levelα if p̂MMC(LR0 ) ≤ α . This can be viewed as a Monte Carlo

implementation of the standard definition of the level of a test in the presence of nuisance parame-

ters: when a test is nuisance-parameter dependent, anα level is achieved by comparing the largest

p-value over all nuisance parameters consistent with the null hypothesis toα [see Lehmann (1986)].

Following the argument in Dufour (2006), this simulation-based procedure has levelα, i.e.

P

[

sup
θ ∈ Θ0

[p̂N (S0 | θ)] ≤ α
]

≤ α underH0.

The only condition needed to implement this procedure is thepossibility of simulating the relevant

14Note that the same random draws should be used for each value of θ.
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test statistic under the null hypothesis. The values ofN andT (i.e. the number of replications and

the sample size) are taken as given, and no asymptotic argument is needed.

The MMC method as described is highly related to the parametric bootstrap. Both procedures

evaluate the null distribution of the test statistics underconsideration by simulation. Yet the MMC

and bootstrap test methods differ with respect to the treatment of nuisance parameters (here,θ).

Typically, nuisance parameter point estimates are used to generate bootstrap samples; this does not

guarantee level control in finite samples. In contrast, MMC p-values are simulated for all relevant

nuisance parameters in order to provably control error probabilities for any sample size. So plug-

ging θ̂FCM [a consistent estimator ofθ under the null hypothesis] in steps (i)-(iii) above yields a

parametric bootstrapp-value or, equivalently, alocal MC (LMC) denotedp̂(LR0 | θ̂FCM). Boot-

strap procedures tend to be considerably more reliable thanprocedures based on asymptotic critical

values. In the context of our problem however, where the asymptotic distribution may depend in

a discontinuous way on nuisance parameters, it is well knownthat bootstrap procedures may also

fail even asymptotically; see Dufour (2006) and the references therein. By contrast, the MMC pro-

cedure is immune to such failures. Of course, ifp̂(LR0 | θ̂FCM) is larger than a specific level, say

5%, there is no need to proceed with maximizingp̂(LR0 | θ) for a5% level test. For this reason, the

algorithm that maximizes thep-value function (in terms ofθ) is initialized at the value used for the

LMC test.

2.2. Diagnostic tests

In order to assess the underlying distributional hypotheses, it is common practice to perform di-

agnostic tests on estimated residuals from models such as (2.3). Because the Kalman Filter relies

on the normality assumption, testing normality is typically considered as a key specification check.

Using any series of residualŝut, t = 1, ..., T , deviations from normality are often assessed from the

10



coefficients of skewness (Sk) and kurtosis (Ku), combined in the Jarque-Bera (JB) criterion:

JB = T

[

1

6
(Sk)2 +

1

24
(Ku− 3)2

]

, Sk = T−1
T
∑

t=1

ŵ3
t , Ku = T−1

T
∑

t=1

ŵ4
t , (2.12)

ŵt =
ût − T−1

∑T
t=1 ût

[

T−1
∑T

t=1

(

ût − T−1
∑T

t=1 ût

)2
]1/2

. (2.13)

For the model under consideration, the statistic may be computed for each series of residuals re-

placing, in turn,̂εt, v̂1t, and v̂2t, t = 1, . . . , T , for ût in (2.12). While theχ2(2) asymptotic null

distribution is often applied in practice forJB, the fact remains that even with linear regression

residuals, size distortions cannot be ruled out because of estimation uncertainty; see Dufour et al.

(1998) and Dufour et al. (2003). We thus apply the MMC technique here again, to obtain exactp-

values for theJB statistics. The procedure is applied as described in the previous section, replacing

LR andθ by JB andω respectively; the model tested is (2.3) for this test. The dimension ofω

is larger than that ofθ; maximizing the simulation-basedp-value is thus more demanding forJB

than forLR. Our simulation results reported in the next section show thatχ2(2) critical values can

lead to very severe overrejections, which justifies resorting to simulation-based alternatives despite

computational burdens.

The same method can be applied to other diagnostics, including tests for serial dependence or for

contemporaneous correlation between errors (e.g., to check whetherv1t andv2t are uncorrelated).

We discuss such tests as they relate to the empirical models considered below.

2.3. Reliability of standard asymptotics

It is important to remember that an asymptotic distributional theory has not been established for

the test statistics described above, neither for the LR tests comparing alternative versions of TVP

models nor for the diagnostic tests. In particular, usual asymptotic approximations may easily be

invalid or unreliable in finite samples. In Appendix A, we present the results of a small Monte Carlo

experiment which illustrates this feature, in the context of realistic designs based on parameter
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values obtained from our empirical study (Section 3). Amongother things, test statistics for TVP

models exhibit a bunch-up problem around zero, and probabilities of type I error can exceed by far

the nominal levels of the tests (such as rejection rates of99% for tests with a nominal of5%).15 In

this paper, we simply bypass this problem by resorting to Monte Carlo test methods.

3. In-sample analysis

3.1. Data and estimated models

We study annual data on energy prices in the U.S., previouslyanalyzed by Pindyck (1999).16 The

series for crude oil and bituminous coal extend from 1870 to 1996; for natural gas, the data cover

1919 to 1996. The nominal price series up to 1973 come from Manthy (1978) and the U.S. Bureau

of the Census (1975). Pindyck (1999) updated this series through 1995 using data from the U.S.

Energy Information Agency and, for 1996, theWall Street Journal. The series are deflated using

the U.S. wholesale price index until 1970, and the producer price index thereafter. Estimation is

conducted on the logarithm of real prices. We have extended the series until 2006, following the

same definitions as Pindyck.

In addition to the TVP model (2.3), we also consider the following special cases:

Pt = (c1 + φ1) + c5t+ φ2tt+ c2Pt−1 + εt , t = 1, . . . , T , (3.1)

Pt = c1 + φ1t + (c5 + φ2) t+ c2Pt−1 + εt , t = 1, . . . , T . (3.2)

In the case of gas, our residual analysis backed by a historical perspective led us to introduce a

two-regime variant of the TVP specifications, where the variance ofεt is allowed to change in 1978

(while the other coefficients of the model are allowed to change according to the TVP scheme).

Indeed, in the late seventies, a deregulation fundamentally altered the market for gas. Whether the

15Stock and Watson (1998) discussed the pile-up problem for the special case where the TVP specifications follow a
unit-root.

16The data were generously provided by Pindyck.
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Kalman-filter can adapt to such a structural shift is an open question. For gas, we thus examine the

following three specifications:

Pt = c1 + φ1t + c5t+ φ2tt+ c2Pt−1 + εt , t = 1, . . . , T , (3.3)

Pt = (c1 + φ1) + c5t+ φ2tt+ c2Pt−1 + εt , t = 1, . . . , T , (3.4)

Pt = c1 + φ1t + (c5 + φ2) t+ c2Pt−1 + εt , t = 1, . . . , T , (3.5)

where theεt are independent Gaussian with standard deviationσ
(1)
ε before the deregulation date and

σ
(2)
ε thereafter. In the results reported below, 1978 is taken as the date of the variance shift.

To ensure numerical convergence in estimating TVP models, we usesimulated annealing(a

global non-gradient-based algorithm) to obtain the maximum likelihood estimators. Furthermore,

we also impose, in addition to usual convergence criteria from simulated annealing, the follow-

ing convergence requirements: (i) the associated LR must bepositive, (ii) the restricted sum of

squared residuals from the pricing equation must be larger than its unrestricted counterpart, and (iii)

the estimated information matrix must be positive definite.17 In other words, following a “normal

convergence” output, conditions (i)-(iii) are checked; ifat least one does not hold which signals

non-convergence, the maximization algorithm is re-initiated using the “imperfect” solution as start-

ing value, until all conditions are met. We also imposed the stability restrictions: 0 < c2 < 1,

0 < c3 < 1, 0 < c4 < 1. Such restrictions are not necessary for the validity of ourtest procedure.

Yet, we have observed that stability constraints enhance convergence and avoid corner solutions.

Maximization is typically difficult to achieve in the estimation of TVP models, and the numerical

burden tends to be heavy.

The number of replications used for the LMC and MMC tests isN = 999. Since the MMC

p-value must be larger than the LMCp-value, it is not necessary to compute the MMCp-value if

the former is larger than the level of the test (in this case, we use0.05). Since thep-value function

17Our emphasis on the (2.3) form justifies requirements (i) and(ii). Invertability of the information matrix is imposed
for the observed data only (since simulated data is drawn under the null hypothesis in which case this restriction does not
necessarily hold).
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is a non-differentiable step function, we usesimulated annealing(again) to obtain the MMCp-

value, using as maximization domain the relevant maximum-likelihood estimates±10 estimated

standard errors, subject to the following restrictions: (i) the variance parameters are constrained

to be nonnegative, and (ii) the parameters should satisfy the stability restrictions. In the following

discussion, significance refers to a5% test level.

Finally, for testing error normality in the case of the two-regime model for gas,̂wt in (2.12) is

redefined as follows:

ŵt =
ût − T−1

1

∑T1

t=1 ût
[

T−1
1

∑T1

t=1

(

ût − T−1
1

∑T1

t=1 ût

)2
]1/2

, before the deregulation date,

=
ût − T−1

2

∑T
t=T1+1 ût

[

T−1
2

∑T
t=T1+1

(

ût − T−1
2

∑T
t=T1+1 ût

)2
]1/2

, after the deregulation date,

whereT1 is the sample size before the deregulation date andT2 = T−T1. In other words, we center

and scale residuals using empirical means and standard deviations within each subsample. This

modification introduces different pre and post-break standardizations for the residuals to account

for the hypothesized break. Since our finite-sample testingapproach automatically accounts for

nuisance parameters, there is no need to provide an alternative distributional theory for the proposed

statistic.18

3.2. Results

The point estimates are reported in Table 1, while the tests of parameter constancy against TVP

specifications appear in Table 2. Focusing on the latter, we find evidence in favour of a TVP model

(with time-varying intercept and trend) for gas and coal, but not for oil. For for all three series,

the constant coefficient model cannot be rejected against a TVP specification with constant trend

18The literature on Monte Carlo tests includes ample exampleswhere intuitive although non-standard test statistics have
been introduced and proved to outperform existing procedures whose popularity is largely due to a standard asymptotic
null distribution. See for example Dufour and Khalaf (2002), Dufour et al. (2003), Dufour et al. (2004), Bernard et al.
(2007), and Dufour et al. (2010), for such examples in the context of diagnostic tests.
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Table 1. Parameter estimates for different energy price models

TVP-intercept-trend
c1 c3 c2 c5 c4 σv1 σv2 σǫ

Oil .2426 .5414 .7070 .0025 .7306 .00013 .0006 .1646
(2.25) (.39) (6.68) (2.60) (3.43) (.0011) (2.02) (11.20)

Coal .2346 .0913 .8101 .0011 .8550 .0771 .0002 1.93 × 10−5

(2.04)) (.82) (8.33) (1.41) (10.28) (12.81) (2.05) (7.62 × 10−5)
Gas .2132 .8300 .8120 .0082 .0706 .0512 .0016 6.3× 10−7

(1.22) (4.94) (4.74) (1.04) (.33) (5.26) (6.33) (9.6× 10−6)

TVP-intercept
c1 c3 c2 c5 c4 σv1 σv2 σǫ

Oil .1898 .7372 .7372 .0026 − .0450 − .1693
(.87) (2.46) (2.46) (.88) − (.57) (4.22)

Coal .2320 .8173 .8173 .0009 − .0257 − .0734
(1.27) (5.62) (5.63) (1.09) − (1.75) (7.39)

Gas .1849 .7347 .8347 .0073 − .0436 − .1058
(1.09) (6.03) (6.04) (1.22) − (2.02) (6.57)

TVP-trend
c1 c3 c2 c5 c4 σv1 σv2 σǫ

Oil .2276 − .7178 .0025 .7098 − .0006 .1654
(2.49) (7.69) (2.71) (3.24) (1.89) (11.37)

Coal .2090 − .8306 .0010 .8456 − .0002 .0769
(2.17) (10.19) (1.47) (10.05) (2.21) (12.95)

Gas .0221 − .9656 .0023 .3343 − .0019 .0488
(.31) (31.62) (2.43) (2.16) (8.60) (4.55)

AR(1) with linear trend
c1 + φ1 c2 c5 + φ2 σv1 σv2 σǫ

Oil .1366 .8117 .0019 − − .1805
(2.53) (18.40) (4.03) − −

Coal .1044 .9214 .00037 − − .0832
(2.24) (26.22) (1.43) − −

Gas .0665 .9349 .0034 − − .1261
(1.08) (34.61) (3.98) − −

Note – The model called “TVP-intercept-trend” uses the equation: Pt = c1 + φ1t + c5t + φ2tt +
c2Pt−1 + εt , whereφ1t = c3φ1,t−1 + v1t , φ2t = c4φ2,t−1 + v2t , t = 1, . . . , T. The “TVP-
intercept” model is a special case of the latter where only the intercept is a random coefficient:
Pt = c1 + φ1t + (c5 + φ2) t + c2Pt−1 + εt. Similarly, in the “TVP-trend” model, only the trend
coefficient is random:Pt = (c1 + φ1) + c5t+ φ2tt+ c2Pt−1 + εt . The “AR(1) model with linear
trend” is:Pt = (c1 + φ1) + (c5 + φ2) t+ c2Pt−1 + εt. t-statistics are reported in parentheses.
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Table 2. Tests of constant parameter model versus Pindyck’sspecifications

TVP-intercept-trend TVP-intercept TVP-trend

LR p-value LR p-value LR p-value
Oil 2.60 .424 0.14 .886 2.46 .236

(> 5%) (> 5%) (> 5%)
Coal 20.04 .001 2.22 .252 3.45 .247

(.001) (> 5%) (> 5%)
Gas 36.95 .001 3.88 .202 29.73 .001

(.001) (> 5%) (.001)

Note – For the definitions of the models, see the note to Table 1. In each case, the time invariant
model counterpart is tested against the TVP specification. The LR statistic is defined in (2.8); the
LMC p-value is reported with the MMC counterpart in parentheses.

Table 3. Residual-based normality tests for models with significant TVP specifications

Model Test onεt Test onv1t Test onv2t

JB p-value JB p-value JB p-value

TVP-intercept-trend Coal 114.78 .010 25717.60 .210 208.90 .63
(.010) (> 5%) (> 5%)

Gas 79.47 .010 32.18 .430 30.61 .86
(.010) (> 5%) (> 5%)

TVP-trend Gas 39.35 .039 − − 9.41 .006
(.135) − (.994)

Note – For the definitions of the models, see the note to Table 1. TheJB statistic is defined in
(2.12); the LMC p-value is reported with the MMC counterpartin parentheses.
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coefficient and time-varying intercept. Only in the case of gas does a TVP specification with fixed

intercept and time-varying trend coefficient turns out to bestatistically significant, which suggests

that TVP effects are mainly present in the trend coefficient in this case. For coal, TVP effects

on both the intercept and the trend are significant when both are included, whereas individually

they are not. This finding suggests a multicollinearity (or an identification) problem, as in linear

regressions when an F-test on two coefficients on two coefficients is significant while the associated

t-tests are not. Nevertheless, our residual analysis reported below calls for caution in interpreting

this conclusion.

Residual plots from the pricing error equation for the TVP-intercept-trend models (and the two-

regime TVP model for natural gas) are provided in Appendix B.The application of usual serial

dependence tests revealed no significant departures from the i.i.d. hypothesis.

From Table 3 and relying on the MMC test, we see that normalityof the pricing error terms is

rejected within the TVP-intercept-trend models for both coal and gas. In contrast, for gas, normality

is not rejected for the TVP-trend model. In this case, the LMCp-values are less than5%, so the

LMC and MMC p-values yield conflicting decisions. Given the extent of size distortions revealed

by our Monte Carlo experiment, we prefer to rely on the MMCp-values to avoid spurious rejections.

In this regard, it is worth noting that using the asymptotic critical values would have led to rejecting

normality for all models analyzed.

We also explored the possibility of allowing for contemporaneous correlation betweenv1t and

v2t in the TVP model. Although this could be an attractive extension of Pindyck’s original model, it

appears difficult to implement in practice. Indeed, for all series considered, our attempts to estimate

such an extension of the TVP model led to numerical difficulties and convergence typically failed.

This may be associated with identification issues or the factthat sample sizes are too small to allow

reliable estimation. A fortiori, this makes testing the absence of correlation difficult. For this reason,

and though we believe that TVP-filtered diagnostic tests deserve further theoretical work beyond

the scope of this paper (our small-scale Monte Carlo study points in this direction), we focus on

deviations from normality to assess the considered TVP specifications.
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Upon inspection of the residual plot for coal (Appendix B), we suspect that departures form

normality may be driven by the end-of-sample residuals. Ourforecasting exercise (reported in the

next section) supports this observation. In the case of gas,visual inspection of the residual plot

confirms our decision to consider for a two-regime model for the variance. One must however

guard against hasty conclusions based on graphs, since the residual plot of the two-regime TVP

specification suggests a similar pattern.

From Table 5, we see that TVP effects are not significant against a two-regime time invariant

specification.19 Here the LMCp-values are less than5% (the associatedχ2 critical value also signals

rejection at this level), so the LMC and MMCp-values yield conflicting decisions. In line with our

Monte Carlo experiment conformable with this design, we again prefer to rely on the MMCp-value.

Low power cannot be ruled out, since a two-regime model may beover-parameterized.

Overall, our in-sample LR testing exercise rejects the fixed-coefficient model in favour of

Pindyck’s model for coal and gas, though not for oil. However, our independence and normality

tests suggest that Pindyck’s models is too restrictive to conclusively fit the data. For these reasons,

these findings should be interpreted in conjunction with ourforecasting results.

4. Out-of-sample forecasts

In line with Pindyck’s original objective, we complement our in-sample analysis with a forecasting

exercise. In this case, we consider two further benchmark models commonly considered to ana-

lyze the long-run dynamics of energy prices, namely the random walk model with or without drift

(the latter leading to theno-change forecast), and a fixed coefficient quadratic trend model. The

competing models are defined in the notes to tables 6 and 7. In addition to a long-run forecasting

analysis similar to Pindyck’s, we also consider a real-timeapproach. In other words, we recursively

estimate all models under consideration (fixed-coefficientas well as time-varying parameter mod-

els) and forecast in real-time: we derive one-step-ahead out-of-sample forecasts, where parameter

19Although we only report normality tests for significant TVP specifications, it is worth noting that the LMC test for
TVP two-regime residuals did not detect deviations form normality.
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Table 4. Two-regime model for natural gas: parameter estimates

c1 c3 c2 c5 c4 σv1
σv2

σ
(1)
ε σ

(2)
ε

TVP-intercept .0393 .3378 .6552 .0198 .8616 .0423 .0010 8.59.10−7 .1413
-trend (.25) (1.66) (5.75) (2.75) (74.85) (5.31) (3.89) (3.1.10−5) (4.95)

TVP-intercept .2955 .8616 .7174 .0123 − .0616 − .0092 .1540
(1.56) (7.59) (3.76) (1.25) − (4.43) − (.18) (5.62)

TVP-trend .0539 − .6861 .0179 .8572 − .0010 .0399 .1463
(.40) − (7.50) (3.26) (82.72) − (4.86) (5.94) (5.42)

c1 + φ1 c2 c5 + φ2 σv1
σv2

σ
(1)
ε σ

(2)
ε

AR(1) with .0036 .9642 .0030 − − .0762 .1765
linear trend (.06) (36.97) (3.52) − −

Note – The model denotedTVP-intercept-trend, corresponds toPt = c1 + φ1t + c5t + φ2tt +

c2Pt−1+εt , whereεt are independent Gaussian with standard deviationσ
(1)
ε before the deregulation

date andσ(2)
ε thereafter. The special cases denotedTVP-trendand TVP-intercept, correspond to

Pt = (c1 + φ1) + c5t + φ2tt + c2Pt−1 + εt , andPt = c1 + φ1t + (c5 + φ2) t + c2Pt−1 + εt ,
respectively; in the above,φ1t = c3φ1,t−1 + v1t , φ2t = c4φ2,t−1 + v2t , t = 1, . . . , T . The model
denotedAR(1) with linear trend corresponds toPt = (c1 + φ1) + (c5 + φ2) t + c2Pt−1 + εt.
Numbers in parentheses aret-statistics.

Table 5. Two-regime model for natural gas: TVP tests

TVP-intercept-trend TVP-intercept TVP-trend

LR 58.41 LR 50.76 LR 55.71
p-values .015 p-values .023 p-values .023

(.999) (.988) (.999)

Note – For the definitions of the models denotedTVP-intercept-trend, andTVP-trend, see notes to
Table 4. In each case, the time invariant model counterpart is tested against the TVP specification.
The LR statistic is defined in (2.8); the LMC p-value is reported with the MMC counterpart in
parentheses.Empirical rejectionsrefers to the proportion of simulated statistics that exceed theχ2

critical values for a test with level5%. Statistics are simulated under the time invariant counterpart
of each TVP model (the null hypothesis) with parameters as estimated (under the null hypothesis)
from the gas price series.
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estimates are updated at every step of the procedure. For both long-run and real-time exercises,

we also analyze forecasts obtained through model averaging, using unweighted forecast means and

medians, as well as weighted means based on information criteria (AIC and BIC). We report mean

squared forecast errors, and we rely mainly on the latter to analyze the results.

To the best of our knowledge, tests of forecasting performance are available for either nested

or non-nested model comparisons. Given the serious size problems with in-sample tests and the

nonregular features of the models studied here, we prefer toavoid an inferential out-of-sample

analysis.20 As in Pindyck’s study, a forecast horizon starting in 1976 isconsidered for oil and coal.

The long-run forecasts span the 1976-2006 horizon and do notuse post-1976 data. In the real-time

exercise, we first forecast 1976 prices using pre-1976 data;after 1976, we add a year of data to the

estimation sample one year at a time, reestimate the model using each new sample, and forecast

the subsequent year using only the information in the estimation sample. In the case of gas, we

follow the same procedure except that, for numerical stability, we use a forecasting horizon starting

in 1996. Recall that the series on gas prices starts in 1919, whereas for oil and coal, our data go

back to 1870.

For the oil series, out-of-sample results favour time-invariant models for long-run and real-time

forecasts. This concurs with our in-sample findings. Interestingly, the random-walk model emerges

as the best forecasting tool: the random walk with drift outperforms all other models for long-run

forecasts and the real-time exercise selects the no-changeforecast. For related work, see Alquist

and Kilian (2009) and the survey of Hamilton (2009).

In contrast, the long-run and real-time exercises lead to conflicting results regarding TVP effects

for coal: the no-change forecast outperforms all other forecasts in real-time whereas the long-run

exercise selects the TVP-intercept-trend specification. Here again, our in-sample analysis does not

contradict this finding. Recall that we found evidence in favour of the latter model through LR tests,

yet we also detected significant departures from normality.Residual plots however indicate that

20Developing forecast comparison tests that account for boundary nesting is a worthy research objective beyond the
scope of the present paper.
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Table 6. Mean squared forecast errors (1976-2006)

Oil Coal Gas
Long
run

Real
time

Long
run

Real
time

Long
run

Real
time

TVP models
TVP-intercept-trend .3394 .1110 .1590 .0040 .1950 .0647
TVP-intercept .3421 .1055 .1651 .0068 .6936 .1058
TVP-trend .3394 .1084 .1602 .0055 .2265 .0586

Fixed coefficient models
AR (1) with second-order trend .2441 .1049 .4845 .0101 1.8051 .0794
AR (1) with linear trend .3394 .1147 .2044 .0113 .1278 .0676
AR (1) .6447 .1367 .2438 .0057 .3157 .0850
Random walk with drift .1550 .1162 .4809 .0084 .2995 .0904
No-change forecast .1907 .0568 .3438 .0026 .6837 .0655

Model averaging
AIC-weighted .3312 .1071 .2640 .0075 .2044 .0650
BIC-weighted .3972 .1142 .3650 .0080 .2724 .0724
Unweighted average .2819 .0958 .3029 .0058 .4499 .0645
Median .2921 .1044 .2866 .0059 .3200 .0715

Note – The model called “TVP-intercept-trend” uses the equation: Pt = c1 + φ1t + c5t + φ2tt +
c2Pt−1 + εt , whereφ1t = c3φ1,t−1 + v1t , φ2t = c4φ2,t−1 + v2t , t = 1, . . . , T. The “TVP-
intercept” model is a special case of the latter where only the intercept is a random coefficient:
Pt = c1 + φ1t + (c5 + φ2) t+ c2Pt−1 + εt. In the “TVP-trend” model, only the trend coefficient is
random:Pt = (c1 + φ1) + c5t + φ2tt+ c2Pt−1 + εt . TheAR(1) model with second-order trend
is: Pt = (c1 + φ1) + (c5 + φ2) t+ c6t

2 + c2Pt−1 + εt. The “AR(1) model with linear trend”, the
“AR (1) model” and the “Random walk with drift” are restricted formsof the latter given by:Pt =
(c1 + φ1)+(c5 + φ2) t+c2Pt−1+εt Pt = (c1 + φ1)+c2Pt−1+εt andPt = (c1 + φ1)+Pt−1+εt,
respectively. The no-change forecast is produced by a random walk without drift:Pt = Pt−1 + εt.
Numbers in bold indicate the smallest mean squared forecasterror.
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Table 7. Mean squared forecast errors, two-regime model fornatural gas

Long Run Real time
TVP-intercept-trend .2860 .0634
TVP-intercept .5302 .0661
TVP-trend .2589 .0644

AR (1) with second-order trend 1.40 .0794
AR (1) with linear trend .0917 .0676
AR (1) .2182 .0850
Random walk with drift .2822 .0904
No-change forecast .6837 .0655

Model averaging, AIC-weighted .2858 .0664
Model averaging, BIC-weighted .2853 .0830
Model averaging, unweighted .3980 .0658
Model averaging, median .2856 .0718

Note – The models compared can be summarized as follows. (1) TVP-intercept-trend:Pt = c1 +
φ1t+c5t+φ2tt+c2Pt−1+εt,whereφ1t = c3φ1,t−1+v1t , φ2t = c4φ2,t−1+v2t , t = 1, . . . , T .; (2)
TVP-intercept:Pt = c1+φ1t+(c5 + φ2) t+c2Pt−1+εt ; (3) TVP-trend model:Pt = (c1 + φ1)+
c5t+φ2tt+c2Pt−1+εt ; (4)AR(1) with second-order trend:Pt = (c1 + φ1)+(c5 + φ2) t+c6t

2+
c2Pt−1+ εt ; (5)AR(1) with linear trend:Pt = (c1 + φ1)+ (c5 + φ2) t+ c2Pt−1+ εt ; (6)AR(1):
Pt = (c1 + φ1) + c2Pt−1 + εt ; (7) random walk with drift:Pt = (c1 + φ1) + Pt−1 + εt. The no-
change forecast corresponds to the random walk with no drift: Pt = Pt−1 + εt. The pricing errors
εt are independent Gaussian with varianceσ

(1)
ε before the deregulation date, andσ(2)

ε thereafter.
Numbers in bold indicate the smallest mean square forecast error.
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such departures appear to be associated with observations near the end of our sample. So most of

these forecasts are not affected by these outlying observations.

In the case of gas, when we restrict focus to the single regimecase, the time invariant model

with a linear deterministic trend is preferred as a long-runforecasting tool; in contrast, the TVP-

in-trend specification outperforms all other specifications for real-time forecasting. This model was

indeed not rejected using in-sample LR and normality tests.Accounting for the two-variance case

improves the performance of the AR(1) model with linear trend; the two-variance version of this

model is preferred to the single variance case, and also emerges as the best overall specification

for long-run forecasting. Here again, this is the model favoured by our in-sample analysis. The

real-time exercise allowing for two variances supports theTVP-intercept-trend specification, but

this model remains marginally dominated by the single regime TVP-trend special case.

Overall, our out-of-sample exercise selects a random-walkspecification for long-run and real-

time forecasting of the oil price, and Pindyck’s model for both real-time forecasting in the case of

gas and long-run forecasting in the case of coal. We do not claim generality, because results depend

(as usual) on the forecasting horizon considered. At any rate, we find that our in-sample test results

do not conflict with our forecasting study.

The fact that real-time and long-run exercises suggest different decisions may be due to several

factors. The TVP models may themselves be structurally unstable, so allowing for recursive estima-

tion could in a way circumvent this problem. From the structural stability perspective, even linear

models including the unit-root case are given a fair chance since the drift parameter estimates can

adjust to additional observations. From a different perspective, the nonlinear specifications may suf-

fer from non-negligible estimation uncertainty, so allowing point estimates to recursively adapt with

incoming data may alleviate this difficulty. Continuous updating in real-time has practical advan-

tages, when the economic question at hand does not call for a long-run forecast. The small samples

under consideration may also drive some of the observed discrepancies between the in-sample and

the out-of sample results. For further discussion, see Inoue and Kilian (2004, 2006) and Hansen

(2009b).
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Finally, we find that averaging does not improve forecasts relative to the best performing model,

neither from a long-run nor from a real-time perspective. Recent econometric studies suggest that

combining forecasts from several models can improve accuracy, in the presence of structural insta-

bilities; see Clark and McCracken (2009) or Hansen (2009a). In this regard, our exercise is telling,

since TVP models have not been formally considered in this emerging literature so far. Of course,

our findings depend on the competing models, the data as well as on the forecasting horizons. One

issue is however worth raising. On comparing the unweightedto the weighted averages, one may

suspect that weights based on information-criteria are notadapted to TVP models. Our results thus

suggest that further research in this direction is a worthy objective.

5. Conclusion

This paper tests the statistical significance of Pindyck’s (1999) suggested class of econometric mod-

els for the behavior of long-run real energy prices. These postulate mean-reverting prices with

continuous and random changes in their level and trend, using Kalman filtering for the estima-

tion. In such contexts, the distributions of the test statistics are typically non-standard and depend

on nuisance parameters. We conduct a small-scale simulation study based on empirically rele-

vant designs to illustrate the serious implications of these problems for applied work. Exploiting

simulation-based procedures to address this issue, we report results for both LR tests for TVP and

for residual-based normality tests.

A further contribution of this paper is to examine the in-sample fit and the out-of-sample fit for

the specific class of models at hand. We thus complement our in-sample analysis with a long-run as

well as a real-time forecasting exercise. We also produce and analyze model-averaged forecasts, to

assess the effectiveness of combining various models.

Our in-sample LR tests select Pindyck’s model for coal and gas, but not for oil. However, model

diagnostics, such as normality tests suggest that the modelis too restrictive to conclusively fit the

data. Allowing for non-Gaussian disturbances in TVP modelsand for non-zero correlations be-
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tween different disturbances, stand out as potentially useful extensions. Our out-of-sample exercise

selects the random-walk specification for oil, and Pindyck’s model for real-time forecasting in the

case of gas as well as for long-run forecasting in the case of coal. From a more methodological per-

spective, our results suggest that developing further diagnostics, both in-sample and out-of-sample,

is a worthy research objective.
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Appendix

A. Simulation study

To provide further motivation for the methodology employedin this paper, we report here the results

of a small Monte Carlo experiment on the properties of asymptotic procedures in the context of the

models studied in this paper. We consider in turn the behavior of tests for restricted TVP or constant

parameter models against Pindyck’s specification, and residual-based normality tests.

Indeed, the algorithm [described in steps (i)-(iii) of Section 2.1] which underlies the definition

of the Monte Carlop-value function may be exploited to assess the size of the asymptotic test

based on the statistics under consideration, namelyLR andJB. For presentation ease, let us first

focus on theLR test problem. In this case, theN simulated test statisticsLRi( θ), i = 1, . . . , N ,

correspond to a data generating process (DGP) that satisfiesthe null hypothesis (with a given choice

of θ). So, if we compare eachLRi( θ) to the asymptotic critical value from theχ2 distribution

(with degree of freedom equal to the number of coefficients fixed by the null hypothesis) for a test

with (nominal) levelα, and count rejections over theN replications, we obtain an estimate of the

empirical probability of type I error (or level) for the design considered (and a specific value ofθ).

To get empirically relevant designs, the parameter vector testedθ is set to the valuêθFCM

obtained from our data model under the relevant null hypothesis [as given in Table 1 of Section

3]. We report the empirical rejections corresponding toθ̂FCM , for each energy series considered.

Since the same observation holds in the case ofJBi(ω), i = 1, . . . , N , we also report the empirical

rejections obtained on settingω = ω̂TV P , whereω̂TV P is the unrestricted ML estimate of the TVP

model. The values ofθ andω so chosen remain fixed for the purpose of the simulation.

In the context of TVP tests, usual statistics tend to bunch-up around zero, which casts doubts

on the appropriateness ofχ2 critical values. Our simulation design allows us to assess this problem

for the LR tests. Specifically, in addition to the empirical size, we report the number of simulated

LRi( θ) which are close to zero (formally, between 0 and 0.01). This exercise aims to be illustrative.
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Table 8. LR tests of constant parameter model versus Pindyck’s specification: Monte Carlo study

Model TVP-intercept-trend TVP-intercept TVP-trend
Empirical Mass Empirical Mass Empirical Mass
rejections around zero rejections around zero rejections around zero

Oil 21.4 56.6 2.5 1.4 6.0 23.2
Coal 3.9 2.0 3.6 5.5 10.5 20.0
Gas 8.6 3 8.2 2.8 16.8 10.3

Note –Empirical rejectionsrefer to the proportion of simulated statistics that exceedtheχ2 critical
values for tests with level5%. Statistics are simulated under the null hypothesis, namely model
(2.6) with θ̂FCM as calculated from each price series.Mass around zerorefers to the proportion of
simulated statistics that are close to zero (formally, thatlie between 0 and 0.01); the latter aims to
illustrate the bunching-up-at-zero problem. For the definitions of the models denotedTVP-intercept-
trend, TVP-interceptandTVP-trend, see notes to Table 1.

Table 9. TVP tests against a two-regime model for natural gas: Monte Carlo study

TVP-intercept-trend TVP-intercept TVP-trend

Empirical Size 99.1 99.2 99.3

The MMC method is not affected by this problem.

Results for LR tests of parameter constancy restrictions against TVP models are reported in

tables 8 and 9. When the alternative is a model with one TVP regime, we see that the probability

of type I error can substantially exceed5% (the nominal significance level), with rejection rates

exceeding20%. Against the two-regime model, we observe empirical levelsclose to100% (rather

than the nominal level of5%). Over-parameterization may be driving the latter result. Tests against

the two-regime model suffer from an additional identification problem arising from the possibility

of a non-existent break, in which case estimating two different values for the pricing error variance

may lead to serious estimator instability for all model parameters.

Our results also reveal a noticeable pile-up problem at zero. This problem may be expected for

Student-t statistics, as discussed by Stock and Watson (1998) for the special case where the TVP

specifications follow a unit-root. For this reason, one mustavoid over-interpreting the close-to-zero
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Table 10. Residual-based normality tests: Monte Carlo study

Model Test onεt Test onv1t Test onv2t

TVP-intercept-trend Oil 4.9 35.5 90.0
Coal 4.2 100 100
Gas 0.0 100 100

TVP-trend Gas 63.8 − 2.3

Note – Empirical rejectionsrefer to the proportion of simulated statistics that exceedthe χ2(2)
critical value for a test with level5%. For the definitions of the models for the definitions of the
models denotedTVP-intercept-trend, andTVP-trend, see notes to Table 1. Statistics are simulated
for given these models, witĥωTV P as calculated from the indicated price series.

t-statistics in Tables 1 and 4. Here we find that LR statistics to test TVP may also have a mass

point at zero. Overall, the Monte Carlo study of the LR test suggests that: (i) usual critical values

can lead to spurious detections of TVP effects, and (ii) considering simulation-based alternatives is

particularly worthwhile when the sample size relative to the number of parameters is tight.

Monte Carlo results for the normality tests are reported in Table 10. Here again, we see that the

rejection rates for theχ2-based test fluctuate from 0 to 100%, even with the single-regime designs;

this implies that the usual Jarque-Beraχ2 test is inappropriate for TVP-filtered residuals. This

(alarming) fact does not seem to be known in this literature.Given the popularity of such tests

in practice, our results - that are particularly revealing because we have modeled our simulation

design based on empirical data - suggest that bootstrap-based alternatives are clearly called for.

Consequently, for the diagnostic tests applied (and discussed below), we consider MMCp-values

when commonly used asymptotic procedures are significant, to guard against spurious rejections.

B. Residuals of TVP models

The graphs provided in this section give the residuals of thefour TVP models whose estimated

coefficients appear in tables 1 and 4.
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