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Abstract:   
This paper brings a general network analysis to a wide class of economic games. A 
network, or interaction matrix, tells who directly interacts with whom. A major challenge 
is determining how network structure shapes overall outcomes. We have a striking 
result. Equilibrium conditions depend on a single number: the lowest eigenvalue of a 
network matrix. Combining tools from potential games, optimization, and spectral graph 
theory, we study games with linear best replies and characterize the Nash and stable 
equilibria for any graph and for any impact of players’ actions. When the graph is 
sufficiently absorptive (as measured by this eigenvalue), there is a unique equilibrium. 
When it is less absorptive, stable equilibria always involve extreme play where some 
agents take no actions at all. This paper is the first to show the importance of this 
measure to social and economic outcomes, and we relate it to different network link 
patterns. 
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I. Introduction

In many economic settings, people and �rms do not interact equally and directly with everyone.

A network, or interaction matrix or graph, can formally capture various cross-cutting links and

relationships by indicating whose actions directly a¤ect whose payo¤s. The matrix can represent

social links, geography, agents�preferences, market structure, or information �ows. Because linked

players interact with other linked players, outcomes depend on the entire network structure. The

major challenge and interest is determining how network structure shapes outcomes. Networks

are complex objects and answering this question is generally di¢ cult even in otherwise simple

settings. We study strategic interaction and networks for an important class of games� games

with linear best replies. Such games have been used to study a wide variety of settings including

public goods, oligopoly, resource extraction, criminal activity, investment, belief formation, and

peer e¤ects.1 We bring to bear a new combination of tools and characterize the Nash and stable

equilibria for any graph structure and for any impact of players�actions on others�payo¤s.

We have a striking result. Using tools from potential games, optimization, and spectral graph

theory, we �nd that equilibrium outcomes depend on a single number: the lowest eigenvalue

of a network matrix. When the network matrix is su¢ ciently absorptive (as measured by this

eigenvalue), there is a unique equilibrium. An equilibrium is stable when the graph connecting

active agents is su¢ ciently absorptive (as measured by the lowest eigenvalue). This paper is the

�rst to show the importance of this measure to social and economic outcomes, and we relate it

to patterns of network links.2

While our �ndings hold in general, we focus on games of strategic substitutes. Strategic substi-

tutes settings include oligopoly interaction, public good provision, research & development, price

and information-gathering by consumers, and experimentation with new technologies.3 Strategic

substitute games involve complexities not present with strategic complements. Agents�actions

tend to go in opposite directions. There are often multiple equilibria, which cannot generally be

neatly ordered. To tackle multiple equilibria, we consider stable equilibria as a subset of Nash

1See, for example, Angeletos & Pavan (2007), Ballester, Calvó-Armengol & Zenou (2006), Bergemann & Morris
(2009), Calvó-Armengol, Patacchini & Zenou (2009), Bénabou (2008), Bramoullé & Kranton (2007), ·Ilkiliç (2008),
Glaeser & Scheinkman (2003), Goyal & Moraga-González (2001), and Vives (1999).

2For a compendium of network measures, see Wasserman & Faust (1994) and Scott (2004). Echenique & Fryer
(2007), for example, use the highest eigenvalue as a measure of segregation.

3See, e.g., Vives (1999), Foster & Rosensweig (1995), Gladwell (2000), and Grabher (1993).
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equilibria. Stable equilibria are robust to small changes in agents�play.4 We �nd an equilibrium

is stable when the graph connecting active agents has large absorptive capacity (measured by

the lowest eigenvalue) relative to the impact of play. We also �nd that, except for small payo¤

impacts, stable equilibria always involve asymmetric and extreme outcomes� some players do

nothing at all. Thus the common restriction of attention in the literature to symmetric equilibria

can be misleading. To tackle comparative statics, we use our combination of tools to show when

for stable equilibria, and overall, aggregate actions decrease. Thus, for example, an additional

link in a network can decrease the total provision of public goods.5

From these results the paper builds general intuitions about strategic play in networks. First,

even when agents have symmetric network positions, play is likely to be concentrated on a few

players. Interior and symmetric outcomes are the exception rather than the norm. Second, while

there is a rich variety of equilibria, there is a tight relation between the structure of the equilibrium

set and the shape of the overall network. The lowest eigenvalue gives a critical measure of this

relation. Third, this mathematical index relates to the geometry of the network. It captures

partitions of society into distinct sets. When individuals have fewer links within sets and more

links between sets, the system tends to amplify payo¤ impacts and to reach corner outcomes.

This paper makes at least three contributions.

First, this paper advances the analysis of n-person simultaneous-move games with continuous

action spaces. As mentioned above, there is a wide variety of applications that are modeled

with payo¤s that have linear best responses. The canonical game is one with quadratic payo¤s.

Often researchers restrict attention to (a) the case where all agents interact equally with all

other agents, (b) symmetric equilibria, and (c) interior equilibria. This paper gives the tools to

study any possible interaction structure, the entire action space, and the full set of equilibrium

outcomes.6 New conclusions are then possible, such as comparative statics and how equilibria

relate to network structure.

Second, we advance the recent and active literature on games played on networks. This paper

4Formally, we consider asymptotically stable equilibria. Given a system of linear di¤erential equations de�ned
using agents�best response functions, an equilibrium is stable when the system converges back to the equilibrium
following any small enough perturbation in agents�actions.

5Bramoullé & Kranton (2007) contains a special case of this result, and Bloch & Zenginobuz (2007) show
spillovers can lead to lower public good provision.

6For instance, our approach can be used to study the leading public goods example in Bergemann & Morris
(2008, 2009) for an arbitrary network.
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integrates and supercedes �ndings in two main lines of inquiry. In this previous work, games have

quite di¤erent payo¤ functions, but� as we point out here� best-response functions are identical

and linear. Ballester, Calvó-Armengol & Zenou (2006) study a quadratic-payo¤ game where

agents are harmed by other agents� actions. They examine outcomes when agents have weak

impacts on others, identifying a su¢ cient condition for a unique, interior, equilibrium. In this

equilibrium agents�actions are proportional to their Bonacich centrality measures.7 Bramoullé &

Kranton (2007) study a game where agents gain from other agents�actions. The analysis examines

the opposite end of the spectrum, when agents have strong impacts on others (actions are perfect

substitutes). Multiple equilibria are the rule, and there is always an equilibrium where some

individuals choose an action of zero. These specialized equilibria involve maximal independent

sets of the network graph. The present paper analyzes the full range of impacts� agents�impacts

on others ranges from weak to strong� for any graph. We identify a precise relationship between

graph structure, payo¤ impacts, and unique and stable equilibria.

With these �ndings, we also make signi�cant progress on the problems of multiplicity of

equilibria and comparative statics in network settings. Researchers in this area are often frustrated

by the large number of equilibria and the di¢ culty of characterizing and comparing equilibria.

Galeotti, Goyal, Jackson, Vega-Redondo & Yariv (2009) explore how to overcome these issues

by assuming players have limited information about the graph structure. They obtain sharp

analytical results for symmetric equilibria. In the present paper, we take a more traditional

approach; agents play a simultaneous move game on a graph, and we explore Nash and stable

equilibria. To attack characterizing equilibria and comparative statics, we use di¤erent tools and

concepts such as potential functions and structural network features.

Third, the paper connects traditional economics techniques and outcomes to traditional com-

puter science. We characterize equilibrium outcomes as solutions to well-de�ned quadratic pro-

gramming problems. We construct an (necessarily exponential time) algorithm to identify all

equilibria and show that solving for certain focal equilibria is directly related to a well-known NP

hard problem. We exploit Monderer & Shapley�s (1996) theory of potential games that computer

scientists have used to study congestion and other issues (e.g., Roughgarden & Tardos (2002),

7Ballester, Calvó-Armengol & Zenou (2006) are the �rst to make the connection between centrality measures
and strategic play. In a similar game, Ballester & Calvó-Armengol (2007) �nd a su¢ cient condition for a unique
equilibrium. Corbo, Calvó-Armengol & Parkes (2007) study network design in the same setting.
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Chien & Sinclair (2007)). In economics, the theory of potential games has been applied to �nite

games, including a few network settings.8 Neyman (1997) studies potential games with continuous

actions and �nds conditions for a unique correlated equilibrium. We provide the �rst application

to network games with a continuous action space. We show how to use it, in combination with

other tools, to illuminate strategic interaction in networks. These cross-overs could have great

impact on overall study of networks and multiple player games.

The paper proceeds as follows. In the next section we present the model and give our basic

characterization of Nash equilibria. Section III �nds the relationship between the lowest eigen-

value of the network matrix and unique and corner equlibria. We study stable equilibria in Section

IV. Section V connects the lowest eigenvalue to network link patterns. We conduct comparative

statics in Section VI. We show how our results generalize and apply to many more games in

Section VII and conclude in Section VIII.

II. Class of Games and Nash Equilibria

A. The Model

We present the basic model here. The results extend generally as described in Section VII.

There is a set of n agents denoted N . Each agent i simultaneously chooses an action xi 2

[0;1): Let x denote an action vector for all agents and x�i denote an action vector of all agents

other than i. To specify payo¤s, we use a graph, or network, or interaction matrix, which is an

n� n matrix G = [gij ],9 where gij = 1 if i impacts j�s payo¤s directly, gij = 0 otherwise, and it

is assumed gij = gji.10 We set gii = 0. Following common usage, we say agent i and j are linked,

connected, or neighbors when gij = gji = 1. Payo¤s are

Ui(xi;x�i; �;G);

where � 2 R is the payo¤ impact parameter ; i.e., how much i�s neighbors a¤ect Ui. Let xi be the

action individual i would take in isolation; xi maximizes Ui when � = 0 or gij = 0 for all j:

8Blume (1993) studies �nite games when players are situated on a lattice. Young (1998) considers coordination
games with two actions and general networks. Bramoullé (2007) studies anti-coordination games with two actions
and general networks.

9Throughout the paper, we identify a network with its adjacency matrix.
10The analysis applies to any weighted graph with gij = gji 2 R as discussed in Section VII.

4



For the basic model, � 2 [0; 1] which, in combination with gij � 0, will yield strategic substi-

tutes. Our results apply to the less complicated setting of strategic complements, where � � 0 or

gij � 0, contained in Section VII, along with mixed strategic substitutes and complements.11

B. Class of Games: Payo¤s with Linear Best Replies

We study games where payo¤ functions have di¤erent functional forms but all have the same linear

best reply functions. As discussed, canonical games in economics and the network literature fall

in this class. We �nd pure-strategy Nash and stable equilibria.12 Since the games have the same

best reply functions, the games have the same set of equilibrium outcomes.

We �rst present three exemplary games in this class. We then fully describe the best-reply

functions. In each of the games that follow xi = x for all i. This will be the base case, and the

results hold generally as discussed in Section VII.

The �rst game is a model of public goods in networks (Bramoullé & Kranton (2007)). Indi-

vidual i bene�ts from his own and his neighbors�actions, and individual i�s payo¤ is

bUi(xi;x�i; �;G) = b(xi + �
X
j

gijxj)� �xi;

where b(:) is strictly increasing and strictly concave on R+, and � > 0 is the constant marginal

cost of own action, such that b0(0) > � > b0(+1). As in Bergstrom, Blume & Varian (1986),

public goods are privately provided, but here public goods are local. Bramoullé & Kranton (2007)

primarily study the case of � = 1 (i�s neighbors�actions are perfect substitutes for xi).

The second game is from Ballester, Calvó-Armengol & Zenou (2006) where agents are hurt,

not helped, by neighbors. Individual i�s payo¤ is

eUi(xi;x�i; �;G) = �xxi � 1
2
x2i � �

X
j

gijxixj :

For future reference, we call eUi quadratic payo¤s. Ballester, Calvó-Armengol & Zenou (2006) and
11Thus our analysis readily accomodates local complementarities and global substitutabilities as in Ballester,

Calvó-Armengol & Zenou�s (2006) general model. The graph G would give the net of the complements and
substitutes for each ij: That is, G � C � �L, where  and � are positive parameters, C is the complete graph,
and in graph L lij = lji � 0 for all ij and lii = 0 for all i.
12For games in the class, agents never have an incentive to randomize, hence restriction to pure strategies is

without loss of generality.
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Ballester & Calvó-Armengol (2007) study this game for � low.

The third game is a standard di¤erentiated-product Cournot oligopoly with linear (inverse) de-

mand and constant marginal cost.13 With marginal cost d, �rm i facing demand Pi(xi;x�i; �;G) =

a� b � (xi + 2�
P
j gijxj) has payo¤s:

�i(xi;x�i; �;G) = xi

0@a� b � (xi + 2�X
j

gijxj)

1A� dxi;
where gij = 1 indicates i and j�s products are substitutes and � captures the degree of substi-

tutability. Vives (1999) considers interior equilibria.

In these three games agent i has the same best response function:

xi = �x� �
X
j

gijxj if �
X
j

gijxj < �x and (1)

xi = 0 if �
X
j

gijxj � �x:

Agent i will achieve �x through his own and his neighbors� actions. If the weighted sum of

neighbors�actions is less than �x, agent i makes up the di¤erence. If the weighted sum is higher

than �x, agent i chooses 0. Without loss of generality, normalize �x � 1 to yield the best reply

function fi(x) 2 [0; 1]:

fi(x;�;G) = max(0; 1� �
nX
j=1

gijxj): (2)

We solve for the Nash equilibria and stable equilibria for games with this best-reply. A Nash

equilibrium is a vector x 2 [0; 1]n that simultaneously satis�es xi = fi(x;�;G) for all agents i 2 N .

A Nash equilibrium could be unstable in the sense that a small change in actions could lead�

through an adjustment process� to a di¤erent action vector. We study a continuous adjustment

process and �nd asymptotically stable equilibria.14

Our objective is to solve for and characterize all Nash equilibria and all stable equilibria as

they depend on the payo¤ parameter � and on the graph G. Throughout the paper, for a given

13Linear inverse demand functions derive from consumers with strictly concave quadratic utility functions (Vives
(1999)).
14We thus follow early work on Cournot games with multiple sellers (Fisher (1961)) that shows existence of stable

equilibria with continuous but not discrete adjustment� a �nding replicated here.
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graph G we say that a property holds for almost every � if it holds for every � except possibly a

�nite number of values.15

We use the following terminology and notation. We say a vector x is interior if 8i; xi > 0. A

vector x is a corner if for some agent i; xi = 0: A corner vector x is specialized if 8i; xi 2 f0; 1g.

Let I denote the n-square identity matrix, let 1 denote a vector of ones, o a vector of zeros, and

O a square matrix of zeros. The empty network is then G = O. In a complete network, denoted

by C; every agent is connected to every other agent.

For individual agents, let ki denote the number of i�s neighbors, called i�s degree; ki =
P
j gij .

Let kmin(G) and kmax(G) respectively, denote the smallest and largest degree in graph G. For

an agent�s centrality, given a graph G and a scalar q such that I � qG is invertible, the vector

of Bonacich centralities c(q;G) is de�ned by c(q;G) = (I� qG)�1G1 (Bonacich (1987)). The

centrality measure for agent i, ci(q;G); can be seen as a weighted sum of the paths in G that

start with i.16

For overall graph structure, let �min(G) and �max(G) denote the lowest and highest eigenval-

ues of G, respectively, and let �(G) � max(j�min(G)j; j�max(G)j) denote its spectral radius.

The value �min(G) features prominently in our results. Since any graph G is square and

symmetric, �min(G) � 0 and �max(G) � 0. Furthermore, �max(G) � ��min(G).17 For a higher

�min(G), we say the graph has more absorptive capacity. We will see that an absorptive graph

dampens� rather than magni�es� the impact of players�actions captured in �:

C. Complete Set of Nash Equilibria

Existence of Nash equilibria is guaranteed thanks to a �xed-point argument.18 The equilibrium

set has been well-studied when � is low (Ballester, Calvó-Armengol & Zenou (2006)) and when

� = 1 (Bramoullé & Kranton (2007)). Little has been known for the general case.

Our �rst proposition gives the general characteristics of pure strategy Nash equilibria for any

� and G: For a vector x, let A denote the set of active agents� those agents whose actions are

15For a graph G, the set of � values for which the property does not hold has zero measure.
16When jqj is su¢ ciently small, c(q;G) = G1 + qG21 + q2G31 + � � � , and paths of length k are weighted by

qk�1.
17For any square matrix, the sum of the eigenvalues is equal to its trace. For any symmetric matrix, all eigenvalues

are real numbers. Since G is a nonnegative matrix, �max(G) � ��min(G) by Perron�s theorem (see Theorem 0.13
in Cvetkovíc et al. (1979)).
18The best-response function f is continuous from [0; 1]n to itself. By Brouwer�s theorem, f has a �xed point.
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strictly positive: A = fi : xi > 0g. Agents outside this set are called inactive agents. Let xA

denote the action vector of active agents; let GA denote the subgraph of G connecting the active

agents; and let GN�A;A denote the graph of links connecting active agents to inactive agents.

Parsing the network in this way and using matrix notation to express the best-reply conditions

in (2) leads directly to the following result.

Proposition 1. A pro�le x with active agents A is a Nash equilibrium if and only if

(1) (I+ �GA)xA = 1

(2) �GN�A;AxA � 1

From Proposition 1 we have several direct �ndings.19 First, we can compose a simple algorithm

to �nd all the equilibria for any graph G and almost every �: Given a graph G, consider a subset

S � N . If det(I+ �GS) 6= 0, compute the pro�le xS = (I+ �GS)
�11 and set xN�S = o. Check

whether xS � 0 and �GN�S;SxS � 1. If these two sets of linear inequalities are satis�ed, x is an

equilibrium. If either condition fails, it is not. Repeating this procedure for every subset of N

yields all the equilibria for G and almost every �.20 Second, for any graph G and almost every

�, the equilibria are �nite,21 since for a given graph G, 8S, det(I+ �GS) 6= 0 for almost every �.

Third, we see how individual equilibrium play relates to graph position. Comparing two

agents whose neighbors are nested sets, for � < 1 the agent with the larger set of neighbors plays

less. Intuitively, an agent who is linked to more outside sources can take a lower action. In

addition, all equilibria for any G and almost every � can be described by the vector of individual

Bonacich centralities in GA. For an equilibrium x; simply invert the matrix I + �GA. We

then have equilibrium actions xA = (I + �GA)
�11 = 1 � �c(��;GA), and for active player i,

xi = 1� �ci(��;GA).22 Thus, we validate here Bonacich�s (1987) original insight on the impact

19See Appendix for proofs.
20Any such algorithm must run in exponential time since the number of equilibria is potentially exponential.

In the language of computer science, our algorithm is �a total enumeration method,� and researchers have been
looking for �partial enumeration methods�for such problems (Murty & Yu (1988)). We have derived several results
(available upon request) that help identify the active set of agents, and thus could reduce computational time. First,
using the fact that f � f is increasing, we obtain a lower bound on individual actions in any equilibrium. This
yields a computationally fast procedure to determine agents who are active in all equilibria. Second, for the vector
xs = (I+ �GS)

�11, removing those agents for whom xi � 0 can yield the set A of active agents.
21Even when not �nite, the equilibrium set has a well-de�ned mathematical structure. For any � and G the set

of equilibria is a �nite union of compact convex sets.
22Write (I+ �GA)

�1(I+ �GA)1 = 1. Developing yields xA + �c(��;GA) = 1.
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of a negative scalar (here ��) on his measure. With a negative scalar, an agent�s Bonacich

centrality tends to be higher when linked to agents who themselves have few neighbors. These

agents then choose lower actions.

Proposition 1 yields equilibria for all � 2 [0; 1] and supercedes previous �ndings for low � and

� = 1. We brie�y review here the previous results, as written in the notation of the present paper.

Low � : Using the theory of positive matrices, Ballester, Calvó-Armengol & Zenou (2006,

Theorem 1) show that if � < 1=(1 + �max(C�G)), there is a unique interior equilibrium where

agents�actions can be described by their Bonacich centralities in the graph C�G for the scalar

�=(1� �).23 For future reference, we label this critical value as �BCAZ � 1=(1 + �max(C�G)).

High � : Using graph theory, Bramoullé & Kranton (2007, Theorem 1) show for � = 1, spe-

cialized equilibria exist for any non empty graph. The active players in these equilibria constitute

a maximal independent set of the graph G.24 For � < 1; specialized equilibria relate to maximal

independent sets where inactive agents are connected to at least 1=� agents in the set.

The following examples illustrate our results with canonical network structures and highlight

the advances over previous work, showing the equilibria for the full range of �.

Figure 1: Equilibria in a Star Network

23Decomposing the network as G = C � (C�G) ; where C captures global substitutes and (C�G) captures
local complements, and introducing the vector y = 1 + �

1��c
�

�
1�� ;C�G

�
, their result states that if � < 1=(1 +

�max(C�G)); the unique equilibrium action vector is x = 1
1��+�

P
j yj

y, which is interior.
24A set of agents I is an independent set of the graph G if for all i; j 2 I; gij = 0. An independent set I is maximal

if I is not a subset of another independent set. Given any maximal independent set, agents in the population are
divided into (i) those in the set and (ii) those linked to an agent in the set.

9



Example 1. Stars. Consider a star with n players. Figure 1, for n = 4, shows, for � < �BCAZ =

1=(n � 1) the unique, interior, equilibrium where the center plays [1 � (n � 1)�]=[1 � (n � 1)�2]

and each peripheral agent plays (1 � �)=[1 � (n � 1)�2]. For � = 1, there are two specialized

equilibria: (i) the center plays 0 and peripheral agents play 1, and (ii) the center plays 1 and the

peripheral agents play 0: For the middle range, 1=(n� 1) � � < 1, there is a unique equilibrium.

It is specialized; the center plays 0 and peripheral agents play 1. The star graph thus shows that

unique equilibria can exist above �BCAZ , and the unique equilibrium need not be interior.

Figure 2: Equilibria in a Line Network

Example 2. Line with Four Players. Figure 2 shows for � < �BCAZ ' 0:382 the unique,

interior, equilibrium where players 1 and 4 on the ends play 1
1+���2 , and players 2 and 3 in the

middle play 1��
1+���2 . For � = 1, there are multiple equilibria, and the �gure shows one specialized

outcome where active agents are a maximal independent set of the graph. For the middle range

of �, there is a unique equilibrium, which is interior, for �BCAZ < � < �min(G) =
p
5�1
2 ' 0:618.

For
p
5�1
2 < � < 1, two corner equilibria emerge in addition to the interior one. To preview later

results, in this range only the corner equilibria are stable. This example shows that an interior

equilibrium can exist for any value of �, and it may not be unique or stable.

Example 3. Complex network. Figure 3 depicts equilibria on a complex network linking

20 agents. This network is a particular realization of a Poisson random graph with connection

probability of 0:75. Agents with more links are depicted closer to the center, and a node�s

color is proportional to its action on a Black-White scale (Black=1, White=0). We see for

� < �BCAZ ' 0:153, the unique equilibrium, which is interior. For the middle range of �, we show

10



(a) δ = 0.15, unique equilibrium (b) δ = 0.35, 3 equilibria (c) δ = 0.55, 31 equilibria

Figure 3: Equilibria in a Complex Network

one of the three equilibria for � = 0:35 and one of the thirty-one equilibria for � = 0:55.25 At

� = 0:35, many agents are inactive. At � = 0:55, the equilibrium is specialized. This example

shows the multiplicity and variety of equilibria for intermediate values of �:

III. The Shape of Nash Equilibria

We now address the major challenge: how network structure shapes equilibrium outcomes. We

derive su¢ cient conditions and necessary conditions for unique, interior, corner, and stable

outcomes� all as functions of the network structure and payo¤ parameter �: We also address

comparative statics, a well-known problem in the analysis of strategic substitutes games. To do

so, we combine tools from the theory of potential games, the theory of maximization, and spectral

graph theory.

We �nd the lowest eigenvalue of a graph, �min(G), is key to equilibrium outcomes. This

result is all the more remarkable because we also show that generally �nding all equilibria is a

computationally complex problem (requiring exponential time). We show that when a graph has

a high �min(G), the equilibrium is unique. An equilibrium is stable if and only if �min(GA) is

su¢ ciently high.

25 In both cases, we choose an equilibrium with highest sum of agents�actions.
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These results are the �rst to reveal the signi�cance of the lowest eigenvalue of a network

graph. It is not a common measure in sociology or physics, for example, and there is only a small

amount of mathematical work recently on the relationship between the link structure and the

lowest eigenvalue.26 Below we describe and formally elaborate this relationship. To develop an

intuition, note that �min(G) < 0; hence when it is smaller, it corresponds to a larger number

in absolute value. When �min(G) is small, the graph contains many links that connect distinct

sets of agents� actions then have greater impact on others�play, and we say the graph has low

absorptive capacity. Thus, large �min(G) is key to stable outcomes.

A. Tool: Potential Function

We begin by using the theory of potential games to reformulate the equilibrium conditions.

Consider a game where player i chooses xi 2 Xi, X =
Y
i

Xi, and payo¤s are Vi(xi;x�i): From

Monderer & Shapley (1996), a function '(xi;x�i) is a potential function for this game if and only

if for all i

'(xi;x�i)� '(x0i;x�i) = Vi(xi;x�i)� Vi(x0i;x�i) for all xi; x0i 2 Xi and all x�i 2 X�i

For xi 2 R and continuous, twice-di¤erentiable payo¤s Vi, there exists a potential function if and

only if @
2Vi(x)
@xi@xj

= @2Vi(x)
@xj@xi

for all i 6= j.

Examining the game with quadratic payo¤s eUi, it has a potential function since @2 eUi
@xi@xj

=

��gij = @2 eUi
@xj@xi

. The following function

'(x; �;G) =

nX
i=1

�
xi �

1

2
x2i

�
� 1
2
�

nX
i=1

nX
j=1

gijxixj

is a potential function for eUi; @ eUi@xi
= @'

@xi
: Notice that '(x; �;G) is strictly concave in each xi.

We can use this potential function to �nd the equilibria for all games in our class, since all the

games have the same equilibria as the game with payo¤s eUi.27 Consider the following constrained
optimization problem (P):

26See Desai & Rao (1994), Alon & Sudakov (2000), Ye, Fan & Liang (2008), Bell, Cvetkovíc, Rowlinson & Simíc
(2008a, 2008b), Trevisan (2009).
27 In the terminology of Morris & Ui (2004), the games in our class are �best-response potential games,� since

they are �best-response equivalent�and one of the games is a potential game.
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max
x

'(x; �;G) s.t. 8i; xi � 0; (P)

and consider the Kuhn-Tucker conditions, such as for xi

@'

@xi
= 0 and xi > 0; or

@'

@xi
� 0 and xi = 0:

The Kuhn-Tucker condition for each xi exactly correspond to an agent i�s individual best response

(2).28 Thus we have:

Lemma 1. A pro�le x is a Nash equilibrium of any game with the best reply function fi(x) =

max(0; 1� �
Pn
j=1 gijxj) if and only if x satis�es the Kuhn-Tucker conditions of problem (P).

The set of Nash equilibria for a given G and � is then equal to the local and global maxima and

saddle points of the potential function '(x; �;G) on Rn+.

Solving for the Nash equilibria for these games is then a quadratic programming problem. To

see this clearly, rewrite the potential function as '(x; �;G) = xT1 � 1
2x

T (I + �G)x. Quadratic

optimization has been well-studied in mathematics and computer science (e.g. Lee, Tam & Yen

(2005)). The heart of the problem is the matrix I+�G:When I+�G is positive de�nite, '(x; �;G)

is concave, there is a unique solution to (P), and (P) is solvable in polynomial time. In general,

however, solving the problem (P) is NP-complete (Pardalos & Vavasis (1991)) and �nding all the

maxima and saddle points requires exponential time.29 Yet knowledge about this problem gives

us enormous tractability to characterize equilibria, as we discuss next.

B. Lowest Eigenvalue of Graph and Nash Equilibria

B.1. Unique Equilibria: Convex Optimization� �min(G) is large

We �rst obtain a strong, intuitive condition for the uniqueness of equilibria which is the strongest

in the literature. A traditional uniqueness condition derives from contraction of the best reply

function, which occurs if and only if � < 1=�(G) (see Appendix). Thus, from standard arguments

28'(xi;x�i) is strictly concave in each xi; so for any x�i a single xi satis�es the ith Kuhn-Tucker condition.
29While computer scientists have developed many algorithms that would quickly identify one equilibrium, only

enumerative methods are guaranteed to �nd them all (Murty & Yu (1988)).
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a unique equilibrium exists if � < 1=�(G):30 Our next result shows that this su¢ cient condition

is not necessary. Our condition relies on �min(G) and holds even when the best replies are not

contracting.

The major insight is that individual responses to others�actions are geometrically structured

by the potential function. The whole action pro�le moves along the surface of the potential. It

is the curvature of the potential function, and the network which gives the potential its shape

which determines the number and character of equilibrium outcomes.

We �nd that the lowest eigenvalue of a graph, �min(G), captures the relevant shape of the

potential. The potential function '(x; �;G) is strictly concave if and only if � < �1=�min(G).

This follows from the Hessian of the potential which is equal to r2' = �(I + �G), and I + �G

is positive de�nite if and only if � < �1=�min(G): We can then invoke the theory of convex

optimization (as applied to quadratic programming) to analyze problem (P). If '(x; �;G) is

strictly concave, there is a unique global maximum, for which the Kuhn-Tucker conditions are

necessary and su¢ cient.31 Thus, we have

Proposition 2. If � < �1=�min(G), there is a unique Nash equilibrium.

This condition is often both necessary and su¢ cient for a unique equilibrium.32 For example, it

is necessary and su¢ cient for an important class of graphs, regular graphs (we show this below).

We can also see necessity and su¢ ciency in particular graphs, such as the line with four players

in Example 2, where �min(G) = �
p
5�1
2 .

Proposition 2 provides the best known su¢ cient condition for unique equilibria in these games.

It is stronger than the two previous conditions: Ballester & Calvó-Armengol (2007, Proposition

1) show that there exists a unique equilibrium if � < 1=�(G), which corresponds to the condition

for contracting best replies. For any G, �1=�min(G) � 1=�(G); and this inequality is strict when

no component of G is bipartite.33 Ballester, Calvó-Armengol & Zenou (2006, Theorem 1) show

there exists a unique interior equilibrium for � < 1=(1+�max(C�G)): For any G, �1=�min(G) �

30Ballester & Calvo-Armengol (2007)) also show there is a unique equilibrium if � < 1=�(G) by using the
mathematics of linear-complementarity problems.
31The result is a network case of Neyman�s (1997) �nding for general potential games with convex compact action

spaces that shows there is a unique correlated equilibrium when the potential is strictly concave. Bergemann &
Morris (2007) generalize this �nding to games of incomplete information.
32 In addition, we know that the unique equilibrium varies continuously with � when � < �1=�min(G).
33See Theorem 0.13 in Cvetkovíc et al. (1979).
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1=(1 + �max(C � G)), and this inequality is strict, for example, when kmax(G) < n=2. (See

Appendix for details.)

B.2. Multiple Equilibria and Corner Outcomes: Non-Convex Optimization� �min(G)

is small

We next tackle equilibria when � > �1=�min(G). The potential '(x; �;G) is not concave;34

problem (P) falls in the domain of non-convex optimization, and multiple equilibria are possible.

Yet, multiplicity does not mean that �anything goes.�We show that for � > �1=�min(G)

there always exists an equilibrium that is a corner. In the following section, we show that corner

equilibria are the only stable equilibria in this range.

We use three facts. First, for any � and G, there exists at least one vector, denoted x�(�;G);

that globally maximizes the potential '(x; �;G):35 Second, by Lemma 1 any maximum of the

potential is a Nash equilibrium, so x�(�;G) is a Nash equilibrium. Third, if � > �1=�min(G) the

potential is a non-concave quadratic function. Then, there must be a direction along which the

potential increases without bound. Hence, the vector x�(�;G) must not be interior, and for this

equilibrium A 6= N: These facts give us:

Proposition 3. If � > �1=�min(G), there exists an equilibrium which is a corner.

Intuitively, when � is high relative to the absorptive capacity of the graph, individual responses

are ampli�ed, not dampened, by the graph. Under strategic substitutes, as an individual�s action

increases, his neighbors� actions decrease. If the graph cannot absorb the payo¤ impact and

reactions rebound, some boundaries of the action space must be reached. This feature depends

on how links connect agents in the graph, which we will describe at length in section V below.

The following example illustrates Propositions 2 and 3.

Example 4. Unique and Corner Equilibria. Consider the graph in Figure 4. �min(G) = 1=3:

For � < 1=3, there is a unique equilibrium, where each agent plays 1
1+3� . For 1=3 < � � 1 there

34When � = �1=�min(G), the potential is concave but not strictly concave. While multiple equilibria may
emerge, the equilibrium set is strongly structured. Equilibria form a convex set, and all equilibria yield the same
aggregate action. In addition, one equilibrium is the limit of the unique equilibrium for � < �1=�min(G) as � tends
to �1=�min(G) from below.
35Problem (P) is equivalent to maximizing '(x) over [0; 1]n, hence a maximum exists because the domain is

compact and '(x) is continuous.
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Figure 4: Lowest Eigenvalue and Unique and Corner Equilibria

are three equilibria: the interior equilibrium where each agent plays 1
1+�3 , and two specialized

equilibria where agents on one side play 1 and agents on the other side play 0. In this range,

the interior equilibrium is a saddle point and the specialized equilibria are global maxima of the

potential.

This example generalizes; Propositions 2 and 3 give tight conditions for particular graphs and

for all regular graphs. When every agent has k neighbors, for any � 2 [0; 1] it is an equilibrium

for each agent to play xi = 1=(1 + �k). If � < �1=�min(G), this is the unique equilibrium. If

� > �1=�min(G), an interior vector cannot maximize the potential. Hence there must be another

equilibrium, which is a corner.36

Corollary 1. For regular graphs, there is a unique equilibrium if and only if � < �1=�min(G)

and this equilibrium is interior. If � � �1=�min(G) there are both interior and corner equilibria.

Combining Propositions 2, 3, and previous results, for a graph G we can divide the range of �

into four parts. In the lowest part, 0 � � < �BCAZ there is a unique and interior equilibrium. The

equilibrium vector is x = (I+ �G)�11 = 1� �c(��;G): In the lower-middle range, �BCAZ � � <

�1=�min(G), there is a unique equilibrium, which is either interior or corner. In the upper-middle

range, �1=�min(G) � � < 1, multiple equilibria are possible, and a corner equilibrium always

exists. For active agents, in any equilibrium, xA = (I + �GA)
�11 = 1 � �c(��;GA): At � = 1;

for any graph there is an equilibrium vector where xA = 1, and the active agents constitute a

maximal independent set of the graph. We see these ranges in Examples 1, 2, 3, and 4.

36At � = �1=�min(G), there are multiple equilibria (interior and corner), and they each maximize the potential.

16



IV. Stable Equilibria

In this section we delve more deeply into the problem of multiple equilibria and identify those

equilibria which are stable. We show the lowest eigenvalue of a graph is key to stability, as it is

key to unique equilibria.

A. Asymptotically Stable Equilibria

We consider a continuous adjustment process, asking when a Nash equilibrium x is an asymptot-

ically stable stationary state (Weibull (1995)) of the following system of di¤erential equations:

�
x1 = h1(x) = f1(x;�;G)� x1

...

�
xn = hn(x) = fn(x;�;G)� xn

where fi(x; �;G) is agent i�s best response (2). In vector notation _x = H(x), where H =

(h1; : : : hn) : Rn! Rn. By construction, x is a stationary state of this system if and only if x is a

Nash equilibrium of our games.37 A Nash equilibrium x is asymptotically stable when this system

of di¤erential equations converges back to x following any small enough perturbation.38

Next, say that a (local or global) maximum x of the potential is locally strict if there is an

open neighborhood of x in Rn+ on which ' does not have any other maximum. We can then show

there is a one-to-one relationship between locally strict maxima and stable equilibria:

Lemma 2. An equilibrium x is asymptotically stable if and only if x is a locally strict maximum

of the potential.

To prove this result note that the opposite of the potential function, �', provides a natural

Lyapunov function for the system of di¤erential equations. In particular, the potential must

37We also looked at discrete Nash tâtonnement, as in Bramoullé & Kranton (2007). We �nd equilibria stable to
Nash tâtonnement are (almost always) asymptotically stable. But the reverse is not true, and Nash tâtonnement
stable equilibria may fail to exist in large regions of the parameter space. (Proofs are available upon request.) In
contrast, asymptotically stable equilibria exist generically, as shown below.
38Following Weibull (1995, De�nition 6.5, p.243), we de�ne asymptotic stability as follows: Introduce B(x; ") =

fy 2 Rn+ : jjy � xjj < "g and �(t;y) the value at time t of the unique solution to the system di¤erential equations
that starts at y. (So, �(0;y) = y). By de�nition, x is Lyapunov stable if 8" > 0;9� > 0 : 8y 2 B(x; �),
8t � 0, �(t;y) 2 B(x; "). Then, x is asymptotically stable if it is Lyapunov stable and if 9" > 0 : 8y 2 B(x; "),
limt!1 �(t;y) = x.
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always increase along the trajectories of the system: d
dt'(x(t)) =

P
i
@'
@xi
_xi = r'(x) �H(x) > 0 if

x is not an equilibrium.

Thus, stability eliminates the Nash equilibria that are saddle points of the potential and

maxima that are not locally strict. Observe that for any G and almost every �, the number of

equilibria is �nite and, hence, maxima of the potential are all locally strict. Since for any � and

G, the potential has a global maximum, a stable equilibrium exists for almost every �.

B. Necessary and Su¢ cient Condition for Stablility

Here we �nd a necessary and su¢ cient condition for stable equilibria by looking at the shape

of the potential at an equilibrium x. For unique equilibria, we looked at global concavity of

the potential. Here we focus on the shape of the potential locally, in the neighborhood of an

equilibrium x: We �nd that for an equilibrium x, with active agents A, �min(GA) gives (almost

always) a necessary and su¢ cient condition for stability.

To make our argument, we establish that we need only look at active agents and the subgraph

GA. For inactive agents, there are two types: (a) those for whom a small reduction in neighbors�

actions would not lead them to change their play; i.e., agents for whom �
P
j gijxj > 1; and (b)

those for whom a small reduction would lead them to increase their play; i.e., �
P
j gijxj = 1:

The �rst type can be safely ignored (see Appendix). The second type, which we call knife-edge

agents must be examined, since even a small reduction in a neighbor�s action would lead them to

increase their play. We show in the Appendix however, that for any graph G for almost every �;

there are no knife-edge agents in any equilibrium. Thus, almost always, the relevant shape of the

potential around an equilibrium x is determined only by GA. In particular, from GA we derive

the curvature of the potential on the subset of the action space restricted to active agents.

Generically: When �min(GA) is large relative to �, the potential function is strictly concave

on the action space of active agents. The graph absorbs the impact of changes in play, and the

equilibrium is stable. When �min(GA) is small relative to �, the potential function is not concave

on the action space of action agents. A small change reverberates through the network, and the

equilibrium is not stable. This gives a generic necessary and su¢ cient condition for stability: an

equilibrium is stable if and only if � < �1=�min(GA):
39

39This condition is written for non-empty graphs GA: An equilibrium x with active agents A is stable for any
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Non-generically: In the presence of knife-edge agents, � < �1=�min(GA) is necessary for

stability. We derive the precise necessary and su¢ cient condition in this case in the Appendix.

Summarizing:

Proposition 4. Consider a graph G and a Nash equilibrium x with active agents A. If there are

no knife-edge agents, x is stable if and only if � < �1=�min(GA). If there are knife-edge agents,

if x is stable then � < �1=�min(GA).

C. Shape of Stable Equilibria

We can also determine the shape of stable equilibria. When � < �1=�min(G), by Proposition

2, there is a unique equilibrium. This equilibrium is interior or corner, and it is stable. When

� > �1=�min(G); there can be multiple equilibria and by Proposition 3 at least one equilibrium

is a corner. Since for interior equilibria A = N , our stablility condition eliminates all the interior

equilibria in this range,

Corollary 2. For a graph G, if � > �1=�min(G), all stable equilibria are corners.

The following examples illustrate the lowest eigenvalue stability condition and the shape of stable

of equilibria.

Figure 5: Lowest Eigenvalue and Stable Equilibria

� if A is such that GA is empty and there are no knife edge agents. A is then a maximal independent set, the
equilibrium is specialized, and inactive agents are connected to at least two active ones.
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Example 5. Stable Equilibria and the Lowest Eigenvalue. Consider the graph on the

left of Figure 5, which is complete bipartite, and the pro�le xi = 1
1+3� for all i which is a Nash

equilibrium for any � 2 [0; 1]. For this graph, �min(G) = �3, hence this equilibrum is stable

for � < 1=3. For 1=3 < �; only corner equilibria are stable. Next consider the �prism�graph in

Figure 5. Since it is also regular with k = 3, xi = 1
1+3� is a Nash equilibrium for any � 2 [0; 1].

Here, �min(G) = �2, and hence, the interior equilibrium is stable for � < 1=2: For 1=2 < �; only

corner equilibria are stable. For intuition, compare what happens after perturbing one agent�s

play in the bipartite graph to perturbing one agent�s play in the prism graph. Let some agent i

play 1
1+3� + " In the bipartite graph, all three agents on the other side will adjust their play by

the full amount: In the prism graph, two of the agents linked to i are also linked to each other

and �share�the adjustment. Hence, the interior equilibrium is stable for a higher � in the prism

graph than in the complete bipartite graph.

Example 6. Stable Equilibria versus Nash Equilibria. The stability condition can elimi-

nate many Nash equilibria in the range � > �1=�min(G). For example, in the complex network

pictured in Figure 3, at � = 0:35 two among the three equilibria are stable. At � = 0:55, only

seven among the thirty-one equilibria are stable.

This analysis gives a general intution that stable equilibria involve smaller sets of active

agents. Interior equilibria� where everyone takes positive action� are only stable when they are

the unique equilibrium. Otherwise, only corner equilibria are stable. Furthermore, the sets of

active agents of stable equilibria are minimal in terms of inclusion. Consider two equilibria x

and x0 with active agents A and A0. If A � A0, then stability of x implies instability of x0 (see

Appendix). This is consistent with the fact that A � A0 ) �min(GA) � �min(GA0).40 Smaller

subgraphs have more absorptive capacity.

To summarize our stability results: For any graph G and almost every �, a stable equilibrium

exists. If � < �1=�min(G), the unique equilibrium is asymptotically stable; it is a corner or

an interior equilibrium. If � > �1=�min(G); the stable equilibria are corners. The stability

conditions focus our attention on particular equilibria with small sets of active agents, and Section

VI conducts comparative statics on these equilibria.

40This relationship follows from the interlacing eigenvalue theorem, e.g. Horn & Johnson (1985, p.185). Note
that any perturbation on the smaller subgraph can be replicated on the larger one, but not vice versa.
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V. Lowest Eigenvalue of a Graph

The previous sections show the lowest eigenvalue of a graph is critical to unique and stable

equilibria. Here we how this graph statistic relates to network structure.

We can gain much intuition from looking at the two networks in Figure 5. For the complete

bipartite graph �min(G) = �3, and for the prism graph �min(G) = �2. Each has nine links,

and each is a regular graph. But in the complete bipartite graph there are two distinct sets of

agents, with links between the sets but not within each set. The complete bipartite graph has

no triangles. In the prism graph, on the other hand, there are triangles� what sociologists call

�triadic closures;� friends of an agent i are also friends with each other. Loosely speaking, the

lowest eigenvalue involves a tradeo¤ between more links and more closure.

We can formalize this intuition as follows. Let G be the set of all possible graphs for n agents.

Let G� 2 G be a graph with the smallest lowest eigenvalue; i.e., �min(G�) � �min(G) for all

G 2 G.

First, G� is a complete bipartite graph with as equal size sides as possible.41

Eigenvalue Result 1. G� is a complete bipartite graph. For n even, k = n=2 for all agents.

For n odd, n+12 agents have n�1
2 links, and n�1

2 agents have n+1
2 links.

Intuitively, the complete bipartite structure maximizes the ampli�cation of shocks. A change in

play by any agent reverberates through the network. In contrast, a complete graph, where all

agents are connected (so there is complete triadic closure), contains the shocks by any agent.42

Second, for any graph G 6= G� we can cut and add links to G to yield a G0 that has a smaller

lowest eigenvalue. We essentially make the graph �more bipartite.� For any G, there exists a

partition of the population in two sets R and S such that adding links between or cutting links

within the sets weakly reduces the lowest eigenvalue. We identify these sets from an eigenvector

associated with �min(G):43

Eigenvalue Result 2. Consider a graph G 6= G�: Let u be an eigenvector for �min(G), and let

R = fi : ui � 0g and S = fi : ui < 0g. Form a new graph G0 by removing any number of links

(i; j) 2 R�R or S�S, and adding any number of links (k; l) 2 R�S. Then �min(G0) � �min(G)

41We thank Noga Alon for his help and providing us a proof of this result. See also Constantine (1985).
42The complete graph is the connected graph with the largest smallest eigenvalue; �min(C) = �1:
43These eigenvectors give directions of the maximal perturbation of the potential.
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Intuitively, by adding links between sets, agents�actions directly impact more agents. Cutting

links within sets reduces triadic closures, and agents�actions are less contained by the graph.

Third, a graph has the smallest lowest eigenvalue when it has as many links as possible with

no triangles. More links increase the impact of shocks, but triadic closures contain them. We

have:44

Eigenvalue Result 3. G� is equivalent to the graph G 2 G with the greatest number of links

and no triadic closure.

The problem of �nding the graph for n agents with the smallest lowest eigenvalue for a �xed

number of links is much more di¢ cult and has only recently been addressed by mathematicians.45
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Figure 6: Lowest Eigenvalue and Network Links

For particular gaph families, we can compute lowest eigenvalues to see the tradeo¤s as links

are added to a network. We depict in Figure 6 how the lowest eigenvalue varies with number of

links for two well-known structures: Bernouilli random graphs and circles. In Bernouilli random

graphs, the expected lowest eigenvalue is �rst decreasing and then increasing in the probability

44See Theorem 2, p.6, and Exercise 4, p.28, in Bollobas (1998).
45See Bell, Cvetkovíc, Rowlinson & Simíc (2008a, 2008b).
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of connection. Starting from the empty graph, most links are between sets of agents. The new

links, however, eventually form more triangles (i.e., links within sets of agents), and the absorptive

capacity of the network increases. This relationship is more irregular for the circle, despite the

regularity of its structure. The lowest eigenvalue for the circle also reaches its minimum for a

higher number of connections than the Bernoulli graph.46

VI. Comparing Equilibria

In this section we compare equilibrium outcomes in terms of aggregate play,
Pn
i=1 xi. We can use

the potential function to do so, since the potential evaluated at an equilibrium is always equal

to one-half of total play; that is, for a given � and G and an equilibrium x(�;G), '(x; �;G) =

1
2

Pn
i=1 xi(�;G):

47

A. Aggregate Play for a given � and G

Equilibria with fewer active agents� in terms of set of inclusion� always have a higher level of

aggregate action. That is, consider an equilibrium x with active agents A and equilibrium x0 with

active agents A0, where A � A0. Then,
P
i x
0
i �

P
i xi. Concentrating actions on fewer agents

increases overall play. This �nding reinforces our intuition about small sets of active agents.

Fewer active agents is related to both higher aggregate play and greater stability.

B. Comparative Statics� Aggregate Play for di¤erent � and G

Next we conduct comparative statics on � and G: Comparative statics are di¢ cult in games of

strategic substitutes since direct and indirect e¤ects generally pull in opposite directions. Consider

a change in a parameter that induces agent i to increase her action. In response, i�s neighbors

decrease their actions, and their neighbors increase their actions, and so on. The resulting impact

on play could be complicated and nonmonotonic. We use the potential function to overcome these

di¢ culties, and we obtain clean local and global comparative static results.

46We also studied small-world graphs. Consider the original Watts & Strogatz (1998) procedure: From a circle,
rewire each link at random with probability p. As p varies from 0 to 1, the expected lowest eigenvalue varies
smoothly and monotonically from the lowest eigenvalue of the circle to the expected lowest eigenvalue of the
Bernouilli random graph.
47Let x be an equilibrium with active agents A. Since xN�A = o, xT (I+�G)x = xTA(I+�GA)xA. By Proposition

1, (I+ �GA)xA = 1. Since xTA1 = x
T1, '(x) = 1

2
xT1.
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B.1. Global Comparative Statics� Higher �, More Links

Consider a � and G and an equilibrium x�(�;G) which is a global maximum of '(x; �;G). This

equilibrium has the highest aggregate play of all equilibria for � and G. We show that any large

or small increase in � or any additional link to the graph always leads to an equilibrium with

lower total play. Thus, while some agents may increase their actions, the decreases dominate.

Proposition 5. Consider a � and G and an equilibrium x�(�;G): Consider a �0 and G0 where

�0 � � and G is a subgraph of G0 and any equilibrium vector x(�0;G0). Then

nX
i=1

xi(�
0;G0) �

nX
i=1

x�i (�;G):

To understand this result, notice that for any vector x, '(x; �0;G0) � '(x; �;G); that is, holding

play �xed, the value of the potential is lower when the payo¤ impact is higher and/or more agents

are connected. Therefore, we have

'(x(�0;G0); �0;G0) � '(x�(�0;G0); �0;G0) � '(x�(�0;G0); �;G) � '(x�(�;G); �;G)

where the third inequality holds because x�(�;G) is a global maximum of the potential '(x; �;G).48

The decrease in aggregate actions is usually strict.49

Previous comparative statics results in the literature are special cases. For low �, Theorem

2 in Ballester, Calvó-Armengol & Zenou (2006) says if G is a subgraph of G0, � � �0, and there

is a unique interior equilibrium x for (�;G) and x0 for (�0;G0), then
P
i x
0
i �

P
i xi. For � = 1,

Bramoullé & Kranton�s (2007) example for the circle generalizes to the following: a specialized

equilibrium with a largest maximal independent set of agents is always a global maximum of the

potential and yields highest aggregate play (see Appendix). This �nding, along with Proposition

5, implies that the number of nodes in a largest maximal independent set decreases when more

links are added to a graph. Galeotti, Goyal, Jackson, Vega-Redondo and Yariv (2006) noted this

fact.

48 In contrast, we can build examples where the lowest total e¤ort in equilibrium is non-monotonic in � or G.
49See the Appendix. Precisely, suppose that � < �0 and G = G0. Then, aggregate actions decrease strictly when

no global maximum on � and G is specialized. In contrast, if G  G0 and � is unchanged, aggregate e¤ort decreases
strictly as soon as for any x�(�;G), the new links connect active agents.
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B.2. Local Comparative Statics� Higher �, More Links, Same Support

We now consider local changes. We start with a stable equilibrium. We then increase the payo¤

impact � or add a link to the graph and look at equilibria that have the same or smaller set of

active agents as the initial equilibrium. We again �nd that aggregate actions decrease.

Proposition 6. For � and G, consider a stable equilibrium x(�;G) with active agents A. Now

consider for �0 and G0 where �0 � � and G is a subgraph of G0 and consider any equilibrium

x(�0;G0) with active agents A0 such that A0 � A: Then,
Pn
i=1 x

0
i �

Pn
i=1 xi.

Thus, we can compare a wide set of equilibria and �nd that total play drops when � is higher

or G has more links. The conditions of Proposition 6 hold when the new parameter values are

�close enough� so that no new agents are active. The existence of such a close-by equilibrium

when G = G0, for example, is guaranteed for almost any � if the increase in � is small.50

Comparative statics of individual actions, on the other hand, are generally non-monotonic.

We show the direct and indirect e¤ects of a change in one player�s action are perfectly aligned

if and only if G is bipartite (see Appendix). This result comes from the classic property that a

graph is bipartite if and only if it has no odd cycles. On bipartite graphs, a positive shock on

i�s action eventually leads to a decrease in the actions of every agent on the other side and to an

increase in the actions of every agent on his side. In contrast, if G is not bipartite some direct

and indirect e¤ects must go in opposite directions.

VII. Many More Games

Our analysis generalizes and applies to many more games. Recall in our basic model that gij =

gji 2 f0; 1g and xi = x for all i. The payo¤ impact parameter is a positive constant � 2 [0; 1],

which combined with gij > 0 for all ij gives strategic substitutes. We show �rst how our results

directly extend to a strategic substitutes game with weighted graphs gij = gji 2 [0; 1] and

heterogeneous autarkic play.

We then consider three substantively di¤erent settings. In the �rst, agents have idiosyncratic

payo¤ impact parameters �i: One example is games where agents care about the average of others�

50For almost any �; if A is the active set of agents for an equilibrium for � and G there exists " > 0 such that if
j�0 � �j � ", A is also the active set of agents in an equilibrium for �0 and G.
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play, which are ubiquitous in economics. With quadratic payo¤s, best replies are linear, and the

impact parameters are heterogeneous and depend on an agent�s position in the graph. Second,

we consider strategic substitutes and complements. Pure complements have been analyzed in

previous literature; the analysis is relatively straightforward, and our tools easily apply. For

the more complicated general setting with any mix of substitutes or complements, we show how

results extend. Finally, we discuss games with non-linear best replies.

Heterogeneous autarkic play and weighted graphs. Consider the model in the text with

heterogeneous autarkic play xi and a weighted graph gij = gji 2 [0; 1]. The best-reply is now

fi(x) = max

0@0; �xi � � nX
j=1

gijxj

1A
where �xi > 0 8i and � 2 [0; 1]. Let �x � (�x1; : : : �xn). This model captures at least two well-

known games, written in a network form: (a) a linear-demand Cournot model with di¤erentiated

products where �rms have di¤erent marginal costs, and (b) strategic private provision of public

goods à la Bergstrom, Blume & Varian (1986) where consumers have di¤erent incomes.51

Our equilibrium analysis directly extends. The Nash conditions in Proposition 1 hold. The

potential here is '(x) = xT�x � 1
2x

T (I + �G)x. Since the Hessian, r2'; is not a¤ected by �x,

all the results for unique and stable equilibria� Propositions 2, 3, and 4� apply as in the basic

model.

Only the comparative statics results have to be modi�ed. Now for an equilibrium x; '(x) =

1
2

Pn
i=1 �xixi. We weigh individual actions by their thresholds and compare divergences from

autarkic play. E.g., for a given � and G and a global maximum equilibrium x�(�;G), there is a

decrease in weighted total actions for �0 � � and G a subgraph of G0; i.e.,
Pn
i=1 �xix

�
i (�

0;G0) �Pn
i=1 �xix

�
i (�;G). Furthermore, we have clean comparative statics with respect to �x; the weighted

sum of actions increases weakly when individual thresholds increase.

Heterogenous payo¤ impacts and �linear-in-means�games. We now study games where

51To see this, let each individual have Cobb-Douglas utility and allocate income, wi, between private good
consumption, qi, and public good provision, xi. Let p the relative price of the public good. Bene�ts from the
public good are �ow to neighbors, weighted by � 2 [0; 1]. Individual i then maximizes Ui = q�i (xi+�

P
i gijxj)

1��

subject to the budget constraint qi + pxi � wi. Simple computations yield the correspondence with �xi = 1��
p
wi

and � = ��. Note that even if � = 1, � < 1. When own and neighbors�contributions are perfect substitutes in
payo¤s Ui, they are imperfect substitutes in the best reply function.
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the impact of others�play, captured in �, can vary across agents. Thus far, we have considered

games where a agent i�s best response is linear in the weighted sum of his neighbors� play,

�
P
j gijxj . In many economic applications, the parameter � may not be the same across all

agents and may depend on an agent�s graph position. For each agent i, we have �i(G) and i�s

linear best reply involves �i(G) �
P
j gijxj : We can use our techniques to study any such game.

Consider, for example, settings where agents care about the average play of other play-

ers. Many games in microeconomics and macroeconomics� coordination games/beauty con-

tests/social interactions games/investment games� have this feature. In many models, agents

also have quadratic payo¤s.52 While in some settings agents desire to coordinate their actions,

other settings involve strategic substitutes, as when agents want to invest in di¤erent technolo-

gies. The standard treatments do not include networks, but a network treatment could transform

the analysis. It would allow for social, geographic, and information structures and for mixes of

strategic substitutes and complements. We call such models linear-in-means games. For each

agent i, �i(G) = � 1ki , where � is a constant and recall ki is the number of i�s neighbors, and i�s

best reply is

fi(x) = max

0@0; 1� � 1
ki

0@ nX
j=1

gijxj

1A1A ;

with � 2 [0; 1]; gij = gji 2 f0; 1g, and 8i; ki 6= 0. When G is not regular so that agents may have

di¤erent numbers of neighbors, 1ki gij 6=
1
kj
gji, and the game with (modi�ed) quadratic payo¤s ~Ui

does not have a potential. But by appropriate rescaling of the payo¤s, we obtain a �weighted

potential,�in the terminology of Monderer & Shapley (1996). De�ne e�i = ki ~Ui. The game with

payo¤s e�i has the same best-replies and equilibria as the game with payo¤s ~Ui. And we can
easily see that@

2e�ii(x)
@xi@xj

= @2e�i(x)
@xj@xi

for all i 6= j. So this modi�ed game has a potential function:

'(x) =
P
i(kixi � 1

2kix
2
i )� 1

2�
P
j gijxixj .

We derive conditions for unique and stable equilibria as follows: Introduce the network ~G such

that ~gij =
gijp
ki
p
kj
. The potential is then strictly concave if and only if � < �1=�min(~G). The

uniqueness condition now includes the absorptive capacity of the original graph �normalized�by

agents�degrees. Similarly, the potential is not concave if and only if � > �1=�min(~G), and the

results on multiple and corner equilibria apply. The stability results in Section IV all hold, again

52See discussions and models in, for example, Glaeser & Scheinkman (2003) and Angeletos & Pavan (2007).
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using ~G:

As for comparative statics, observe that if x is an equilibrium, '(x) =1
2

P
i kixi. Thus, com-

paring across global maxima, if � increases, the sum of individual actions weighted by degrees

decreases weakly.53 In contrast, the e¤ect of adding links to the original graph G is not imme-

diate. Connecting two agents increases their degrees which changes the weights used to compute

the aggregate index. We show in Appendix that this new positive e¤ect dominates the negative

ones.

The rescaling procedure we describe works for any graph gij = gji 2 R and payo¤ impacts

�i(G) and it further indicates a class of directed graphs (gij 6= gji) where our results apply.

Consider a directed graph H and payo¤ impacts i such that for each i and j there are scalars

�i and �j with the property �ihij = �jhji.54 We can de�ne a graph H0 where for all i and j,

h0ij � �ihij = �jhji � h0ji. The analysis of a linear-best response game with graph H is then

equivalent to that of a symmetric graph H0 and idiosyncratic payo¤ impacts �i = i=�i.

Strategic substitutes and complements. First, consider the basic model except gij 2 [�1; 0]

so that we have a game of pure strategic complements.55 The analysis of such games is relatively

simple, as noted in Corbo et al. (2007). If � < 1=�max(�G) there is a unique interior equilibrium.

With xi 2 [0;1), an equilibrium fails to exist if � > 1=�max(�G) since complementarities have an

explosive e¤ect on actions. Since �max(�G) = ��min(G); this result matches Proposition 2. Our

results also show this unique, interior equilibrium (when it exists) is stable. Comparative statics

are also straightforward. Following an increase in one agent i�s action, i�s neighbors increase

their actions, then their neighbors increase theirs, and so on. Our analysis thus con�rms what

we already know, via a di¤erent route.56 However, these clear-cut results break down as soon as

any substituability is present.

The question then is how to approach a game that is any mix of strategic substitutes and

53The similarity with the model with heterogeneous thresholds is not a coincidence. Apply the change of variables
yi = xi=

p
ki. Then e�i = (ki)3=2yi � 1

2
y2i � �

P
j ~gijyiyj . This corresponds to a model with thresholds �yi = (ki)

3=2.
Then,

P
i �yiyi =

P
i kixi. These thresholds, however, are determined by the network.

54This property holds if and only if in H, for every triangle i; j; k; hij � hjk � hki = hik � hkj � hji; that is, for a
triangle the product of bilateral links is the same clockwise and counterclockwise.
55There are strategic complementarities when for all ij : gij � 0 and � � 0, or gij � and � � 0:
56The potential is strictly concave if and only if � < 1=�max(�G). Proposition 2 shows that uniqueness holds in

that range. Because of the change of sign, Proposition 5 now says that aggregate action increases as complemen-
tarities increase.
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strategic complements; i.e., gij = gji 2 R. Because of complementarities, existence of a Nash

equilibrium is not always guaranteed when xi 2 [0;1). One fruitful approach is to bound the

action space. With xi 2 [0; l], we have best-reply

fi(x) = min

0@l;max
0@0; 1� � nX

j=1

gijxj

1A1A :

An equilibrium exists for any � and G, and the potential and its properties are unchanged.

However, we have new constraints on the problem (P). Our uniqueness and stability results then

apply with appropriate reformulation of boundary conditions.

Non-Linear Best Replies. Our analysis can be applied, locally, to any continuous potential

game (see Appendix). Consider a game � with xi 2 R+ and payo¤ function Vi.57 Construct a

game e�[x] where the payo¤s are given by the second-order Taylor approximations of the payo¤s
Vi around x. Then, best-replies of e�[x] are linear and approximate ��s best-replies around x;
they capture the precise shape of strategic interactions around x. Thus, x is a Nash equilibrium

of � if and only if it is a Nash equilibrium of e�[x]. Furthermore, e�[x] is a potential game when
� is a potential game, in which case it can be analyzed using our techniques and results. The

study of e�[x] may then provide relevant information for the study of �. In particular, because
the Hessians of the potentials are the same, when x is stable in e�[x] it is stable in � and the
stability properties are usually equivalent. Future research, discussed next, will explore further

such relationships.

VIII. Conclusion: Future Research

This paper brings a general network analysis to a wide class of games. A graph, or interaction

matrix, gives whose actions directly a¤ect whom. This matrix can represent, variously, social

links, geography or market structure. We unify two strands of previous work and study games

that have the same linear best replies. A canonical game in this class is one with quadaratic

payo¤s. Since all games in the class have the same best replies, they have the same equilibria.

We derive equilibrium conditions for any graph and any level of payo¤ impact, using the theory

57As in the rest of our analysis, Vi is required to be twice continuously di¤erentiable and @2Vi=@x2i < 0.
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of potential games and spectral graph theory.

We uncover a network measure that is fundamental to equilibrium analysis: the lowest eigen-

value. This eigenvalue captures what we call the absorptive capacity of the graph. The network

is most absorptive when everyone is linked to everyone. It is least absorptive when it is complete

bipartite, with as equal-sized sides as possible, and all agents are not linked to agents on their

side but are linked to everyone on the other side. We �nd that when absorptive capacity is high,

the graph contains the impact of agents�play on others, and there is a unique equilibrium. When

absorptive capacity is low, payo¤ impacts are not contained by the graph, and there is always an

equilibrium that involves extreme play. Except for highly absorptive graphs, stable equilibria are

never symmetric or interior.

These results give a general intuition that outcomes are likely to be highly asymmetric and

involve small sets of active agents. Only for very dense, highly clustered social structures are we

likely to see equal distribution of e¤orts. The �ndings thus reinforce the notion of the �The Law

of the Few�coined by Gladwell (2000) to describe the many cases he studies where a few people

do most of the work or have a large in�uence. Bramoullé & Kranton (2007) and Goyal & Galeotti

(2010) also emphasize such asymmetric outcomes. The present paper provides general results and

shows that such asymmetries arise for wide range of payo¤ impacts and graph structures.

There are several directions for future work. Theoretical research could take two tacks. First,

we will consider games where payo¤ functions do not yield linear best-replies. As discussed above,

our analysis can be applied locally to any potential game. In addition, we can see that Lemmas

1 and 2 apply more generally;58 hence, this analysis is a stepping stone for a global analysis of

a wider game class. A second theoretical tack is to study network formation. The analysis here

is again a stepping stone: if agents could make and break links, any equilibrium of such a larger

game is an equilibrium of the �xed-network game.59

The paper also provides predictions for empirical and experimental work. With small numbers

of actors, the equilibrium set can be reasonably estimated for di¤erent graph structures and

hypothesized payo¤ impact levels. For any given network, researchers can also calculate the

lowest eigenvalue and use it either to test predictions or calibrate their models. The analysis

58Lemma 1 holds for any continuous potential game, and Lemma 2 holds for continuous potential games when
equilibria are locally unique.
59That is, if an action vector and graph (x;G) is an equilibrium a network formation game, x must be an

equilibrium of the game where individuals choose actions given G. The same is true for stable equilibria.
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would indicate likely outcomes in geographic, social, or market settings, such as di¤erent product

oligopoly, innovation, and experimentation with new technologies.60 Researchers conducting

laboratory experiments (as in, e.g., Kearns, Suri & Montfort (2006)) can also manipulate network

structure and test if outcomes follow predicted patterns.

60Empirical studies of experimentation and local information spread in networks include Foster & Rosenzweig�s
(1995) study of high-yield crop varieties in India and Conley & Udry�s (2008) study of pineapple farmers in Ghana.
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APPENDIX

Proof of statements in Section II.

The equilibrium set is a �nite union of compact convex sets. Given a subset of agents S, de�ne

ES as the set of equilibria such that (I + �GS)xS = 1 and 8i =2 S; xi = 0. (The set of active

agents, A, is included in S but may be smaller). Let E be the set of equilibria. Proposition 1

implies that E = [SES . Next, show that ES is compact and convex. Note that x 2 ES if and

only if (I + �GS)xS = 1, 8i =2 S; xi = 0 and �GN�S;SxS � 1. Given a converging sequence

of elements of ES , these three sets of conditions still hold when taking the limit. Thus, ES is

closed hence compact. Second, let x;x0 2 ES , � 2 [0; 1] and x(�) = �x+ (1� �)x0. By linearity,

(I + �GS)x
(�)
S = 1, 8i =2 S; x

(�)
i = 0 and �GN�S;Sx

(�)
S � 1. Thus x(�) 2 ES and ES is convex.

QED.

Individuals with a superset of neighbors take lower equilibrium action, for � < 1. Suppose that

� < 1 and that i is connected to j and all j�s neighbors. Suppose �rst that xi; xj > 0. Then,

xi + �(xj +
P
k 6=i;j gikxk) = 1 and xj + �(xi +

P
k 6=i;j gjkxk) = 1. Subtracting both equalities

yields (1 � �)(xi � xj) = �
P
k 6=i;j(gik � gjk)xk hence xi � xj . Suppose next that xj = 0. Then

�(xi +
P
k 6=i;j gjkxk) � 1 hence �(xi +

P
k 6=i;j gikxk) � 1. If xi > 0, then (1 � �)xi + �(xi +P

k 6=i;j gikxk) = 1 which is impossible. Thus, xi = 0. QED.

Proof of statements in Section III.

The best-reply is contracting if and only if � < 1=�(G). Introduce a vector e(x) = 1 � �Gx

such that fi(x) = max(0; ei(x)). We can see that jfi(x)� fi(x0)j � jei(x)� ei(x0)j. For instance,

if fi(x) > 0 and fi(x0) = 0, then jfi(x) � fi(x
0)j = fi(x) while jei(x) � ei(x

0)j = fi(x) � ei(x
0)

with ei(x0) < 0. Therefore, jjf(x) � f(x0)jj � jje(x) � e(x0)jj under the Euclidean norm. Next,

e(x) � e(x0) = ��G(x � x0), and jje(x) � e(x0)jj2 = �2(x � x0)TG2(x � x0). We then apply the

Rayleigh-Ritz theorem, see Horn & Johnson (1985, p. 176). Since �max(�2G2) = �2�(G)2, this

yields: jje(x) � e(x0)jj2 � �2�(G)2jjx � x0jj2. Thus, jjf(x) � f(x0)jj � ��(G)jjx � x0jj and f is

contracting if ��(G) < 1. Reciprocally, since G is nonnegative, it has a nonnegative eigenvector

x0 associated to the eigenvalue �(G), see Horn & Johnson (1985, p. 503). Let x = �x0 and

x0 = �0x0 with �; �0 > 0. If �; �0 are small enough, f(x) = e(x) = 1� ��(G)x and the same holds

for f(x0). Thus, f(x)� f(x0) = ��(G)(x� x0) and f is not contracting if ��(G) � 1. QED.
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Proposition 2 gives a stronger uniqueness condition than previous conditions. Suppose that

�1=�min(G) < �BCAZ(G) and consider � such that �1=�min(G) < � < �BCAZ(G). Ballester,

Calvó-Armengol & Zenou (2006) show there is then a unique equilibrium for � and G and this

equilibrium is interior. By Proposition 3, there exists an equilibrium for � and G which is

a corner. This is a contradiction, hence �1=�min(G) � �BCAZ(G). Next, observe that for

any graph H, kmin(H) � �max(H) � kmax(H) (Cvetkovíc et al. (1979)). This implies that

�max(C�G) � kmin(C�G) = n�1�kmax(G). Hence, 1=(1+�max(C�G)) � 1=(n�kmax(G)).

Then, ��min(G) � �max(G) � kmax(G), hence �1=�min(G) � 1=kmax(G) and �1=�min(G) >

�BCAZ(G) if kmax(G) < n=2. QED.

Proof of Lemma 2. We �rst show that the potential increase along the trajectories of the

system. Here, ddt'(x(t)) =
P
i
@'
@xi
_xi = r'(x) �H(x).

Lemma A1. 8x 2 Rn+, r'(x) � H(x) � 0 and r'(x) � H(x) = 0 if and only if x is a Nash

equilibrium.

Proof. We have: @'@xi = 1��
P
j gijxj�xi and hi(x) = 1��

P
j gijxj�xi if �

P
j gijxj � 1 and �xi

if �
P
j gijxj > 1. Then,

@'
@xi
hi = (1� �

P
j gijxj �xi)2 in the �rst case and xi(�

P
j gijxj �1+xi)

in the second case. Therefore, r'(x):H(x) � 0. Equality occurs i¤ xi = 1 � �
P
j gijxj if

�
P
j gijxj � 1 and xi = 0 if �

P
j gijxj > 1. �

Next, consider a strategy pro�le x. There are three possibilities. First, suppose that x is

not a maximum of the potential. There is a sequence xm 2 Rn+ converging to x such that

'(xm) > '(x). Since ' cannot decrease along trajectories, starting at xm the system cannot

converge back to x. Hence x is not asymptotically stable. Second, suppose that x is a maximum

but is not locally strict. There is then a sequence xm of potential maxima converging to x such

that xm 6= x and '(xm) = '(x). Since xm is an equilibrium, it is a steady state of the system

of di¤erential equations. Thus, starting at xm the system does not converge back to x, and x is

not asymptotically stable.

Third, suppose that x is a locally strict maximum of the potential. If there exists an " > 0 such

that x is the unique equilibrium on BO(x; ") \ Rn+, then we can apply Theorem 6.4 in Weibull

(1995). Precisely, the Lyapunov function is equal to '(x) � '(y) for any y 2 BO(x; ") \ Rn+.

Hence x is asymptotically stable. Thus, we only need to show that x is a locally strict maximum.

Suppose the contrary. There exists a sequence of equilibria xm converging to x such that xm
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is not a potential maximum. Without loss of generality, we can assume that 8k;xm have the

same active agents A since there is a �nite number of subsets of N . Hence (I + �GA)x
m
A = 1

and �Gm
N�A;AxA � 1. Taking the limit shows that (I + �GA)xA = 1 and �GN�A;AxA � 1,

hence that any active agent of x is in A. Therefore, we can write xm = x + ym with ym such

that ymN�A = o and (I + �GA)y
m
A = o. Next, compute '(xm) in two di¤erent ways. First,

'(xm) = 1
2(x

m)T1 = '(x) + 1
2(y

m)T1 since xm and x are equilibria. Second, by de�nition,

'(xm) = '(x + ym) = xT1 + (ym)T1 � 1
2(x + y

m)T (I + �G)(x + ym). The last expression is

equal to (xA + ymA )
T (I + �GA)(xA + y

m
A ) = xTA(I + �GA)xA. Thus, '(xm) = '(x) + (ym)T1.

This shows that (ym)T1 = o. Hence '(xm) = '(x) which contradicts the fact that x is a locally

strict maximum. QED.

Proof of Proposition 4. We analyze the second-order conditions of problem (P). Consider an

equilibrium x with active agents A and knife-edge inactive agents K, such that A [ K = fi :

xi + �
P
j gijxj = 1g and K = fi : xi = 0 and �

P
j gijxj = 1g. The application of Theorems 3.4

and 3.6 in Lee, Tam & Yen (2005) to our setting yields the following result.

Lemma A2. Second-order conditions of problem (P).

x is a maximum of ' on Rn+ i¤ 8" 2 RA[K such that "K � o, "T (I+ �GA[K)" � 0

x is a locally strict maximum of ' on Rn+ i¤ 8" 2 RA[K � fog such that "K � o, "T (I +

�GA[K)" > 0

We derive necessary conditions. Observe that when "K = o, "T (I + �GA[K)" = "
T
A(I +

�GA)"A. Therefore, if x is a maximum then I + �GA is positive semi-de�nite while if x is a

locally strict maximum, I+ �GA is positive de�nite. In contrast, observe that if x is a minimum

of ', then I + �GA must be negative semi-de�nite which is impossible. Therefore, any Nash

equilibrium which is not a maximum of the potential is a saddle point.

When K = ?, the second-order conditions take a simple form: x is a maximum i¤ I+ �GA is

positive semi-de�nite and it is a locally strict maximum i¤ I+ �GA is positive de�nite. We next

show that this situation is generic.

Lemma A3. Given a graph G, for almost every �, there is no knife-edge agent in any equilibrium.

Proof: Take a graph G such that I+ �G is invertible. De�ne Pi(�) = det(I+ �G)[(I+ �G)�11]i.

Consider the classic relation between a matrix�s inverse and its cofactors (e.g. Horn & Johnson

(1985, p.20)). Let mij be the determinant of the submatrix of I+ �G obtained by removing the
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ith row and jth column. Then, Pi(�) =
Pn
j=1(�1)i+jmji hence Pi is a polynomial of degree less

than or equal to n � 1 in �. In addition, Pi(0) = 1 so Pi cannot have more than n � 1 zeros.

Thus, for almost any �, the pro�le y = (I+ �G)�11 is well-de�ned and satis�es 8i; yi 6= 0. Next,

for any equilibrium x, xA[K = (I+ �GA[K)
�11 if det(I+ �GA[K) 6= 0, hence for almost any �,

8i 2 A [K, xi > 0 and K = ?. �

Proof of Statements in Section IV.

The sets of active agents of stable equilibria are minimal for inclusion. Consider a stable equi-

librium x with active agents A. For any y 2 RA, de�ne 'A(y; �;G) = '(ŷ; �;G) where ŷ is such

that ŷA = y and ŷN�A = o and let (PA) be the problem: maxy 'A(y) under the constraints that

8i 2 A; yi � 0. Since x is a locally strict maximum of ', I+ �GA is positive de�nite. Therefore,

'A is strictly concave and xA is the unique solution to the Kuhn-Tucker conditions of (PA). If

x0 is another equilibrium with active agents A0 � A, x0A must solve the Kuhn-Tucker conditions

of (PA), which is impossible. QED.

Proof of Eigenvalue Results 1 and 2. Given its simplicity and independent interest, we

reproduce here the proof provided to us by Noga Alon. By the Rayleigh-Ritz theorem (Horn

& Johnson (1985, p. 176)), �min(G) = minjjxjj=1 x
TGx. Let u be an eigenvector associated

with �min(G) and de�ne v = 1
jjujju. Then, �min(G) = v

TGv =
P
i;j2R gijvivj +

P
i;j2T gijvivj +P

i2A;j2B gijvivj . Next, consider a graphG
0 with less links within R and S and more links between

R and S. Observe that vivj � 0 when i; j 2 R and i; j 2 S, but vivj � 0 when i 2 R; j 2 S. This

means that vTG0v � vTGv. Since �min(G0) � vTG0v, Result 2 follows.

Next, observe that we can cut all links within R and within S and add all links between R

and S. Hence �min is smallest for complete bipartite graphs. Then, if a complete bipartite graphs

connects two groups of sizes p and n � p, we know that �min = �
p
p(n� p) (Cvetkovíc et al.

(1979)), which is lowest when p is equal to n=2 when n even and (n� 1)=2 when n odd. QED.

Proof of Statements in Section VI.

Concentrating action on fewer agents increases overall play. Consider x and x0 two equilibria

with active agents A and A0 such that A � A0. Introduce u = (I + �G)x and u0 = (I + �G)x0.

Observe that 8i; ui; u0i � 1. Compute xT (I+ �G)x0 in two di¤erent ways. First, xT (I+ �G)x0 =

xTu0 =
P
i u
0
ixi. Since A � A0, xi > 0 ) x0i > 0 ) u0i = 1. Therefore, xT (I + �G)x0 =

P
i xi.
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Second, xT (I+ �G)x0 = [(I+ �G)x]Tx0 = uTx0 =
P
i uix

0
i �

P
i x
0
i. QED.

Strict comparative statics. Suppose that �0 > �, G0 = G and '(x; �0;G) and '(x; �;G) have the

same maximum value over Rn+. Since '(x; �0;G) � '(x; �;G), both functions have a common

global maximum x�. This pro�le x� is an equilibrium at � and at �0 and satis�es '(x�; �0;G) =

'(x�; �;G). Since '(x; �;G) = xT1 � 1
2x

T (I + �G)x, we have (x�)TGx� = 0. Hence the active

agents of x� form an independent set of G and x� is specialized. Next, suppose that �0 = �,

G 6= G0 and '(x; �;G) and '(x; �;G0) have the same maximum value over Rn+. Again, both

functions have a common global maximum x�. It now satis�es (x�)T (G0 �G)x� = 0 and no link

in G0 �G connects two active agents of x�. QED.

For � = 1, a specialized equilibrium associated with a largest maximal independent set is a global

maximum of the potential. Suppose that � = 1 and let x be an equilibrium with active agents A.

For an agent i, let Ni(A) be the set of i�s neighbors in A. Then, 8i 2 A, xi +
P
j2Ni(A) xj = 1.

Take a maximal independent set I ofGA. Any agent in A is either in I or connected to an agent in

I. Thus, A =
S
i2Ifig [Ni(A). Therefore,

P
i2N xi =

P
i2A xi �

P
i2I(xi +

P
j2Ni(A) xj) = jIj.

Next, observe that I is an independent set of the graph G, hence is included in a maximal

independent set I 0. This yields:
P
i2N xi � jI 0j and total play in equilibrium is always lower than

or equal to the size of the largest maximal independent set. QED.

Comparative statics on individual play in bipartite graphs. Suppose that G is connected and

bipartite. Consider the model with heterogeneous thresholds. Let x be an interior equilibrium

with � < �1=�min(G). Then, for any j on i�s side, @xj=@�xi > 0 while for any j on the other

side @xj=@�xi < 0. To see why, note that x = (I+ �G)
�1�x, hence @x=@�xi = (I+ �G)

�1ui where

uii = 1 and uij = 0 if j 6= i. SinceG is bipartite, �min(G) = ��(G) and we can write (I+�G)�1 =P+1
k=0(��)kGk. Thus, @xj=@�xi =

P+1
k=0(��)k(Gk)ji where (Gk)ji =

P
l1;:::;lk�1

gjl1gl1l2 :::glk�1i

counts the number of paths of length k connecting j to i. On bipartite graphs, all cycles have

even length. Any path is the union of a shortest path and of cycles. Therefore, if the shortest

distance between j and i in G is even, all paths connecting them have even length. This happens

when j and i are on the same side. Terms for k odd in the sum are equal to zero and @xj=@�xi > 0.

Conversely, if the distance between them is odd they are on di¤erent sides and all paths connecting

them have odd length. Terms for k even are equal to zero and @xj=@�xi < 0. Also, since the
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subgraph of a bipartite graph is bipartite, the result extends to any equilibrium x with active

agents A when � < �1=�min(GA). And if G is not bipartite, it has an odd cycle and direct and

indirect e¤ects are not perfectly aligned. QED.

Proof of Proposition 6. Consider a stable equilibrium x with active agents A. De�ne 'A as

above. Then, 'A is strictly concave and xA is a global maximum of 'A on RA+. Since A0 � A,

1
2

P
i2N x

0
i = 'A(x

0
A; �

0;G0) � 'A(x
0
A; �;G) � 'A(xA; �;G) =

1
2

P
i2N xi. The �rst inequality

comes from the monotonicity of the potential. The second inequality holds because xA is a global

maximum of 'A. QED.

Proof of statements in Section VII.

Linear-in-means. Let D be the diagonal matrix such that dii = ki. Then, the Hessian of the

potential is �(D + �G). For any x 2 Rn, de�ne y such that yi =
p
kixi. We can see that

xT (D + �G)x = yT (I + � ~G)y. Therefore, ' is strictly concave i¤ I + � ~G is positive de�nite.

Next, consider i and j such that gij = 0 and de�neG0 = G+ij. We have: '(x; �;G0)�'(x; �;G) =

xi + xj � 1
2x
2
i � 1

2x
2
j � �xixj � xi + xj � 1

2x
2
i � 1

2x
2
j � xixj = (xi + xj)(1 � 1

2(xi + xj)). Since

xi; xj � 1, '(x; �;G0) � '(x; �;G) for any x. QED.

Games with non-linear best-replies. Consider a game � with strategies x 2 Rn+ and utilities Vi

which are twice continuously di¤erentiable and satisfy @2Vi=@x2i < 0. Fix a pro�le x
� with active

agents A, and introduce ~�[x�] the game with same strategies and payo¤s ~Vi(x) = Vi(x
�) + (x �

x�)TrVi(x�) + 1
2(x � x

�)Tr2Vi(x�)(x � x�). Denote by fi the best-replies of ~�[x�]. We have:

fi(x) = max(0; �xi�
P
j gijxj) with �xi = �

@Vi=@xi
@2Vi=@x2i

(x�)+x�i +
P
j gijx

�
j and gij =

@2Vi=@xi@xj
@2Vi=@x2i

(x�).

This corresponds to the �rst-order Taylor approximation of ��s best-replies. Then, x� = f(x�)

i¤ @Vi=@xi(x�) = 0 when x�i > 0 and @Vi=@xi(x�) � 0 if x�i = 0, which is equivalent to the fact

that x� is an equilibrium in �. Next, suppose that � has a potential  . Observe that Lemma

1 directly extends. Equilibria of � solve the Kuhn-Tucker conditions of problem (	): max (x)

s.t. x � o. Since, @2 ~Vi=@xi@xj(x) = @2Vi=@xi@xj(x
�), ~�[x�] also has a potential '. And indeed,

there exists � 2 Rn such that 8i; j; �igij = �jgji, so our analysis of the linear-in-means case

applies here. In particular, assume that x� has no knife-edge inactive agents. Then, x� is a

locally strict maximum of ' i¤GA is positive de�nite. The second-order conditions of problem

(	) say that if GA is positive de�nite, then x� is a locally strict maximum of  while if x� is a
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locally strict maximum of  , then GA is positive semi-de�nite. Finally, observe that Lemma 2

extends to general games when all equilibria are locally unique. In that case, barring knife-edge

situations, x� is stable in ~�[x�] if and only if x� is stable in �. QED.
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