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An ldentification-Robust Test for Time-Varying
Parameters in the Dynamics of Energy Prices

Marie-Claude Beaulieu’, Jean-Marie Dufour #, Lynda Khalaf®, Maral Kichian™

Abstract

We test for the presence of time-varying parameters (TVP) in the long-run dynamics of energy prices
for oil, natural gas and coal, within a standard class of mean-reverting models. We also propose
residual-based diagnostic tests and examine out-of-sample forecasts. In-sample LR tests support the
TVP model for coal and gas but not for oil, though companion diagnostics suggest that the model is
too restrictive to conclusively fit the data. Out-of-sample analysis suggests a randomwalk specification
for oil price, and TVVP models for both real-time forecasting in the case of gas and long-run forecasting
in the case of coal.

Key words structural change, time-varying parameter, energy prices, coal, gas, crude oil,
unidentified nuisance parameter, exact test, Monte Carlo test, Kalman filter, normality test.
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1. Introduction

It is widely recognized that fluctuations in energy pricesehamportant and lasting effects on the
economies of industrialized countriesAt the same time, interpreting and predicting the behavior
of energy prices remain challenging problems. In additmddmestic and international supply as
well as demand conditions, non-market-related features(as regulations, technological advances
and geopolitical considerations) are difficult to charazte Fully articulated structural models are
difficult to build and may be unreliable. Instead, analysteehproposed simple time-series reduced
forms for various purposes, notably: (i) testing and vdlidanon-renewable resources models such
as the Hotelling rule, or (ii) forecasting. The associatttdture is very large and statistical support
is claimed for many different modefs.In this paper, we focus on the class of trend models with
time-varying parameters (TVP) proposed by Pindyck (1999)drive long-run forecasts for oil,
natural gas and coal prices.

An important feature of Pindyck’'s models is the inclusiontiofie-varying trend parameters
to reflect alternative assumptions on demand shifts, resagepletion and technological change.
Using a simple Hotelling model, Pindyck argues that long-emergy prices should revert to an
unobservabldrending long-run marginal cost, with continuous randoraraes in the level and
slope of the trend. Pindyck further proposed a family of exneatric models that integrate the
latter feature. Alternative versions of these models wetenated and out-of-sample forecasts
were computed, using Kalman filter techniques and annual fdlan 1870 to 1996 for crude oil
and bituminous coal, and from 1919 to 1996 for natural gasdyRik’'s general specifications for
the latter data assume a Gaussian AR(1) process for logsprigth drift and trend, where the drift

and trend coefficients follow themselves uncorrelated GansAR(1) processes. Such models are

Work on the linkages between energy prices and financial etsudr the macroeconomy is abundant. For critical
discussions, see Hamilton (2003), Hamilton and Herrer@4p®Barsky and Kilian (2004), Kilian (20032008, 200&),
Kilian (2009), Kilian and Park (2009), and Kilian, RebucaidsSpatafora (2009).

2For recent references, statistical results and criticadidisions, see Ahrens and Sharma (1997), Berck and Roberts
(1996), Cortazar and Naranjo (2006), Cortazar and Schy20t23), Gibson and Schwartz (1990), Lee, List and Strazi-
cich (2006), Moshiri and Foroutan (2006), Pindyck (1999 D0 Postali and Picchetti (2006), Regnier (2007), Sagorsk
(2006), Schwartz (1997), Schwartz and Smith (2000), Slagi8Z, 1988), Tabak and Cajueiro (2007). For a recent survey
related to the Hotelling rule, see Livernois (2009) and gfenences therein.



parsimonious yet flexible, allowing both random walks withitdand/or changing trend lines where
prices revert to a possibly moving mean. The forecast esesaionducted by Pindyck yield mixed
results, but on balance, the class of models consideredepjmebe quite promising.

Pindyck (1999) did not provide statistical tests for thepgmsed class of models. In particular,
the time-varying parameter specification was not testeisstally. It is worth noting that a zero-
variance restriction on the processes postulated by Piridyche drift and trend coefficients leads
to their time invariant counterpart. Given the sample sad®and, the decision to use a TVP model,
as opposed to a more common autoregressive or fixed coefftobed model [such as those used
by Slade (1982)] may have non-negligible finite-samplasttaal consequences. The fact remains
that shifts in trends are empirically documented with epgngces?

TVP models, which capture continuous and unpredictablissini slopes and trends through
random coefficients, have obvious appeal from an econonmsppetive relative to data-driven
change-point methods [see, for example, Lee et al. (2006YJP models however raise compu-
tational difficulties. Despite the fact that TVP likelihadan easily be evaluated using Kalman
filtering, such functions are typically ill-behaved for einigally relevant parameter values. Even
though sophisticated numerical recipes and global maxirsiare readily available, it is well known
that maximization may be difficult to achieve in this context particular, irregularities can be
linked to parameter space regions where the variances atalbastic coefficients are “small” or
“close-to-zero”. Unfortunately, if the variances are adiiizero, the correspondingratios do not
have a regular asymptotic distribution; it is thus hard &eashow small is smalf.

Statistical tests for TVP are particularly challenging; &b least three reasons. First, under the
null hypothesis of no parameter variation, the parameteseribing the distribution of the TVP
processes are not identified. Second, the no-variationthgpiz sets the parameters describing the

TVP processes on the boundary of their permissible domh&qb-called “nesting-at-boundary”

3The above-cited literature provides ample evidence onféfsitire; see especially Lee et al. (2006) and the recent
review of Livernois (2009).

4See Stock and Watson (1998) for an early reference to thislaroin the special case where the TVP specification
follows a unit-root.



problem)® The third difficulty stems from the coefficient on the laggeit®, which shows up as a
nuisance parameter in the no-variation test problem angbigst to usual unit-root type issues.
The above features can cause test sizes to deviate severalyhieir nominal levels. Usual chi-
square critical points can easily lead to spurious rejastieven with fairly large data sets, because
the regularity conditions underlying classical asymgfail. Identification-robusiTVP tests are as
yet unavailablé. Furthermore, while the Kalman-filter makes likelihood4snference possible,
if not always tractable, the associated specifications mawige a poor fit or bad forecasts when the
underlying parametric assumptions are not compatible atilable data. Careful residual-based
diagnostics are thus required, in particular to assessrieps from normality. Residual-based
normality tests which arebust to estimation effectse unavailable for TVP models.
This paper makes three main contributions. First, we p@posl apply finite-sample tests for
TVP within the class of models proposed by Pindyck (1999).al8e show - in a Monte Carlo study
- that using standard asymptotic critical points for thes¢stcan lead to severe size distortions. Sec-
ond, we propose finite-sample residual-based tests tosafgesinderlying normality assumption;
we also show that diagnostic tests which sidestep pararastienation uncertainty have sizes that
deviate arbitrarily from their nominal levels. Third, weassine in-sample and out-of-sample fit
for the class of models at hand. Specifically, we complemaniresample analysis with a fore-

casting exercise. In this case, in addition to a long-rudyaigsimilar to Pindyck’s, we consider a

®Indeed, setting the coefficients on the autoregressivestarone and the variances to zero in the processes considered
by Pindyck (1999) for the intercept and trend, leads to atemgoefficient autoregressive model with a linear treratl an
drift. The latter model is a special case of the TVP model umdasideration, yet the unit root as well as the zero
variances lie on the boundary - rather than the interior hefrhodel parameter space.

®A test is considered robust to identification if its significa level is controlled - at least asymptotically - regassle
of identification, that is irrespective of whether identfiion holds, holds only weakly, or does not hold. See theeveyi
of Stock, Wright and Yogo (2002) and Dufour (2003). Theséhard use the term “robust to weak instruments” to
designate procedures whose validity is not affected by afdastruments that does not allow one to identify strudtura
parameters. Since we consider here a setup where instralmariaibles are not explicitly required, we shall emplog th
term “identification-robust” which appears sufficientlyngeal to cover the kind of situation studied in this paper.

A diagnostic test is considered robust to estimation efféche associated significance level is the same - at least
asymptotically - irrespective of whether disturbancesesiduals are used to construct the test statistic. See &odfr
(1996, section 2) for an asymptotic definition, and DufoarHat, Gardiol and Khalaf (1998), Dufour and Khalaf (2002),
Dufour, Khalaf and Beaulieu (2003), Dufour, Khalaf, Bewhand Genest (2004), Khalaf and Kichian (2005), Bernard,
Idoudi, Khalaf and Yelou (2007), and Dufour, Khalaf and Bie&au(2010), for a finite sample perspective. In this paper,
and in contrast with the latter finite sample motivated wprksiduals from non-linear models are in question, which
raises more pernicious nuisance-parameter dependerizemp



continuously-updated one-step-ahead approach.

The proposed TVP and normality tests rely on exact simuiatiased test procedures, applica-
ble — even with small samples — to highly irregular probleors#hich standard techniques are not
valid. Specifically, we apply thenaximized Monte CarlMMC) test technique [Dufour (2006)],
which is based on comparing the maximavalue of the test (over the nuisance parameters that
are identified under the null hypothesis, obtained by sitraria with the significance level. Conse-
quently, level control is ensured by constructfoEmpirically, the proposed tests allow us to select,
within the suggested family of models, specifications that statistically justified for crude oil,
coal, and natural gas prices.

In our forecasting exercise, for both long-run and reaktiexercises, we produce and analyze
forecasts based on model averaging. The usual model selgmtactice has recently been some-
what outrun by the concept of model averagini particular, model averaging seems particularly
useful in accounting for breaks and instabilities, a fadbécseriously considered for the problem
at hand!® Model-averaged approaches to analyze trends in energgspaie raré! To the best
of our knowledge, model-averaging has not been considerdar n order to assess the Hotelling
rule. While developing a formal inferential procedure teess out-of-sample fit with and with-
out averaging is beyond the scope of this paper, we believamalysis for the data set at hand is
empirically worthwhile given the absence of relevant resul

Empirical results can be summarized as follows. Our in-darhjkelihood Ratio (LR) testing
exercise rejects the fixed-coefficient model in favour offyak’s model for coal and gas, though not
for oil. However, independence and normality tests sughestindyck’s model is too restrictive to
conclusively fit the data. Our out-of-sample exercise $glacandom-walk specification for long-

run and real-time forecasting for oil, and Pindyck’s modagllfoth real-time forecasting in the case

8When the null distribution of test statistic depends on ami® parameters, anlevel is guaranteed in finite samples
[see Lehmann (1986)] when the larggstalue (over all values of the nuisance parameters consistgh the null
hypothesis) is referred to.

Seee.g.Hansen (2007, 2008, 208p

105ee Clark and McCracken (2009) or Hansen (2008n models with discrete breaks.

e thank an anonymous referee for pointing this out.



of gas and long-run forecasting in the case of coal. Furtbegrin the case of natural gas price,
we also show that accounting for the post eighties marketgidation tends to improve both time
invariant and TVP specifications.

In Section 2, we describe the class of proposed models antkshenethod used. Section 3
documents and discusses our empirical in-sample resultsedtion 4, we report our forecasting
analysis. We conclude in Section 5. The Appendix reportsréiselts of a small Monte Carlo

experiment which document the unreliability of usual asiotip approximations.

2. Model and test methods

Pindyck (1999) considers a basic Hotelling model for a daeple resource produced in a competi-
tive market. Under the assumption of constant marginal @bsktractionc and isoelastic demand

with unitary elasticity, the price level is given by
P, = c+ [(ce™ /) (ereFo/A —1)] (2.1)

whereRj is the initial stock of the depletable resourckis a demand shifter, andis the interest

rate. This implies that the slope of the price trajectoryieg by
dP,/dt = ree™ (emFo/A _ 1) (2.2)

so changes in demand, extraction costs, and reservesedit #ffs slope. For example, an increase
in A causes the slope to increase, while increase®mR, reduce the slope. In addition, increases
in ¢ or A raise the price level, whereas an increas&jnleads to a decrease in this level. If, as
Pindyck (1999) argues, these factors fluctuate in a contimamd unpredictable manner over time,
then long-run energy prices should revert to a trend whidfifluctuates in the same fashion.

A class of models which integrates the above features is ¢nerglized Ornstein-Uhlenbeck

process. Pindyck (1999) proposes a discretized versiohi®ftodel as a suitable econometric



framework for analyzing long-run energy pricesThis leads to the following AR(1)-type dynamic

model:

Pt:Cl+¢1t+C5t+¢2tt+C2Pt_1+Et, t:17"'7Ta (23)

where P, refers to the logarithm of the real price of an energy produnct the coefficients,, and

¢o, follow the stochastic processes

b1 = 3P14-1 T V1, (2.4)

Pop = Caoy 1+ V2. (2.5)

The processes fap,, and ¢,, are unobservable, continuously evolving parameters wiatlbct
long-run marginal costs including scarcity rent, in the emying structural model. Formally;,
v, andwugy, t = 1, ..., T, are assumed to be independently and identically normadiyilbuted
with zero means and covariances, and varian¢es 2 , ando?,, respectively. The lag structure
and reliance on linear trends and uncorrelated unobsereaithponents are dictated by the length
of the sample: the series considered by Pindyck on the Ut&néxrom 1870 to 1996 for crude oll
and bituminous coal, and from 1919 to 1996 for natural gas.

Assuming normality ok, v1;, andwvs, Pindyck proposes that Kalman filtering be applied to
obtain paths for the state variables, and ¢,,. This means that, starting with initial values for
model parameters and state variables, the filter computeacht period new values for the state
variables to reflect new information on the observable sef@nce the paths of the state variables
are determined, the model can be estimated by maximumHo@di. The reader is referred to
Kim and Nelson (1999, Chapter 3) for details of the Kalmaefittg procedure and the associated

likelihood functions. Following Pindyck (1999), we estiteaand test this model separately for each

price series considered, and over a long time span, as destus section 3.

2Formally, Pindyck suggests the quadratic trend mdtle= ¢ + ¢, + cst + cot? + dot + c2Poo1 + €1, t =
1, ..., T, yet because of sample size restrictions, the author estiwat= c1 + ¢, + ¢yt + c2Pi1 + €, t =
1, ..., T. Given our emphasis on testing the time-invariant couatemf this model (we provide further justifications
below), we consider (2.3).



2.1. Testing for time-varying parameters

In view of assessing the statistical significance of TVPaffethe null hypothesis of interest is a
simple mean-reverting model around a fixed trend line [thading Ornstein-Uhlenbeck process

given by equation (24) in Pindyck (1999)le.,

Po=(c1+¢)+(c5s+ o)t +c2Pi1+ep, t=1,...,T. (2.6)

It is clear that the models to be compared statistically astad at the boundaries of certain para-

meters; formally,

model (2.6)C model (2.3) whew?2 — 0, 02, — 0, andcz =c4 = 1. (2.7)
In other words, whew? = 0, 02 = 0andcs = ¢4 = 1, theng;, = ¢; and oy, = ¢y,
t=1,...,T,leading to (2.6). As argued above, the zero variances dswéie unit root values

for ¢35 andcy lie on the boundary - rather than the interior - of the par@mgpace associated with
(2.3). Further, it is easy to see that some parameters mayeridentifiable under certain parameter
configurations: for example;; is not identified wherrs = 1 and 031 = 0, and it is “poorly”
identified when we are close to these values; the same olisertmlds forcs, whene, = 1 and
012)2 = 0.

In this context, one cannot rely on estimated standardsad standard limiting distributions,
since their use for building tests and confidence sets isustified even asymptotically. In particu-
lar, the distributions of some widely used test statissogh ag-type and more generally Wald-type
statistics, may be difficult (if not impossible) to bound endarious null hypotheses, so that con-
trolling the level of such tests may not be feasible. By castirthe distributions of likelihood-ratio-

type statistics appear to be more stable, so such testglpravinore appropriate basis for statistical



inference'® Taking into account these observations, we consider thetatitc:
LR =2[Lyyp — Lrcu] (2.8)

where Ly p and Lrpoys are, respectively, the maximum of the log-likelihood fuocs associated
with (2.3) and (2.6).

For further reference, let;, 01, and vy, t = 1, ..., T, refer to post-estimation residuals
associated with (2.3). In addition, denote the vector oapeaters that define this model as

— 2 2 2
W= {61763762765764701)170-1)270-5 (29)

and the vector of free parameters under the null hypothssis a

0={(c1+ 1), (c5+p2), c2, 03} : (2.10)

Furthermore, lebry p and@FCM refer to the maximum-likelihood estimateswofindd calculated
from the observed sample, imposing (2.3) and (2.6), resedet Finally, denote the observed value
of LR (i.e. the value obtained from the observed samplel). Bs.

To obtainp-values for this statistic, we resort to the maximized Mad&lo (MMC) test tech-
niques [Dufour (2006)]. In what follows, we summarize thehtgique as it applies to our specific
problem. Mainly, what we need is the possibility of simulatithe relevant test statistic under the
null hypothesis. Drawing from the null data-generatingcess under consideration requires setting
a value ford; the unidentified nuisance parameters (for examplandc, under the constant coef-
ficient model) do not matter, because they simply do not agpehe null data-generating process.

So given a specific value fér we define g-value function, denotefl(LRy|6), as follows.

(i) Generate a simulated sample from the null model by drgviiam the normal distribution

given the specific choice f@r. Reestimate the restricted and the alternative model} #2db

13See Andrews (2000, 2001), Dufour (1997, 2003) and Stock €2@D2).



(2.3) given the simulated data, and using (2.8), computedh@sponding test statistic.

(iii) Repeat this proces®V times; this yieldsN simulated test statistics, denotédz;(6),i =
1,..., N, from a data generating process (DGP) that satisfies thengptthesis. In our
notation, the presence éfindicates that. R;(f) depends on data simulated given a specific

choice for6.
(iii) Compute the numbeg(L Ry |0) of LR;(6) values which are not smaller thd?y. Then

G(LRo|0) +1

2.11
N+1 ( )

P(LRo|0) =

The latter empiricap-value is thus based on the rank bR, relative to its simulated coun-

terparts.

The MMC technique involves maximizing( LR, | #) sweeping over combinations of admissi-

ble values oB.1* Formally, let

pPumc(LRy) = sup p(LRy|6)
fe Og

where®, refers to the parameter space foconformable with the null hypothesis. The resulting

MMC test is significant at level if pasarc(LRy) < «. This can be viewed as a Monte Carlo

implementation of the standard definition of the level ofst te the presence of nuisance parame-
ters: when a test is nuisance-parameter dependent |@rel is achieved by comparing the largest
p-value over all nuisance parameters consistent with tHéngpbthesis tax [see Lehmann (1986)].

Following the argument in Dufour (2006), this simulatioaskd procedure has leveli.e.

Pl sup [pn(So|0)] < a] <« underH,.
0 € O

The only condition needed to implement this procedure ipthssibility of simulating the relevant

Note that the same random draws should be used for each vaue o



test statistic under the null hypothesis. The valued’/andT (i.e. the number of replications and
the sample size) are taken as given, and no asymptotic argusmeeeded.

The MMC method as described is highly related to the paramietiotstrap. Both procedures
evaluate the null distribution of the test statistics untmsideration by simulation. Yet the MMC
and bootstrap test methods differ with respect to the treatrof nuisance parameters (hefg,
Typically, nuisance parameter point estimates are usedriergte bootstrap samples; this does not
guarantee level control in finite samples. In contrast, MM@ues are simulated for all relevant
nuisance parameters in order to provably control error gisidiies for any sample size. So plug-
ging @ ¢ [a consistent estimator of under the null hypothesis] in steps (i)-(iii) above yields a
parametric bootstrap-value or, equivalently, &cal MC (LMC) denotedp(L R ]9FCM). Boot-
strap procedures tend to be considerably more reliablepgir@edures based on asymptotic critical
values. In the context of our problem however, where the asytic distribution may depend in
a discontinuous way on nuisance parameters, it is well knibanhbootstrap procedures may also
fail even asymptotically; see Dufour (2006) and the refeesrtherein. By contrast, the MMC pro-
cedure is immune to such failures. Of coursegj(iL. Ry | @FCM) is larger than a specific level, say
5%, there is no need to proceed with maximizifld. R | #) for a5% level test. For this reason, the
algorithm that maximizes the-value function (in terms of) is initialized at the value used for the

LMC test.

2.2. Diagnostic tests

In order to assess the underlying distributional hypothiegds common practice to perform di-
agnostic tests on estimated residuals from models such3s @ecause the Kalman Filter relies
on the normality assumption, testing normality is typigabnsidered as a key specification check.

Using any series of residualg, ¢t = 1, ..., T', deviations from normality are often assessed from the

10



coefficients of skewness$'k) and kurtosis K «), combined in the Jarque-Berd ®) criterion:
1 1 T T
~(Sk)? + — (Ku—3)? k=T "}, Ku=T"1Y o} 2.12
N _ T -
'(Z) _ ut — T ! Et:l Ut

¢ 11/2 "
[T_l Sy (@t —T Yy fbt) ]

JB:T[

(2.13)

For the model under consideration, the statistic may be atedpfor each series of residuals re-
placing, in turn;, 91, andog, t = 1, ..., T, for 4; in (2.12). While they?(2) asymptotic null
distribution is often applied in practice fofB, the fact remains that even with linear regression
residuals, size distortions cannot be ruled out becausstiofi@&ion uncertainty; see Dufour et al.
(1998) and Dufour et al. (2003). We thus apply the MMC techaifere again, to obtain exgst
values for the/ B statistics. The procedure is applied as described in théque section, replacing
LR andf by JB andw respectively; the model tested is (2.3) for this test. Theetision ofw
is larger than that of; maximizing the simulation-basegvalue is thus more demanding f@iB
than for L R. Our simulation results reported in the next section shatf(2) critical values can
lead to very severe overrejections, which justifies resgrto simulation-based alternatives despite
computational burdens.

The same method can be applied to other diagnostics, imgudsts for serial dependence or for
contemporaneous correlation between errerg,(to check whethev,; andvs; are uncorrelated).

We discuss such tests as they relate to the empirical moodessdered below.

2.3. Reliability of standard asymptotics

It is important to remember that an asymptotic distribudiotiheory has not been established for
the test statistics described above, neither for the LR ts®mtnparing alternative versions of TVP
models nor for the diagnostic tests. In particular, usugimgtotic approximations may easily be
invalid or unreliable in finite samples. In Appendix A, we geat the results of a small Monte Carlo

experiment which illustrates this feature, in the conteiktaalistic designs based on parameter
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values obtained from our empirical study (Section 3). Amotiter things, test statistics for TVP
models exhibit a bunch-up problem around zero, and prabiabibf type | error can exceed by far
the nominal levels of the tests (such as rejection rat@9%f for tests with a nominal 0§%).° In

this paper, we simply bypass this problem by resorting to td@arlo test methods.

3. In-sample analysis

3.1. Data and estimated models

We study annual data on energy prices in the U.S., previarsiyyzed by Pindyck (1999%. The
series for crude oil and bituminous coal extend from 18709@6] for natural gas, the data cover
1919 to 1996. The nominal price series up to 1973 come fromtiWai1978) and the U.S. Bureau
of the Census (1975). Pindyck (1999) updated this seriesigr 1995 using data from the U.S.
Energy Information Agency and, for 1996, tkéall Street Journal The series are deflated using
the U.S. wholesale price index until 1970, and the producieepndex thereafter. Estimation is
conducted on the logarithm of real prices. We have extendedéries until 2006, following the
same definitions as Pindyck.

In addition to the TVP model (2.3), we also consider the feitay special cases:

P = (a+¢) +est+odut+coPig+e, t=1,...,T, (3.1)

P = c1+¢u+(cs+dg)t+caPg1+e, t=1,...,T. (3.2)

In the case of gas, our residual analysis backed by a hiatqrerspective led us to introduce a
two-regime variant of the TVP specifications, where thearae ofz, is allowed to change in 1978
(while the other coefficients of the model are allowed to ¢eaaccording to the TVP scheme).

Indeed, in the late seventies, a deregulation fundamgrah#red the market for gas. Whether the

15Stock and Watson (1998) discussed the pile-up problem tospiecial case where the TVP specifications follow a
unit-root.
1%The data were generously provided by Pindyck.
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Kalman-filter can adapt to such a structural shift is an opesstion. For gas, we thus examine the

following three specifications:

P = at+toytoattoyt+cebi+e, t=1,...,T, (3.3)
P = (a+¢) +est+odut+coPig+e, t=1,...,T, (3.4)
P = 1+ +(cs+d9)t+coPy+e, t=1,...,T, (3.5)

where thes; are independent Gaussian with standard deviaztwnbefore the deregulation date and
agz)thereafter. In the results reported below, 1978 is takeheadate of the variance shift.

To ensure numerical convergence in estimating TVP modeatsusesimulated annealindga
global non-gradient-based algorithm) to obtain the maxmiilkelihood estimators. Furthermore,
we also impose, in addition to usual convergence critenanfsimulated annealing, the follow-
ing convergence requirements: (i) the associated LR mugtobiive, (ii) the restricted sum of
squared residuals from the pricing equation must be lalhger its unrestricted counterpart, and (iii)
the estimated information matrix must be positive defifitén other words, following a “normal
convergence” output, conditions (i)-(iii) are checkedaifleast one does not hold which signals
non-convergence, the maximization algorithm is re-itéibusing the “imperfect” solution as start-
ing value, until all conditions are met. We also imposed ttadity restrictions: 0 < ¢ < 1,

0 <ec3 <1,0 < ¢q < 1. Such restrictions are not necessary for the validity oftest procedure.
Yet, we have observed that stability constraints enhanogergence and avoid corner solutions.
Maximization is typically difficult to achieve in the estiti@n of TVP models, and the numerical
burden tends to be heavy.

The number of replications used for the LMC and MMC test&is= 999. Since the MMC
p-value must be larger than the LMgvalue, it is not necessary to compute the Mi®alue if

the former is larger than the level of the test (in this caseuge0.05). Since thep-value function

Our emphasis on the (2.3) form justifies requirements (i) @hdnvertability of the information matrix is imposed
for the observed data only (since simulated data is drawenuhé null hypothesis in which case this restriction dods no
necessarily hold).
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is a non-differentiable step function, we usienulated annealindagain) to obtain the MMG-
value, using as maximization domain the relevant maximikeithood estimatest10 estimated
standard errors, subject to the following restrictiong:tlfe variance parameters are constrained
to be nonnegative, and (ii) the parameters should satigftdbility restrictions. In the following
discussion, significance refers t6% test level.

Finally, for testing error normality in the case of the twaime model for gasj; in (2.12) is
redefined as follows:

W = — = T X 7. before the deregulation date,
sl (-1 ) |

=Ty Y gy O i
_ t 2 D=yl after the deregulation date,

- 2 1/2 )
-1 T ~ 1 T ~
T zt:Tl-i-l (ut -1 Zt:Tl—i—l ut)

whereT; is the sample size before the deregulation dateland T'—T. In other words, we center

and scale residuals using empirical means and standardtided within each subsample. This
modification introduces different pre and post-break stadidations for the residuals to account
for the hypothesized break. Since our finite-sample testimgroach automatically accounts for
nuisance parameters, there is no need to provide an alterdadtributional theory for the proposed

statisticl®

3.2. Results

The point estimates are reported in Table 1, while the tefsgmi@mmeter constancy against TVP
specifications appear in Table 2. Focusing on the latter, waedvidence in favour of a TVP model
(with time-varying intercept and trend) for gas and coal, ot for oil. For for all three series,

the constant coefficient model cannot be rejected againstRispecification with constant trend

8The literature on Monte Carlo tests includes ample exanwafese intuitive although non-standard test statisticehav
been introduced and proved to outperform existing proaxwhose popularity is largely due to a standard asymptotic
null distribution. See for example Dufour and Khalaf (2Q0R2ufour et al. (2003), Dufour et al. (2004), Bernard et al.
(2007), and Dufour et al. (2010), for such examples in theedrof diagnostic tests.
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Table 1. Parameter estimates for different energy priceatsod

TVP-intercept-trend

C1 C3 C2 Cs Cq4 O O gy O¢
Qil 2426 5414 7070  .0025  .7306 | .00013  .0006 .1646
(2.25)  (.39)  (6.68) (2.60) (3.43) | (.0011) (2.02) (11.20)
Coal | .2346  .0913 .8101 .0011 .8550 0771 .0002 1.93 x 107
(2.04)) (.82) (8.33) (1.41) (10.28) | (12.81) (2.05) (7.62x 1079)
Gas | .2132  .8300 .8120 .0082 .0706 .0512 .0016 6.3 x 1077
(1.22)  (4.94) (4.74) (1.04) (.33) | (5.26) (6.33) (9.6 x 10°9)
TVP-intercept
(4] C3 Co Cy [} Oy Oygy O¢
Qil A898 7372 7372 .0026 — .0450 — .1693
(87)  (2.46) (2.46)  (.88) - (.57) (4.22)
Coal | .2320 .8173  .8173  .0009 — .0257 — 0734
(127) (5.62) (5.63) (1.09)  — (1.75) (7.39)
Gas | .1849 .7347  .8347  .0073 — .0436 — 1058
(1.09) (6.03) (6.04) (1.22)  — (2.02) (6.57)
TVP-trend
Cc1 C3 C2 Cs Cq Ouy Ty O¢
Qil .2276 — 7178 0025 7098 — .0006 .1654
(2.49) (7.69) (2.71) (3.24) (1.89) (11.37)
Coal | .2090 — .8306  .0010  .8456 — .0002 .0769
(2.17) (10.19) (1.47) (10.05) (2.21) (12.95)
Gas | .0221 — 9656 .0023  .3343 — .0019 .0488
(.31) (31.62) (2.43) (2.16) (8.60) (4.55)
AR(1) with linear trend
c+ ¢1 C2 cs5 + ¢2 Ouy Oy O¢
Oil .1366 8117 .0019 - — .1805
(2.53) (18.40) (4.03) - -
Coal .1044 9214 .00037 — — .0832
(2.24) (26.22) (1.43) - -
Gas .0665 .9349 .0034 — — 1261
(1.08) (34.61) (3.98) - -

Note — The model called “TVP-intercept-trend” uses the &quaP; = c; + ¢y, + cs5t + Pout +
coP_1 + ¢4, Where¢1t = C3¢1,t—1 + V1, ¢2t = C4¢2,t—1 + vyt = 1,...,T. The “TVP-
intercept” model is a special case of the latter where ondyititercept is a random coefficient:
Py = c1 + ¢y + (c5+ ¢y) t + coPi_1 + & Similarly, in the “TVP-trend” model, only the trend
coefficient is randompP; = (¢1 + ¢1) + cst + ¢t + c2Pi—1 + €. The “AR(1) model with linear
trend” is: P, = (c1 + ¢;) + (¢5 + o) t + caPi—1 + €. t-Statistics are reported in parentheses.
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Table 2. Tests of constant parameter model versus Pindgpkiifications

TVP-intercept-trend TVP-intercept TVP-trend
LR p-value LR p-value| LR p-value

Qil 2.60 424 0.14 .886 2.46 .236
(> 5%) (> 5%) (> 5%)

Coal | 20.04 .001 2.22 .252 3.45 .247
(.001) (> 5%) (> 5%)

Gas | 36.95 .001 3.88  .202 29.73  .001
(.001) (> 5%) (.001)

Note — For the definitions of the models, see the note to Table #ach case, the time invariant
model counterpart is tested against the TVP specificatidme LR statistic is defined in (2.8); the
LMC p-value is reported with the MMC counterpart in parests

Table 3. Residual-based normality tests for models withi@ant TVP specifications

Model Test ong; Test onvy; Test onvy;
JB  p-value JB p-value | JB p-value

TVP-intercept-trend| Coal | 114.78  .010 25717.60 210 208.90 .63
(.010) (> 5%) (> 5%)

Gas | 79.47  .010 32.18 .430 30.61 .86
(.010) (> 5%) (> 5%)

TVP-trend Gas | 39.35 .039 — — 9.41 .006
(.135) — (.994)

Note — For the definitions of the models, see the note to Tabl€hk J B statistic is defined in

(2.12); the LMC p-value is reported with the MMC countergarparentheses.
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coefficient and time-varying intercept. Only in the case a$ goes a TVP specification with fixed
intercept and time-varying trend coefficient turns out testaistically significant, which suggests
that TVP effects are mainly present in the trend coefficianthis case. For coal, TVP effects
on both the intercept and the trend are significant when beahingluded, whereas individually

they are not. This finding suggests a multicollinearity (oridentification) problem, as in linear

regressions when an F-test on two coefficients on two coefiisiis significant while the associated
t-tests are not. Nevertheless, our residual analysis eghdmtlow calls for caution in interpreting

this conclusion.

Residual plots from the pricing error equation for the TWeeicept-trend models (and the two-
regime TVP model for natural gas) are provided in AppendixTBe application of usual serial
dependence tests revealed no significant departures fiom dh hypothesis.

From Table 3 and relying on the MMC test, we see that normalityne pricing error terms is
rejected within the TVP-intercept-trend models for bothl@nd gas. In contrast, for gas, normality
is not rejected for the TVP-trend model. In this case, the LM@lues are less thasth, so the
LMC and MMC p-values yield conflicting decisions. Given the extent oedilistortions revealed
by our Monte Carlo experiment, we prefer to rely on the Miptalues to avoid spurious rejections.
In this regard, it is worth noting that using the asymptotitiaal values would have led to rejecting
normality for all models analyzed.

We also explored the possibility of allowing for contempuweaus correlation between; and
vor in the TVP model. Although this could be an attractive exiemsf Pindyck’s original model, it
appears difficult to implement in practice. Indeed, for aligs considered, our attempts to estimate
such an extension of the TVP model led to numerical diffiegliand convergence typically failed.
This may be associated with identification issues or thetfattsample sizes are too small to allow
reliable estimation. A fortiori, this makes testing theednse of correlation difficult. For this reason,
and though we believe that TVP-filtered diagnostic testeidesfurther theoretical work beyond
the scope of this paper (our small-scale Monte Carlo studigtdn this direction), we focus on

deviations from normality to assess the considered TVPifspaions.
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Upon inspection of the residual plot for coal (Appendix Bk suspect that departures form
normality may be driven by the end-of-sample residuals. fOrgcasting exercise (reported in the
next section) supports this observation. In the case of\gasal inspection of the residual plot
confirms our decision to consider for a two-regime model f& variance. One must however
guard against hasty conclusions based on graphs, sinceditral plot of the two-regime TVP
specification suggests a similar pattern.

From Table 5, we see that TVP effects are not significant agairtwo-regime time invariant
specification® Here the LMCp-values are less thadi¥ (the associateg? critical value also signals
rejection at this level), so the LMC and MMgvalues yield conflicting decisions. In line with our
Monte Carlo experiment conformable with this design, warageefer to rely on the MMG-value.
Low power cannot be ruled out, since a two-regime model maykee parameterized.

Overall, our in-sample LR testing exercise rejects the fizeefficient model in favour of
Pindyck’s model for coal and gas, though not for oil. Howewerr independence and normality
tests suggest that Pindyck’s models is too restrictive txkesively fit the data. For these reasons,

these findings should be interpreted in conjunction withfotgcasting results.

4. Out-of-sample forecasts

In line with Pindyck’s original objective, we complementran-sample analysis with a forecasting
exercise. In this case, we consider two further benchmarttetsacommonly considered to ana-
lyze the long-run dynamics of energy prices, namely thesamd/alk model with or without drift
(the latter leading to thao-change forecajtand a fixed coefficient quadratic trend model. The
competing models are defined in the notes to tables 6 and #ditian to a long-run forecasting
analysis similar to Pindyck’s, we also consider a real-tapproach. In other words, we recursively
estimate all models under consideration (fixed-coefficeentvell as time-varying parameter mod-

els) and forecast in real-time: we derive one-step-ahe&afesample forecasts, where parameter

¥Although we only report normality tests for significant TViesifications, it is worth noting that the LMC test for
TVP two-regime residuals did not detect deviations fornmmatity.

18



Table 4. Two-regime model for natural gas: parameter egtisna

c 1) (2)
1 C3 C2 Cs5 Cq Oy O vy Oc Oe
TVP-intercept| .0393  .3378 .6552 .0198  .8616 0423 .0010 8.59.10°7  .1413
-trend (.25)  (1.66) (5.75) (2.75) (74.85) (5.31) (3.89) (3.1.107%) (4.95)
TVP-intercept| .2955 .8616 7174 .0123 — .0616 — .0092 .1540
(1.56) (7.59) (3.76) (1.25) — (4.43) — (.18) (5.62)
TVP-trend .0539 — .6861 .0179  .8572 — .0010 .0399 .1463
(.40) — (7.50)  (3.26) (82.72) — (4.86) (5.94) (5.42)
¢+ (bl C2 Cs5 + ¢2 0w, [ Ugl) U§2)
AR(1) with .0036 .9642 .0030 — — 0762 1765
linear trend (.06) (36.97) (3.52) - -

Note — The model denote@VP-intercept-trendcorresponds t&?;, = c¢; + ¢y, + cst + dopt +
ca P_1+¢4 , wheres, are independent Gaussian with standard devia:tﬁb%before the deregulation
date andaéz)thereafter. The special cases denotédP-trendand TVP-intercept correspond to
Py = (c1+¢1) +est+ gt +coPq + e, and P = 1 + ¢y + (c5 + dg) t + c2Prq + &4,
respectively; in the abovey, = c3dy ;1 + vit, P9y = Capgy1 +v2¢,t =1, ..., T. The model
denotedAR(1) with linear trend corresponds tB;, = (c; + ¢y) + (c5 + do)t + caPpq + &4
Numbers in parentheses drstatistics.

Table 5. Two-regime model for natural gas: TVP tests

TVP-intercept-trend| TVP-intercept TVP-trend

LR 58.41 LR 50.76 | LR 55.71

p-values .015 p-values| .023 p-values| .023
(.999) (.988) (.999)

Note — For the definitions of the models denotédP-intercept-trendand TVP-trend see notes to
Table 4. In each case, the time invariant model counterpdésted against the TVP specification.
The LR statistic is defined in (2.8); the LMC p-value is repdrwith the MMC counterpart in
parenthesesEmpirical rejectionsrefers to the proportion of simulated statistics that esldbe 2
critical values for a test with levél%. Statistics are simulated under the time invariant copater
of each TVP model (the null hypothesis) with parameters isiated (under the null hypothesis)

from the gas price series.
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estimates are updated at every step of the procedure. Hoddrag-run and real-time exercises,
we also analyze forecasts obtained through model averaggittgg unweighted forecast means and
medians, as well as weighted means based on informati@riar{AIC and BIC). We report mean
squared forecast errors, and we rely mainly on the lattenadyae the results.

To the best of our knowledge, tests of forecasting perfoomare available for either nested
or non-nested model comparisons. Given the serious sizdgons with in-sample tests and the
nonregular features of the models studied here, we prefawaa an inferential out-of-sample
analysis?® As in Pindyck’s study, a forecast horizon starting in 1976dasidered for oil and coal.
The long-run forecasts span the 1976-2006 horizon and dosgopost-1976 data. In the real-time
exercise, we first forecast 1976 prices using pre-1976 déttx; 1976, we add a year of data to the
estimation sample one year at a time, reestimate the mouhg] each new sample, and forecast
the subsequent year using only the information in the ettmaample. In the case of gas, we
follow the same procedure except that, for numerical stgbile use a forecasting horizon starting
in 1996. Recall that the series on gas prices starts in 19h8reas for oil and coal, our data go
back to 1870.

For the oil series, out-of-sample results favour time-iraret models for long-run and real-time
forecasts. This concurs with our in-sample findings. Irgtngly, the random-walk model emerges
as the best forecasting tool: the random walk with drift edfprms all other models for long-run
forecasts and the real-time exercise selects the no-cHanggast. For related work, see Alquist
and Kilian (2009) and the survey of Hamilton (2009).

In contrast, the long-run and real-time exercises leadmdlicting results regarding TVP effects
for coal: the no-change forecast outperforms all otherdasts in real-time whereas the long-run
exercise selects the TVP-intercept-trend specificaticgretgain, our in-sample analysis does not
contradict this finding. Recall that we found evidence irofavof the latter model through LR tests,

yet we also detected significant departures from normalRgsidual plots however indicate that

2peveloping forecast comparison tests that account for deynnesting is a worthy research objective beyond the
scope of the present paper.
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Table 6. Mean squared forecast errors (1976-2006)

Oil Coal Gas
Long Real Long Real Long Real
run time run time run time
TVP models
TVP-intercept-trend 23394 1110 | 1590  .0040 1950 .0647
TVP-intercept 3421 .1055 1651 .0068 .6936 .1058
TVP-trend 3394 1084 .1602 .0055 2265  .0586

Fixed coefficient models
AR (1) with second-order trend .2441  .1049 | .4845  .0101 | 1.8051 .0794

AR (1) with linear trend 3394 1147 | 2044 0113 | .1278  .0676
AR (1) .6447 1367 | .2438  .0057 | .3157  .0850
Random walk with drift 1550 1162 | .4809  .0084 | .2995  .0904
No-change forecast 1907 .0568 3438 .0026 .6837 .0655
Model averaging
AlC-weighted 3312 1071 .2640 .0075 .2044 .0650
BIC-weighted 3972 1142 .3650 .0080 2724 .0724
Unweighted average .2819 .0958 3029 .0058 4499  .0645
Median 2921 .1044 .2866 .0059 .3200 .0715

Note — The model called “TVP-intercept-trend” uses the &quaP; = c; + ¢y, + cs5t + Poit +
coP1 + &4, Where¢1t = C3¢1,t—1 + vt , ¢2t = C4¢2,t—1 4+ vy, t = 1,...,T. The “TVP-
intercept” model is a special case of the latter where ondyititercept is a random coefficient:
Pr=c1+ ¢y + (c5 + ¢g) t + coPi—1 + &¢. In the “TVP-trend” model, only the trend coefficient is
random: P, = (c1 + ¢1) + st + ¢t + c2Pi—1 + &1 . The AR(1) model with second-order trend
is: P = (c1 + ¢1) + (¢5 + ¢9) t + c6t? + 2Py + ;. The “AR(1) model with linear trend”, the
“AR (1) model” and the “Random walk with drift” are restricted forwisthe latter given by P, =
(c1 4+ ¢1)+(c5 + @g) t+caP_14e¢ P = (c1 + ¢y) +coPi—1+ep andP; = (c1 + ¢1) + Pi—1+<4,
respectively. The no-change forecast is produced by a mndalk without drift: P, = P + &;.
Numbers in bold indicate the smallest mean squared forecast
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Table 7. Mean squared forecast errors, two-regime modeidtural gas

Long Run Real time
TVP-intercept-trend .2860 .0634
TVP-intercept .5302 .0661
TVP-trend .2589 .0644
AR (1) with second-order trend  1.40 0794
AR (1) with linear trend .0917 .0676
AR (1) 2182 .0850
Random walk with drift .2822 .0904
No-change forecast .6837 .0655
Model averaging, AIC-weighted .2858 .0664
Model averaging, BIC-weighted .2853 .0830
Model averaging, unweighted .3980 .0658
Model averaging, median .2856 .0718

Note — The models compared can be summarized as follows.\(R}ifitercept-trend:P;, = ¢ +
Grptest+dot+eabi1+e, Wheredy, = csdy ;1 +01e, Py = Cadgy +on,t=1,...,T.;(2)
TVP-intercept:P; = ¢+ ¢y + (c5 + ¢o) t+caPr1+¢¢; (3) TVP-trend modelP; = (c; + ¢) +
cst+ ot +co Py +er 5 (4) AR(1) with second-order trend?, = (c1 + ¢1)+ (c5 + ¢5) t+ct>+
caP_1+e¢; (5) AR(1) with linear trend:P, = (c1 + ¢1) + (¢c5 + ¢o) t+coPi—1 +4 5 (6) AR(1):
P, = (1 + ¢y) + c2Pi—1 + &4 ; (7) random walk with drift:P; = (¢1 + ¢;) + Pi—1 + &;. The no-
change forecast corresponds to the random walk with na dtif= P._; 4 &;. The pricing errors
¢; are independent Gaussian with variarméé) before the deregulation date, aa&) thereafter.
Numbers in bold indicate the smallest mean square forecast e
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such departures appear to be associated with observaganghe end of our sample. So most of
these forecasts are not affected by these outlying obsemgat

In the case of gas, when we restrict focus to the single regamse, the time invariant model
with a linear deterministic trend is preferred as a long-fanrecasting tool; in contrast, the TVP-
in-trend specification outperforms all other specificatifor real-time forecasting. This model was
indeed not rejected using in-sample LR and normality testeounting for the two-variance case
improves the performance of the AR(1) model with linear drethhe two-variance version of this
model is preferred to the single variance case, and alsogemers the best overall specification
for long-run forecasting. Here again, this is the model taed by our in-sample analysis. The
real-time exercise allowing for two variances supports TMP-intercept-trend specification, but
this model remains marginally dominated by the single regifWP-trend special case.

Overall, our out-of-sample exercise selects a random-sdicification for long-run and real-
time forecasting of the oil price, and Pindyck’s model fottbeceal-time forecasting in the case of
gas and long-run forecasting in the case of coal. We do nishganerality, because results depend
(as usual) on the forecasting horizon considered. At amy vat find that our in-sample test results
do not conflict with our forecasting study.

The fact that real-time and long-run exercises suggesréift decisions may be due to several
factors. The TVP models may themselves be structurallyabiest so allowing for recursive estima-
tion could in a way circumvent this problem. From the strualtstability perspective, even linear
models including the unit-root case are given a fair chaimeeghe drift parameter estimates can
adjust to additional observations. From a different parspe, the nonlinear specifications may suf-
fer from non-negligible estimation uncertainty, so allog/point estimates to recursively adapt with
incoming data may alleviate this difficulty. Continuous apdg in real-time has practical advan-
tages, when the economic question at hand does not call émgarlin forecast. The small samples
under consideration may also drive some of the observedegiancies between the in-sample and
the out-of sample results. For further discussion, seedramd Kilian (2004, 2006) and Hansen

(200%).
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Finally, we find that averaging does not improve forecadttive to the best performing model,
neither from a long-run nor from a real-time perspectivecd® econometric studies suggest that
combining forecasts from several models can improve acguirathe presence of structural insta-
bilities; see Clark and McCracken (2009) or Hansen (2D0B this regard, our exercise is telling,
since TVP models have not been formally considered in thisrgimg literature so far. Of course,
our findings depend on the competing models, the data as svel the forecasting horizons. One
issue is however worth raising. On comparing the unweigtaetie weighted averages, one may
suspect that weights based on information-criteria aredapted to TVP models. Our results thus

suggest that further research in this direction is a worttjgative.

5. Conclusion

This paper tests the statistical significance of Pindycl@90) suggested class of econometric mod-
els for the behavior of long-run real energy prices. Thesgtybate mean-reverting prices with
continuous and random changes in their level and trendgusaiman filtering for the estima-
tion. In such contexts, the distributions of the test dsiasare typically non-standard and depend
on nuisance parameters. We conduct a small-scale simulati@ly based on empirically rele-
vant designs to illustrate the serious implications of ¢hpsoblems for applied work. Exploiting
simulation-based procedures to address this issue, wet regalts for both LR tests for TVP and
for residual-based normality tests.

A further contribution of this paper is to examine the in-gdarfit and the out-of-sample fit for
the specific class of models at hand. We thus complement eaamiiple analysis with a long-run as
well as a real-time forecasting exercise. We also produdeaaalyze model-averaged forecasts, to
assess the effectiveness of combining various models.

Our in-sample LR tests select Pindyck’s model for coal arg] lgat not for oil. However, model
diagnostics, such as normality tests suggest that the nimttab restrictive to conclusively fit the

data. Allowing for non-Gaussian disturbances in TVP moa@eld for non-zero correlations be-
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tween different disturbances, stand out as potentialljulsgtensions. Our out-of-sample exercise
selects the random-walk specification for oil, and Pindyekodel for real-time forecasting in the
case of gas as well as for long-run forecasting in the caseadf Erom a more methodological per-
spective, our results suggest that developing furthemdisiics, both in-sample and out-of-sample,

is a worthy research objective.
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Appendix

A. Simulation study

To provide further motivation for the methodology employethis paper, we report here the results
of a small Monte Carlo experiment on the properties of asgtigpprocedures in the context of the
models studied in this paper. We consider in turn the behavitests for restricted TVP or constant
parameter models against Pindyck’s specification, anduakbased normality tests.

Indeed, the algorithm [described in steps (i)-(iii) of Sexat2.1] which underlies the definition
of the Monte Carlop-value function may be exploited to assess the size of thmpi®yfic test
based on the statistics under consideration, namhélyand .J B. For presentation ease, let us first
focus on theL R test problem. In this case, thé simulated test statisticSR;(6),i =1, ... , N,
correspond to a data generating process (DGP) that sattsfiesill hypothesis (with a given choice
of §). So, if we compare eachR;(6) to the asymptotic critical value from thg? distribution
(with degree of freedom equal to the number of coefficienesdfigy the null hypothesis) for a test
with (nominal) levela, and count rejections over thgé replications, we obtain an estimate of the
empirical probability of type I error (or level) for the dgsi considered (and a specific valuedpf

To get empirically relevant designs, the parameter veastetld is set to the valud ¢,
obtained from our data model under the relevant null hymithgs given in Table 1 of Section
3]. We report the empirical rejections corresponding t@:»;, for each energy series considered.
Since the same observation holds in the caséifw),i =1, ... , N, we also report the empirical
rejections obtained on setting= @y p, Wherewry p is the unrestricted ML estimate of the TVP
model. The values af andw so chosen remain fixed for the purpose of the simulation.

In the context of TVP tests, usual statistics tend to bunelaound zero, which casts doubts
on the appropriateness ¢f critical values. Our simulation design allows us to asseissproblem
for the LR tests. Specifically, in addition to the empiriciles we report the number of simulated

LR;(6)which are close to zero (formally, between 0 and 0.01). Tkésase aims to be illustrative.
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Table 8. LR tests of constant parameter model versus Pirsdgpkcification: Monte Carlo study

Model TVP-intercept-trend TVP-intercept TVP-trend
Empirical Mass Empirical Mass Empirical Mass
rejections around zerp rejections around zero rejections around zero

Qil 21.4 56.6 2.5 1.4 6.0 23.2

Coal 3.9 2.0 3.6 5.5 10.5 20.0

Gas 8.6 3 8.2 2.8 16.8 10.3

Note —Empirical rejectionsrefer to the proportion of simulated statistics that exdded? critical
values for tests with leved%. Statistics are simulated under the null hypothesis, nameldel
(2.6) with O as calculated from each price seribf&ass around zeroefers to the proportion of
simulated statistics that are close to zero (formally, lisabetween 0 and 0.01); the latter aims to
illustrate the bunching-up-at-zero problem. For the didins of the models denot&d/P-intercept-
trend TVP-interceptand TVP-trend see notes to Table 1.

Table 9. TVP tests against a two-regime model for natural gaste Carlo study

TVP-intercept-trend TVP-intercept| TVP-trend
Empirical Size 99.1 99.2 99.3

The MMC method is not affected by this problem.

Results for LR tests of parameter constancy restrictiorasnag TVP models are reported in
tables 8 and 9. When the alternative is a model with one TVPnegwe see that the probability
of type | error can substantially exceété (the nominal significance level), with rejection rates
exceeding20%. Against the two-regime model, we observe empirical leeise t0100% (rather
than the nominal level di%). Over-parameterization may be driving the latter resiést3 against
the two-regime model suffer from an additional identifioatiproblem arising from the possibility
of a non-existent break, in which case estimating two difi¢évalues for the pricing error variance
may lead to serious estimator instability for all model paeters.

Our results also reveal a noticeable pile-up problem at. ZEn@s problem may be expected for
Studentt statistics, as discussed by Stock and Watson (1998) forpibeiad case where the TVP

specifications follow a unit-root. For this reason, one nawsid over-interpreting the close-to-zero
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Table 10. Residual-based normality tests: Monte Carloystud

Model Testons; | Testonvy; Test onwg;
TVP-intercept-trend| Oil 4.9 35.5 90.0
Coal 4.2 100 100
Gas 0.0 100 100
TVP-trend Gas 63.8 — 2.3

Note —Empirical rejectionsrefer to the proportion of simulated statistics that excteth?(2)
critical value for a test with leved%. For the definitions of the models for the definitions of the
models denoted VP-intercept-trendand TVP-trend see notes to Table 1. Statistics are simulated
for given these models, withry p as calculated from the indicated price series.

t-statistics in Tables 1 and 4. Here we find that LR statisticest TVP may also have a mass
point at zero. Overall, the Monte Carlo study of the LR tegfgasts that: (i) usual critical values
can lead to spurious detections of TVP effects, and (ii) c@mgg simulation-based alternatives is
particularly worthwhile when the sample size relative te ttumber of parameters is tight.

Monte Carlo results for the normality tests are reportedabl@ 10. Here again, we see that the
rejection rates for thg?-based test fluctuate from 0 to 100%, even with the singlaveglesigns;
this implies that the usual Jarque-Beya test is inappropriate for TVP-filtered residuals. This
(alarming) fact does not seem to be known in this literatuBdven the popularity of such tests
in practice, our results - that are particularly revealimgduse we have modeled our simulation
design based on empirical data - suggest that bootstragutteternatives are clearly called for.
Consequently, for the diagnostic tests applied (and diszlibelow), we consider MM@-values

when commonly used asymptotic procedures are signifiaagtiard against spurious rejections.

B. Residuals of TVP models

The graphs provided in this section give the residuals offtlie TVP models whose estimated

coefficients appear in tables 1 and 4.
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