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Résumé 
Le risque du marché des actions mesuré selon le coefficient bêta suscite un vif intérêt de la part des 

universitaires et des praticiens. Les estimations existantes du coefficient bêta utilisent les rendements 

historiques. De nombreuses études ont démontré que la volatilité implicite du prix des options 

constitue un indice solide de la volatilité future réalisée. Nous constatons que la volatilité implicite des 

options et leur caractère asymétrique sont aussi de bons facteurs prévisionnels du bêta futur réalisé. 

Motivés par ce constat, nous établissons un ensemble d’hypothèses nécessaires pour effectuer une 

estimation du bêta, à partir des moments de rendement implicite des options, en recourant aux actions 

et aux options sur indices boursiers. Ce bêta peut être calculé en utilisant seulement les données 

obtenues sur les options au cours d’une même journée. Il peut donc refléter les changements soudains 

de la structure de la société sous-jacente. 

 

Mots clés : bêta du marché, MEDAF (modèle d’équilibre des actifs financiers), 

historique, budgétisation des investissements, moments non paramétriques. 

 

 

Abstract 

Equity risk measured by beta is of great interest to both academics and practitioners. Existing 

estimates of beta use historical returns. Many studies have found option-implied volatility to be a 

strong predictor of future realized volatility. We .nd that option-implied volatility and skewness are 

also good predictors of future realized beta. Motivated by this .nding, we establish a set of 

assumptions needed to construct a beta estimate from option-implied return moments using equity and 

index options. This beta can be computed using only option data on a single day. It is therefore 

potentially able to re.ect sudden changes in the structure of the underlying company. 

 

Keywords: market beta; CAPM; historical; capital budgeting; model-free 

moments. 
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1 Introduction

Many studies have demonstrated that option-implied volatility is a strong predictor of future volatil-

ity in equity markets. Classic contributions include Day and Lewis (1992), Canina and Figlewski

(1993), Lamoureux and Lastrapes (1993), Christensen and Prabhala (1998), Fleming (1998), and

Blair, Poon, and Taylor (2001). The predictive power of option-implied equity volatility has been

con�rmed recently by Busch, Christensen and Nielsen (2008), who compare option-implied forecasts

with state-of-the-art realized volatility forecasts.1

Volatility is clearly not the only risk measure of interest. The central equity risk concept

is arguably market beta, which captures the covariation of the return on an individual security

with the return on the market portfolio, as approximated by a broad market index. Accurate

measurement of market betas is critical for important issues such as cost of capital estimation,

performance measurement, and the detection of abnormal returns.

The importance of companies� market beta in corporate �nance as well as in asset pricing

raises the question whether option-implied information can be used to compute and predict these

betas. Interestingly, we �nd that option-implied volatility and skewness are good predictors of

future beta, just as previous authors have found option-implied volatility to be a strong predictor

of future volatility. Motivated by this �nding, we establish a set of assumptions under which a

company beta can be estimated from option-implied volatility and skewness measures from equity

and index options.

Existing techniques for beta estimation use historical returns data. These methods thus assume

that the future will be su¢ ciently similar to the past to justify simple extrapolation of current or

lagged betas. There is widespread agreement that betas are time-varying, and historical methods

can easily allow for this. One popular approach uses a rolling window of historical returns to capture

time-variation, while other approaches model the time-variation in historical betas more explicitly

and in a more sophisticated fashion. However, no matter how sophisticated the modeling of the

time-variation in the betas, a historical method may not perform well if historical patterns in the

data are unstable. The appeal of our procedure is that option prices are inherently forward-looking

and therefore contain information on future betas as opposed to lagged betas.

A key strength of our approach is that betas can be computed using closing prices of options

observed only on a single day. This may be an important advantage when a company experiences

major changes in its operating environment or capital structure, in which case historical return

data do not constitute a reliable source for estimating betas. Examples include �rms involved in

mergers or acquisitions, reorganized �rms emerging from Chapter 11, �rms undertaking IPOs or

SEOs, as well as �rms undertaking large-scale expansions and/or major changes in the composition

of debt and equity.

1Papers focusing on other markets include Blair, Poon and Taylor (2001), Ederington and Guan (2002), Figlewski

(1997), Jorion (1995), and Pong, Shackleton, Taylor and Xu (2004). See Poon and Granger (2003) and Granger and

Poon (2005) for surveys.
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We are not the �rst to propose extracting market beta from options. French, Groth and Kolari

(1983) and Buss and Vilkov (2009) combine option-implied volatility with historical correlation to

improve the measurement of betas. However, these approaches relies on conventional correlation

estimates from historical returns. McNulty, Yeh, Schulze, and Lubatinet (2002) emphasize the

problems with historical beta when computing the cost of capital, and propose as an alternative

the forward-looking market-derived capital pricing model (MCPM), which uses option data to

assess equity risk. Siegel (1995) notes the advantage of a beta based on option data, and proceeds

to propose the creation of a new derivative, called an exchange option, which would allow for the

computation of what he refers to as �implicit�betas. Unfortunately the exchange options discussed

by Siegel (1995) are not yet traded, and therefore his method cannot be used in practice to compute

betas. While others have thus suggested various forms of option implied betas, we suggest a new

measure that exclusively uses available options data, and furthermore we are the �rst to conduct a

large scale empirical study of the properties of betas based on option information.

We show that market betas can be computed without using historical correlation estimates

and without the creation of a new derivative, by using prices on existing equity options and index

options. Our proposed beta is computed using option-implied estimates of variance and skewness,

which can be computed using the methods proposed by Bakshi and Madan (2000), Bakshi, Kapadia

and Madan (2003), henceforth BKM, Britten-Jones and Neuberger (2000), Carr and Madan (2001)

and developed further in Jiang and Tian (2005).2 These methods allow us to retrieve the moments

of the underlying distributions for index options and stock options from the cross-section of option

prices. We then use a traditional one-factor model and express the option-implied beta as a function

of the variance and the skewness of the underlying distributions.

We implement this model using option contracts for the hundred components of the S&P100

index as well as data on S&P500 options. Daily option data are obtained from the OptionMetrics

database over the period 1996-2004. We compare the performance of the option-implied beta

with that of historical betas. Although the option-implied betas are computed using only one day

of data, we �nd that they perform well compared to traditional historical beta estimates. The

option-implied betas outperform the historical betas in cross-sectional regressions. For the purpose

of predicting future betas, we �nd that the option-implied betas contain information that is not

contained in historical betas. Interestingly, we �nd that the option-implied betas have signi�cant

predictive power for future betas that extend beyond the options�maturities.

The empirical �ndings in this paper are related to some of the results in the growing literature

on the pricing of equity options, and more speci�cally to results on the di¤erential pricing of

equity and index options. Dennis and Mayhew (2002) and Duan and Wei (2009) �nd that �rms

with high historical market betas have higher negatively skewed risk-neutral distributions. This

paper demonstrates that their result is to be expected because option-implied betas are higher if

the underlying risk-neutral distribution is more negatively skewed. We also demonstrate that a

2See also Jackwerth and Rubinstein (1996).
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stock�s option-implied beta is partly determined by the di¤erence between the skew of the stock�s

risk-neutral distribution and the skew of the index�s risk-neutral distribution. BKM document

di¤erences between the skew of stock and index options. Driessen, Maenhout and Vilkov (2009)

use equity options to obtain correlations between stocks in a parametric setup.

The remainder of this paper is organized as follows. Section 2 discusses the derivation of option-

implied return moments and illustrates their ability to anticipate changes in future betas using the

components of the S&P100. Section 3 establishes a set of su¢ cient conditions for deriving an

option-implied beta using equity and index options data only. Section 4 presents empirical results

comparing the option-implied beta with more traditional estimates computed using daily returns.

Section 5 concludes. The appendix contains a brief description of the derivations of the option-based

moments, as well as a Monte Carlo study of the moment estimators.

2 Option-implied Return Moments and Equity Risk

In this section we show how current option-implied variance and skewness estimates from individual

stock and index options are informative about the future riskiness of a stock. Accurate measurement

of equity risk is critically important, and practitioners as well as academics usually approach this

issue by specifying factor models and estimating the required betas. Factor models and betas are

used by practitioners for a number of reasons. First, they provide a benchmark for performance

measurement, because they indicate the return a portfolio manager ought to have made given

the risk present in his portfolio. Second, factor models provide a benchmark for the detection of

abnormal returns, as is for instance done in event studies. Third, factor models can be used to

determine the required cost of capital.

We �rst discuss how to compute return moments from option prices. Subsequently we discuss

the data and the choices we make with respect to the implementation of these return moments.

Then we document the informativeness of the moments for future equity risk.

2.1 The Link between Option Prices and Return Moments

In this subsection we explain how to compute return moments using option prices. We employ the

methods of Carr and Madan (2001) as used in BKM.3 The key result is that any twice di¤erentiable

payo¤ function can be spanned by a position in bonds, stocks and out-of-the-money options. A

brief overview of this general result is presented in Appendix A.

Let q denote the probability distribution function under the risk-neutral measure. The variance

3See also Bakshi and Madan (2000), Britten-Jones and Neuberger (2000), Derman and Kani (1998) Jiang and

Tian (2009), and Rubinstein (1994).
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and skewness under the risk neutral measure are de�ned as

SKEW �
Eq
h
(R� Eq [R])3

i
V AR3=2

: (1)

V AR � Eq
h
(R� Eq [R])2

i
Using the noncentral moments we can rewrite them as

SKEW =
Eq
�
R3
�
� 3Eq [R]Eq

�
R2
�
+ 2Eq [R]3

V AR3=2
(2)

V AR = Eq
�
R2
�
� Eq [R]2

Following BKM, we de�ne the �Quad�and �Cubic�contracts as having a payo¤ function equal to

the squared return and cubed return respectively, for a given horizon � . The fair values of these

contracts are

Quad = e�r�Eq
�
R2
�

Cubic = e�r�Eq
�
R3
�

Substituting these expressions into the variance and variance and skewness formulas in (2), we get

the option-implied moments

SKEWOI =
er�Cubic� 3Eq [R] er�Quad+ 2Eq [R]3

V AR3=2
(3)

V AROI = er�Quad� Eq [R]2 (4)

BKM show that under any martingale pricing measure, the Quad and Cubic contract prices can

be recovered from the market prices on portfolios of out-of-the-money European calls C(� ;K) and

puts P (� ;K); where K denotes the strike price and � denotes the time to maturity.

The price of the Quad contract is

Quad =

1Z
S

2
�
1� ln

�
K
S

��
K2

C(� ;K)dK +

SZ
0

2
�
1 + ln

�
S
K

��
K2

P (� ;K)dK: (5)

where S is the price of the underlying stock. The price of the Quad contract can be interpreted as

the forward price of volatility.4

The price of the Cubic contract is

Cubic =

1Z
S

6 ln
�
K
S

�
� 3 ln

�
K
S

�2
K2

C(� ;K)dK �
SZ
0

6 ln
�
S
K

�
+ 3 ln

�
S
K

�2
K2

P (� ;K)dK: (6)

4Volatilities derived in this fashion have been studied among others by Britten-Jones and Neuberger (2000), Carr

and Madan (2001), Carr and Wu (2009) and Jiang and Tian (2005). Alternatively, one could use at-the-money

implied Black-Scholes volatility as an estimate of volatility.
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BKM further show that using a third-order approximation the risk-neutral log-return mean can

be approximated by

Eq [R] = er� � 1� e
r�

2
Quad� e

r�

6
Cubic: (7)

This relationship provides the last element required to compute variance and skewness from Quad

and Cubic contracts.

2.2 Data and Moment Estimation

We obtain option data from OptionMetrics which is a comprehensive source of high-quality histori-

cal data for the US equity and index options markets. We extract the security ID, date, expiration

date, call or put identi�er, strike price, best bid, best o¤er, and implied volatility from the op-

tion price �le. For European options, implied volatilities are calculated using mid-quotes and the

Black-Scholes formula. For American options, a binomial tree approach that takes into account

the early exercise premium is employed. In our empirical analysis, we focus on the quotes of the

100 stocks in the S&P100 as of December 31, 2004 and the S&P500 index, for the period January

1, 1996 to December 31, 2004.

Interest rates are taken from the CRSP Zero Curve �le and underlying security prices are

obtained through CRSP. As in Bakshi, Cao and Chen (1997), BKM, and Jiang and Tian (2005),

we use the average of the bid and ask quotes for each option contract, and we �lter out average

quotes that are less than $3/8. We also �lter out quotes that do not satisfy standard no-arbitrage

conditions. Finally, we eliminate in-the-money options because they are less liquid than out-of-the-

money and at-the-money options. We eliminate put options with strike prices of more than 103%

of the underlying asset price (K=S > 1:03), as well as call options with strike prices of less than

97% of the underlying asset price (K=S < 0:97).

Moments are computed by integrating over moneyness. In practice, we do not have a continuum

of option prices across moneyness, and we therefore have to make a number of choices regarding

implementation. We follow Carr and Wu (2009) and Jiang and Tian (2005) in imposing structure

on implied volatilities. Our implementation is speci�cally designed to improve the quality of the

integration procedure. First, as mentioned above, we limit our attention to options on the �rms

in the S&P100 in order to maximize the availability of strike prices and the size of the integration

domain. Second, we only estimate the moments for days that have at least two out-of-the money

call prices and two out-of-the money put prices available. Third, as in Carr and Wu (2009) and

Jiang and Tian (2005), for each maturity we interpolate implied volatilities using a cubic spline

across moneyness levels (K=S) to obtain a continuum of implied volatilities. The cubic spline is

only e¤ective for interpolating between the maximum and minimum available strike price. For

moneyness levels below (above) the available moneyness level in the market, we simply extrapolate

the implied volatility of the lowest (highest) available strike price.

After implementing this interpolation-extrapolation technique we are able to extract a �ne grid

of 1000 implied volatilities for moneyness levels between 1% and 300%. We then convert these
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implied volatilities into call and put prices using the following rule: moneyness levels smaller than

100% (K=S < 1) are used to generate put prices and moneyness levels larger than 100% (K=S > 1)

are used to generate call prices. This �ne grid of option prices is then used to compute the option-

implied moments by approximating the Quad and Cubic contracts using trapezoidal numerical

integration. It is important to note that this procedure does not assume that the Black-Scholes

model correctly prices options. It merely provides a translation between option prices and implied

volatilities. Also note that our implementation follows Jiang and Tian (2005) and is slightly di¤erent

from the one in BKM and Dennis and Mayhew (2002). We document and discuss the bene�ts of

our approach in more detail with the help of a Monte Carlo experiment in Appendix B.

We can in principle compute several option-implied moments for every underlying asset, one

for each available option maturity. For each day, we linearly interpolate using the two contracts

nearest to the 180-day maturity to get the 180-day V AR and SKEW contracts, always using one

contract with maturity longer than 180 days and one contract with maturity shorter than 180 days.

The choice of a 180-day horizon is to some extent based on a trade-o¤ between option liquidity

which is largest for options with 30-90 days to maturity and the relevant horizon for �rm risk,

which is arguably considerably longer.

Panel A in Table 1 presents descriptive statistics of the option data. We report the average �rm

size (market capitalization in billion dollars) and the number of �rms in each industry from our list

of 100 stocks. We also show the average daily option volume, the average number of quotes each

day and the minimum number of quotes per day for call and put options separately. The option

trading volumes are much higher for index options than for individual equation options. It is also

clear that there is substantial industry variation in option trading volumes, with volumes for IT

and telecom much higher than those for materials and utilities.

Descriptive statistics of the option-implied moments are reported in Panels B and C of Table

1. Panel B reports the average standard deviation (annualized) and skewness implied from six-

month options averaged by industry. The average ex-post betas from returns are reported for

reference. Panel C reports the option-implied standard deviation and skewness as well as ex-post

beta averaged by �rm-size decile.

Figure 1 displays some properties of the moments over time. In Panel A we plot the value

of the VIX index during 1996-2004. Panel B plots the S&P 500 option-implied volatility for the

same period. Panel C plots the average of the option-implied volatility across the 100 �rms in the

S&P100. Panel D plots S&P 500 option-implied skewness and Panel E plots the average of the

option-implied skewness for the S&P100 components.

It is reassuring that our measure of S&P500 option-implied volatility in Panel B is very highly

correlated with the VIX in Panel A. The average of the option-implied volatilities for the S&P100

stocks in Panel C is also highly correlated with the VIX. From Panels D and E we can draw

some conclusions regarding skewness. First, the S&P500 option-implied skewness exceeds the

average option-implied skewness of the S&P100 �rms. This �nding is consistent with the results
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in BKM. Note that here and in the rest of the paper, we refer to more negative skewness as higher

skewness. Second, the correlation between option-implied skewness and option-implied volatility for

the S&P500 is -0.06, and the correlation between the average option-implied skewness and average

option-implied volatility for the S&P100 components is 0.05. Finally, while the option-implied

volatility for the S&P500 is strongly correlated with the average option-implied volatility for the

S&P100 components (0.70), the correlation between the two skewness time series is virtually zero.

2.3 Option-implied Moments Predict Future (Ex-Post) Beta

We are now ready to assess the informational content of the option-implied moments for future

equity risk. There is an ongoing discussion on the appropriate choice of factor model and the

empirical performance of alternative factor models, and the appropriate measure of equity risk.

We derive our results in the context of a particular factor model, the Capital Asset Pricing Model

(CAPM). There is evidence in the literature that some multifactor models can improve on the

performance of the CAPM, but this issue remains hotly debated.5 Wemerely note that the academic

literature remains divided about the performance of the CAPM, and that the CAPM is still the

factor model most often used in �nancial practice. In our empirical application, the CAPM performs

relatively well.

We measure the ex-post market beta using the realized betas proposed by Andersen et al.

(2006). While Andersen et al. use high-frequency data, we use daily data to compute the covariance

between the market and the equity as well as the variance of the market. This implementation is

inspired by Schwert�s (1989) construction of a measure of realized volatility. In our main results, we

use six months of daily returns on the S&P500 and on the individual equities to compute ex-post

beta for the six month or 180-day period. This construction is consistent with the choice of 180-day

maturity options discussed above, because presumably 180-day options are most informative for

the distribution of returns over the next 180 days. We also conduct robustness exercises using

one-year and two-year ex-post betas.

In Table 2 we report on forecasting regressions that use various permutations of the option-

implied moments. In all cases coe¢ cients of multiple correlation are reported.6 Because of space

constraints we do not report results for individual companies, but instead we focus on industry

results and �rm-size deciles. Results for individual companies are available from the authors on

request. In Panel A we regress the industry-averaged ex-post beta estimated from the subsequent

six months on today�s option-implied variance (V AR) and skewness (SKEW ) averaged across

industry.7 Subscript m denotes moments implied from S&P500 options and subscript i denotes

5See Campbell, Lo and MacKinlay (1997), Cochrane (2001), Jagannathan and McGratten (1995), Fama (1991),

Ferson (1995, 2004), and the references therein for an overview of this extensive debate. See also Ferson and Korajczyk

(1995) and MacKinlay (1995).
6The conclusions do not change when using the square roots of the adjusted R-squares.
7Correlations are overall somewhat higher when we �rst regress on a �rm-by-�rm basis, and subsequently average

the correlation coe¢ cients.
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option-implied moments from individual equity options.

The results in Panel A are of substantial interest and allow for several conclusions. When using

all four option-implied moments in forecasting beta (in the last column), the resulting coe¢ cient

of multiple correlation is quite high in all sectors and particularly in the Consumer Staples, IT

and Telecom sectors. Second, when considering the four individual moments as predictors, the

individual skewness, SKEWi typically has the highest correlation with ex-post beta. Third, when

comparing the correlation from the two market-based moments with the correlation from the two

�rm-speci�c moments, the latter are always larger.

Consider now Panel B where we regress the average ex-post beta in each �rm-size decile on the

option-implied moments averaged across �rms in the relevant decile as well. The rightmost column

shows that the correlation when using all four moments is smallest for the biggest �rms and quite

large in all the other size-categories. Only SKEWi seems to show a clear pattern across �rm size:

correlations tend to be larger for smaller �rms and smaller for larger �rms.

The �ndings in Table 2 are obtained using six-month (180-day) ex-post betas. A natural ques-

tion is if the options with 180-day maturities have explanatory power for ex-post betas computed

over longer time horizons. We repeated the results in Table 2 using one-year and two-year ex-post

betas. We did not investigate ex-post betas computed over horizons longer than two years because

this excessively reduces the sample period, in view of the fact that the option data are available

only for 1996-2004. Results for one-year and two-year ex-post betas are not reported but available

on request. The results are very surprising. Not only do the moments constructed from options

with 180-day maturities have substantial predictive power for one- and two-year ex-post betas, but

the multiple correlation coe¢ cients are almost uniformly higher than the ones for 180-day ex-post

betas in Table 2. We discuss the implications of this �nding in more detail below.

The main conclusion from Table 2 is that option-implied moments seem to contain a lot of

information about future equity risk as captured by the ex-post realized beta. This �nding begs

the question of how to sensibly combine the information in the moments. We suggest ways to do

so in the next section.

3 Option-Implied Betas

In this section, we show how the univariate variance and skewness from individual equity and

market index options can be aggregated into a single stock-speci�c risk measure. We show that

under certain assumptions, the risk measure can be interpreted as a beta. We also analyze the

potential biases in the option-implied risk measure.

3.1 Factor Models and Beta Estimation

The computation of betas for the CAPM is an issue that is hotly debated. In several classic

applications of the CAPM, betas were computed by running a regression of stock returns on market
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returns, using returns for the past sixty months.8 This technique is still used in many academic and

practitioner approaches to beta estimation. The choice of sixty lagged returns re�ects the tension

implicit in using historical returns to compute betas: on the one hand one would like to use as long

a history as possible to obtain more precise estimates, but on the other hand one does not want to

use older returns data because it is likely that the beta changes over time.

Over the last two decades, the modeling of the time-variation in the market beta has taken center

stage in the CAPM literature. There is by now widespread consensus that beta is time-varying,

although it is less clear how much this time-variation helps the model�s empirical performance out-

of-sample. A number of di¤erent econometric techniques are available to model the time-variation

in the beta.9 While modeling the time-variation in the beta is helpful, it does not address the

criticism that this type of measurement is backward-looking, much like the simple regressions that

use sixty months of lagged returns. But many applications of factor models, such as computing

the cost of capital, are inherently forward-looking. We now show that it is possible to compute

forward-looking betas, using the information embedded in option prices.

3.2 Estimating Market Betas using Option Data: Existing Approaches

The standard estimates of beta derived from historical market returns and individual equity returns

can be written as

�i =
COVi;m
V ARm

= CORRi;m

�
V ARi
V ARm

�1=2
where the moments are computed from times series of historical returns. This is also the method

used when computing ex-post beta in Section 2.3 above.

French, Groth and Kolari (1983) suggest introducing option information in a hybrid estimation

method where the correlation between equity and market return, CORRi;m, is estimated from

historical returns but where the variances are implied from options. We can write

�HY BRi = CORRi;m

�
V AROIi
V AROIm

�1=2
where V AROIi and V AROIm are the option-implied variances implied from option prices on individual

equity options and on index options. We will refer to this as the hybrid beta estimate below. French,

Groth, and Kolari (1983) empirically investigate the performance of the hybrid beta using a single

day of data, and index option data were not available for their sample. Below we provide a more

8See for instance Black, Jensen and Scholes (1972), Fama and MacBeth (1973) and Fama and French (1992, 1993,

1996).
9On modeling time-variation in betas, see Bollerslev, Engle and Wooldridge (1988), Blume (1971, 1975), Bos and

Newbold (1984), Cochrane (2001), Ferson (1995, 2004), Ferson and Harvey (1999), Ferson, Kandel and Stambaugh

(1987), Ghysels (1998), Harvey (1989) and Jagannathan and Wang (1996). See Bauer, Cosemans, Frehen, and

Schotman (2008) for a Bayesian approach. Lewellen and Nagel (2006) advocate estimating conditional betas using

daily or weekly returns and short data windows. Companies such as BARRA provide investors and risk managers

with time varying estimates of market betas.
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extensive empirical investigation of their approach which has also been investigated and extended

by Buss and Vilkov (2009).

Note that the hybrid estimator still requires historical data and so cannot be used for �rms

where little or no history is available. It is also problematic to use it when the nature of the �rm

has changed dramatically, for example following a merger or a major reorganization or expansion

when the correlation between �rm and market is likely to change. McNulty et al. (2002) cite

the sensitivity of the correlation estimates from historical data as a key detractor for corporate

practitioners when using the CAPM for cost of capital computations.

Siegel (1995) circumvents the computation of historical correlations by assuming the existence

of an option to exchange shares in �rm i for units of the market index. From the accounting identity

dollars per share = (dollars per index unit) times (index units per share), one can derive the beta

of �rm i as follows

�i =
V AROIi + V AROIm � V AROIX

2V AROIm

where V AROIX is the option-implied variance implied from the option to exchange index units

for equity shares. Note that this is the method used to imply covariance estimates from range-

based volatility estimates in currency markets in Brandt and Diebold (2006). Unfortunately, since

exchange options are not yet traded, the implicit beta cannot be computed in practice.

Below we argue that betas similar in spirit to Siegel�s (1995) �implicit�betas can be computed

without the creation of a new derivative, by using prices on existing equity and index options.

We will refer to these betas as �option-implied�betas. First we derive an estimator of beta that

relies on univariate moments only. Second, we implement the moment-based beta with the option

moments derived above.

3.3 Computing Betas from the Moments of Stock and Index Returns

Following BKM we assume that the log-return on stock i follows a single factor model of the form

Ri = �i + �iRm + "i (8)

where the market return Rm has mean �m. The idiosyncratic shock "i has zero mean and is assumed

to be independent of the market return Rm.

Consider now the moments of the return distribution. To simplify notation, we do not provide

time subscripts for the moments, but empirically there will be a di¤erent estimate for the moments

at each point in time. We use the conventional de�nition of skewness as the third central moment

divided by the standard deviation to the third power. Using the single factor return structure with
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an independent idiosyncratic term we can write the skewness of Ri as

SKEWi =
E [�i + �iRm + "i � E [�i + �iRm + "i]]3

V AR
3=2
i

(9)

=
�3iE [Rm � �m]

3 + E ["i]
3

V AR
3=2
i

=
�3iSKEWmV AR

3=2
m + SKEW";iV AR

3=2
";i

V AR
3=2
i

From this we can write beta as

�i =

"�
SKEWi

SKEWm

��
V ARi
V ARm

�3=2
�
�
SKEW";i

SKEWm

��
V AR";i
V ARm

�3=2#1=3
(10)

In order to be able to implement an estimator using only moments of Ri and Rm we now make the

identifying assumption that the skewness of the idiosyncratic shock is zero, SKEW";i = 0. Note

that Duan and Wei (2009) make a similar assumption. We can then solve for the market beta of

stock i to be simply

�MM
i =

�
SKEWi

SKEWm

�1=3� V ARi
V ARm

�1=2
(11)

where the MM superscript indicates that the market beta is computed using the moments of the

return distribution.10

Note that expression (11) indicates that the skewness of the market return has to be non-zero

for the market beta to be well-de�ned in this setup. Recall from Figure 1 that the market skewness

is always negative and large in magnitude empirically.

Note also that setting SKEW";i = 0 is a su¢ cient but not necessary condition for using option

information in beta estimation. Thus, even if the SKEW";i = 0 assumption is violated, return

moments may be useful for forecasting, as we saw in Table 2. Moreover, if prior information is

available about the value of SKEW";i then this can be used to estimate beta from (10) rather than

(11).

Figure 2 quanti�es the bias �MM
i � �i as a function of SKEW";i. On the horizontal axis we

let SKEW";i take values on a grid from -0.5 to +0.5. Motivated by the average of the empirical

values in Table 1 above, we set �i = 1, V ARm = :24
2, and SKEWm = �1:44. V AR";i is set equal

to the di¤erence between the average �rm variance and the market variance which is roughly :242.

V ARi and SKEWi can then be computed from V ARi = �
2
iV ARm + V AR";i and (9) which gives

the inputs needed for computing �MM
i in (11). Figure 2 shows that the bias amounts to 10% of the

true beta when the idiosyncratic skewness is close to -0.5 or +0.5. The �gure also shows that the

bias is roughly linear in the idiosyncratic skewness. Assuming that SKEWm is negative, which is

the case empirically, then �MM
i will be biased downward if SKEW";i is positive and vice versa.

10Fouque and Kollman (2009) suggest an implied volatility regression approach to implementing (11).
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It is not straightforward to further verify the appropriateness of the SKEW";i = 0 assumption.

We note that if there is a systematic asymmetry pattern across the idiosyncratic distribution of

�rms, we would expect the moment-based betas to be systematically higher or lower than the

historical betas. This is not the case as we will see in Figure 4 below. However, we do observe

that moment-based betas are slightly more centered around one than historical betas. This �nding

may be due to the assumption of a symmetric idiosyncratic return component, if the idiosyncratic

skewness is negative for low beta stocks and positive for high beta stocks.

At this point (11) is simply a method to compute a market beta using moments. The moments

can be computed using either historical data or option-implied information. We next analyze the

use of option-implied information to compute (11).

3.4 Computing Betas from Option-Implied Moments

Using the option-implied moments from equations (3) and (4) as well as the moment-based beta

estimate in (11), we can compute the option-implied beta of stock i with data on individual stocks

and the index. We get

�OIi =

�
SKEWOI

i

SKEWOI
m

�1=3�
V AROIi
V AROIm

�1=2
(12)

Recall from the conventional beta computations above that

�i = CORRi;m

�
V ARi
V ARm

�1=2
Therefore, in (12), the term

�
SKEWOI

i

SKEWOI
m

�1=3
captures the option-implied correlation. As discussed

above, French, Groth and Kolari (1983) construct betas that combine option-implied volatilities

with historical correlations in an e¤ort to improve beta measurement. They have

�i = CORRi;m

�
V AROIi
V AROIm

�1=2
Our option-implied beta can be thought of as a logical extension of their idea.

The moments computed from options data are risk-neutral moments. The question arises as

to how a beta computed from these moments is related to that computed from physical moments?

Fortunately BKM provide us with useful guidance on the potential bias arising from our use of

option-implied moments as proxies for physical moments. Consider �rst the relationship between

physical and risk neutral variance. BKM show that for the market index

V ARqm � V ARpm(1� 
SKEW p
m

p
V ARpm)

where 
 is the coe¢ cient of relative risk aversion, and the superscripts p and q denote the physical

and risk-neutral measure respectively. If we assume a similar relationship for the individual equity

we can form the ratio used in our beta computation

V ARqi =V AR
q
m � (V AR

p
i =V AR

p
m)

�
1� 
SKEW p

i

q
V ARpi

�
=
�
1� 
SKEW p

m

p
V ARpm

�
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Figure 3 quanti�es the bias �OIi ��i as a function of 
 for three di¤erent values of the idiosyncratic
skewness, SKEW";i: On the horizontal axis we let 
 take values on a grid from 1 to 4. We again

set �i = 1, V AR
p
m = :242, and SKEW p

m = �1:44. V AR";i is set equal to the di¤erence between
the average �rm variance and the market variance which is roughly :242 and SKEWi can then be

computed from V ARi = �
2
iV ARm + V AR";i and (9) which gives the inputs needed for computing

�OIi . Figure 3 provides a number of insights. First, the bias is of course zero when the idiosyncratic

skewness is zero (dot dashed line) and the coe¢ cient of relative risk aversion is zero. Second, the

bias is decreasing with the coe¢ cient of relative risk aversion. Third, recall from Figure 2 that

a negative idiosyncratic skewness creates a positive bias in beta. Thus when the idiosyncratic

skewness is negative, the two biases to some extent cancel each other out (solid line). Fourth, when

the idiosyncratic skewness is positive the bias is the largest. Fortunately, a negative idiosyncratic

skewness due to bankruptcy risk may be the most empirically relevant.

Consider next the relationship between physical and risk-neutral skewness. BKM show that for

the market index

SKEW q
m � SKEW p

m � 
(KURT pm � 3)
p
V ARpm

Assuming again a similar relationship for the individual equity we get

SKEW q
i =SKEW

q
m �

h
SKEW p

i � 
(KURT
p
i � 3)

p
V ARpi

i
h
SKEW p

m � 
(KURT pm � 3)
p
V ARpm

i
If the excess kurtosis is close to zero in individual stocks and in the market returns, this is approx-

imately equal to SKEW p
i =SKEW

p
m. Kurtosis is di¢ cult to estimate reliably from returns as well

as options and we therefore do not attempt to assess the bias arising from nonzero excess kurtosis

here.

Even if the moments are di¤erent under the two measures, the option-implied beta estimates

may be useful for making assessments about beta. This issue also arises in the literature on

volatility forecasting. Even though the implied volatility from options is a risk-neutral volatility

measure, empirical researchers continue to use implied volatility for volatility estimation, because its

forecasting performance is very good. We refer the reader to Britten-Jones and Neuberger (2000) for

further theoretical discussion. As an excellent recent example of this approach, Busch, Christensen,

and Nielsen (2008) �nd that the implied volatility from options works better for forecasting future

volatility than the state-of-the-art model based on lagged realized volatility (from intraday data)

only. This is true in FX, equity and bond markets. This strong empirical �nding obtains in spite

of the fact that the presence of a stochastic volatility risk premium theoretically ought to reduce

the forecasting power of implied volatility.

We thus argue that the usefulness of the option-implied beta is largely an empirical issue. The

(unobserved) di¤erences between the risk-neutral and the physical moments will translate into

empirically measurable estimation and forecasting errors, and the size of these forecasting errors

will determine the method�s usefulness.
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4 Empirical Results on Option-Implied Betas

In this section, we �rst discuss, for all �rms in the S&P100 index, the estimates of option-implied

betas averaged over time. We then give a detailed discussion of the conditional performance of the

option-implied betas using three �rms, namely Disney, Exxon and Verizon. Next we investigate

the cross-section of asset returns using option-implied and traditional beta estimates. Finally, we

compare the ability of option-implied and traditional historical beta estimates to anticipate changes

in future beta. Throughout we also analyze the empirical performance of the hybrid beta proposed

by French, Groth and Kolari (1983).

4.1 Option-Implied and Ex-Post Beta: Unconditional Evidence

As mentioned above, we can in principle compute several option-implied betas for every underlying

asset, one for each available option maturity. However, we choose to focus on a �xed maturity

of 180 days. This choice re�ects a trade-o¤ between option liquidity, which is largest for options

with 30-90 days to maturity, and the relevant horizon for �rm risk, which is arguably considerably

longer.

For each day, we linearly interpolate using the two contracts nearest to the 180-day maturity

to get the 180-day V AR and SKEW contracts, always using one contract with maturity longer

than 180 days and one contract with maturity less than 180 days. Using these contracts, we obtain

estimates of the 180-day option-implied beta �OI using equation (12) for each day t.

As a �rst assessment of the option-implied betas, Figure 4 graphically compares the time-

average option-implied beta with the time-averaged ex-post beta for each �rm. Each �x�marks

the average option-implied beta and average ex-post beta for one of the S&P100 components. The

dashed line is the 45 degree line, and the solid line represents the regression line of ex-post beta

on option-implied beta. Note that the regression �t is remarkably good at 67.5%. The solid line

has a slope of 1.14 and an intercept of -0.212. On average, option-implied betas are slightly more

centered around one than the ex-post betas. However, recall that raw beta estimates are adjusted

towards one in many applications of historical beta, and that the ex-post beta we use is constructed

similarly. See for instance Damodaran (1999, chapter 4), Bodie, Kane and Marcus (2007, p. 284),

and the references therein for more on the motivation for these types of adjustments. If we apply

this sort of adjustment to the realized ex-post betas in Figure 4, the resulting regression line is very

close to the 45-degree line.

We conclude that the correspondence across �rms between option-implied betas and ex-post

betas is high. This is quite remarkable, as the option-implied beta uses only one-day of option data,

and the ex-post beta is computed using daily returns over a six-month period. Encouraged by this

�nding, we proceed by analyzing the cross-sectional and forecasting performance of the option-

implied betas. We start by providing a detailed discussion of the option-implied beta dynamics for

three of the �rms in our S&P100 sample. These results are very di¤erent from the unconditional
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evidence discussed here, and emphasizes the conditional performance of the beta estimates.

4.2 Other Benchmark Betas

When studying the conditional performance of the option-implied betas, we have to formulate

historical benchmark betas. In implementing historical benchmark betas, a number of choices have

to be made. For an overview see for instance Damodaran (1999). For our purpose, two important

choices are the length of the estimation period and the frequency of the return data. With respect

to the choice of data frequency, we are constrained by the fact that we do not have an extensive time

series of option data available. We thus estimate historical betas using daily returns to construct

the most powerful test possible of the option-implied beta.11

With respect to the length of the estimation period, we implement historical beta in a number

of di¤erent ways. Because we use 180-day option-implied beta �OI , the use of 180 daily returns to

compute historical beta is an obvious alternative. On the other hand, many academic studies of the

CAPM have followed the approach of Black, Jensen and Scholes (1972) and Fama and MacBeth

(1973) and computed historical betas using returns for the past sixty months. Industry providers

of betas typically use estimation periods between 2 and 5 years (see Damodaran (1999, p. 88) and

Bodie, Kane and Marcus (2007)). When investigating the robustness of our results with respect

to the estimation window, we �nd that using historical returns estimated using one to �ve years

yields much worse results than using six months (180 days) of daily returns. If we interpret the

180-day historical betas as estimates of the conditional beta, as in Lewellen and Nagel (2006), this

indicates that the conditional historical betas perform better than the unconditional ones obtained

using longer historical windows. Please note that we do not always report historical beta results

for all estimation windows because of space constraints.

4.3 Three Case Studies

We cannot discuss the results for all hundred S&P100 components in detail because of space con-

straints, but we provide a detailed discussion of the forecasting performance for three of the com-

ponents of the index: Walt Disney Corporation, Exxon Mobil Corporation and Verizon Communi-

cations. In Section 4.5, we discuss results for all 100 stocks and we provide more details about the

analysis.

Figure 5 plots the option-implied skewness and volatility for these three companies. Comparing

with Figure 1, it is clear that the volatility for all three companies is positively correlated with

S&P500 volatility. In fact, the correlations are 0.71, 0.78 and 0.48 respectively. Skewness pat-

11The use of daily betas has some disadvantages, see for instance Scholes and Williams (1977). However, in the

event study literature daily data and short estimation windows have been used extensively. See MacKinlay (1997)

for a review. Several recent cross-sectional studies have also started using daily betas, typically constructed using

estimation windows shorter than �ve years. See for example Ang, Chen and Xing (2006), Barberis, Shleifer and

Wurgler (2005), and Lewellen and Nagel (2006).
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terns are more complex and harder to relate to S&P500 skewness. Verizon skewness substantially

increases in the second half of 1998, at a time when S&P500 skewness is also large, but in fact

the overall correlation between the two series is -0.01. Disney skewness increases at the end of

1997 when S&P500 skewness increases, but the overall correlation is 0.01. It is di¢ cult to visually

identify covariation patterns between Exxon and S&P500 skewness; the overall correlation is 0.10.

The left column of panels in Figure 6 presents the time path of betas for Disney. We compare

the option-implied beta with our proxy for the ex-post �realized�beta, which is computed as the

covariance divided by variance for ex-post daily returns over the 180-day period, depicted in the top

row of Figure 6. There is substantial variation in the ex-post betas, and both the option-implied

beta and the 180-day historical beta do an excellent job at capturing this variation. The 180-day

historical beta does slightly better overall. The 5-year historical beta is much too smooth to capture

the variation in the 180-day ex-post beta.

The middle column of Figure 6 presents a similar analysis for Exxon. Once again the 5-year

historical beta does not perform well. The 180-day historical beta substantially outperforms the

option-implied beta. However, closer inspection of the �gures indicates that this result is largely

due to the patterns in ex-post beta during 2000 and 2001, when the ex-post beta becomes very

small and even negative. A negative beta is widely regarded as unrealistic, and therefore indicative

of a problem with our proxy for the ex-post beta. In our opinion, this suggests that it is important

to look beyond the simple correlation between the ex-post beta and the forecasts. In the case of

Exxon, the 180-day historical beta substantially outperforms the option-implied beta when judged

by correlation, but that is only because the 180-day historical beta is equivalent to the lagged

ex-post beta, and therefore ends up being unrealistically small or negative in the period 2000-2001.

The time path for the option-implied betas is much more plausible. See also Lewellen and Nagel

(2006) for negative estimates of historical betas obtained using short data windows.

The right column of Figure 6 presents our �ndings for Verizon Communications. In this case

the option-implied beta substantially outperforms both historical betas, as well as the one-year and

two-year historical beta forecasts that are not included because of space constraints. Note how the

option-implied beta nicely captures the increase in the ex-post beta towards the end of the sample,

even though it overshoots in 2002.

The results from the three case studies encourage a full-scale investigation using the one hundred

S&P100 components. However, they also illustrate that the ex-post realized beta computed over a

relatively short period such as 180 days can produce questionable estimates of the true but unknown

beta. This caveat is important when interpreting the results below. The three case studies also

illustrate that the option-implied betas contain a certain amount of high-frequency noise when

estimated from only one day of options data. We could reduce this noise by estimating the option-

implied betas using several days of options. However, in order to be as transparent as possible, all

the option-implied betas below are estimated using just one day of options data.
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4.4 The Cross-Section of Returns

Perhaps the most important implications of factor models are cross-sectional. We therefore inves-

tigate the cross-sectional performance of the option-implied betas, even though our sample of one

hundred �rms observed over nine years is far from ideal to study the cross-section. We regress

average 180-day excess returns on average beta in the spirit of Black, Jensen and Scholes (1972).

Table 3 presents the results. In Panel A we report the cross-sectional regressions year-by-year.

We show results for three di¤erent beta estimates: option-implied beta, historical beta using 180

days of returns, and hybrid beta using option-implied volatilities but correlations from 180 days

of returns. We �nd that the model�s cross-sectional performance deteriorates when computing

historical and hybrid betas using longer windows.

Consider �rst the regressions using historical betas. Note that the slope coe¢ cient is positive

for the 1996-1999 years, negative for the 2000-2002 years, and then again positive for the 2003-2004

years. The market movements surrounding the bursting of the dot-com bubble in 2000-2002 are

clearly di¢ cult to reconcile with the single-factor model. This pattern is also observed when using

option-implied beta. We boldface the R2 for option-implied beta and hybrid beta when it is larger

than the R2 from historical beta. Notice that the option-implied beta almost always has a larger

R2 than the historical beta. This is not the case for the hybrid beta.12

Panel B reports results for the overall 1996-2004 period. Given the negative slopes on beta

during 2000-2002, we also report results for three subperiods. For the overall sample, the slope

is positive but small and the �t is better when using historical beta. Figure 7 shows the mean

excess return scattered against beta when using option-implied and historical beta respectively.

The two beta estimates perform very similarly on the �rst subsample, whereas the option-implied

beta performs best on the most recent subsample, perhaps because the options markets are getting

more liquid over time. The 2000-2002 period appears as an anomaly with a negative relationship

between returns and beta for both beta estimates.

It is not straightforward to relate our results to the available literature for a number of reasons.

First, we use a short sample because of the limited availability of option data. Second, we use

individual stock returns rather than portfolios.13 Third, we use 180-day returns while most of the

literature uses monthly returns. Fourth, we investigate a relatively small cross-sectional sample.

Fifth, our sample is limited to large cap stocks and therefore the cross-sectional application has

limited power to test a given model. For the purpose of this study, we merely conclude that the

option-implied beta has signi�cant explanatory power in the cross-section. This is quite remarkable

given that the option-implied betas are estimated using only one day of option data.

12We recognize that having a high R2 when the slope estimate is negative is not necessarily desirable.
13 It is well-known that assessing the performance of the CAPM using individual stocks is subject to testing problems

related to measurement error in the betas. See Black, Jensen and Scholes (1972) for an early discussion of this problem.

We limit ourselves to one hundred stocks because we want to use liquid option contracts.
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4.5 Anticipating Ex-Post Realized Beta

We started the empirical investigation in Section 2.3 by assessing the ability of option-implied

moments to track changes in future beta. We then derived a new beta estimator using the option-

implied moments. In this section we close the loop and assess the ability of option-implied beta to

anticipate changes in future beta.

Consider Table 4. We run multivariate regressions of ex-post beta on historical beta and either

option-implied or hybrid beta, for each �rm in the S&P100.14 We report for each industry the

proportion of stocks where the estimated coe¢ cient for OI or HY BR respectively is statistically

signi�cantly estimated. OI refers to option-implied beta and HY BR refers to using option-implied

volatilities but historical return correlations. Panel A reports results when the 180-day historical

beta is used as the benchmark. Panels B and C repeat the exercise using the 1-year and 5-year

historical betas respectively as a benchmark. In each panel, we report on three di¤erent forecasting

horizons: 180 days, 1 year and 2 years. This is inspired by the somewhat surprising empirical

results discussed in the context of Table 2. While the performance of the option-implied moments

for 180-day ex-post betas in Table 2 is impressive, the performance improves even more when using

one-year and two-year ex-post betas.

First consider Panel A. Of the 100 stocks we investigate, 32% have statistically signi�cant

loadings on the option-implied beta at the 180-day forecast horizon, even though the historical

beta is included in the regression. When the horizon of interest increases from 180 days to 365 days

and 730 days, this percentage improves to 38% and 56% respectively. Panel A also reports results

for hybrid beta, where the correlation used for computing the hybrid beta is computed using either

180 days, 1 year or 5 years of daily returns. Clearly the hybrid beta performs well. When forecasting

180-day ex-post betas, the percentage of signi�cant estimates is 32% when computing correlation

using 180 days of data. The percentages are 26% and 39% when correlations are computed using

1-year and 5-year windows respectively.

The performance of the option-implied as well as hybrid betas improves when forecasting one-

year and two-year ex-post betas. These results are consistent with the results for forecasting using

return moments reported in Table 2, and they are somewhat surprising. One potential explanation

is the potential problems with ex-post betas evident from Figure 6. As discussed before, ex-post

betas often take on implausible values when constructed using a short horizon. This is less often

the case when using longer horizons, and this may explain the improved forecasting performance

of the option-implied betas.

Panels B and C use 1-year and 5-year historical betas respectively as a benchmark, instead of

180-day historical betas as in Panel A. The historical betas computed using longer windows have

14When implementing forecasting regressions, one potential problem is overlapping data (see Christensen and Prab-

hala (1998)). Two potential solutions are to use instrumental variable techniques and to use non-overlapping data.

Instrumental variable regressions were noninformative because of the poor quality of the instruments. Regression

results were very similar when using a sample of non-overlapping data based on 30-day betas.
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less forecasting power, as is evident from Figure 6, and as a result the option-implied and hybrid

betas perform relatively better overall.

The improvements provided by option-implied and hybrid betas di¤er across sectors. For the

industrials, consumer discretionary, materials, and IT sectors, they perform well. Their performance

is generally weaker for the consumer staples and health care industries.

In Table 5, we cross-sectionally regress the improvement in correlation o¤ered by option-implied

and hybrid betas on various �rm characteristics. We only report results obtained using the 180-day

historical return as the benchmark, as this is the best performing historical beta. Each regressor is

normalized by dividing by its standard deviation. Note that for all horizons and for both option-

implied and hybrid beta the distance of average ex-post beta from one is negative and signi�cant.

Thus option-implied betas have relative di¢ culty when the ex-post beta is far from unity. This

e¤ect is particularly strong for option-implied beta and was evident already in Figure 4 where on

average the option-implied beta tended to be closer to one than ex-post beta. Note again that the

approach commonly used for historical betas which shrinks the betas toward unity may lessen this

e¤ect.

The mean ex-post beta variable is signi�cant in two of three option-implied beta cases, sug-

gesting that option-implied beta performs better for higher-beta stocks. Firm size is signi�cantly

negative in two of three option-implied columns, indicating that option-implied beta performs bet-

ter for the smaller �rms in the sample. Recall however that all the �rms we consider are large

caps. The option volume is positive in two of the three option-implied columns. This may suggest

that estimates of the option-implied moments will improve as option markets become more liquid.

We therefore expect that as option market liquidity continues to improve, the added value of using

option-implied information to compute beta will increase.

4.6 Combining the Information in Historical and Option-Implied Beta

So far we have focused on comparing betas computed from option prices with those computed from

returns. In this section we instead ask if there is scope for combining the two types of beta. They

are computed using very di¤erent information sets and so it is likely that the option-based betas

complement the information in traditional return-based betas.

In order to assess the potential bene�ts of combining betas we investigate multivariate regres-

sions of ex-post realized beta on the two kinds of betas. The multivariate forecasting regression

is

�REALt;t+H = �1 + �2�
OI
t + �3�

HIST
t + ut;t+H (13)

where �REALt is ex-post realized beta, �HISTt is the (best-performing) 180-day historical beta, and

�OIt is the option-implied beta computed using option prices on day t only.

The results using a horizon H of 180, 365, and 730 days are reported in Table 6. We run pooled

panel regressions of the ex-post beta on the forecasted betas, either by industry or by size decile.

For the industry-based results in Panel A, the coe¢ cient on historical beta is positive and signi�cant

20



virtually everywhere. When using a horizon of 180 days for ex-post beta, the option-implied beta

coe¢ cient is positive and signi�cant in �ve cases. Point estimates are large but usually smaller than

the loadings on the historical betas, indicating that the information in the historical beta is more

important. Looking next at the 365-day horizon, the option-implied beta is positive and signi�cant

in six cases. The results for the 730-day horizon are similar: seven signi�cant option-implied betas.

The results across industries largely con�rm the �ndings from Table 4: the option-implied betas

perform best for the materials, industrials, and consumer discretionary sectors.

These results suggest that the option-implied beta is complementary to the information in

historical beta for predicting future beta. Once again, we obtain the interesting result that options

contain important information for forecasting ex-post betas computed over horizons that exceed

the options�maturities.

In Panel B, both the historical beta and the option-implied betas are positive and signi�cant

in virtually every case. Unlike the case of the industry results, few patterns emerge as a function

of �rm size.

In summary, option-implied betas complement historical betas. Option-implied betas are com-

puted using a very di¤erent information set than the one used for historical betas. This makes

them useful in combination with the historical beta. We emphasize again that the option-implied

beta is computed using only one day of data, and its performance is therefore quite remarkable.

5 Concluding Remarks

Market betas are one of the most important concepts in the practice and theory of �nance, and

for many interesting applications of market betas, such as computing the cost of capital, out-of-

sample performance is key. Currently, market betas are obtained by using regression techniques

on historical data. Many historical implementations use a simple rolling regression approach,

while other approaches allow more explicitly for time-varying betas. However, no matter how

sophisticated the approach, historical betas implicitly assume that the past o¤ers a good guide to

the future.

This paper presents a radically di¤erent approach that extracts betas from option data. Because

option data contain information about the future, this approach is inherently forward-looking. The

approach is inspired by the literature on volatility forecasting, where a number of authors have

compared the forecasting performance of implied volatility with that of more traditional historical

methods. The strength of our approach is that betas can be computed using a single cross-section

of option data, which may be an important advantage when a company experiences (potential)

changes in its operating environment or capital structure.

We test our method using a very conservative approach, by investigating how it compares with

historical methods on average, including stable periods. We �nd that the option-implied estimates

perform relatively well. Option-implied betas that were extracted for equities with liquid options
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often outperform the historical market beta in predicting the future beta in the following period. In

some cases, combining historical betas with option-implied betas further improves results. We also

provide a detailed study of the hybrid beta method proposed by French et al. (1983). Hybrid betas

that combine option-implied volatilities with historical correlations perform very well. Option-

implied and hybrid betas also explain a sizeable amount of the cross-sectional variation in expected

returns.

Much remains to be done. The computation of the option-implied beta uses moments extracted

from options data. While we have made full use of recent innovations in the implementation of these

procedures, and added some innovations ourselves, it may be that the out-of-sample performance

of the option-implied betas can be improved through more e¢ cient estimation of moments. Alter-

natively, it may be possible to better estimate option-implied correlation using the methods of Carr

and Madan (2000). Also, we have not provided an explanation for the relatively poor performance

of option-implied betas for stocks with very small ex-post betas, and the di¤erences in performance

across industries also merit further investigation. Another remaining question is if option-implied

beta performs even better in situations and time periods that can a priori be labeled as inherently

unstable. It may also prove interesting to investigate the optimal combination of option-implied

and historical betas, which is of course related to the previous question. Finally, we note that it

may be possible to compute option-implied betas that are estimated for a particular purpose using

the relevant statistical loss function, for instance in a portfolio model (Granger (1969)).

Our technique can be used for a variety of applications, such as the detection of abnormal

returns in event studies, and the uncovering of abnormal returns for portfolio management. The

very de�nition of the word �event�indicates that some aspects of the �rm or the �rm�s environment

change, and therefore it will prove interesting to contrast the results obtained using option-implied

betas with those obtained using historical betas. One particularly promising application is the

computation of the cost of capital for newly merged companies.

The main focus in this paper has been on forecasting 180-day ex-post betas, which are relevant

for certain applications such as abnormal returns. For other applications, such as cost of capital

calculations, longer-horizon betas may be needed. We plan to investigate the performance of option-

implied betas in this context by using LEAPS as well as option contracts with longer maturities

traded on non-U.S markets. Indeed, our option-implied beta approach allows for the computation

of a complete term structure of beta for each company so long as the options data is available.

We compute option-implied moments and betas using option prices on a given day. While

this is the most obvious and transparent initial approach to investigating the method�s merits, the

performance of the option-implied betas may be improved by adjusting these betas using a pre-

determined rule, or by smoothing betas and/or moments using information extracted from option

prices on other days. The optimal use and optimal smoothing of information contained in option

prices is certainly worthy of further study.

Finally, we have compared and combined the option-implied betas with simple historical betas
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from daily data. Option-implied betas could alternatively be compared and combined with other

methods. Many alternatives exist, including realized betas from intraday data as in Andersen et

al (2006), the GARCH betas in Bollerslev, Engle, and Wooldridge (1988), the stochastic Bayesian

beta in Jostova and Philipov (2005), simple Bayesian adjustments to OLS such as Vasicek (1973),

or commercial beta estimates such as those from BARRA, Bloomberg and Ibbotson.

6 Appendix A: Replicating Payo¤ Functions

Carr and Madan (2001) show that any twice continuously di¤erentiable payo¤ function f(S) can

be replicated with bonds, the underlying stock and the cross section of out-of-the-money options.

For convenience, we replicate their argument here. The fundamental theorem of calculus implies

that for any �xed F

f(S) = f(F ) + 1S>F

SZ
F

f 0(u)du� 1S<F
FZ
S

f 0(u)du

= f(F ) + 1S>F

SZ
F

24f 0(F ) + uZ
F

f 00(v)dv

35 du� 1S<F FZ
S

24f 0(F ) + FZ
u

f 00(v)dv

35 du
Because f 0(F ) is not a function of u we are able to apply Fubini�s theorem

f(S) = f(F ) + f 0(F )(S � F ) + 1S>F
SZ
F

SZ
v

f 00(v)dudv + 1S<F

FZ
S

vZ
S

f 00(v)dudv

Now integrate over u

f(S) = f(F ) + f 0(F )(S � F ) + 1S>F
SZ
F

f 00(v)(S � v)dv + 1S<F
FZ
S

f 00(v)(v � S)dv

= f(F ) + f 0(F )(S � F ) +
1Z
F

f 00(v)(S � v)+dv +
FZ
0

f 00(v)(v � S)+dv

If we set F equal to the initial stock price, F = S0; and integrate over K instead of v, where K is

interpreted as the strike, we are left with the spanning equation

f(S) = [f(S0)� f 0(S0)S0] + f 0(S0)S +
1Z
S0

f 00(K)(S �K)+dK +

S0Z
0

f 00(K)(K � S)+dK

From this equation we see that the payo¤ f(S) is spanned by a [f(S0)�f 0(S0)S0] position in bonds,
f 0(S0) position in shares of the stock and a f 00(K)dK position in out-of-the-money options.
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7 Appendix B: The Accuracy of the Moment Computations

As we do not have a continuum of option prices available to compute the moments, it is inevitable

that certain biases will be induced in the estimation. We conducted a number of Monte Carlo ex-

periments to determine the importance of these biases on the estimation of volatility and skewness,

and we used the results of these Monte-Carlo experiments to guide our empirical implementation.

There are three types of biases that are of particular concern in the estimation of volatility and

skewness: discretization of strike prices, truncation of the integration domain, and asymmetry of

the integration domain. Jiang and Tian (2005) examine the e¤ects of discretization and trunca-

tion on the computation of option-implied volatility. We closely follow their setup and extend their

analysis to the computation of option-implied skewness.

To examine the size of the approximation errors induced by these biases, we generate option

prices using Heston�s (1993) stochastic volatility model (HSV) with standard parameterization

based on the empirical results of Bakshi, Cao and Chen (1997): � = 0:04, � = 2, �v = 0:225 and

� = �0:5. We set the initial instantaneous variance (V ) to be equal to the long-run variance

V = � = 0:04, the initial stock price equal to S0 = 100, and the risk-free rate equal to r = 0:05:

Because we are interested in a 180-day beta, we set the time to maturity equal to 180 days,

T = 180=365. To measure the variance and the skewness of the distribution implied by the HSV

parameterization we use the following approach. To ensure that we do not encounter negative stock

prices or negative variances we use Ito�s Lemma to convert the risk-neutral stochastic volatility

dynamics in HSV to d lnS and d lnV . Once we discretize the equations we get the following risk

neutral dynamics

ln(St+�t) = ln(St) +

�
r � 1

2
Vt

�
�t+

p
Vt
p
�t"St+�t (14)

ln(Vt+�t) = ln(Vt) +
1

Vt

�
(�+ �)

�
��

�+ �
� V

�
� 1
2
�2V

�
�t+

1p
Vt
�
p
�t"Vt+�t

"Vt+�t = �"
S
t+�t +

p
1� �2"t+�t

where �t = 1=252 (assuming that there are 124 trading days in 180 calendar days). By iterating

through these equations 124 times, we can generate a 180-day stock price path. We repeat this

exercise 250; 000 times, calculate the log returns ln
�
ST
S0

�
of each path and compute volatility, which

is equal to 0:2037, and skewness, which is equal to�0:4610: To verify the accuracy of this simulation-
based approach, we compare the call price with strike K = 100 obtained using simulation, CSIM ,

with the closed form solution CHEST . We �nd CHEST = 6:5905 and CSIM = 6:5780.

We now have benchmarks to evaluate the accuracy of our estimation procedure. The �rst

bias we investigate results from the discreteness of the strike prices. To compute the moments

arbitrarily precisely, we need a continuum of option prices from 0 to plus in�nity, while in reality

we only have prices at �xed strike price levels. In the �rst part of this experiment we generate
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HSV call and put prices with di¤erent discrete strike price intervals d ranging from d = 0:1 to

d = 5 using the integration domain [Su�1; Su] with u = 2. The percentage approximation errors

for the volatility and skewness estimates are plotted in the top row of panels in Figure 8 for both

simple trapezoidal integration using only observed prices (dotted line) and for the interpolation-

extrapolation technique of Jiang and Tian (2005) described in Section 2 (solid line). We conclude

that when using the interpolation-extrapolation technique of Jiang and Tian, the bias is negligible

for realistic discreteness.

We next investigate the bias resulting from the truncation of the integration domain. We keep

the strike price interval constant at d = 0:1 and we vary the width of the integration domain

[Su�1; Su] by changing u between 1:1 and 2. The middle row of panels in Figure 8 plots the

percentage approximation errors in the volatility and skewness estimation for simple trapezoidal

integration using only observed prices (dotted line) and for the interpolation-extrapolation tech-

nique (solid line). We see that it is di¢ cult to estimate skewness accurately when the width of the

integration domain is small. Therefore, as mentioned above, we choose a sample of stocks with

liquid option data.

Finally, we investigate the bias induced by the asymmetry of the integration domain, which has

not been investigated in previous studies. This asymmetry presumably has little e¤ect on the mea-

surement of volatility, but it may be important for the measurement of skewness because skewness

in e¤ect compares the two sides of the distribution. If the integration domain is asymmetric, there

is more information about one side of the log return distribution than about the other. To illustrate

the resulting bias, we generate HSV call and put prices with a constant strike price interval d = 0:1

and we vary the integration domain from [Su�1L ; SuH ] where u = 1:6, uL = u�du, uH = u+du and
we vary du between �0:3 and 0:3. The bottom row of Figure 8 plots the percentage approxima-

tion errors in the volatility and skewness estimation for simple trapezoidal integration using only

observed prices (dotted line) and for the interpolation-extrapolation technique (solid line). For the

interpolation-extrapolation technique used the errors are very small for the relevant strike prices.

We conclude from these three experiments that the integration technique introduced by Jiang

and Tian (2005) does a good job of mitigating potential biases. We therefore use this approach in

our empirical implementation.
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Figure 1. Option-implied Volatility and Skewness
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Notes to Figure: Panel A shows the value of the VIX index during 1996-2004. Panel B plots the

S&P 500 option-implied volatility for the same period. Panel C plots the average of the option-

implied volatility for the S&P100 components. Panel D plots S&P 500 option-implied skewness

and Panel E plots the average of the option-implied skewness for the S&P100 components.
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Figure 2. Bias from Idiosyncratic Skewness
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Notes to Figure: We plot the bias �MM
i � �i as a function of SKEW";i. We set �i = 1, V ARm =

:242, and SKEWm = �1:44, based on sample averages. V AR";i is set equal to the di¤erence
between the average �rm variance and the market variance which is roughly :242. V ARi and

SKEWi can then be computed from V ARi = �
2
iV ARm + V AR";i and (9), which gives the inputs

needed for computing �MM
i in (11).
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Figure 3. Bias from Risk-Neutral Variance
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Notes to Figure: We plot the bias �OIi � �i as a function of the coe¢ cient of relative risk aversion
for three di¤erent levels of idiosyncratic skewness, SKEW";i. We set �i = 1, V ARm = :24

2, and

SKEWm = �1:44; based on sample averages. V AR";i is set equal to the di¤erence between the
average �rm variance and the market variance which is roughly :242. V ARi and SKEWi can

then be computed from V ARi = �2iV ARm + V AR";i and (9), which gives the inputs needed for

computing �OIi .
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Figure 4. Mean Ex-Post Beta versus Option-implied Beta
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Notes to Figure: We plot time-averages of ex-post beta for each of the S&P100 components versus

the time-averages of option-implied beta. The averages are computed for the period January 1,

1996 to December 31, 2004. The solid line is the regression line of mean ex-post beta on mean

option-implied beta. The slope of the regression is 1.14 and the intercept is -0.212.
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Figure 5. Option-implied Moments for Disney, Exxon and Verizon
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Notes to Figure: We plot the time series of the option-implied moments needed for computing

the option-implied beta for Walt Disney Corporation (DIS), Exxon Mobil Corporation (XOM) and

Verizon Communications (VZ). The other moments needed are the option-implied volatility and

skewness for the S&P 500 in Figure 1. We use moments for 180-day returns in all cases. The

moments are calculated at a daily frequency for the period January 1, 1996 to December 31, 2004.
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Figure 6. Realized, Option-implied and Historical Beta: Disney, Exxon and Verizon
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Notes to Figure: We plot the time-series of di¤erent types of betas for Disney, Exxon and Verizon

for the period January 1, 1996 to December 31, 2004. The top row plots the time series of ex-post

180-day realized betas (�REAL). On each day a 180-day ex-post beta is computed using the returns

for the following 180 days. The second row plots the time series of option-implied betas. On each

day, a 180-day option-implied beta (�OI) is computed. The third row plots the time series of

180-day historical betas, computed using the previous 180 days of returns. The bottom row plots

the time series of 5-year historical betas, computed using the previous 1825 days of returns.
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Figure 7. Mean Excess Return versus Mean Beta
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Notes to Figure: We plot the average excess return for each of the S&P100 components against the

average option-implied beta (left column) and the average historical 180-day beta (right column).

The averages are computed for three subperiods: 1996-1999 (top row), 2000-2002 (middle row),

and 2003-2004 (bottom row). The solid lines represent the regression of excess return on beta.
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Figure 8. Volatility and Skewness Approximation Error
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Notes to Figure: We plot the percentage approximation errors for the simple integration approach

(dotted line) and the interpolation-extrapolation technique (solid line) of Jiang and Tian (2005).

Heston stochastic volatility call and put prices are generated with parameters (� = 0:04, � = 2,

�v = 0:225, � = �0:5 and V = 0:04). The approximation error is calculated as the percent

di¤erence between the estimated moments and the actual moments. The actual moments are

obtained by generating 250; 000 Heston stochastic volatility 180-day log returns and computing the

sample standard deviation (0:2037) and skewness (�0:4610).
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Number Avg Avg Daily Avg Daily Min Daily Avg Daily Avg Daily Min Daily
Industry of Firms Firm Size Volume # Quotes # Quotes Volume # Quotes # Quotes
Energy 6 48.33 549.73 6.44 5.09 250.17 6.43 4.97
Materials 6 21.67 231.26 5.95 4.43 135.78 6.24 4.73
Industrials 13 44.15 445.22 6.62 4.84 265.62 7.32 4.50
Consumer Discretionary 17 22.18 304.50 6.26 4.82 195.54 6.39 4.98
Consumer Staples 12 61.75 403.13 6.20 4.93 234.82 6.81 4.55
Health Care 10 66.20 638.83 6.97 5.09 336.18 8.27 5.63
Financials 13 58.46 681.83 8.00 5.19 470.97 9.21 5.77
Information Technology 14 81.21 1849.48 9.54 6.49 903.35 10.50 5.72
Telecommunications Services 4 68.25 894.44 6.60 5.75 544.98 6.72 5.78
Utilities 5 11.40 117.14 4.88 4.00 66.63 5.24 4.35
S&P 500 Index 4652.29 27.08 10.00 8731.36 35.92 9.00

STD SKEW Avg Ex- STD SKEW Avg Ex-
Industry 180-day 180-day Post Beta Firm Size 180-day 180-day Post Beta
E e 0 4022 0 4782 0 7997 1 (l ) 0 4499 0 3588 1 0976

Table 1: Descriptive Statistics on Option Data and Moment Estimates

Panel B: Moments Sorted by Industry Panel C. Moments Sorted by Firm Size

Call Options Put Options

Panel A: Market Capitalization and Option Data by Industry 

Energy 0.4022 -0.4782 0.7997 1 (low) 0.4499 -0.3588 1.0976
Materials 0.3455 -0.4368 0.9380 2 0.3925 -0.4370 0.8827
Industrials 0.3343 -0.4711 0.9011 3 0.3398 -0.4641 0.7781
Consumer Discretionary 0.3724 -0.4440 0.9505 4 0.3787 -0.4402 0.9303
Consumer Staples 0.2887 -0.4932 0.5914 5 0.3196 -0.4595 0.7693
Health Care 0.3534 -0.5142 0.8358 6 0.3447 -0.5082 0.9252
Financials 0.3590 -0.6116 1.2329 7 0.3961 -0.5870 1.2341
Information Technology 0.4860 -0.5112 1.4601 8 0.3966 -0.5289 1.2009
Telecommunications Services 0.4266 -0.5034 1.0839 9 0.3136 -0.5870 0.7665
Utilities 0.3010 -0.4964 0.5228 10 (high) 0.3576 -0.6245 1.1880
S&P 500 Index 0.2357 -1.4622

Note: Panel A reports the average firm size and the number of firms in each industry from our list of 100 stocks observed from 
1996 through 2004. It also shows the average daily option volume, the average number of quotes each day, and the minimum 
number of quotes per day for call and put options seperately. Panel B reports standard deviations (annualized) and skewness 
implied from 180-day options averaged by industry. The average ex-post realized betas are also reported for reference. Panel C 
reports the option-implied standard deviation and skewness as well as ex-post realized beta by firm-size decile.



VARm +
SKEWm

VARm + VARi + VARi +
Regressors: VARm SKEWm VARi SKEWi SKEWm SKEWi SKEWi

Energy 0.232 0.009 0.113 0.324 0.232 0.383 0.410
Materials 0.259 0.113 0.057 0.546 0.276 0.548 0.607
Industrials 0.324 0.263 0.177 0.505 0.404 0.522 0.643
Consumer Discretionary 0.045 0.207 0.215 0.516 0.209 0.540 0.573
Consumer Staples 0.175 0.164 0.559 0.108 0.249 0.672 0.754
Health Care 0.057 0.319 0.474 0.071 0.329 0.482 0.578
Financials 0.404 0.115 0.315 0.542 0.413 0.597 0.644
Information Technology 0.013 0.326 0.598 0.087 0.328 0.601 0.687
Telecommunications 0.194 0.104 0.623 0.098 0.227 0.643 0.679

Table 2: Multiple Correlation from Regressing Ex-Post Betas on Option Implied Moments

Panel A. By Industry

Telecommunications 0.194 0.104 0.623 0.098 0.227 0.643 0.679
Utilities 0.124 0.207 0.219 0.287 0.241 0.363 0.489

1 (small) 0.065 0.229 0.317 0.464 0.234 0.557 0.631
2 0.175 0.051 0.086 0.422 0.179 0.427 0.475
3 0.193 0.298 0.438 0.287 0.367 0.494 0.551
4 0.278 0.157 0.200 0.264 0.310 0.340 0.516
5 0.115 0.075 0.469 0.427 0.142 0.612 0.685
6 0.109 0.026 0.317 0.266 0.110 0.427 0.522
7 0.069 0.207 0.552 0.015 0.223 0.553 0.630
8 0.029 0.362 0.439 0.267 0.366 0.467 0.583
9 0.070 0.199 0.493 0.063 0.216 0.494 0.603
10 (big) 0.104 0.207 0.187 0.120 0.239 0.227 0.277

Panel B. By Firm Size

Notes to Table: We first create ex-post realized beta estimates using rolling six-month regressions on daily 
data. We then regress the ex-post beta estimated on the subsequent six months on today's option-implied 
variance (VAR) and skewness (SKEW). Subscript m denotes moments implied from S&P500 options and 
subscript i denotes option-implied moments from individual equity options. 



slope t-stat R2 slope t-stat R2 slope t-stat R2

1996 0.07 1.16 0.02 0.13 5.25 0.07 0.14 4.56 0.04
1997 0.26 9.76 0.14 0.11 2.92 0.05 0.18 2.98 0.05
1998 0.35 15.03 0.16 0.17 13.23 0.10 0.27 13.45 0.12
1999 0.72 9.09 0.34 0.29 8.88 0.25 0.43 8.60 0.23
2000 -0.21 -18.39 0.12 -0.17 -12.84 0.20 -0.20 -14.00 0.19
2001 -0.16 -13.76 0.21 -0.08 -11.32 0.17 -0.10 -9.63 0.16
2002 -0.11 -5.26 0.08 -0.05 -4.03 0.02 -0.05 -3.66 0.01
2003 0.12 3.30 0.16 0.13 6.25 0.13 0.12 5.93 0.10
2004 0.03 1.05 0.01 0.01 0.43 0.00 -0.02 -0.47 0.00

Table 3: Cross-Sectional Regression of Average Realized 180-Day Excess Return on Average Predicted Beta

Panel A: Year-by-Year Regressions

Option Implied Beta Historical Beta Hybrid Beta

slope t-stat R2 slope t-stat R2 slope t-stat R2

1996~1999 0.41 9.75 0.49 0.27 9.88 0.50 0.42 9.67 0.49
2000~2002 -0.16 -5.93 0.27 -0.09 -4.74 0.19 -0.10 -4.42 0.17
2003~2004 0.13 4.57 0.18 0.08 2.91 0.08 0.10 2.70 0.07
1996~2004 0.05 2.36 0.05 0.05 3.95 0.14 0.07 3.86 0.13

Notes to Table: For the 100 firms in the S&P100, we cross-sectionally regress 180-day average excess return on the average predicted 
beta. The excess return is defined as the actual equity return less the 3-month T-bill rate. In Panel A, cross-sectional regressions are run 
for each year of data. In Panel B, we report the full-sample result as well as three subperiods corresponding to before, during and after 
the three years with negative slope coefficients on historical beta in Panel A. Boldface font indicates that the R2 is larger than that of the 
corresponding regression with historical beta.

Panel B: Subperiod Regressions

Option Implied Beta Historical Beta Hybrid Beta



Industry OI HYBR180 HYBR365 HYBR1825 OI HYBR180 HYBR365 HYBR1825 OI HYBR180 HYBR365 HYBR1825

Energy 0.33 0.17 0.17 0.80 0.33 0.33 0.17 0.80 0.50 0.17 0.17 0.80
Materials 0.67 0.67 0.67 0.50 0.83 0.67 0.83 0.33 1.00 1.00 1.00 0.50
Industrials 0.38 0.31 0.38 0.31 0.46 0.54 0.31 0.54 0.77 0.62 0.46 0.77
Consumer Discretionary 0.41 0.59 0.41 0.38 0.41 0.53 0.53 0.38 0.65 0.65 0.53 0.63
Consumer Staples 0.17 0.08 0.00 0.33 0.17 0.08 0.00 0.50 0.50 0.33 0.08 0.58
Health Care 0.20 0.30 0.00 0.56 0.20 0.30 0.30 0.44 0.30 0.20 0.20 0.56
Financials 0.31 0.23 0.15 0.11 0.38 0.23 0.15 0.11 0.62 0.46 0.38 0.22
Information Technology 0.29 0.43 0.36 0.31 0.43 0.36 0.50 0.31 0.36 0.36 0.21 0.23
Telecommunications 0.25 0.00 0.50 0.00 0.25 0.25 0.25 0.00 0.75 0.50 0.25 0.33
Utilities 0.20 0.00 0.00 1.00 0.40 0.00 0.20 1.00 0.20 0.00 0.00 1.00
All 100 Stocks 0.32 0.32 0.26 0.39 0.38 0.35 0.33 0.42 0.56 0.45 0.34 0.54

Industry OI HYBR180 HYBR365 HYBR1825 OI HYBR180 HYBR365 HYBR1825 OI HYBR180 HYBR365 HYBR1825

Energy 0.33 0.50 0.17 0.80 0.33 0.67 0.17 0.80 0.50 0.67 0.17 0.80
Materials 0.67 0.50 0.67 0.17 0.67 0.83 0.67 0.00 1.00 0.83 0.67 0.33
Industrials 0.38 0.23 0.23 0.31 0.62 0.38 0.23 0.46 0.85 0.69 0.46 0.85
Consumer Discretionary 0.41 0.65 0.59 0.44 0.53 0.65 0.76 0.44 0.65 0.65 0.71 0.69
Consumer Staples 0.17 0.17 0.08 0.58 0.25 0.33 0.08 0.67 0.42 0.42 0.17 0.58
Health Care 0.40 0.20 0.30 0.56 0.30 0.30 0.40 0.56 0.40 0.20 0.30 0.56

180-Day Realized Beta 365-Day Realized Beta

Panel A: 180-Day Historical Beta as Benchmark

Table 4: Proportion of Stocks for which Option Implied or Hybrid Betas Predict Realized Beta

180-Day Realized Beta 365-Day Realized Beta 730-Day Realized Beta

Panel B: 365-Day Historical Beta as Benchmark

730-Day Realized Beta

Health Care 0.40 0.20 0.30 0.56 0.30 0.30 0.40 0.56 0.40 0.20 0.30 0.56
Financials 0.31 0.08 0.38 0.22 0.38 0.38 0.38 0.33 0.62 0.38 0.46 0.44
Information Technology 0.29 0.43 0.36 0.31 0.36 0.64 0.57 0.23 0.50 0.29 0.43 0.23
Telecommunications 0.25 0.25 0.50 0.00 0.25 0.50 0.50 0.00 0.75 0.50 0.50 0.33
Utilities 0.60 0.60 0.00 0.75 0.60 0.60 0.00 0.75 0.20 0.20 0.20 0.75
All 100 Stocks 0.36 0.35 0.34 0.41 0.43 0.51 0.41 0.43 0.59 0.48 0.43 0.57

Industry OI HYBR180 HYBR365 HYBR1825 OI HYBR180 HYBR365 HYBR1825 OI HYBR180 HYBR365 HYBR1825

Energy 0.80 0.60 0.40 0.60 0.40 0.40 0.40 0.60 0.80 0.40 0.40 0.80
Materials 0.83 1.00 1.00 0.83 1.00 1.00 1.00 0.67 1.00 1.00 1.00 0.83
Industrials 0.54 0.54 0.46 0.23 0.54 0.54 0.54 0.54 0.69 0.69 0.77 0.77
Consumer Discretionary 0.63 0.69 0.50 0.56 0.63 0.63 0.69 0.75 0.75 0.69 0.75 0.75
Consumer Staples 0.25 0.75 0.67 0.75 0.25 0.67 0.58 0.75 0.50 0.75 0.58 0.75
Health Care 0.44 0.67 0.44 0.78 0.44 0.56 0.00 0.78 0.11 0.00 0.00 0.78
Financials 0.44 0.33 0.44 0.33 0.44 0.56 0.56 0.56 0.56 0.67 0.56 0.56
Information Technology 0.62 0.62 0.54 0.62 0.62 0.69 0.62 0.62 0.77 0.77 0.77 0.69
Telecommunications 0.33 0.33 0.67 0.33 0.67 0.67 0.67 0.33 0.67 0.67 0.67 0.67
Utilities 0.75 1.00 1.00 0.25 0.75 1.00 1.00 0.25 0.25 1.00 0.75 0.25
All 100 Stocks 0.54 0.64 0.57 0.54 0.54 0.64 0.58 0.63 0.62 0.66 0.63 0.71

730-Day Realized Beta

Panel C: 1825-Day Historical Beta as Benchmark

Notes to Table: We run a time series regression of realized beta (180, 365, and 730 day horizons) on historical beta and OI beta for each 
firm in the S&P100. We then report for each industry the proportion of stocks for which the coefficient for OI is significant at 95% 
confidence level based on Newey-West t-stat with 180 lags. We repeat the procedure by replacing the OI beta with HYBR betas computed 
over horizons of 180, 365, and 1825 days. OI refers to option-implied beta and HYBR refers to using option-implied volatilities but 
historical return correlations. We report the results when the historical betas are computed over 180, 365, and 1825 day horizons in Panels 
A, B, and C respectively.

180-Day Realized Beta 365-Day Realized Beta



Regressor OI HYBR OI HYBR OI HYBR
Constant -0.336 0.002 -0.249 0.020 0.102 0.142

(-2.65) (0.03) (-1.84) (0.29) (0.68) (1.84)
Firm Size -0.197 -0.067 -0.159 -0.050 -0.116 -0.043

(-4.00) (-2.63) (-3.01) (-1.91) (-1.95) (-1.42)
Option Volume 0.169 0.075 0.128 0.044 0.087 0.026

(3.07) (2.64)  (2.15) (1.48) (1.31) (0.77)
Mean (REALB) 0.127 -0.006 0.112 0.011 0.011 -0.017

(3.08) (-0.26) (2.53) (0.48) (0.22) (-0.67)
| Mean (REALB) - 1 | -0.163 -0.043 -0.156 -0.045 -0.153 -0.060

(-4.61) (-2.39) (-4.08) (-2.34) (-3.59) (-2.73)
Std (REALB) 0.002 0.024 -0.005 0.012 0.027 0.017

(0.06) (1.26) (-0.12) (0.60) (0.62) (0.75)
R2 0.35 0.13 0.26 0.09 0.15 0.10

Table 5: Improvement in Correlation Regressed on Firm Characteristics

Notes to Table: We cross-sectionally regress the improvement in correlation from using OI and HYBR 
beta versus 180-day historical beta on various firm characteristics. HYBR refers to the 180-day hybrid 
beta. Each regressor is normalized by dividing by the standard deviation.

180-Day Realized Beta 365-Day Realized Beta 730-Day Realized Beta



Constant OI HIST R2 Constant OI HIST R2 Constant OI HIST R2

Energy 0.179 0.219 0.475 0.28 0.294 0.242 0.347 0.23 0.468 0.305 0.114 0.19
(1.70) (2.78) (4.95) (3.14) (3.64) (4.01) (4.78) (5.40) (1.35)

Materials 0.195 0.286 0.491 0.54 0.230 0.330 0.430 0.63 0.263 0.401 0.341 0.65
(3.53) (5.18) (12.73) (4.54) (6.52) (13.37) (4.51) (7.71) (8.62)

Industrials 0.319 0.230 0.424 0.30 0.331 0.258 0.393 0.39 0.371 0.266 0.350 0.40
(5.59) (5.58) (6.31) (6.65) (6.14) (7.85) (7.38) (6.51) (8.12)

Consumer Discretionary 0.438 0.188 0.344 0.25 0.488 0.190 0.297 0.28 0.591 0.176 0.222 0.26
(8.31) (6.57) (7.19) (9.05) (7.00) (6.26) (11.63) (6.52) (4.98)

Consumer Staples 0.217 -0.004 0.634 0.43 0.229 0.040 0.560 0.42 0.218 0.138 0.422 0.34
(5.06) (-0.10) (15.64) (5.38) (1.05) (14.35) (5.23) (3.88) (11.77)

Health Care 0.378 -0.019 0.563 0.33 0.398 0.026 0.479 0.33 0.430 0.129 0.294 0.23
(6.31) (-0.48) (11.84) (6.54) (0.68) (9.40) (8.42) (3.53) (6.09)

Financials 0.293 0.033 0.724 0.56 0.372 0.022 0.663 0.52 0.466 0.006 0.596 0.49
(5.95) (1.03) (18.48) (6.63) (0.62) (16.16) (7.86) (0.17) (14.31)

Information Technology 0.546 0.184 0.447 0.33 0.650 0.143 0.404 0.31 0.859 0.055 0.334 0.22
(7.40) (4.56) (9.36) (8.74) (3.58) (9.06) (11.97) (1.45) (8.23)

Telecommunications 0.112 0.046 0.859 0.58 0.192 0.026 0.791 0.60 0.381 0.009 0.628 0.43
(1.29) (0.73) (6.49) (1.85) (0.41) (5.00) (3.94) (0.10) (3.64)

Utilities 0.117 0.176 0.573 0.43 0.194 0.233 0.411 0.36 0.292 0.308 0.202 0.32

Table 6: Multivariate Beta Prediction Panel Regressions

180-day Realized Beta 365-day Realized Beta 730-day Realized Beta

Panel A. Industry

Utilities 0.117 0.176 0.573 0.43 0.194 0.233 0.411 0.36 0.292 0.308 0.202 0.32
(1.59) (1.77) (7.37) (2.30) (1.98) (4.12) (3.23) (2.39) (2.09)

1 (small) 0.324 0.277 0.426 0.43 0.369 0.269 0.399 0.50 0.448 0.252 0.360 0.48
(4.70) (7.35) (7.84) (5.99) (6.60) (8.57) (7.34) (5.89) (8.54)

2 0.293 0.197 0.453 0.30 0.394 0.195 0.376 0.28 0.538 0.224 0.221 0.23
(4.05) (3.09) (6.05) (5.45) (3.40) (4.74) (7.22) (4.31) (2.74)

3 0.153 0.117 0.683 0.55 0.195 0.137 0.623 0.56 0.258 0.163 0.545 0.51
(2.98) (2.15) (10.32) (3.71) (2.63) (9.55) (4.54) (3.44) (8.35)

4 0.098 0.162 0.726 0.60 0.166 0.153 0.654 0.60 0.263 0.175 0.528 0.51
(1.47) (3.69) (7.69) (2.27) (3.87) (6.21) (3.88) (3.58) (4.87)

5 0.228 0.104 0.605 0.43 0.273 0.119 0.549 0.45 0.306 0.178 0.444 0.42
(5.07) (2.43) (15.57) (5.80) (2.95) (14.86) (5.99) (4.05) (12.28)

6 0.116 0.140 0.714 0.62 0.155 0.153 0.663 0.64 0.220 0.182 0.572 0.61
(2.70) (3.74) (15.13) (3.25) (3.94) (13.78) (4.23) (4.78) (11.74)

7 0.310 0.112 0.645 0.50 0.358 0.112 0.601 0.52 0.468 0.048 0.567 0.48
(4.43) (2.46) (14.94) (5.12) (2.37) (14.83) (6.58) (1.03) (11.62)

8 0.293 0.189 0.566 0.47 0.362 0.172 0.515 0.46 0.484 0.128 0.445 0.40
(4.04) (3.47) (9.25) (4.64) (3.01) (8.49) (6.06) (2.33) (8.00)

9 0.331 -0.042 0.614 0.38 0.347 0.015 0.519 0.36 0.380 0.105 0.344 0.25
(6.97) (-1.23) (14.84) (7.04) (0.45) (12.19) (7.48) (3.16) (7.73)

10 (big) 0.239 0.167 0.630 0.56 0.319 0.158 0.565 0.53 0.439 0.151 0.463 0.44
(3.17) (3.10) (12.47) (4.15) (2.86) (12.87) (5.98) (2.94) (8.93)

Notes to Table: We run multivariate regressions of ex-post beta on forecasted beta. We consider three horizons for the ex-post beta: 
180, 365, and 730 days. We include two betas in each regression: Option Implied Beta (OI) and historical beta estimated on the past 
180 daily returns (HIST). Newey-West t-statistics with 180 lags are in parentheses. We compute t-statistics by running pooled panel 
regressions. In Panel A we pool by industry, in Panel B by firm-size decile. Statistical significance at the 5% level is indicated in bold. 

Panel B. Firm Size
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