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Abstract:  
This paper addresses the question of the selection of multivariate GARCH models in 
terms of variance matrix forecasting accuracy with a particular focus on relatively large 
scale problems. We consider 10 assets from NYSE and NASDAQ and compare 125 
model based one-step-ahead conditional variance forecasts over a period of 10 years 
using the model confidence set (MCS) and the Superior Predictive Ability (SPA) tests. 
Model performances are evaluated using four statistical loss functions which account for 
different types and degrees of asymmetry with respect to over/under predictions. When 
considering the full sample, MCS results are strongly driven by short periods of high 
market instability during which multivariate GARCH models appear to be inaccurate. 
Over relatively unstable periods, i.e. dot-com bubble, the set of superior models is 
composed of more sophisticated specifications such as orthogonal and dynamic 
conditional correlation (DCC), both with leverage effect in the conditional variances. 
However, unlike the DCC models, our results show that the orthogonal specifications 
tend to underestimate the conditional variance. Over calm periods, a simple assumption 
like constant conditional correlation and symmetry in the conditional variances cannot be 
rejected. Finally, during the 2007-2008 financial crisis, accounting for non-stationarity in 
the conditional variance process generates superior forecasts. The SPA test suggests 
that, independently from the period, the best models do not provide significantly better 
forecasts than the DCC model of Engle (2002) with leverage in the conditional variances 
of the returns. 
 
Keywords: Variance matrix, forecasting, multivariate GARCH, loss function, model 
confidence set, superior predictive ability 
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1 Introduction

Most financial applications are multivariate problems with volatility forecasts as one of the

inputs. Forecasting sequences of variance matrices is relatively easily done using a multivariate

GARCH model, i.e. the conditional variance matrix is modelled as a function of past returns.

A large number of multivariate GARCH models have been proposed in the literature, see

Bauwens, Laurent, and Rombouts (2006) and Silvennoinen and Terasvirta (2009) for extensive

surveys. The first generation of models, for example the VEC model of Bollerslev, Engle, and

Wooldridge (1988) and the BEKK model of Engle and Kroner (1995), are direct extensions of

the univariate GARCH model of Bollerslev (1986). These models are very general and allow

for rich and flexible dynamics for the conditional variance matrix. They have been extensively

used to model volatility spillovers and in applications such as conditional CAPM and futures

hedging. Examples are respectively Karolyi (1995) and Bali (2008). However, being heavily

parameterized, they are tractable only for a small number of series, typically lower than four.

More recently, the focus has turned to larger scale problems such as dynamics of cor-

relations between equity and bond returns, portfolio selection and Value at Risk, see Engle

(2009) for examples. In these applications, the numerical evaluation of first generation models

becomes unfeasible. Both the number of parameters and the number of operations required

to evaluate the likelihood function tend to explode rapidly with the number of series. Alter-

native approaches for achieving more manageable and parsimonious specifications have been

proposed. Feasible specifications can be obtained by imposing strong parameter restrictions

on the BEKK model, e.g. the scalar BEKK model and the exponentially weighted moving

average model proposed by J.P.Morgan (1996). Similarly, factor structures like in Engle and

Gonzalez-Rivera (1991), the orthogonal models of Alexander and Chibumba (1997), van der

Weide (2002) and Fan, Wang, and Yao (2008) have been proposed. Recently, increasing at-

tention has been devoted to conditional correlation models because they can be estimated

using a multi-step procedure. The first models have been introduced by Engle (2002) and

Tse and Tsui (2002). Extensions of Engle (2002) are the asymmetric conditional correlation

model of Cappiello, Engle, and Sheppard (2006), the consistent DCC of Aielli (2006) and the

sequential conditional correlation model of Palandri (2009).

A priori it is difficult, if not impossible, to identify which model has the best out-of-sample

forecasting performance. The evaluation of univariate volatility forecasts is well understood,
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see Hansen and Lunde (2005), Hansen, Lunde, and Nason (2003), Becker and Clements

(2008) among others. However, although many multivariate GARCH models are available,

from an applied viewpoint, there are no clear guidelines available on model evaluation and

selection. Recent somewhat related studies include Clements, Doolan, Hurn, and Becker

(2009) and Chiriac and Voev (2010). Though, their analysis usually involves a small number

of alternative parametrizations and/or small cross sectional dimensions.

This paper addresses the selection of multivariate GARCH models in terms of conditional

variance matrix out-of-sample forecasting accuracy with a focus on large scale problems.

Another major innovation is that our comparison is based on large sets of competing model

specifications. We first estimate a large variety of models and produce a set of out-of-sample

model based forecasts. This can be easily done using standard econometric software packages

which are today readily available to the forecaster. Second, we identify the set of models that

show superior forecasting performance. These models can then be used either to produce

combined forecasts or to select a particular preferred model.

Several approaches have been proposed with respect to the inference on the set of supe-

rior models. The testing procedure based on equal predictive ability (EPA) introduced by

Diebold and Mariano (1995) to account for parameter uncertainty, allows for pair wise com-

parison of forecast performances across models. Important generalizations can be found West

(1996), Clark and McCracken (2001), Clark and West (2006) and Clark and West (2007). See

West (2009) for a survey. Giacomini and White (2006) develop a framework that allows the

comparison between model based forecasts taking also into account the estimation method,

estimation uncertainty, model misspecification and the choice of the sample size. Other alter-

natives are the reality check test for data snooping of White (2000) and the improved version

proposed by Hansen (2005). These tests are based on superior predictive ability (SPA) and

allow for multiple comparison but they require a benchmark model. An alternative approach

is the model confidence set (MCS) test proposed by Hansen, Lunde, and Nason (2009). The

MCS allows to identify, from a universe of model based forecasts, a subset of models, equiva-

lent in terms of predictive ability, which outperform all the other competing models. In this

paper, we use both the SPA and MCS tests to assess the forecast performance of multivariate

GARCH models.

To measure out-of-sample forecasting performance, model based forecasts are usually com-
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pared to ex-post realizations as they become available. To do this, the forecaster needs to

select a loss function and a proxy for the true conditional variance matrix which is unob-

servable even ex post. The question arises on which proxy to use and to what extent this

substitution affects the forecast evaluation. Building on Hansen and Lunde (2006a) and Pat-

ton (2009), Laurent, Rombouts, and Violante (2009) address these questions in the case of the

comparison of multivariate volatility models using statistical loss functions. They show that

the substitution of the underlying volatility by a proxy may induce a distortion in the ranking

i.e., the evaluation based on the proxy differs from the ranking that would be obtained if the

true target was observable. However, such distortion can be avoided if the loss function has

a particular functional form. In this paper, we use four robust loss functions which allow for

various types of asymmetry in the way variances and variance matrix predictions are eval-

uated. With respect to the choice of the loss function, and within the MCS framework, we

find that the Euclidean and Frobenius loss functions (both symmetric) appear to deliver a

relatively large MCS, while the asymmetric loss functions, and in particular the Stein loss

function, allow to identify sets of superior models which are systematically smaller. These

results are consistent with the findings of Clements, Doolan, Hurn, and Becker (2009) in the

multivariate setting and Hansen, Lunde, and Nason (2003) in the univariate settings.

We consider 10 series from the NYSE and the NASDAQ indices. The sample period is

21 years, from January 2, 1988 to December 31, 2008. The last 2486 trading days (from

April 1, 1999 to December 27, 2008) constitute the sample for which we compute one-day

ahead forecasts. We consider 125 multivariate GARCH model based forecasts. Laurent,

Rombouts, and Violante (2009) underline the value of high precision proxies. In fact, when

the set of competing models is characterized by a high degree of similarity, the availability

of an accurate proxy makes it easier to discriminate between models. In this paper, model

performances are evaluated using realized covariance based on intraday returns sampled at

the 5 minute frequency. A robustness check with respect to the choice and the accuracy

of the proxy is performed using intraday returns sampled at 1 minute and a realized kernel

estimator based on intraday returns sampled at 1 and 5 minutes. Our results appear to be

robust to the choice and the accuracy of the volatility proxy.

As pointed out by Hansen, Lunde, and Nason (2003), the MCS is specific to the set of

candidate models and the sample period. Furthermore, the model selection can be misleading
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when the forecast sample consists of periods characterized by different types of dynamics. We

illustrate how sensitive the MCS is with respect to the forecast sample under investigation

by considering not only the full sample but also three sub-samples which are homogenous in

their volatility dynamics. We find that over the dot-com bubble, the set of superior models

is composed of more sophisticated models such as Orthogonal and dynamic conditional cor-

relations, both with leverage effect in the conditional variances. Over calm periods, a simple

assumption like constant conditional correlation and symmetry in the conditional variances

cannot be rejected. Over the 2007-2008 financial crisis, accounting for non-stationarity in the

conditional variance process generates superior forecasts.

In the last part of our application, we assess using SPA tests the predictive ability of

six popular and parsimonious specifications selected with respect to two dimensions, the

multivariate structure and symmetry in the dynamics of the variance processes. We find that

the most valid alternative is represented by the Dynamic Conditional Correlation model of

Engle (2002) when coupled with leverage effect in the conditional variances of the marginal

processes. This model seems to capture well the dynamics of the conditional variance matrix

consistently across the different sample periods. However, in line with the MCS results, simple

hypotheses like constant correlation and/or symmetric variance process cannot be rejected

only over periods of calm markets.

An alternative approach to evaluate variance matrix forecasts is to use an economic loss

function such as asset allocation in Engle and Colacito (2006). Other examples are Value-

at-Risk forecasting and derivative pricing. See also Voev (2009) for a related setting. How-

ever, as pointed out by Patton and Sheppard (2009) the main drawback of an evaluation

of volatility forecasts based on economic criteria is that it generally relies on additional and

application-specific assumptions, the ordering may not depend exclusively on the accuracy

of the conditional variance matrix forecast and the criteria are generally non-robust, in the

sense that imperfect forecasts can outperform the true conditional variance matrix.

The rest of the paper is organized as follows. Section 2 discusses the multivariate GARCH

specifications, the proxies for the conditional variance, the loss functions and the MCS ap-

proach. Section 3 provides a description of the data and outlines some stylized facts. Section

4 presents the results for the multiple comparison based on the MCS and Section 5 for the

comparison based on the SPA test. Section 6 concludes.
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2 Methodology

In this section, we first introduce the multivariate GARCH models used for the forecasting

exercise. Second, we define estimators of the underlying variance matrix used to compare the

volatility forecasts. We conclude with a discussion on the properties of the loss functions used

to evaluate the forecast errors and with a brief summary of the MCS approach.

2.1 Forecasting models set

Consider a N -dimensional vector stochastic process rt = μt + εt and denote �t−1 as the

information set available at t − 1. We are interested in modelling its conditional variance

matrix Ht = E(εtε′t|�t−1). Since the conditional mean μt is typically of minor importance for

GARCH-type models, we assume a constant conditional mean for all assets, see also Hansen

and Lunde (2005) and Becker and Clements (2008).

We consider parametric specifications for the conditional variance of the multivariate

GARCH (MGARCH) type, i.e., Ht is a parametric function of past returns. To control for

the number of parameters, we impose covariance or correlation targeting when possible, see

Engle and Mezrich (1995). This means that Ht can be expressed in terms of the unconditional

variance/correlation and other parameters, provided that the process is covariance stationary.

Hence, it is possible to reparameterize the model and replace the unconditional covariance

and/or correlation by a consistent estimator before maximizing the likelihood. The targeting

ensures a reasonable value of the model-implied unconditional variance and, although it is not

a maximum likelihood estimator (therefore asymptotically inefficient), the long run variance

will be consistent even if the MGARCH model is misspecified. This solution also facilitates

the numerical optimization of the remaining parameters by reducing the dimensionality of

the parameter space. For the properties of the variance targeting estimator and a comparison

with the standard quasi-maximum likelihood estimator in the univariate case, see Francq,

Horvath, and Zakoian (2009).

We consider several families of MGARCH models which are revealed to be feasible in

terms of numerical evaluation when the dimension of rt is relatively large. According to the

classification in Bauwens, Laurent, and Rombouts (2006), among the generalizations of the

univariate standard GARCH model, we consider three specifications, namely the diagonal

and scalar BEKK of Engle and Kroner (1995) and the multivariate RiskMetrics model of
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J.P.Morgan (1996). In the BEKK model, the conditional variance is specified as

Ht = C +Aεt−1ε
′
t−1A

′ +BHt−1B
′, (1)

where C is a positive definite matrix and A and B are diagonal matrices of parameters in the

diagonal BEKK and A = aI, B = bI, where a and b are scalars, in the scalar BEKK. In this

model, variance targeting is imposed by setting H = E(εtε′t) and C = I − AHA′ − BHB′

which implies E(Ht) = H. Note that the scalar BEKK model imposes the same dynamics to

all the elements of Ht (and thus is equivalent to the scalar VEC model of Bollerslev, Engle,

and Wooldridge, 1988). The RiskMetrics model has the same parametric form as defined in

(1) but assumes that the conditional variance matrix is an integrated process, i.e., a+ b = 1

and C = 0, governed by a fixed smoothing parameter, b equal to 0.96. This model, widely

used by practitioners, does not require parameter estimation.

Among the MGARCH models that can be represented as linear combinations of univariate

GARCH models, we consider the orthogonal GARCH (Ogarch) model of Kariya (1988) and

Alexander and Chibumba (1997). In this model, the data are generated by an orthogonal

transformation of m ≤ N (or a smaller number of) uncorrelated factors, ft, which can be

separately defined as any stationary univariate GARCH process. The model can be expressed

as

V −1/2εt = PL1/2ft (2)

St = Et−1(ftf
′
t) = diag(σ2

f1,t
, . . . , σ2

fm,t
) (3)

Ht = V 1/2PL1/2StPL
1/2V 1/2, (4)

where V = diag(v1, ..., vN ), with vi = E(ε2i,t), L and P are m ×m and N ×m matrices of

the m largest eigenvalues of the unconditional correlation matrix and associated orthogonal

eigenvectors, respectively. In the application, we set m = N . Other specifications belonging

to this group are the generalized orthogonal GARCH model by van der Weide (2002), the

full factor GARCH model by Vrontos, Dellaportas, and Politis (2003) and the conditionally

uncorrelated components GARCH by Fan, Wang, and Yao (2008). However, these models

are computationally challenging when the dimension is large.

The last category of models can be viewed as nonlinear combinations of univariate GARCH

models. They allow to specify separately N individual, possibly different, univariate models
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for the conditional variances and a model for the conditional correlation matrix. The dynamic

conditional correlation (DCC) model, in the formulation of Engle (2002) (DCCE), is defined

as

Ht = D
1/2
t RtD

1/2
t (5)

Dt = diag(σ2
1,t, . . . , σ

2
N,t) (6)

Rt = diag(q−1/2
11,t . . . q

−1/2
NN,t)Qtdiag(q

−1/2
11,t . . . q

−1/2
NN,t) (7)

Qt = (1 − α− β)Q̄+ αut−1u
′
t−1 + βQt−1, (8)

where ui,t = εi,t/σi,t define the devolatilized innovations. The constant conditional correlation

(CCC) model of Bollerslev (1990), the asymmetric DCC (ADCC) model of Cappiello, Engle,

and Sheppard (2006), the Dynamic Conditional Equi-Correlation (DECO) model of Engle and

Kelly (2008) also belong to this family. To ensure positive definiteness, the correlation matrix

is modeled as a transformation of a latent matrix Qt which is a function of past devolatilized

innovations.

While the CCC model of Bollerslev (1990) assumes time invariant, but pairise specific,

correlations, which can be estimated by a consistent estimator for the unconditional correla-

tion, the DECO model of Engle and Kelly (2008) assumes that correlations are time varying

but equal across the N assets (Rij,t = ρt ∀i �= j). Interestingly, under some suitable condi-

tions, the DECO model gives consistent estimators of the correlation dynamics (α, β) in (8)

even when the equicorrelation assumption is not supported by the data. Since the hypothe-

sis of equicorrelation is likely to be rejected, in this paper we use the DECO approach as a

technique to estimate the correlation parameters α and β. We then use the DECO estimates

to predict and forecast time varying and pairwise specific correlations. The ADCC extends

the DCCE by accounting for asymmetries in the correlation dynamics through the additional

term γ(ut−1u
′
t−1 � 1ut−1<01′ut−1<0) in (8) where 1ut−1<0 is a vector of dimension N such that

[1ut−1<0]i = 1 if ui,t−1 < 0 and 0 otherwise. The main drawback of the DCCE, the DECO

and the ADCC, is that, under variance/correlation targeting, the choice of the estimator for

the long run target Q̄ is not obvious as Qt is not a conditional variance nor a correlation.

Although inconsistent for the target, since the recursion in Qt does not have a martingale

difference representation, Engle and Sheppard (2001) suggest the use of the unconditional

expectation of the outer product of devolatilized innovations, arguing that the impact of this
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choice is very small in practice.

An alternative formulation of the DCC model has been suggested by Tse and Tsui (2002)

(DCCT). The conditional correlation Rt defined as:

Rt = (1 − θ1 − θ2)R̄+ θ1Ψt−1 + θ2Rt−1, (9)

with Ψt−1 the N ×N correlation matrix of ετ for τ = t−K, t−K + 1, . . . , t− 1 and K ≥ N .

Its i, j-th element is given by

ψij,t−1 =
∑K

m=1 ui,t−muj,t−m√
(
∑K

m=1 u
2
i,t−m)(

∑K
m=1 u

2
j,t−m)

, (10)

where uit is defined as above. In the application, we useK = N . In the DCCT the correlation

matrix is modeled directly and depends on past local correlations of devolatilized innovations.

Also in this case, under variance/correlation targeting, the choice of R̄ is not obvious. We set

R̄ equal to the unconditional correlation of the devolatilized innovations.

One of the advantages of the conditional correlation models relies on the fact that the

estimation problem can be carried out sequentially. This requires first the estimation of the

N conditional variances of the assets, potentially preceded by the estimation of the variance

target, second the estimation of the correlation target and third the parameters governing

the dynamics of the conditional correlation. Although inefficient, this procedure is consistent

and it dramatically reduces the computational burden of the likelihood. The univariate spec-

ification for the conditional variance that we include in the conditional correlation models are

ARCH (Engle, 1982), GARCH (Bollerslev, 1986), GJR (Glosten, Jagannathan, and Runkle,

1992), Exponential GARCH (Nelson, 1991), Asymmetric Power ARCH (Ding, Granger, and

Engle, 1993), Integrated GARCH (Engle and Bollerslev, 1986), RiskMetrics (J.P.Morgan,

1996), Hyperbolic GARCH (Davidson, 2004) and Fractionally Integrated GARCH (Baillie,

Bollerslev, and Mikkelsen, 1996). With respect to the number of lags in the models, we fix

both the ARCH (p) and the GARCH (q) orders to 1 for the scalar BEKK, multivariate Risk-

Metrics and the correlation specification in the DCC models. The univariate GARCH models

for the conditional variances in the Orthogonal GARCH and DCC specifications include

various combinations of the orders p, q. Table 1 summarizes the 125 multivariate GARCH

configurations considered in the forecasting exercise.
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Table 1: Forecasting models set

Conditional correlation type Orthogonal GARCH BEKK type
Corr. Variance p q Variance p q p q

CCC,
DCCA,
DCCE,
DCCT,
DECO

Arch 1,2 -

Orth.

Arch 1,2 -
BEKK

scalar 1 1
Aparch 1 1 Aparch 1 1 diagonal 1 1
Egarch 0,1,2 1,2 Egarch 0,1,2 1,2 RM - 1 1
Garch 1,2 1,2 Garch 1,2 1,2
Gjr 1,2 1,2 Gjr 1,2 1,2
Hgarch 1 1
Igarch 1 1
Figarch 1 1
Rm 1 1

2.2 Proxies for the conditional variance matrix

In our application, the daily realized covariance serves as a proxy for the true conditional

variance matrix, Σt, when evaluating the forecasting performance of the different MGARCH

models. Recent literature suggests several estimators. Examples are the well known realized

variance, and its jump robust version bi-power covariation, see Barndorff-Nielsen and Shep-

hard (2004a) and Barndorff-Nielsen and Shephard (2004b), the realized kernel estimators

proposed by Zhou (1996), Hansen and Lunde (2006b), Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2008a) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b) which

account for serial correlation in the high frequency returns. Parametric models, like vec-

tor moving average RCov can be found in Hansen, Large, and Lunde (2008). Intraday

returns are defined as rt = pt − pt−Δ for t = Δ, 2Δ, ..., T , with 1/Δ intervals per day. The

daily realized variance (RCov) matrix (Andersen, Bollerslev, Diebold, and Labys, 2003 and

Barndorff-Nielsen and Shephard, 2004a) is defined as

RCov(Δ) =
1/Δ∑
i=1

riΔr
′
iΔ. (11)

As the sampling frequency of the intraday returns increases (Δ → 0), RCov(Δ) converges

almost surely to Σt. See Barndorff-Nielsen and Shephard (2004b), Mykland and Zhang (2006),

Andersen, Bollerslev, and Diebold (2002) and related references for details.

The definition of RCov(Δ) requires the assumption that intraday returns are uncorrelated.

However, failing this assumption, RCov(Δ) would result in a biased estimator of Σt. Hence,
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we also consider a simple kernel estimator, defined as

RCovAC(Δ)
q = λ0 +

q∑
i=1

(λ−i + λi) +
2q∑

i=q+1

(
1 − i− q

q + 1

)
(λ−i + λi) (12)

λq =

⎧⎨
⎩

1
(1−qΔ)

∑1/Δ
i=q+1 rir

′
i−q q ≥ 0

1
(1−|q|Δ)

∑1/Δ
i=|q|+1 ri−|q|r′i q < 0

. (13)

This estimator (see Zhou, 1996, Zhang, Mykland, and Ait-Sahalia, 2005, Hansen and Lunde,

2006b and Hansen, Large, and Lunde, 2008), based on the Newey and West (1987) variance

estimator, is equal to the RCov(Δ) plus a term that is a Bartlett-type weighted sum of

higher-order autocovariances. More refined realized kernel estimators are recently proposed

by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) and Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008b). Throughout the paper, unless explicitly mentioned, we will

use the RCov(5min) estimator. RCov(1min), RCovAC(1min)
q and RCovAC

(5min)
q will serve to

check the robustness of the results to different proxies.

2.3 Loss functions

At the core of the forecasting comparison is the choice of the loss function. In this paper, we

use the following loss functions

LE = (σt − ht)′(σt − ht) (14)

LF = Tr[(Σt −Ht)′(Σt −Ht)] (15)

LS = Tr[H−1
t Σt] − log

∣∣H−1
t Σt

∣∣−N (16)

Ld =
1

d(d − 1)
Tr(Σd

t −Hd
t ) − 1

(d− 1)
Tr(Hd−1

t (Σt −Ht)) d ≥ 3. (17)

The first two loss functions belong to a family of quadratic loss functions based on the forecast

error. LE is the Euclidean distance in the vector space of σt − ht = vech(Σt − Ht), where

vech() is the operator that stacks the lower triangular portion of a matrix into a vector.

Hence, LE only considers the unique elements of the variance matrix and these elements

are equally weighted. The Frobenius distance, LF , is defined as the sum of the element-

wise square differences of Σt −Ht and is the natural extension to matrix spaces of the mean

squared error. The relevant variable in the comparison is in this case the variance matrix itself

and it corresponds to the loss function implied by the matrix Normal likelihood. Although

closely related, it differs from LE for double counting the loss associated to the conditional
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covariances. The Stein loss function LS of James and Stein (1961) is a scale invariant loss

function based on the standardized (in matrix sense) forecast error. It is the loss function

implied by the Wishart density.

Note that since LE only considers the unique elements of the forecast error matrix, it

is symmetric in the sense that variances and covariances over/under predictions are equally

penalized. LF equally weights all elements of the forecast error matrix, thus double counting

the covariances forecast errors. This means that LF is symmetric with respect to the sign of

the forecast error for a given element of the forecast error matrix, but it is asymmetric in the

way that diagonal and off-diagonal elements of the forecast error matrix are weighted. The

loss function LS also considers the whole variance matrix as the variable of interest. This loss

function is homogeneous of degree 0 (errors are measured in relative terms) and asymmetric

with respect to over/under predictions (in matrix sense) and, in particular, under predictions

are heavily penalized. Finally, in the same spirit, L3 also accounts for asymmetry with

respect to over/under predictions, but in the opposite direction, i.e. over predictions are

penalized instead. Ld also allows to tune the degree of asymmetry, i.e. the weights given to

over/under prediction, through the choice of the parameter d, which also represents its degree

of homogeneity. We set d = 3 which implies a mild degree of asymmetry comparable to the

one of LS . See Laurent, Rombouts, and Violante (2009) for further details and examples.

2.4 The model confidence set

The MCS approach, introduced by Hansen, Lunde, and Nason (2009), is a testing procedure

for superior predictive ability based on the reality check for data snooping of White (2000)

and the superior predictive ability (SPA) test of Hansen (2005). The test allows to identify

a subset of models equivalent in terms of predictive ability, that are superior to the other

models. The advantage of the MCS procedure is that it does not require a benchmark model

to be specified which is useful for applications without an objective benchmark.

Let us denote M0 the initial set of models for which we compute one-step ahead condi-

tional variance forecasts, denoted by Ĥi,T+1, ..., Ĥi,T+T ∗+1 i = 1, . . . ,M where T ∗ defines the

forecasting sample length. The MCS procedure allows to identify a subset of models, M∗,

which are superior, in terms of predictive ability, with respect to all the other models in M0.

To do this, we need an equivalence test, an elimination rule and an updating algorithm. The
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starting hypothesis is that all models in M0 have equal forecasting performances as measured

by a loss function Li,t = L(Σt,Hi,t). If the null of equal predictive ability is rejected, then

the elimination rule removes the model with the worst performing model. This process is

repeated until the non-rejection of the null occurs (at a given confidence level). The set of

surviving models is the MCS. More formally, we start by defining the relative performance at

time t as dij,t = Li,t − Lj,t for all i �= j ∈ M0. Under the assumption that dij,t is stationary,

the null hypothesis takes the form H0,M0 : E(dij,t) = 0, ∀ i �= j ∈M0. The deviation statistic

is defined as TD = 1
M

∑
i∈M0 t2i , where ti =

√
T ∗d̄i
ωi

and d̄i = M−1Σj∈M0 d̄ij is the contrast of

model i’s sample loss with respect to the average across all models and d̄ij = T ∗−1ΣT ∗
t=1dij,t

is the sample loss difference between model i and j. The variances ω2
i = limt→∞V ar(

√
T ∗d̄i)

and the distribution of TD can be obtained by a bootstrap scheme. If the null hypothesis is

rejected, then we use as elimination rule argmaxiti to exclude the weakest model from the

set. The elimination rule excludes the model with the largest standardized excess loss relative

to the average across models, that is d̄i = L̄i−L̄ = L̄i−M−1Σj∈M0L̄j = M−1Σj∈M0(L̄i−L̄j).

The MCS p-value is equal to pi = maxk≤i p(k) where p(k) is the p-value of the test under

the null H0,Mk where k is the number of surviving models at step i of the iteration process.

After the necessary iterations, the set of superior models is given by {i ∈ M0 : E(dij,t) ≤ 0

∀ i �= j ∈M0}.
As argued by Hansen, Lunde, and Nason (2009), even an inferior model (a model with

bad sample performance) may be included in the MCS. This is the case if the variance of

its relative performance is large enough, i.e. the resulting standardized relative deviation, ti,

gets small enough to avoid being discarded by the elimination rule. Consider the following

decomposition for V ar(d̄i)

V ar(d̄i) = V ar(L̄) + V ar(L̄i) − 2Cov(L̄i, L̄)

= V ar(L̄) +

(
1 +

V ar(L̄i)
V ar(L̄)

− 2

√
V ar(L̄i)
V ar(L̄)

Corr(L̄i, L̄)

)
. (18)

If we define an inferior model as a model with a sample performance worse than the average,

that is d̄i > 0 or alternatively L̄i > L̄ - such model enters the MCS at some given confidence

level if and only if V ar(L̄i) is large enough and/or Corr(L̄i, L̄) is small. However, in some

specific cases this problem does not arise or it just marginally affects the elimination process.

For example, if the set contains only two models, then |d̄1| = |d̄2| and it follows that V ar(d̄1) =
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V ar(d̄2) and consequently the variance plays no role in the elimination. In such a case, for

some level of confidence and given the elimination rule defined above, the model with the best

sample performance is always preferred. In the case where the set contains more than two

models, an inferior model might only be preferred to another inferior model with better sample

performance but it will not outperform models for which d̄i < 0. By the same reasoning, if

there is only one model in the set with d̄i > 0, it will always be excluded no matter how

large its variance is. The decomposition of the variance of the relative performances plays

a central role for understanding and disentangling the informativeness of the MCS, i.e., to

assess whether weak models have been included in the set of superior models and the overall

informativeness of the resulting MCS.

3 Data and forecasting scheme

We consider stock returns from 10 assets traded in the NYSE and NASDAQ as detailed in

Table 2. The sample period spans from March 02, 1988 to December 26, 2008, which amounts

to 5226 trading days. The dataset has been cleaned from weekends, holidays and early closing

days. Days with missing values and/or constant prices have also been removed. Following the

approach of Andersen, Bollerslev, Frederiksen, and Nielsen (2010), the MGARCH models are

estimated using daily open-to-close returns. As explained above, to reduce the computational

burden, unconditional means are subtracted from each series of returns before proceeding to

the estimation of the 125 multivariate GARCH models by quasi maximum likelihood. All

programs are available from the authors on request. The initial estimation sample consists

of the first 2740 daily observations, i.e. March 02, 1988 to December 31, 1999. The last

2486 trading days constitute the sample for which we compute one-day ahead forecasts.

For computational convenience, we only re-estimate the model parameters every month (22

days) using a rolling window of the last 2740 observations. This rolling window of fixed

size satisfies the assumptions required by the MCS test (Hansen, Lunde, and Nason, 2009),

allows the comparison of nested models (Giacomini and White, 2006), as well as to compare

results over sub-samples (since forecasts over different period are conditioned on the most

recent information). The proxies for the conditional variance are based on intraday returns

computed from five-minutes intervals last mid-quotes. Since the daily trading period of the

NYSE and NASDAQ is 6.5 hours, this amounts to 78 intraday observations per day.
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Table 2: Stock names and descriptive statistics
Name Sector Mean Std. Dev. Max Min Skewness Kurtosis

Abbott Labs Health Care 0.085 1.53 10.26 -9.47 -0.05 2.43
BP plc Energy 0.013 1.17 10.27 -13.96 -0.22 11.83
Colgate-Palmolive Consumer Stap. 0.073 1.40 16.51 -8.59 0.35 6.48
Eastman Kodak Consumer Disc. -0.043 1.74 12.76 -14.13 -0.14 6.42
FedEx Corp. Industrials 0.068 1.79 12.58 -9.67 0.39 2.93
Coca Cola Co. Consumer Stap. 0.067 1.38 8.92 -11.08 0.06 3.79
PepsiCo Inc. Consumer Stap. 0.127 1.44 12.14 -13.78 -0.11 5.97
Procter & Gamble Consumer Stap. 0.100 1.33 10.50 -9.05 0.00 5.01
Wal-Mart Consumer Stap. 0.008 1.64 14.75 -8.71 0.27 4.35
Wyeth Health Care 0.027 1.65 12.32 -15.42 -0.31 6.67

Note. Statistics based on the full sample (estimation plus forecast) of 5229 observations

The sample period we consider is characterized by dramatic changes in volatility dynamics.

To investigate the impact of this on the MCS results, the forecasting sample has been divided

into three sub-samples. The first sub-sample (1050 obs.) identifies a period of widespread

turbulence on the markets. Starting in January, 1999, and ending in March 2003, it includes

the peak of the Dot-com boom (until March 2000), the burst and the aftermath of the bubble

burst. Peaks in the volatility over this period correspond to the burst of the speculative

bubble (March, 2000) and the attack to the twin towers (September, 2001). Towards the

end of the period, the turmoil started with the bankruptcy of WorldCom (July, 2002) and

ended in October, 2002, with a record low of the Dow Jones Industrial and Nasdaq (5- and

6-years low respectively). The second sub-sample (1080 obs.), from April 2003 to July, 2007,

corresponds to a period of market stability. The third sub-sample (356 obs.) corresponds

to the recent financial crisis. The beginning of the sample, August, 2007, coincides with the

fall of Northern Rock when it became apparent that the financial turmoil, started with the

subprime crisis in the US, had spread beyond US’s borders. It is also the period when the

crisis hits its peak in September and October 2008. To visualize the difference among the

three sub periods, Figure 1 shows the realized variance of an equally weighted portfolio made

of the 10 assets used in the application. It is clear from this figure that the volatility dynamics

as well as its scale varies widely between periods.
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(c) 2007-2008 financial crisis (07/08/01 - 08/12/26) - 356 Obs.

Figure 1: Daily realized volatility (computed from 5-min returns) of the 10 asset equally
weighted portfolio

4 Multiple comparison based on conditional covariance fore-

casts

We describe the MCS results based on the conditional variance forecasts for four different fore-

casting samples described in the previous section, i.e. the full sample, the dot-com speculative

bubble burst and aftermath, calm markets and the 2007-2008 financial crisis.

4.1 Full sample

The MCS results for the full forecast sample (2486 observations) are reported in Table 3 for

the Euclidean (LE), Stein (LS) and L3 loss functions. To save space, results for the Frobenius
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loss function (LF ) are not reported. Because of its similarity with LE , results based on LF are

very similar in terms of ordering and MCS. However, in general we remark that the LE MCS

always includes the MCS obtained under the LF loss function. Following Hansen, Lunde, and

Nason (2003), we set the confidence level for the MCS to α = 0.25. The number of bootstrap

samples used to obtain the distribution under the null is set to 10, 000. The values reported

for LE are the average loss per element of vech(Σt − Ht), i.e. the total loss is divided by

N(N + 1)/2 and N2 respectively. For LS , where the distance is measured in relative terms,

the total loss is reported.

The MCS includes 39 models for LE and is largely dominated by orthogonal and DECO

models. We remark the following points with respect to the composition of the MCS. First,

the family of orthogonal models exhibit the best sample performances. The flexibility of the

orthogonal GARCH model seems therefore able to adapt to a sample that alternates periods

of calm with periods of extremely high instability. The MCS also includes most specifica-

tions from the DECO family. Furthermore, the results suggest the rejection of the hypothesis

of constant conditional correlation. Second, although the difference is not statistically sig-

nificant, models allowing for asymmetry/leverage in the conditional variance systematically

perform better than symmetric models with Gjr specifications showing the best sample per-

formances. The same consideration holds with respect to longer versus shorter lags, with

longer lag models showing in general better sample performances. Third, the MCS includes

some specifications that allow for long memory and integrated conditional variances. This is

the case for the DECO, DCCA and DCCE with hyperbolic GARCH conditional variances,

DECO, DCCA and DCCT with fractionally integrated GARCH conditional variances, DECO

with RiskMetrics conditional variances and the multivariate RiskMetrics model. Furthermore,

if we focus only on the ranking based on sample performances, the specifications allowing for

fractional integration or hyperbolic decay of shocks in the conditional variances exhibit the

best sample performances within each family of models.

We next turn to the MCS under the two asymmetric loss functions for which we find

substantially different results compared to LE . Under LS, the MCS includes 10 models, all

belonging to the DCC family. Interestingly, the selected models focus on the long memory

properties of the conditional variances rather than leverage, asymmetry or even time varying

correlation. In fact, the MCS includes models from the CCC, DCCE, DCCA and DCCT
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Table 3: MCS on full sample (99/01/04 - 08/12/26)
Euclidean distance (39 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

DCCA
Egarch (1,2) 48 3.880 1.165 0.27 1.302 0.999

Figarch (1,1) 20 3.673 0.521 0.67 1.076 0.996

Hgarch (1,1) 25 3.720 0.803 0.45 1.052 0.996

DCCT Figarch (1,1) 38 3.823 1.089 0.30 1.159 0.994

DCCE
Egarch (1,2) 53 3.901 1.207 0.25 1.325 0.998

Figarch (1,1) 18 3.661 0.406 0.71 1.075 0.996

Hgarch (1,1) 24 3.719 0.766 0.47 1.057 0.996

DECO

Aparch (1,1) 27 3.735 0.848 0.42 1.111 0.998

Egarch (0,1) 29 3.742 0.825 0.43 1.172 0.999
(0,2) 30 3.747 0.877 0.40 1.163 0.999
(1,2) 33 3.762 0.936 0.37 1.176 0.999

Figarch (1,1) 2 3.478 0.004 0.94 0.906 0.997

Garch (1,1) 34 3.768 0.906 0.38 1.171 0.998
(1,2) 31 3.750 0.965 0.35 1.137 0.999
(2,1) 28 3.737 0.993 0.34 1.125 0.999
(2,2) 32 3.759 1.061 0.31 1.159 0.999

Gjr (1,1) 22 3.692 0.603 0.60 1.090 0.998
(1,2) 21 3.676 0.706 0.50 1.046 0.999
(2,1) 14 3.635 0.521 0.67 0.991 0.999
(2,2) 19 3.667 0.668 0.54 1.036 0.999

Hgarch (1,1) 5 3.535 0.103 0.89 0.886 0.997

Igarch (1,1) 35 3.783 1.018 0.33 1.061 0.993

Rm(1,1) 23 3.699 0.545 0.64 1.117 0.998

Orth.

Aparch (1,1) 7 3.575 0.197 0.89 0.921 0.996

Egarch (0,1) 17 3.660 0.628 0.58 1.019 0.998
(0,2) 13 3.623 0.567 0.64 0.945 0.999
(1,1) 15 3.647 0.735 0.50 0.933 0.998
(1,2) 12 3.593 0.517 0.67 0.872 0.997
(2,1) 26 3.726 1.037 0.32 1.066 0.999
(2,2) 6 3.539 0.175 0.89 0.793 0.996

Garch (1,1) 16 3.656 0.724 0.50 0.964 0.998
(1,2) 11 3.589 0.594 0.67 0.870 0.998
(2,1) 9 3.586 0.549 0.67 0.885 0.999
(2,2) 8 3.580 0.466 0.69 0.865 0.998

Gjr (1,1) 10 3.587 0.412 0.73 0.817 0.997
(1,2) 3 3.507 0.169 0.89 0.713 0.996
(2,1) 1 3.468 - 1.00 0.672 0.995
(2,2) 4 3.509 0.116 0.89 0.730 0.996

RM (1,1) 36 3.810 1.127 0.28 0.967 0.993

Stein distance (10 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

CCC
Figarch (1,1) 7 3.528 0.346 0.57 0.730 0.932

Garch (2,1) 10 3.548 1.302 0.25 1.211 0.988

Igarch (1,1) 3 3.501 0.546 0.69 1.119 0.985

DCCA Igarch (1,1) 4 3.516 0.680 0.57 1.254 0.986

DCCT
Figarch (1,1) 5 3.518 0.232 0.69 0.743 0.931

Garch (2,1) 9 3.541 0.880 0.36 1.223 0.989

Igarch (1,1) 1 3.496 - 1.00 1.130 0.987

DCCE
Figarch (1,1) 6 3.525 0.381 0.57 0.789 0.929

Garch (2,1) 8 3.535 0.561 0.49 1.255 0.989

Igarch (1,1) 2 3.500 0.235 0.69 1.228 0.986

L3 loss function (20 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

DECO

Figarch (1,1) 15 102.3 0.844 0.41 1.092 0.999

Gjr (1,1) 23 105.0 1.063 0.29 1.156 1.000

Hgarch (1,1) 17 102.5 0.883 0.39 1.082 0.999

Igarch (1,1) 24 105.1 0.969 0.33 1.142 0.999

Orth.

Aparch (1,1) 10 98.83 0.689 0.50 1.023 0.999

Egarch (0,1) 14 101.3 0.864 0.43 1.083 1.000
(0,2) 11 99.98 1.001 0.43 1.033 1.000
(1,1) 12 100.4 0.848 0.43 1.017 1.000
(1,2) 6 98.45 0.988 0.43 0.977 0.999
(2,1) 16 102.4 0.834 0.43 1.104 1.000
(2,2) 4 95.68 0.609 0.53 0.898 0.999

Arch (1) 18 103.8 0.923 0.43 0.914 0.990

Garch (1,1) 13 101.1 0.851 0.43 1.053 1.000
(1,2) 9 98.60 1.055 0.43 0.984 1.000
(2,1) 7 98.59 0.928 0.43 0.997 1.000
(2,2) 8 98.60 1.099 0.43 0.980 1.000

Gjr (1,1) 5 97.69 0.887 0.43 0.954 0.999
(1,2) 2 94.06 1.032 0.53 0.852 1.000
(2,1) 1 91.98 - 1.00 0.801 1.000
(2,2) 3 94.54 0.782 0.53 0.872 0.999

Note. Rnk: model i’s ranking position based on average sample performances (out of 125 models); L̄i: model i’s average
sample performance; TD : deviation statistic; p-val: MCS p-value; V R : V (L̄i)/V (L̄) ratio between the variance of model
i’s loss and the average loss (across models); Corr: Corr(L̄i, L̄) correlation between model i’s loss and the average loss
(across models).

families all with fractionally integrated and integrated GARCH or high order GARCH models

for the conditional variances, with integrated models showing the best sample performances.

When the evaluation is based on the L3 loss function, the MCS contains 20 models. The

MCS is in fact dominated by the orthogonal family of MGARCH, which scores the best

sample performances. In line with the previous results, it includes also other specifications,

all of which in the DECO family, which allow for long memory and integrated conditional

variances.

It is worth noting that the results in terms of MCS are specific to the sample period (and

the set of candidate models). As described in Section 3, the sample considered is characterized

17



by dramatic changes in volatility dynamics, favoring long memory type models. Furthermore,

relatively large average sample performances though close across models indicate that either

all models under comparison fail in predicting accurately the conditional variance, i.e. the

MCS is overall uninformative, or that this feature refers only to particular periods of time.

In the next sections, MCS results are presented for three sub-samples. The aim is to verify

to what extent different levels of market instability affect the forecasting performance of

the models and the ability of the MCS procedure to separate between superior and inferior

models.

4.2 Dot-com speculative bubble burst and aftermath

The MCS results are reported in Table 4 for the Euclidean (LE), Stein (LS) and L3 loss func-

tions. The MCS under LE contains 38 models. As expected, there are differences with the

MCS obtained for the full sample. First, modelling directly the conditional correlation and

accounting for the leverage effect in the conditional variances becomes more important. To be

precise, DCC type models with Egarch conditional variances dominate the MCS and show the

smallest losses. This result is also confirmed by the fact that the MCS also contains two CCC

specifications, both with Egarch dynamics for the conditional variances, which suggests that

adequately modelling asymmetry in the conditional variances can in some cases compensate

the restrictive assumption of no dynamics in the conditional correlation. Furthermore, the

exclusion of other specifications that also specifically account for asymmetry/leverage in the

variance, i.e. DCC type models with Aparch and Gjr dynamics for the conditional variances,

suggests that the choice of the specific parametrization becomes important. Finally, as ex-

pected the relative importance of accounting for a (fractionally) integrated variance process,

although still present, becomes less noticeable. In this case, we find only 4 specifications

(out of the 38 models in the MCS) which allow for long memory and integrated conditional

variances (against 10 out of 39 for the full sample).

The Stein loss function delivers a small MCS. The MCS consists of 2 models, namely

the DCCE and the DCCT with integrated GARCH conditional variances. Although the

MCS does not overlap with the one found under the symmetric loss function it is clear that

when overweighting underpredictions the focus centers on the long memory properties of the

conditional variance process. Table 4 also reports the best 10 models ordered in terms of
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Table 4: MCS on first sub-sample. Dot-com bubble burst (99/01/04 - 03/03/31)
Euclidean distance (38 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

CCC
Egarch (0,1) 27 2.821 0.985 0.37 1.031 0.999

(1,1) 41 2.844 1.170 0.29 1.150 0.996

DCCA

Egarch (0,1) 6 2.776 0.335 0.83 0.988 0.999
(0,2) 18 2.801 0.588 0.65 1.030 0.999
(1,1) 20 2.806 0.510 0.68 1.117 0.997
(1,2) 17 2.799 0.545 0.66 1.012 0.999

Figarch (1,1) 22 2.810 0.372 0.79 0.820 0.989

DCCT

Egarch (0,1) 23 2.811 0.658 0.57 1.026 0.999
(1,1) 31 2.834 0.779 0.49 1.146 0.996

Figarch (1,1) 44 2.849 0.839 0.45 0.855 0.989

DCCE

Egarch (0,1) 4 2.769 0.226 0.84 1.011 0.999
(0,2) 13 2.794 0.404 0.77 1.052 0.999
(1,1) 19 2.804 0.430 0.75 1.127 0.997
(1,2) 10 2.783 0.331 0.83 1.019 0.999
(2,2) 33 2.837 1.028 0.35 1.118 0.997

Figarch (1,1) 14 2.796 0.343 0.83 0.832 0.990

Gjr (2,1) 39 2.841 1.242 0.26 0.967 0.994

DECO

Egarch (0,1) 1 2.751 - 1.00 0.948 0.999
(0,2) 7 2.776 0.290 0.83 0.991 0.999
(1,1) 5 2.775 0.281 0.84 1.066 0.998
(1,2) 2 2.760 0.322 0.88 0.961 0.999
(2,1) 30 2.832 0.721 0.53 1.136 0.996
(2,2) 21 2.807 0.605 0.62 1.055 0.998

Figarch (1,1) 26 2.818 0.470 0.71 0.779 0.985

Gjr (1,1) 43 2.848 1.125 0.30 0.875 0.993
(2,1) 37 2.838 0.934 0.40 0.900 0.994

Orth.

Aparch (1,1) 3 2.764 0.089 0.88 0.976 0.992

Egarch (0,1) 12 2.789 0.303 0.83 1.047 0.994
(0,2) 16 2.797 0.364 0.79 1.083 0.996
(1,1) 29 2.831 0.847 0.45 1.133 0.997
(1,2) 25 2.817 0.604 0.62 1.099 0.996
(2,2) 34 2.837 0.983 0.37 1.135 0.996

Garch (2,1) 35 2.837 0.723 0.53 1.052 0.991
(2,2) 24 2.815 0.567 0.65 1.044 0.993

Gjr (1,1) 8 2.779 0.242 0.83 0.926 0.991
(1,2) 9 2.780 0.256 0.83 0.933 0.992
(2,1) 15 2.797 0.392 0.77 0.995 0.995
(2,2) 11 2.785 0.280 0.83 0.991 0.994

Stein distance (2 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

DCCE Igarch (1,1) 1 3.268 - 1.00 0.999 0.999

DCCT Igarch (1,1) 2 3.274 1.212 0.27 1.003 1.000

CCC Igarch (1,1) 3 3.283 - - -
DCCA Igarch (1,1) 4 3.293 - - -
DCCE Figarch (1,1) 5 3.439 - - -
DCCT Figarch (1,1) 6 3.444 - - -
DCCE Hgarch (1,1) 7 3.446 - - -
DCCT Hgarch (1,1) 8 3.454 - - -
DCCE Rm (1,1) 9 3.455 - - -
DCCE Egarch (1,2) 10 3.456 - - -

L3 loss function (11 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

Orth.

Aparch (1,1) 1 16.394 - 1.00 0.918 0.999

Egarch (0,1) 2 16.568 0.887 0.47 0.983 0.999
(0,2) 3 16.664 0.688 0.47 1.031 1.000
(1,1) 9 17.035 1.192 0.27 1.117 0.999
(1,2) 7 16.918 0.996 0.33 1.082 0.999
(2,2) 11 17.086 1.353 0.27 1.121 0.998

Garch (2,2) 13 17.235 1.235 0.27 1.007 0.991

Gjr (1,1) 4 16.733 1.255 0.33 0.876 0.998
(1,2) 5 16.737 2.285 0.33 0.891 0.999
(2,1) 8 17.012 1.394 0.27 0.998 0.998
(2,2) 6 16.797 1.288 0.33 0.985 0.998

Notes. See Table 3.

sample performances. Even though statistically inferior, it is worth noting that the top of the

classification is indoubitably dominated by models that account for this feature. On the other

hand, the MCS under the L3 loss function includes 8 models, all from the orthogonal GARCH

family. Most models account for asymmetry in the variance processes of the components.

4.3 Calm markets

Results for the MCS for the second sub-sample are reported in Tables 5 and 6 for the Euclidean

(LE) and Stein (LS), and the L3 loss functions respectively. With the exception of the Stein

loss function, the MCS obtained for this sample is the largest. This is not surprising because

this period is characterized by relatively small and slow moving volatility. It is therefore

reasonable to expect most of the MGARCH models under comparison are adequate to fit the
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dynamics of the conditional variance. In fact, if we look at the average sample performances

over this period, they get close to zero showing a dramatic improvement over the evaluation

based on full sample.

The MCS under LE contains 74 models, about half of the models considered, and includes

specifications from all the families of MGARCH models. As a general result, we can say that

the over this period the data does not show evidence of dynamics in the correlation process or

asymmetry/leverage or long memory in the conditional variance. However, when we look at

the composition of the MCS, we can draw the following three conclusions. First, DECO type

models are excluded from the set of superior models with the exception of DECO-Aparch

and DECO-Rm. However, looking at the decomposition of the variance (columns 7 and 8)

together with their ranking position, in both cases the information content of these models

is doubtful. Both models show a relatively small correlation with the average performance

of the other models. The same remark holds for the DCC type specifications with Risk-

Metrics conditional variances. Second, a similar conclusion can be drawn for the orthogonal

specifications. Although only Orth.-Gjr(p, q) models are statistically inferior, the remaining

orthogonal specifications show the highest relative variance and smallest correlation with the

average loss. Hence, it is possible that the orthogonal models end up in the MCS because

the data does not contain sufficient information to infer that these models are inferior within

the MCS. Third, the same remark holds for CCC/DCC type models with Riskmetrics and

Gjr(p, q) (p = 1 and q = 1, 2) conditional variances. In particular, CCC/DCC-Gjr mod-

els show the poorest sample performances within the MCS, the largest relative variance (in

average 25% larger than V ar(L̄)) and the smallest correlation with L̄.

We consider now the two asymmetric loss functions. Under LS , the MCS contains 12

models. In line with previous results, the MCS shows no evidence of particular features in

the variance process as dynamics in the correlation process or asymmetry/leverage or long

memory in the conditional variance. The set of superior models is dominated by specifications

within the conditional correlations family, namely CCC, DCCT and DCCE, with GARCH

conditional variances, therefore the hypothesis of constant conditional correlation is difficult

to reject. The MCS also includes two asymmetric specifications, i.e. DCCE-Gjr(1,1) and

DCCT-Gjr(1,1), although both characterized by weaker sample performances within the MCS.

Finally, under L3, we obtain results similar to LE both for the size and composition of the
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Table 5: MCS on second sub-sample. Calm period (03/04/01 - 07/07/31)
Euclidean distance (74 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

CCC

Aparch (1,1) 2 0.328 6.224 0.73 0.884 0.969

Egarch (0,1) 9 0.345 0.695 0.73 0.975 0.997
(0,2) 33 0.348 0.456 0.73 1.042 0.992
(1,1) 18 0.346 0.895 0.73 1.098 0.982
(1,2) 28 0.347 0.771 0.73 1.061 0.980
(2,1) 7 0.344 0.967 0.73 1.082 0.987

Figarch (1,1) 25 0.347 0.447 0.73 0.992 0.996

Garch (1,1) 50 0.350 0.467 0.67 1.009 0.997
(1,2) 46 0.350 0.446 0.68 1.021 0.997
(2,1) 26 0.347 0.439 0.73 1.014 0.997
(2,2) 11 0.345 0.612 0.73 0.982 0.998

Gjr (1,1) 91 0.374 0.923 0.37 1.237 0.957
(1,2) 85 0.372 0.619 0.54 1.260 0.961

Hgarch (1,1) 55 0.351 0.454 0.68 0.940 0.995

Rm(1,1) 65 0.356 0.507 0.63 0.990 0.967

DCCA

Aparch (1,1) 4 0.329 3.590 0.73 0.884 0.970

Egarch (0,1) 20 0.346 0.497 0.73 0.977 0.997
(0,2) 40 0.349 0.422 0.71 1.044 0.991
(1,1) 32 0.348 0.626 0.73 1.101 0.981
(1,2) 38 0.349 0.517 0.73 1.064 0.980
(2,1) 16 0.346 0.869 0.73 1.084 0.986

Figarch (1,1) 30 0.347 0.445 0.73 0.992 0.996

Garch (1,1) 56 0.351 0.497 0.64 1.010 0.997
(1,2) 53 0.351 0.488 0.65 1.021 0.997
(2,1) 35 0.348 0.437 0.68 1.015 0.997
(2,2) 19 0.346 0.504 0.73 0.983 0.998

Gjr (1,1) 93 0.374 1.134 0.27 1.238 0.957
(1,2) 89 0.373 0.830 0.41 1.262 0.960

Hgarch (1,1) 49 0.350 0.439 0.69 0.942 0.995

Rm(1,1) 64 0.356 0.482 0.65 0.989 0.967

DCCT

Aparch (1,1) 1 0.328 - 1.00 0.884 0.970

Egarch (0,1) 8 0.345 0.710 0.73 0.975 0.997
(0,2) 31 0.348 0.471 0.73 1.042 0.991
(1,1) 17 0.346 1.031 0.73 1.098 0.982
(1,2) 29 0.347 0.723 0.73 1.061 0.980
(2,1) 6 0.344 0.959 0.73 1.082 0.987

Figarch (1,1) 22 0.347 0.490 0.73 0.991 0.997

Garch (1,1) 48 0.350 0.442 0.67 1.009 0.997
(1,2) 39 0.349 0.439 0.67 1.021 0.997
(2,1) 23 0.347 0.452 0.73 1.013 0.997
(2,2) 10 0.345 0.678 0.73 0.982 0.998

Gjr (1,1) 88 0.373 0.749 0.46 1.237 0.957
(1,2) 82 0.372 0.570 0.57 1.261 0.960

Hgarch (1,1) 43 0.350 0.440 0.67 0.940 0.995

Rm(1,1) 5 0.340 1.288 0.73 0.957 0.971

DCCE

Aparch (1,1) 3 0.329 3.631 0.73 0.884 0.970

Egarch (0,1) 15 0.346 0.598 0.73 0.977 0.997
(0,2) 36 0.349 0.427 0.73 1.045 0.991
(1,1) 24 0.347 0.813 0.73 1.101 0.981
(1,2) 34 0.348 0.546 0.73 1.064 0.980
(2,1) 12 0.345 0.943 0.73 1.084 0.986

Figarch (1,1) 21 0.347 0.509 0.73 0.992 0.996

Garch (1,1) 51 0.350 0.472 0.67 1.010 0.997
(1,2) 47 0.350 0.450 0.68 1.022 0.997
(2,1) 27 0.347 0.423 0.73 1.013 0.997
(2,2) 13 0.345 0.587 0.73 0.984 0.998

Gjr (1,1) 92 0.374 1.023 0.32 1.239 0.957
(1,2) 86 0.373 0.678 0.50 1.262 0.960

Hgarch (1,1) 42 0.349 0.434 0.67 0.942 0.995

Rm(1,1) 63 0.355 0.461 0.67 0.989 0.967

DECO
Aparch (1,1) 14 0.346 0.956 0.73 0.902 0.970

Rm(1,1) 45 0.350 0.459 0.73 0.974 0.973

Orth.

Aparch (1,1) 37 0.349 0.839 0.73 1.088 0.960

Egarch (0,1) 44 0.350 0.611 0.73 1.095 0.960
(0,2) 54 0.351 0.499 0.73 1.091 0.960
(1,1) 57 0.351 0.450 0.73 1.097 0.960
(1,2) 41 0.349 0.712 0.73 1.096 0.960
(2,1) 60 0.352 0.432 0.71 1.087 0.961
(2,2) 59 0.352 0.430 0.69 1.092 0.963

Garch (1,1) 58 0.352 0.425 0.72 1.087 0.961
(1,2) 61 0.352 0.441 0.67 1.090 0.960
(2,1) 52 0.351 0.550 0.73 1.088 0.961
(2,2) 62 0.353 0.443 0.67 1.086 0.962

SBEKK (1,1) 67 0.363 0.534 0.60 0.955 0.952

L3 loss function (74 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

CCC

Aparch (1,1) 2 0.631 1.090 0.49 0.792 0.910

Egarch (0,1) 22 0.718 3.320 0.49 1.005 0.997
(0,2) 52 0.756 1.586 0.49 1.391 0.961
(1,1) 63 0.784 0.882 0.49 1.777 0.918
(1,2) 61 0.783 1.015 0.49 1.745 0.917
(2,1) 57 0.772 1.327 0.49 1.615 0.936

Figarch (1,1) 31 0.731 0.731 0.49 1.025 0.998

Garch (1,1) 34 0.732 0.725 0.48 0.998 0.997
(1,2) 40 0.739 0.752 0.44 1.050 0.998
(2,1) 42 0.740 0.731 0.46 1.081 0.996
(2,2) 23 0.718 0.873 0.49 0.980 0.999

Gjr (1,2) 95 0.876 0.947 0.34 2.098 0.897

Hgarch (1,1) 49 0.747 0.825 0.39 1.043 0.996

Igarch (1,1) 93 0.874 0.852 0.38 1.352 0.791

Rm(1,1) 15 0.674 4.335 0.49 0.823 0.912

DCCA

Aparch (1,1) 4 0.638 6.954 0.49 0.790 0.910

Egarch (0,1) 29 0.727 0.840 0.49 1.009 0.997
(0,2) 55 0.767 0.723 0.49 1.407 0.958
(1,1) 71 0.794 0.748 0.49 1.801 0.915
(1,2) 70 0.794 0.730 0.49 1.770 0.913
(2,1) 60 0.781 0.787 0.49 1.635 0.934

Figarch (1,1) 37 0.737 0.741 0.45 1.031 0.998

Garch (1,1) 38 0.738 0.767 0.43 1.000 0.997
(1,2) 47 0.745 0.859 0.38 1.054 0.998
(2,1) 50 0.748 0.811 0.40 1.086 0.996
(2,2) 28 0.727 0.736 0.49 0.983 0.999

Hgarch (1,1) 51 0.749 0.840 0.38 1.051 0.995

Igarch (1,2) 97 0.882 1.097 0.26 1.345 0.792

Rm(1,1) 18 0.677 3.386 0.49 0.818 0.914

DCCT

Aparch (1,1) 1 0.631 - 1.00 0.791 0.910

Egarch (0,1) 24 0.718 4.498 0.49 1.007 0.997
(0,2) 53 0.757 1.150 0.49 1.398 0.960
(1,1) 64 0.784 0.934 0.49 1.785 0.916
(1,2) 62 0.784 0.880 0.49 1.754 0.915
(2,1) 58 0.773 2.041 0.49 1.622 0.935

Figarch (1,1) 30 0.731 0.749 0.49 1.027 0.998

Garch (1,1) 32 0.732 0.733 0.49 0.999 0.997
(1,2) 39 0.738 0.745 0.44 1.052 0.998
(2,1) 41 0.740 0.732 0.47 1.083 0.996
(2,2) 25 0.719 0.872 0.49 0.981 0.999

Gjr (1,2) 94 0.876 0.894 0.36 2.107 0.897

Hgarch (1,1) 45 0.744 0.775 0.42 1.047 0.996

Igarch (1,1) 92 0.873 0.844 0.38 1.349 0.791

Rm(1,1) 5 0.653 7.324 0.49 0.814 0.914

DCCE

Aparch (1,1) 3 0.636 6.797 0.49 0.790 0.910

Egarch (0,1) 27 0.724 0.877 0.49 1.010 0.997
(0,2) 54 0.765 0.769 0.49 1.408 0.958
(1,1) 68 0.792 0.814 0.49 1.801 0.915
(1,2) 67 0.791 0.810 0.49 1.771 0.913
(2,1) 59 0.779 0.843 0.49 1.635 0.934

Figarch (1,1) 35 0.733 0.728 0.47 1.029 0.998

Garch (1,1) 36 0.736 0.736 0.46 1.000 0.997
(1,2) 44 0.743 0.799 0.40 1.054 0.998
(2,1) 43 0.743 0.759 0.43 1.074 0.996
(2,2) 26 0.724 0.786 0.49 0.983 0.999

Gjr (1,2) 96 0.881 1.003 0.31 2.119 0.895

Hgarch (1,1) 48 0.746 0.786 0.42 1.051 0.996

Rm(1,1) 12 0.671 4.628 0.49 0.819 0.913

DECO
Aparch (1,1) 21 0.694 1.725 0.49 0.815 0.910

Rm(1,1) 20 0.686 2.173 0.49 0.827 0.918

Orth.

Aparch (1,1) 6 0.661 6.560 0.49 0.874 0.900

Egarch (0,1) 8 0.666 5.965 0.49 0.880 0.899
(0,2) 9 0.666 5.685 0.49 0.867 0.900
(1,1) 16 0.676 4.113 0.49 0.887 0.899
(1,2) 14 0.673 4.443 0.49 0.885 0.899
(2,1) 17 0.676 3.965 0.49 0.879 0.899
(2,2) 19 0.679 3.378 0.49 0.883 0.903

Garch (1,1) 7 0.665 5.720 0.49 0.877 0.900
(1,2) 11 0.670 4.466 0.49 0.880 0.898
(2,1) 10 0.668 5.554 0.49 0.881 0.899
(2,2) 13 0.672 4.258 0.49 0.882 0.900

DBEKK (1,1) 46 0.745 0.841 0.49 0.820 0.898
SBEKK (1,1) 33 0.732 0.93 0.486 0.837 0.891
RM (1,1) 56 0.772 0.73 0.466 0.879 0.913

Notes. See Table 3.
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MCS. However, although over this sample the type of asymmetry accounted for by L3 is

not statistically relevant, i.e., does not impact on the composition of the MCS, we observe

changes in the ordering of the models. For example, the Orthogonal type models included in

both MCSs, while ranking between 37th and 62nd under LE , figure between the 6th and the

19th position of the overall ranking under L3. Given the asymmetry of L3, we can deduce

that Orthogonal models tend to underestimate the conditional variance. The only differences

in terms of MCS with the outcome obtained under the symmetric loss functions are: i) the

inclusion of DCC type specifications with integrated conditional variances, which, however,

appear to be quite uninformative since they show very poor sample performances (within the

MCS) and show among the largest relative variances and the smallest correlations with the

average loss; ii) the inclusion of all BEKK type models.

Table 6: MCS-second sub-sample. Calm period (03/04/01 - 07/07/31) (Cont.)
Stein distance (12 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

CCC
Garch (1,1) 5 3.180 0.285 0.72 0.948 0.999

(1,2) 10 3.193 1.253 0.26 1.168 0.996
(2,1) 3 3.175 0.476 0.74 1.033 0.998

DCCT

Garch (1,1) 6 3.183 0.413 0.61 0.935 0.999
(1,2) 8 3.191 0.683 0.47 1.154 0.996
(2,1) 2 3.174 0.265 0.74 1.022 0.998
(2,2) 7 3.189 1.265 0.29 1.027 0.998

Gjr (1,1) 16 3.203 1.171 0.26 0.806 0.982

DCCE

Garch (1,1) 4 3.179 0.307 0.74 0.967 0.998
(1,2) 12 3.194 1.101 0.30 1.198 0.996
(2,1) 1 3.171 - 1.00 1.065 0.998

Gjr (1,1) 15 3.201 1.084 0.29 0.834 0.982

Notes. See Table 3.

4.4 2007-08 financial crisis

Results for the MCS for the last sub-sample are reported in Table 7 for the Euclidean (LE),

Stein (LS) and L3 loss functions. The MCS under LE contains 39 models which is in line with

the results obtained for full sample. The MCS is dominated by specifications in the DECO and

the orthogonal GARCH families, while other DCC type specifications are selected only when

they account for long memory and integrated conditional variances. Indeed, with respect to

the full sample (and in sharp contrast with the Dot-com speculative bubble burst period)

modelling long memory and integrated conditional variances becomes more important. On

the other hand, although we find in the MCS models that account for asymmetry/leverage in

the conditional variance of the returns, models with exponential GARCH dynamics for the
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Table 7: MCS-third sub-sample: 2007-2008 financial crisis (07/08/01 - 08/12/26)
Euclidean distance (39 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

CCC Hgarch (1,1) 40 17.172 1.034 0.32 1.171 0.995

DCCA Figarch (1,1) 28 16.345 0.880 0.39 1.099 0.997

Hgarch (1,1) 21 16.162 0.678 0.50 1.072 0.997

Rm(1,1) 35 16.954 0.892 0.38 1.264 0.998

DCCT Figarch (1,1) 43 17.283 1.207 0.25 1.184 0.995

Hgarch (1,1) 38 17.086 0.992 0.33 1.154 0.995

DCCE
Figarch (1,1) 25 16.305 0.826 0.42 1.097 0.997

Hgarch (1,1) 22 16.208 0.797 0.44 1.076 0.997

Rm(1,1) 44 17.376 1.157 0.27 1.307 0.999

DECO

Aparch (1,1) 27 16.317 0.886 0.39 1.122 0.997

Figarch (1,1) 5 14.919 0.063 0.90 0.922 0.998

Garch (1,1) 32 16.661 0.884 0.39 1.187 0.997
(1,2) 29 16.492 0.887 0.39 1.153 0.998
(2,1) 31 16.583 0.938 0.36 1.141 0.999
(2,2) 33 16.713 0.962 0.34 1.175 0.999

Gjr (1,1) 23 16.237 0.828 0.42 1.104 0.998
(1,2) 16 16.043 0.787 0.44 1.058 0.999
(2,1) 14 15.879 0.780 0.44 1.001 0.999
(2,2) 17 16.048 0.892 0.39 1.048 0.999

Hgarch (1,1) 2 14.816 0.061 0.90 0.899 0.997

Igarch (1,1) 24 16.275 0.808 0.44 1.071 0.992

Rm(1,1) 19 16.076 0.444 0.68 1.132 0.998

Orth.

Aparch (1,1) 13 15.791 0.596 0.58 0.918 0.996

Egarch (0,1) 26 16.308 0.914 0.38 1.020 0.998
(0,2) 15 16.026 0.890 0.39 0.942 0.999
(1,1) 20 16.088 0.881 0.39 0.928 0.998
(1,2) 12 15.757 0.891 0.44 0.868 0.998
(2,1) 30 16.562 1.068 0.30 1.067 0.999
(2,2) 6 15.316 0.282 0.79 0.784 0.996

Arch (2) 71 18.210 1.128 0.28 1.101 0.971

Garch (1,1) 18 16.052 0.869 0.39 0.963 0.997
(1,2) 9 15.618 0.827 0.44 0.867 0.998
(2,1) 10 15.644 0.814 0.44 0.884 0.999
(2,2) 11 15.666 0.874 0.44 0.861 0.998

Gjr (1,1) 7 15.391 0.405 0.71 0.812 0.996
(1,2) 3 14.853 0.120 0.90 0.705 0.997
(2,1) 1 14.577 - 1.00 0.660 0.996
(2,2) 4 14.895 0.070 0.90 0.720 0.997

RM (1,1) 8 15.464 0.153 0.86 0.973 0.992

Stein distance (26 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

CCC

Aparch (1,1) 21 4.773 0.992 0.32 1.098 0.990

Egarch (0,1) 14 4.712 0.579 0.46 0.991 0.986
(0,2) 16 4.716 0.569 0.46 1.006 0.985
(1,2) 10 4.665 0.587 0.48 0.954 0.990

Figarch (1,1) 2 4.531 3.442 0.48 0.781 0.942

Hgarch (1,1) 9 4.663 0.623 0.47 0.784 0.931

DCCA

Aparch (1,1) 30 4.843 1.099 0.29 1.417 0.991

Egarch (0,1) 20 4.766 0.626 0.44 1.286 0.987
(0,2) 23 4.787 0.678 0.42 1.313 0.984
(1,2) 17 4.722 0.586 0.46 1.229 0.991

Figarch (1,1) 6 4.585 1.143 0.48 0.959 0.939

Hgarch (1,1) 8 4.631 0.684 0.48 0.861 0.930

DCCT

Aparch (1,1) 19 4.758 0.814 0.37 1.145 0.992

Egarch (0,1) 11 4.669 0.550 0.48 1.031 0.989
(0,2) 13 4.678 0.534 0.48 1.048 0.987
(1,2) 7 4.623 0.636 0.48 0.995 0.993

Figarch (1,1) 1 4.511 - 1.00 0.816 0.940

Gjr (1,2) 24 4.802 1.192 0.26 1.214 0.990

Hgarch (1,1) 4 4.566 4.693 0.48 0.737 0.931

DCCE

Aparch (1,1) 22 4.787 0.743 0.40 1.337 0.991

Egarch (0,1) 15 4.714 0.578 0.47 1.203 0.987
(0,2) 18 4.727 0.562 0.47 1.228 0.984
(1,2) 12 4.671 0.635 0.48 1.151 0.991

Figarch (1,1) 3 4.543 2.103 0.48 0.927 0.939

Garch (2,1) 28 4.834 0.903 0.34 1.306 0.981

Hgarch (1,1) 5 4.578 0.897 0.48 0.824 0.934

L3 loss function (26 models)

MCS(α = 25%) Rnk L̄i TD p-val VR Corr

DECO

Aparch (1,1) 26 682.5 1.116 0.28 1.128 1.000

Figarch (1,1) 17 660.0 0.769 0.48 1.062 1.000

Garch (1,1) 29 687.4 1.189 0.26 1.147 1.000

Gjr (1,1) 24 680.2 1.076 0.30 1.121 1.000
(1,2) 22 677.6 1.152 0.27 1.105 1.000

Hgarch (1,1) 15 656.9 0.820 0.48 1.052 1.000

Igarch (1,1) 21 675.9 0.896 0.38 1.108 0.999

Rm(1,1) 25 681.9 1.025 0.32 1.136 1.000

Orth.

Aparch (1,1) 10 641.6 0.795 0.48 0.991 0.999

Egarch (0,1) 16 658.6 0.782 0.47 1.050 1.000
(0,2) 11 648.8 0.787 0.48 1.001 1.000
(1,1) 12 650.5 0.808 0.44 0.986 1.000
(1,2) 8 637.2 1.057 0.48 0.949 0.999
(2,1) 18 664.1 0.841 0.42 1.072 1.000
(2,2) 4 617.4 0.667 0.49 0.871 0.999

Arch (1) 19 665.5 0.962 0.48 0.890 0.989
(2) 27 684.5 0.952 0.35 1.013 0.994

Garch (1,1) 13 652.6 0.797 0.48 1.021 0.999
(1,2) 6 635.9 1.087 0.48 0.955 1.000
(2,1) 7 637.1 0.993 0.48 0.968 1.000
(2,2) 9 637.4 1.146 0.48 0.952 1.000

Gjr (1,1) 5 631.2 0.980 0.48 0.924 0.999
(1,2) 2 605.8 1.224 0.49 0.825 0.999
(2,1) 1 590.6 - 1.00 0.776 0.999
(2,2) 3 609.2 0.858 0.49 0.846 0.999

RM (1,1) 14 654.4 0.886 0.48 1.044 0.998

Notes. See Table 3
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conditional variances are detected as inferior and excluded from the MCS. Note that for the

dot-com bubble period, we find the opposite result.

Under LS the results are also (qualitatively) consistent with the ones obtained for the

full sample, though the MCS gets larger (26 models). The models in the MCS all belong

to the DCC family and account for long-memory in volatility (i.e., CCC, DCCE, DCCA

and DCCT with hyperbolic and fractionally integrated GARCH dynamics for the variances)

and/or leverage effect (note that Egarch models perform better than Aparch models, while Gjr

models are mostly excluded from the MCS). The non rejection of some CCC specifications,

which is surprising in this case, illustrates that adequately modelling the conditional variances

of the returns can compensate the loss in forecasting accuracy induced by the restrictive

assumption of constant conditional correlation.

For the second asymmetric loss function L3 the results are also in line with the full sample.

The MCS contains 26 models and is dominated by orthogonal and DECO specifications with

the former showing the best sample performances. Among the DECO specifications included

in the MCS we find both evidence of long memory and integrated conditional variances and

of leverage effect when modelled with Aparch and Gjr dynamics. As in the MCS under LE ,

we also find two orthogonal Arch specifications, but unlike in the previous case, there is no

clear evidence that either of the two models is inferior within the MCS.

Finally, the average loss over the last sub-sample is much larger than in the first two

periods (irrespectively of the choice of the loss function). We conclude first that in turbulent

periods GARCH models do not seem to be well suited to adequately estimate the conditional

variance. Second, the large losses accumulated over short periods of high instability tend

to drive the MCS results even when long forecasting periods are considered. In fact, there

is a trade off between the forecast sample length (to reduce sampling variability) and the

informativeness of the selection.

4.5 Robustness check to the use of alternative proxies

To verify the robustness of our results to the choice of the volatility proxy, we repeat the

analysis using RCov, see (11), computed using 1 and 15 minute returns and RCovACq=1, see

(13), computed using 1, 5 and 15 minutes returns. The results in terms of MCS are robust

in terms of size and composition to the alternative volatility proxies. In particular, when
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the proxy is based on higher frequency returns, i.e., RCov and RCovACq=1 based on one

minute returns, we generally find smaller MCS. The use of a higher frequency proxy ensures

the elimination of uninformative models. As an example (complete results are available upon

request), if we consider the Euclidean distance (LE), under RCov(1min) (RCovAC(1min)
q=1 )

we find 25 (35) models for the full sample, 26 (33) for the dot-com bubble burst period,

60 (71) for the calm period and 47 (38) for the 2007-2008 financial crisis sub-sample. In

accordance with the literature, the robustness of these results is implied by the consistency

of the loss function. The higher accuracy of the proxy only translates into a lower variability

of the sample evaluation of the models which makes easier to effectively discriminate between

models. Along the same line, and consistently with the results obtained under RCov(5min),

when the evaluation is based on RCovAC(5min)
q=1 and LE we find 40 models for the full sample,

and 30, 71 and 38 for the three sub-samples respectively. Finally, when we use proxies based

on 15 minutes returns we find 40 (41) models for the full sample and 39 (50), 73 (68) and 37

(37) for the three sub-samples respectively.

5 Setting a benchmark: the predictive ability of the DCCE

In this section, we focus on the predictive ability of a predefined benchmark model with respect

to all other models. As benchmarks we choose simple and parsimonious specifications and take

into account two dimensions: the assumption on the multivariate structure (CCC, DCCE and

Orthogonal) and on the dynamics of variance of the marginal processes/principal components

(Garch(1,1) and Egarch(0,1)). The CCC-Garch(1,1) model represents the simplest alternative

and allows to test simple hypotheses such as constant correlation and symmetric variances

for the marginal processes. The choice of the DCCE among the DCC specification introduced

in Section 2.1 is not coincidental: this model has been increasingly popular because of its

flexibility and straightforward interpretation. The DCCE-Garch(1,1) therefore serves as a

benchmark to assess whether relaxing the assumption of constant correlation is sufficient to

improve predictive ability. Finally, the Orthogonal-Garch(1,1) model represents a simple and

parsimonious alternative to direct modelling of the dynamics of the conditional covariance

and correlation. In a univariate setting, Hansen and Lunde (2005) suggest that the absence

of leverage effect is likely to be rejected on stock market returns. To validate this result in the

multivariate framework, we also couple the three multivariate models with the Egarch(0,1)
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specifications for the conditional variance processes.

The predictive ability of our benchmarks is evaluated using the test for superior predictive

ability (SPA) proposed by Hansen (2005). Using the notation introduced in Section 2.4, let

us define d0j,t = L0,t − Lj,t, j = 1, ...,M , the relative performance of model j with respect

to the benchmark model (indexed by 0). Under reasonable assumptions λj = E[d0j,t] is well

defined. The null hypothesis is expressed with respect to the best alternative model, i.e.

H0,M : max
j∈M

λj

ωj
≤ 0, where ω2

j denotes the asymptotic variance of λj. The corresponding test

statistic is
√
T ∗
[
max
j∈M

d̄0j

ω̂j

]
where d̄0j = T ∗−1

∑T ∗
t=1 d0j,t is the sample loss differential between

the benchmark and model j. P-values for the test are obtained by bootstrap.

The results for the six different benchmarks are reported in Tables 8 and 9. Consistently

Table 8: SPA test: symmetric variance

Benchmark 1: CCC-Garch(1,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.003 0.003 0.003 0.000 0.000 0.000 0.026 0.027 0.027
Dot-com bubble 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Calm period 0.018 0.020 0.023 0.434 0.817 0.963 0.170 0.211 0.259
07-08 financial crisis 0.015 0.016 0.016 0.000 0.000 0.000 0.019 0.019 0.019

Benchmark 2: DCCE-Garch(1,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.061 0.064 0.067 0.000 0.000 0.000 0.095 0.098 0.101
Dot-com bubble 0.001 0.002 0.002 0.000 0.000 0.000 0.003 0.003 0.003
Calm period 0.108 0.115 0.170 0.384 0.825 0.982 0.092 0.102 0.141
07-08 financial crisis 0.023 0.024 0.024 0.008 0.009 0.009 0.037 0.038 0.038

Benchmark 3: Orth.-Garch(1,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.087 0.118 0.120 0.000 0.000 0.000 0.191 0.276 0.280
Dot-com bubble 0.070 0.081 0.090 0.000 0.000 0.000 0.031 0.034 0.037
Calm period 0.001 0.002 0.003 0.000 0.000 0.000 0.010 0.013 0.021
07-08 financial crisis 0.257 0.321 0.332 0.003 0.003 0.003 0.357 0.488 0.494

Note. pC : consistent p-value, pL and pU upper and lower bound for the consistent p-
value respectively. See Hansen (2005) for further details. Consistent p-values in bold
indicate the non rejection of the null at confidence level α = 0.10.

with the MCS results in Section 4, the hypothesis of constant correlation (Benchmark 1 and

4), as well as of symmetric dynamics for the variance matrix (Benchmark 2 and 5) is always

rejected except when forecasts are compared over calm periods. However, the hypothesis

of symmetric dynamics for the variances of the assets returns considered is rather weak.

Evidence of the leverage effect is much stronger (e.g., Benchmark 5) when the comparison is
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taken over periods of market instability. Also, allowing for dynamic correlation significantly

improves models’ forecasting ability.

Table 9: SPA test: asymmetric variance

Benchmark 4: CCC-Egarch(0,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.014 0.016 0.016 0.000 0.000 0.000 0.043 0.043 0.044
Dot-com bubble 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Calm period 0.100 0.164 0.237 0.000 0.000 0.000 0.242 0.423 0.547
07-08 financial crisis 0.016 0.016 0.016 0.046 0.056 0.085 0.018 0.019 0.019

Benchmark 5: DCCE-Egarch(0,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.100 0.115 0.136 0.001 0.002 0.002 0.082 0.084 0.086
Dot-com bubble 0.403 0.746 0.909 0.000 0.000 0.000 0.080 0.091 0.131
Calm period 0.154 0.227 0.386 0.000 0.000 0.000 0.023 0.029 0.035
07-08 financial crisis 0.035 0.037 0.037 0.165 0.235 0.459 0.035 0.036 0.036

Benchmark 6: Orth.-Egarch(0,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.243 0.372 0.400 0.000 0.000 0.000 0.297 0.524 0.546
Dot-com bubble 0.341 0.522 0.597 0.000 0.000 0.000 0.217 0.723 0.838
Calm period 0.004 0.006 0.009 0.000 0.000 0.000 0.000 0.000 0.000
07-08 financial crisis 0.189 0.220 0.229 0.003 0.003 0.004 0.336 0.489 0.503

Notes. See Table 8.

With respect to the type of multivariate model, the Orthogonal approach (in particular

with leverage) exhibits superior performance exclusively over turbulent periods while it is

systematically outperformed over calm periods. As underlined in Section 4 the fact that

this model is preferred under the L3 criterion suggests that it is likely to underestimate the

covariance matrix (Benchmark 3 and 6). In this application, the most valid specification is

the DCCE-Egarch(0,1). It captures well the dynamics of the covariance matrix across the

different samples. Its performances are not statistically worse than any of the 124 competing

models, both when considering the full sample or any of the sub-samples. Note that for the

2007-08 financial crisis period the null is rejected under LE but not under LS , i.e. the DCCE-

Egarch(0,1) possibly tends to overestimate the variance matrix during periods of extreme

market instability.
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6 Conclusion

Several multivariate GARCH models exist in the literature. However, from an applied view-

point no guidelines are available on forecasting performances evaluation and model selection.

We apply the model confidence set approach (MCS), which allows to isolate superior models

in terms of predictice ability, to 125 multivariate GARCH model based forecasts. We consider

10 assets from NYSE and NASDAQ for which we forecast the conditional variance matrix

from January 4, 1999 to December 26, 2008. The evaluation is based on two symmetric and

two asymmetric loss functions and the ex-post underlying volatility is approximated by the

realized covariance estimator based on intraday returns sampled at 5 minute frequency.

In line with recent literature, we find the Euclidean and Frobenius loss functions (both

symmetric) to deliver relatively large MCS, from about one half to one fourth of the total

number of models, while the two asymmetric loss functions identify sets of superior models

systematically smaller. The MCS is composed of sophisticated specifications such as orthog-

onal and dynamic conditional correlation (DCC), both with long memory in the conditional

variances With respect loss function choice we find that while Orthogonal and DECO models

tend to underestimate the conditional covariance, the DCC of Engle (2002) (as well as its

asymmetric version) and the DCC of Tse and Tsui (2002) tend to overestimate.

The model selection can be misleading when the forecast sample consists of periods charac-

terized by different types of dynamics. We illustrate how sensitive the MCS is with respect to

the forecast sample under investigation by considering not only the full sample but also by in-

vestigating sub-samples which are homogenous in their volatility dynamics. Over the dot-com

bubble burst and aftermath period, the set of superior models is composed by rather sophis-

ticated models such as DCC and Orthogonal, both with leverage effect in the conditional

variances of returns and principal components, respectively. Over calm periods, a simple

assumption like constant conditional correlation and symmetry in the conditional variances

cannot be rejected. Finally, over the 2007-2008 financial crisis, accounting for non-stationarity

in the conditional variance process significantly improves models’ forecasting performances.

Focussing on the DCC class of models we can draw the following conclusions. First, the

DECO model, which is estimated under the assumption of cross sectional equicorrelation, de-

livers superior forecasts over periods of market instability, but performs rather poorly during

calm periods. Second, modeling the asymmetric response of shocks in the conditional cor-
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relation with a single parameter does not seem to significantly improve models’ forecasting

performances with respect to the standard DCC of Engle (2002). Third, when comparing the

DCC of Engle (2002) with the DCC of Tse and Tsui (2002), we can conclude that, although

statistically equivalent in terms of forecasting ability, while the first shows better sample

performances over turbulent periods, the second performs better over calm periods. Fourth,

we find that the most valid specification is represented by the DCC model of Engle (2002)

when coupled with leverage effect in the conditional variances of the marginal processes. This

model captures well the dynamics of the variance matrix consistently across the different

sample periods. The latter result is confirmed by the Superior Predictive Ability (SPA) test.

The null hypothesis that the DCC of Engle (2002) with exponential GARCH dynamics is not

outperformed by the other 124 specifications cannot be rejected at standard critical levels.

This paper considers only one-step ahead forecasts of conditional variance matrices. It

would be interesting to construct sets of superior models based on multiple step-ahead fore-

casts. Other issues like forecasting correlation matrices and high dimensional applications

(hundreds of series) merit more attention.
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