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Résumé 

 

Les recherches empiriques standards portant sur la dynamique des sauts dans les rendements 

et dans la volatilité sont plutôt complexes en raison de la présence de facteurs inobservables 

en temps continu. Nous présentons un nouveau cadre d’étude en temps discret qui combine 

des processus hétéroscédastiques et des caractéristiques à concentration élevée de sauts dans 

les rendements et dans la volatilité. Nos modèles peuvent être facilement évalués à l’aide des 

méthodes standards du maximum de vraisemblance. Nous offrons une démarche souple de 

neutralisation du risque pour cette catégorie de modèles, ce qui permet de modéliser 

distinctement les primes de risque liées aux sauts et celles liées aux innovations normales. 

Nous imbriquons nos modèles dans la littérature en établissant leurs limites en temps continu. 

Ces derniers sont évalués en intégrant un échantillon de rendements à long terme de l’indice 

S&P 500 et en évaluant un vaste échantillon d’options. Nous trouvons un solide appui 

empirique en ce qui a trait aux intensités de sauts variant dans le temps. Un modèle avec 

intensité de saut affine dans la variance conditionnelle est particulièrement efficace sur les 

plans de l’ajustement des rendements et de l’évaluation des options. La mise en œuvre de 

notre modèle permet de multiples sauts par jour et les données appuient cette caractéristique, 

plus particulièrement en ce qui a trait au lundi noir d’octobre 1987. Nos résultats confirment 

aussi l’importance des primes liées au risque de sauts pour l’évaluation du prix des options : 

les sauts ne peuvent contribuer à améliorer considérablement la performance des modèles 

utilisés pour fixer les prix des options, sauf en présence de primes de risque de sauts assez 

importantes.  

 

Mots clés : processus composé de Poisson, évaluation du prix des options, 

filtrage, sauts liés à la volatilité, primes de risque de sauts, intensité des sauts 

variant dans le temps, hétéroscédasticité. 
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Abstract 

Standard empirical investigations of jump dynamics in returns and volatility are fairly 

complicated due to the presence of latent continuous-time factors. We present a new discrete-

time framework that combines heteroskedastic processes with rich specifications of jumps in 

returns and volatility. Our models can be estimated with ease using standard maximum 

likelihood techniques. We provide a tractable risk neutralization framework for this class of 

models which allows for separate modeling of risk premia for the jump and normal 

innovations. We anchor our models in the literature by providing continuous time limits of the 

models. The models are evaluated by fitting a long sample of S&P500 

index returns, and by valuing a large sample of options. We find strong empirical support for 

time-varying jump intensities. A model with jump intensity that is affine in the conditional 

variance performs particularly well both in return fitting and option valuation. Our 

implementation allows for multiple jumps per day, and the data indicate support for this 

model feature, most notably on Black Monday in October 1987. Our results also confirm the 

importance of jump risk premia for option valuation: jumps cannot significantly improve the 

performance of option pricing models unless sizeable jump risk premia are present. 

 

Keywords: compound Poisson process, option valuation, filtering; volatility 

jumps, jump risk premia, time-varying jump intensity, heteroskedasticity. 
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1 Introduction

This paper provides a modeling framework that allows for general specifications and easy
maximum likelihood estimation of jump models using asset returns. Our framework allows
for correlated jumps in returns and volatility, as well as time-varying jump intensities, which
may be characterized by a separate dynamic. Our models also allow for time-varying variance
of the normal innovation as well as time-varying jump intensity of the jump innovation. We
allow for multiple jumps each day and we suggest a filtering technique to identify these jumps.
We provide the risk-neutral processes for use in option valuation and we develop continuous
time limits of our discrete time models.
Our framework has certain advantages. First and foremost, the implementation of our

framework is facilitated by the fact that we use a discrete-time approach, and by the way in
which we model the time-variation in the jump intensity. As suggested in Fleming and Kirby
(2003), we directly use GARCH processes as filters for the unobservable state variables. As a
result, various specifications of complex jump models can be estimated on return data using
a standard MLE procedure. Second, because filtering is relatively straightforward, we do not
need to approximate the compound Poisson process as a Bernoulli process, which is a common
practice in several continuous-time studies. We therefore allow for the possibility that there
is more than one jump per time period. We find strong evidence of this, particularly on Black
Monday in October 1987. Third, we can separate the risk premia associated with the jump and
the normal innovation. This follows from our risk-neutralization procedure, which in this way
differs from existing approaches. A fourth potential advantage of our GARCH specification
as compared to a (continuous-time or discrete-time) stochastic volatility specification is that
all parameters needed for option valuation can be obtained from estimation on returns only.
We estimate four different but nested models. The simplest model, which we label DVCJ

(dynamic volatility with constant jumps), has a constant jump intensity. This model is closely
related to the most popular model in the continuous-time literature, the stochastic volatility
with correlation jumps (SVCJ) model, which is studied among others by Eraker, Johannes,
and Polson (EJP, 2003), Li, Wells and Yu (2007), Chernov, Gallant, Ghysels and Tauchen
(CGGT, 2003) and Eraker (2004). The CVDJ (constant volatility with dynamic jumps) has
a time-varying jump intensity, but the normal innovation to the return process is assumed to
be homoskedastic. The DVSDJ (dynamic volatility with separate dynamic jump) model is
the most general model we investigate: both the jump and the normal innovation are time-
varying, and the dynamics are separately parameterized. In this case, the jump intensity
carries its own GARCH dynamic. The DVDJ (dynamic volatility with dynamic jumps) model
is a special case of DVSDJ: both the jump and the normal innovation are time-varying, but
parameterized identically.
To further relate our models to the available literature, Table 1 provides an overview of

some existing empirical studies studying finite-activity jump processes, and indicates how the
four models we propose are related to this literature. The bottom panel of Table 1 indicates
that our four models can accommodate the mechanics of various complex jump specifications
currently used in the literature. Our approach is perhaps most closely related to the discrete-
time approach in Maheu and McCurdy (2004). They find strong evidence of time-varying
jump intensities in individual equity returns. We find similar evidence using equity index
returns, and importantly we provide theory and empirics on option valuation using our jump
models. Duan, Ritchken and Sun (2006) also provide risk neutralization of a GARCH model
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with jumps, but they do not allow for time-varying jump intensities.
Table 1 also indicates that the most complex specifications we propose, the DVDJ and

DVSDJmodels, are closely related to the most complex dynamics investigated in the continuous-
time literature. By providing models with complex dynamics that are straightforward to im-
plement, we are able to contribute to the growing but still limited literature on time-varying
jump intensities. In particular, our estimates using return data can be directly related to the
findings of Bates (2006), and Andersen, Benzoni and Lund (ABL, 2002), who estimate models
that allow for state-dependent jump intensities. Bates (2000), Pan (2002), Eraker (2004), and
Huang and Wu (2004) also allow for state-dependent jump intensities but they use options to
help extract the latent volatility process instead of directly filtering them from the underlying
return. Because implementation of our models is straightforward, we are also able to estimate
models with characteristics that have hitherto not been estimated in the literature. In par-
ticular, we estimate models with time-varying jump intensities and jumps in volatility, while
allowing for multiple jumps per day, and we are able to estimate these models while explicitly
solving the filtering problem using long time series of returns.
Our empirical investigation estimates the four models we propose using twenty years of

daily S&P500 returns, from 1985 through 2004. After estimating these processes using returns
data, we risk-neutralize them and compare their option valuation performance using nine years
of index call option data from 1996 through 2004.
The empirical results on returns and options allow us to address a number of important

questions. (1) How should jump and normal (diffusive) innovations be jointly modeled in
equity index returns? (2) Are jump intensities time-varying for the purpose of option valua-
tion? (3) Do the data favor a specification that allows for more than one jump per day? How
does this assumption impact on the evidence regarding time-varying jump intensity? (4) Do
we need jump risk premia to model index option prices? (5) Are jumps needed for option
valuation at all times or only in certain regimes? Finally, we also extract the time-series of
conditional variance for jump and normal components. This allows us to address the following
question (6) How large is the jump component and how much does it vary over time?
With regard to (1), we find that models without heteroskedasticity in the normal innovation

are severely misspecified, which is entirely consistent with the continuous-time literature. Both
the return-based and option-based evidence support the presence of jumps in returns as well
as jumps in volatility. Our jump parameter estimates are roughly consistent with the results
of Eraker (2004), EJP (2003), ABL (2002), and CGGT (2003).
With regard to (2), our MLE estimates show strong support for the DVDJ model, with

time-varying jump intensities and linear dependence on the variance of the normal innovation.
Under this specification, we obtain up to 17% improvement in the implied volatility root mean
squared option pricing errors over the simple GARCH case. The DVDJ model is comparable
to the continuous-time SVSCJ model. While to our knowledge time-series-based estimation
of the SVSCJ model is not available in the literature, ABL (2002) use a model without
volatility jumps and find no time-series based evidence for a time-varying intensity. Bates
(2006) estimates this model using the same data set and finds evidence for time-varying jump
intensity. ABL (2002) and Bates (2006) are, to our knowledge, the only two papers that
estimate jump models with time-varying intensity on returns. Our results are therefore more
supportive of time-varying intensities than the available literature, but it must be noted that
due to the GARCH filter, jumps in return and volatility are perfectly correlated. The strong
correlation between return and volatility jumps is supported by Todorov and Tauchen (2008)
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who examine high frequency S&P500 and VIX data. They find strong dependence between
realized jumps in the two series.
Regarding (3), our estimates support the presence of multiple jumps per day in the October

1987 period. We speculate that not allowing for this possibility has biased existing studies
against detecting time-varying jump intensities. For (4), we find that in order to produce
significant improvements in option valuation, jump models must allow for jump risk premia.
We investigate if risk premia for the jump and the normal innovation can generate the various
shapes and levels of the implied volatility term structure, and we find that the implied volatility
term structure is highly responsive to the level of the jump risk premium. On the other hand,
unrealistically large magnitudes of risk premia for the normal innovation are required in order
to generate levels and slopes of implied volatility comparable to the data. Therefore, we
conclude that jump risk premia are necessary for realistic modeling of option prices. Regarding
question (5), we conclude that jump models provide superior option pricing performance
during the medium to high volatility periods, but jumps do not help when the VIX index
is well below its average. Finally, regarding (6), we find that the contribution of the jump
component to total equity volatility is between 15 and 75 percent, depending on the model.
The remainder of the paper proceeds as follows. Section 2 presents our modeling approach

and discusses the four nested specifications. Section 3 provides the empirical results from
estimating the models on daily returns. Section 4 develops the theoretical framework for
risk-neutralization and option valuation. Section 5 provides the empirical results on option
valuation. Section 6 develops continuous time limits of our models and provides a filtration
of the jump and normal components. Section 7 concludes.

2 Daily Returns with Jump Intensity Dynamics

2.1 The Return Process

In this section, we present the general return dynamic. This dynamic contains two compo-
nents. The first is the component which corresponds to the diffusive term in continuous-time
setups. Because we model this component using a normal innovation, we will henceforth refer
to it as the normal component. The second is the jump component. Here we discuss some as-
pects of the structure of the jump and normal components, and we postpone the specifications
of the time-variation in their conditional variance until Section 2.3.
The return process is given by

Rt+1 ≡ log
µ
St+1
St

¶
= r +

¡
λz − 1

2

¢
hz,t+1 + (λy − ξ)hy,t+1 + zt+1 + yt+1, (2.1)

where St+1 denotes the underlying asset price at the close of day t + 1, and r the risk free
rate. Shocks to returns are generated by the normal component zt+1 and the pure jump
component yt+1, which are assumed to be contemporaneously independent. The normal com-
ponent zt+1 is assumed to be distributed N (0, hz,t+1) , where hz,t+1 is the conditional variance.
We model the jump component using the compound Poisson process, which is the standard
jump process used in the continuous-time literature. See Merton (1976) for an early treat-
ment of these processes in finance. We let yt+1 be conditionally distributed as compound
Poisson J

¡
hy,t+1, θ, δ

2
¢
, where hy,t+1 denotes the jump intensity (or jump arrival rate), θ the
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mean jump size, and δ2 the jump size variance. The convexity adjustment terms 1
2
hz,t+1 and

ξhy,t+1 ≡
³
eθ+

δ2

2 − 1
´
hy,t+1 in (2.1) act as compensators to the normal and jump component

respectively. Thus, when taking conditional expectations of the gross rate of return, we get

Et

∙
St+1
St

¸
= er+λzhz,t+1+λyhy,t+1, (2.2)

which shows that γt+1 ≡ λzhz,t+1 + λyhy,t+1 is the conditional equity premium, with λz and
λy the market prices of risk for the normal and jump components respectively. Our setup
allows for the possibility of time-varying equity premia, and these dynamics will depend on
the specification of hz,t+1 and hy,t+1.
Our specification in (2.1) is similar in spirit to the return process of Heston and Nandi

(2000), with the addition of a jump component. Barone-Adesi, Engle and Mancini (2008)
propose a nonparametric approach to model conditionally non-normal innovations. Maheu
and McCurdy (2004, 2008) study similar return processes with jumps but do not provide the
risk-neutral process, which is necessary for option valuation. Duan, Ritchken, and Sun (2006,
2007) propose return dynamics similar to (2.1), and provide risk-neutralization arguments,
but their setup differs from ours in important ways. First, we use a different specification of
the equity premium. Our specification of the equity premium is affine in the state variables,
which has several advantages. The affine specification greatly facilitates the comparison with
standard continuous time models that we undertake in Section 6. We also use the affine struc-
ture in order to separate the jump and diffusive risk premia, and it also makes it relatively
straightforward to derive the risk-neutral dynamic, which is crucial for option pricing. Second,
Duan, Ritchken and Sun (2006, 2007) consider processes without time-varying jump intensi-
ties. Third, in our specification jump and normal components carry independent risk premia.
Fourth, and most importantly, the conditional skewness and kurtosis in Duan, Ritchken and
Sun (2006, 2007) are constant through time, whereas this is not the case in our specification,
as we will demonstrate in Section 2.5.

2.2 The Structure of the Jump Innovation

The compound Poisson structure assumes that the jump size is independently drawn from a
normal distribution with mean θ and variance δ2. The number of jumps nt+1 arriving between
times t and t+ 1 is a Poisson counting process with intensity hy,t+1. The jump component in
the period t+ 1 return is therefore given by

yt+1 =
nt+1P
j=0

xjt+1

where xjt+1, j = 0, 1, 2, ... is an i.i.d. sequence of normally distributed random variables with
xjt+1 ∼ N

¡
θ, δ2

¢
. The conditional expectation of the number of jumps arriving over the time

interval (t, t+ 1) equals the jump intensity, Et [nt+1] = hy,t+1. The mean and variance of the
jump component, yt+1, are given by θhy,t+1 and

¡
δ2 + θ2

¢
hy,t+1 respectively. Intuitively, hy,t+1

should be time-varying as the number of jumps occurring at any time period will depend
on market conditions. Unfortunately, jump models with time-varying jump intensity are
difficult to estimate and implement in continuous-time models with latent factors, because the
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likelihood function typically is not available in closed form. The filtration procedure for the
latent jump and stochastic volatility processes is also far from straightforward in continuous
time. Therefore, the literature contains limited evidence on equity returns and option pricing
models with stochastic jump intensity. The filtration problem in our setup is a lot more
straightforward. We will test several specifications for hy,t+1, ranging from the simple case of
a constant arrival rate to modeling it using a separate GARCH dynamic.

2.3 The Heston and Nandi GARCH(1,1) Benchmark Model

Heston and Nandi (2000) propose a class of GARCH models that allow for a closed-form
solution for European options. The GARCH(1,1) version of this model is given by

Rt+1 = r +
¡
λz − 1

2

¢
hz,t+1 +

p
hz,t+1εt+1 (2.3)

hz,t+1 = wz + bzhz,t + az
³
εt − cz

p
hz,t
´2

where r is the risk free rate, and εt+1 is the innovation term distributed i.i.d. N (0, 1). The
variance of the return is hz,t+1. The asymmetric variance response, or the leverage effect, is
captured by the parameter cz. This model is based on conditional normality and thus cannot
generate one-period-ahead conditional skewness and excess kurtosis. The GARCH dynamic
in (2.3) is different from the more conventional NGARCH model used by Engle and Ng (1992)
and Hentschel (1995), which is used by Duan (1995) to price options. We choose the GARCH
dynamic (2.3) as our benchmark since it ensures the closest possible correspondence of our
jump parameter estimates with the continuous-time literature. Our objective is to present a
general approach that can be applied to any dynamics, and we leave the determination of the
preferred dynamics in the presence of joint normality and compound Poisson jumps for future
research.
Before we extend the Heston-Nandi framework to the returns process in (2.1), we rewrite

the GARCH(1,1) dynamic in (2.3). Letting zt+1 =
p
hz,t+1εt+1, we get

Rt+1 = r +
¡
λz − 1

2

¢
hz,t+1 + zt+1

hz,t+1 = wz + bzhz,t +
az
hz,t

(zt − czhz,t)
2 .

The unconditional variance is given by E [hz,t+1] = (wz + az) / (1− bz − azc
2
z) , where bz+azc

2
z

is the variance persistence. We will use the empirical performance of the Heston-Nandi model
as a benchmark for the evaluation of our proposed jump models. Because we only use the
GARCH(1,1) implementation, we henceforth refer to it simply as the GARCH model.

2.4 Four Nested Models

We now apply the simple Heston-Nandi GARCH dynamic to the two return innovations
in (2.1). We will refer to these two dynamics as the conditional variance (for the normal
component) and the time-varying jump intensity (for the jump component).
For the most general specification, both the jump intensity and the variance of the normal
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innovation are governed by a Heston-Nandi type GARCH(1,1) dynamic.

hz,t+1 = wz + bzhz,t +
az
hz,t

(zt + yt − czhz,t)
2 (2.4)

hy,t+1 = wy + byhy,t +
ay
hy,t

(zt + yt − cyhy,t)
2 (2.5)

The subscripts z and y are applied to distinguish the parameters governing the dynamic of
hz,t+1 and hy,t+1 respectively. In (2.4)-(2.5), the dynamics of hz,t+1 and hy,t+1 are predictable
conditional on information available at time t, and it is the total return innovation, zt +
yt, observable at time t, that generates the variance and jump intensity one period ahead.
The specification therefore implies jumps in volatility, which are supported by the empirical
findings of Broadie, Chernov and Johannes (BCJ, 2007), Eraker (2004) and EJP (2003).
In a continuous-time setting, adding jumps to stochastic volatility models involves an addi-

tional set of latent state variables. The study of option pricing in stochastic volatility models
with jumps therefore relies heavily on econometric methods that can filter the unobserved
state variables. CGGT (2003) use an EMM based method, Pan (2002) uses the implied-state
GMM technique to fit her models to returns and option prices, while EJP (2003), Eraker
(2004) and Li, Wells, and Yu (2007) employ MCMC techniques. In comparison, our use
of GARCH models in (2.4)-(2.5) is computationally convenient, because the GARCH model
serves as a simple filter where the state variables hz,t+1 and hy,t+1 are directly computed from
the observed shocks, and therefore all of our models can be estimated from returns data using
a standard Maximum Likelihood technique.
We investigate four nested models based on the general dynamic in (2.4)-(2.5). Similar

to Huang and Wu (2004), our models generate time-varying higher moments of returns from
the variance of the normal component hz,t+1 and/or from the jump intensity hy,t+1. We now
present these four specifications.

The Dynamic Volatility and Constant Jumps (DVCJ) Model

The first specification we explore is akin to the most common specification in the continuous-
time affine jump diffusion literature, namely the stochastic volatility with correlated jumps
(SVCJ) model studied by EJP (2003), CGGT (2003), Li, Wells and Yu (2007), and Eraker
(2004). Compared to our most general specification (2.4)-(2.5), we turn off the time-varying
jump intensity dynamic while maintaining the normal component’s GARCH dynamic. This
amounts to the restrictions

by = 0 ay = 0 cy = 0.

The DVCJ model contains nine parameters, three more than the Heston-Nandi model. In any
given period, the DVCJ model implies that jumps arrive at a constant rate of wy, regardless of
the level of volatility in the market. Although this may seem counter-intuitive, it is assumed
in most of the existing literature.

The Constant Volatility and Dynamic Jumps (CVDJ) Model

The CVDJ model allows for jump dynamics but turns off the dynamic in the conditional
variance of the normal component. It is a special case of the general dynamic in (2.5), with
the restrictions

bz = 0 az = 0 cz = 0.
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In this specification, time-variation in returns is driven by the jump component. The normal
component of returns is homoskedastic, with the variance equal to wz. This is equivalent to
applying stochastic time change only to the pure jump process in Carr, Geman, Madan and
Yor (2003) and Carr and Wu (2004). Given that time variation is restricted to the jump
intensity, we expect to see an increase in the relative importance of the jump component in
returns for this specification.

The Dynamic Volatility and Dynamic Jumps (DVDJ) Model

The DVDJ specification can be written as a special case of the most general specification,
subject to the following restrictions on the parameters of hy,t+1 in (2.5)

wy = wzk by = bz ay = azk
2 cy =

cz
k

In the DVDJ specification hz,t+1 and hy,t+1 are both time-varying but driven by the same
dynamic. We specify the jump intensity to be affine in the conditional variance of the normal
component

hy,t+1 = khz,t+1 (2.6)

where k is a parameter to be estimated. The affine structure (2.6) is studied in a continuous-
time setting by Bates (2000, 2006), Eraker (2004), ABL (2002), Huang and Wu (2004), and
Pan (2002). Table 1 indicates that some of these papers estimate this model using returns
data, and others using options data.
Overall, the evidence on time-varying jump intensities is mixed. Estimating on option

data, Bates (2000) does not find evidence of time-varying jump intensities, but Pan (2002)
and Eraker (2004) do find statistically significant estimates for k by fitting their models to
option data. Using return data, ABL (2002) do not find evidence of time varying jump
intensities, but Bates (2006) does. These different findings may be due to differences in model
specification and/or estimation technique. Eraker (2004) estimates his model using MCMC
and specifies correlated jumps in returns and volatility. ABL (2002) use EMM to estimate
models with jumps in returns only. Bates (2000) and Pan (2002) do not estimate models with
jumps in volatility.
Given these differences in model specification in the continuous-time literature, it is worth

keeping in mind that the closest continuous-time counterpart of the DVDJmodel is the SVSCJ
model, which stands for stochastic volatility with state-dependent, correlated jumps.1 The
only paper that estimates this model is Eraker (2004). The SVSCJ is the most general model
considered by Eraker (2004), who finds it outperforms other models when simultaneously
fitting option data and S&P500 index returns.

The Dynamic Volatility and Separate Dynamic Jumps (DVSDJ) Model

We refer to the most general specification, where the conditional variance of the normal
component and the jump intensity are governed by separate processes, as the DVSDJ model.
Since the two variance components vary over time, their relative contribution to returns will
also be time-varying. Separate dynamics also allow the variance components to mean-revert

1The DVDJ model is a special case of the most general SVSCJ, because jumps in returns and volatility are
perfectly correlated in the GARCH setting.
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at different rates. This is empirically relevant, because Eraker (2004) and Huang and Wu
(2004) provide evidence that shocks from jump components are more persistent and decay at
a slower rate than the shock associated with the normal innovation.
The DVSDJ model is related to the continuous-time models estimated by Huang and Wu

(2004) and Santa-Clara and Yan (2008). Similarly to the DVSDJ model, in those specifications
the time-varying jump intensity has its own separate dynamic, rather than being a simple
linear function of another state variable. However, these specifications differ from DVSDJ in
the sense that the time-varying jump intensity contains a separate shock. We therefore refer
to these specifications as “stochastic jump intensities” in Table 1. We choose the DVSDJ
specification because of the resulting econometric advantages. Finally, note that the DVSDJ
model is more complex than similar available continuous-time models in another sense, because
it allows for jumps in volatility.
Huang and Wu (2004) estimate a continuous-time specification similar in spirit to (2.4)-

(2.5) using European options on the S&P500 index, and find that it outperforms other models
both in and out-of-sample. However, their result is based on minimizing option pricing errors
over a short period, and the time series of underlying returns does not enter their objective
function. Santa-Clara and Yan (2008) also estimate a related model using a technique similar
to that used by Pan (2002), where at each point in time the state variables are inferred directly
from option data. To the best of our knowledge, the literature does not contain estimates for
a continuous-time model akin to (2.4)-(2.5) based on returns data. This is perhaps due to the
large number of latent factors. This renders the likelihood function unavailable, which in turn
makes the estimation much more challenging. Our discrete-time setup and the convenient
GARCH filtration allow us to estimate the DVSDJ model using standard MLE techniques.

2.5 Conditional Moments of Returns

Conditional moments of returns can be readily derived using the moment generating function
of the normal and compound Poisson processes. The first four conditional moments are

Et (Rt+1) ≡ μt+1 = r +
¡
λz − 1

2

¢
hz,t+1 + (λy − ξ + θ)hy,t+1 (2.7)

V art (Rt+1) = hz,t+1 +
¡
δ2 + θ2

¢
hy,t+1 (2.8)

Skewt (Rt+1) =
θ
¡
3δ2 + θ2

¢
hy,t+1¡

hz,t+1 +
¡
δ2 + θ2

¢
hy,t+1

¢3/2 (2.9)

Kurtt (Rt+1) = 3 +

¡
3δ4 + 6δ2θ2 + θ4

¢
hy,t+1¡

hz,t+1 +
¡
δ2 + θ2

¢
hy,t+1

¢2 (2.10)

where Skewt (Rt+1) is the conditional skewness of returns, and Kurtt (Rt+1) is the conditional
kurtosis. The sign of the conditional skewness depends on the sign of the mean jump size
θ. For positive hy,t+1, which means in the presence of jumps, the dynamics of conditional
skewness and kurtosis are driven by the conditional variance of the normal component as well
as the jump intensity. Harvey and Siddique (1999, 2000) document the importance of time-
varying skewness in asset pricing. The time-variation in conditional skewness and kurtosis is a
critical difference between our approach and the framework in Duan, Ritchken and Sun (2006,
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2007), in which conditional skewness and kurtosis are constant through time. Expressions for
variance persistence and for the long run variance of all four models are provided in Appendix
A.

2.6 The Likelihood Function

The likelihood function for returns depends on the normal and Poisson distributions. First,
notice that conditional on nt+1 = j jumps occurring in a period, the conditional density of
returns is normal

ft (Rt+1|nt+1 = j) =

exp

µ
−(Rt+1−μt+1−jθ)

2

2(hz,t+1jδ2)

¶
q
2π
¡
hz,t+1 + jδ2

¢ , (2.11)

Because the number of jumps is finite in the compound Poisson process, the conditional
probability density of returns can be derived by summing over the number of jumps, which is
distributed as a Poisson counting process

Prt (nt+1 = j) =
(hy,t+1)

j

j!
exp (−hy,t+1) . (2.12)

This yields the conditional density in terms of the observables

ft (Rt+1) =
∞P
j=1

ft (Rt+1|nt+1 = j) Prt (nt+1 = j) . (2.13)

and the likelihood function can now be constructed easily as the product of the conditional
distributions across the sample.
When implementing the maximum likelihood estimation, the summation (2.13) must be

truncated. Most existing evidence indicates that jumps of the Poisson type are large and rare,
with on average one to two jumps per year. However, we want to allow for the possibility of
clustering of several jumps on a day. We therefore truncate the summation at 50 jumps per day.
This truncation limit is twice the value used in Maheu and McCurdy (2004), because in our
empirical work we find evidence of up to 16 jumps on a single day. Through experimentation,
we have found that our estimation results are robust to setting the truncation higher than 50.

3 Daily Return Empirics

3.1 Data and Method

We estimate the models using the time series of S&P500 returns from January 1, 1985 through
December 31, 2004. The data are obtained from CRSP. The top panel of Figure 1 shows
the daily logarithmic return on the S&P500 for our sample. Several large or “jump-like”
movements in returns are apparent. The largest price change is the crash of October 1987,
when the index falls by almost 25 percent in a single day. We use a long sample of returns
because it is well-known that it is difficult to estimate GARCH parameters precisely using
relatively short samples. Even more importantly, jumps are rare events, and given an average
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occurrence of one or two jumps per year estimated in the existing literature, it is difficult
to get sensible estimates on jump parameters with daily return data that spans less than
ten to fifteen years. We estimate the models using standard Maximum Likelihood. For
updating the variance dynamic, we use starting values that correspond to the model-implied
long-run jump intensity and the long-run variance. That is, we set hz,1 = E [hz,t] ≡ σ2z and
hy,1 = E [hy,t] ≡ σ2y. The optimization converges quickly and the estimates are robust to a
wide range of starting values.

3.2 Maximum Likelihood Estimates

Table 2 presents Maximum Likelihood estimates (MLE) for the four proposed jump models,
obtained using returns data for 1985-2004. For reference, Table 3 presents MLE estimates for
three benchmark models, namely the Heston and Nandi (2000) model, the Black and Scholes
(1973) model, and the Merton (1976) jump model. For each model, we divide parameter
estimates into two columns, one for parameters representing the normal component, and the
other for parameters representing the jump component. For example, the parameter λ in
the “Jump” column refers to the λy parameter. Under each parameter estimate, we report
its robust standard error calculated from the outer product of the gradient at the optimum
parameter value.
Using only returns data, it is difficult to simultaneously obtain precise estimates of the

market prices of jump and normal risks. We therefore assume that in our jump models, λz = 0.
This assumption is similar to the one used in Pan (2002) who estimates options and returns
of the S&P500 jointly. She finds that neither the diffusion nor the volatility risk premia in
her model are statistically significant, and specifically constrains the volatility risk premium
to be zero.2 BCJ (2007) estimate the risk premia in the S&P500 index options using the
SVCJ model and find a negligible value for the volatility risk premium. The effects on option
valuation of different risk premium specifications will be analyzed in detail in Section 5.
The log-likelihood values in Tables 2 and 3 show that all jump models in Table 2 signifi-

cantly improve on the fit of the GARCH model in Table 3. Not surprisingly, the CVDJ model
which has constant conditional variance of the normal component performs the worst among
the jump models.
Using the MLE estimates, we can recover the long run (unconditional) equity premium

implied by each model. We report the values of the implied long run equity premium in the
bottom row of Tables 2 and 3. The long run equity premium implied by the models ranges
from 4.14% (DVCJ) to 7.98% (BSM) per annum. For our sample period, the realized re-
turn on the S&P500 in excess of the 3-month Treasury bill is approximately 5.74%. We can
also compare our estimates of the models’ implied equity premium to the existing literature.3

Available estimates differ depending on the concepts, method, and data used in the calcu-
lations. Estimates of the historical equity return as reported in Ibbotson Associates (2006)
range from 4.9 to 8.5%. Welch (2000) surveys finance and economics academics’ estimates of
the expected equity premium over the next 30 years. He reports an average arithmetic equity
premium of 7% over T-bills. We thus conclude that all our models produce implied long run

2In the GARCH framework, the normal shocks in returns and volatilities are identical. As a result λz can
also be thought of as the market price of volatility risk.

3The literature on the equity premium is too large to cite in full here. See Cochrane (1997), Siegel and
Thaler (1997), Mehra and Prescott (2003) and Fernandez (2006) for comprehensive surveys.
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equity premia that are reasonable given our sample period, and roughly consistent with the
existing literature.
Figure 2 shows the annualized conditional return variance for the four proposed jump

models. We plot the total conditional variance defined above as

V art (Rt+1) = hz,t+1 +
¡
δ2 + θ2

¢
hy,t+1

from January 1, 1985 through December 31, 2004. To aid the comparison with the condi-
tional variance path of the GARCH model without jumps, we plot the difference between the
conditional variance of each jump model and the Heston-Nandi model in Figure 3. Note that
CVDJ has its own scale in Figure 3. As expected, the conditional variance paths look fairly
similar across models in Figure 2. However, Figure 3 shows that important events such as the
1987 crash are captured quite differently across the models. The conditional normal GARCH
model produces a very high conditional variance from the crash, whereas the jump models
can allocate part of the crash to the higher moments.
Figure 4 shows the jump intensity hy,t+1 over time for each model. It shows that the CVDJ

specification has the largest magnitude of jump intensity in comparison with the other three
proposed jumpmodels. This is not surprising as jumps are the only source of heteroskedasticity
in this model, and we therefore expect the jump component to be very volatile. Table 2
indicates that the size of the jumps arriving in the CVDJ model are also the smallest in
comparison to other models, with a mean jump size of −0.110%, and a very high arrival rate.
Consider now the DVCJ jump specification. Adding a simple constant jump component to

a GARCH dynamic can significantly improve model fit, even though the variance parameters
of the normal component in the DVCJ model are similar to those of the GARCH model.
Table 2 reports a mean jump size of θ = −1.804%, and jump volatility of δ = 2.786%. As
for the jump intensity E [hy,t+1] = wy, the model implies that jumps arrive at a frequency of
252 × wy ' 3.60 jumps per year. When compared with the estimates for the SVCJ model
obtained by Eraker (2004) and EJP (2003), we find a somewhat smaller jump mean size and
a somewhat higher jump intensity rate. This is not surprising as we allow for multiple jumps
per day whereas the implementation in Eraker (2004) and EJP (2003) does not.
The results for the DVDJ model indicate that allowing for state-dependent jump inten-

sities can further improve model performance. The estimate of k is statistically significant,
confirming that the arrival rate of jumps depends on the level of risk in the market. The mean
jump size is smaller than for the DVCJ model. However, jumps arrive more frequently, with
on average E [hy,t+1] = kσ2z = 0.0644, or 16.2 jumps per year. When allowing for time-varying
jump intensities, smaller jumps can occur at a frequency which depends on the level of risk in
the market. The bottom-left panel in Figure 4 indeed shows considerable variation over time
in the jump-intensity.
Our evidence in support of time-varying jump intensities is in line with Eraker (2004) and

Pan (2002), who estimate their models using joint information from returns and option prices.
Bates (2006) also finds support for time-varying jump intensity from returns when estimating
the model using his approximate maximum likelihood method, but his model does not include
jumps in volatility. On the other hand, ABL (2002), estimating on returns, and Bates (2000),
estimating on option prices, do not find evidence supporting time-varying intensities.
The likelihood for the most general specification, DVSDJ, offers a sizable improvement

over DVDJ. This illustrates the benefit of allowing for the jump intensity to be driven by its
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own independent dynamic. The persistence of the jump intensity is approximately the same
as the persistence of the variance of the normal component. Interestingly, for the DVSDJ
model, we find that the estimate of the parameter cz, which controls the leverage effect in the
variance of the normal component, is significantly negative. This is opposite to the intuition
behind the “leverage effect” that drives asymmetry in the variance/return relationship. In
other words, a positive normal shock to the return will increase the variance of the normal
component by higher than a negative normal shock to the return. We conjecture that this
result is due to the high level of negative skewness (left asymmetry) that is already produced
by the jump component. Therefore, the heteroskedasticity in the normal component becomes
an important factor in the modeling of the right tail of the return distribution. The MLE
estimates of the DVSDJ model indicate that the average jump intensity is E [hy,t+1] = 0.3111,
which translates into more than 78 jumps per year. This jump arrival frequency is much
higher than in the DVCJ and DVDJ models. Jumps are smaller, with an average jump size
of −0.254%.

3.3 Variance Decomposition and Conditional Higher Moments

At the bottom of Table 2 we report on the decomposition of the total unconditional return
variance

σ2 ≡ σ2z +
¡
δ2 + θ2

¢
σ2y

into the normal and jump components. The DVCJ model has the lowest jump contribution
to the total equity return variance, while the DVDJ model has the highest. The contribution
of return jumps to the overall equity return variance in the four proposed jump models is
between 19.1% and 75.3%. This is high compared to the estimates of Huang and Tauchen
(2005), obtained using non-parametric techniques. They find that jumps in prices account
for about 10% of overall equity return volatility. The difference is possibly due to the sample
period used in the inference, and the rejection level used for the detection of jumps. In
addition, as discussed in Huang and Tauchen (2005), the presence of microstructure noise
often leads to under-detection of jumps when using high-frequency returns data.
Figure 5 plots the conditional one-day-ahead skewness and excess kurtosis from the four

models. We thus plot the expressions in (2.9) and (2.10) for the January 1, 1985 to December
31, 2004 period. The top row contains the results for DVCJ. Note that the scale used for this
model is different than for the other models. The DVCJ model, which allows for dynamic
variance and constant-intensity jumps, implies conditional skewness as low as -4 and condi-
tional excess kurtosis as high as 60. The CVDJ model, in which the normal component has
a constant variance implies almost constant conditional skewness and kurtosis. The DVDJ
model, which allows for dynamic jump intensities to be a linear function of the variance of the
normal component implies conditional skewness as low as -1.2 and conditional excess kurtosis
as high as 20. The general DVSDJ model in turn implies more moderate skewness and kur-
tosis than the DVDJ model. Presumably this is due to the negative estimate of the normal
leverage effect parameter, cz, in Table 2.
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3.4 Estimation Using a Bernoulli Approximation

The estimation of continuous-time jump-diffusion models often relies on the discretization of
the returns into fixed daily intervals, and a common assumption is to approximate a compound
Poisson process using a Bernoulli distribution. This approximation essentially allows for only
two possible states of jump arrival. A jump arrives or does not arrive at all over a given
time period. Among several papers in the continuous-time literature that use the Bernoulli
approximation are EJP (2003), Eraker (2004), Li, Wells, and Yu (2007) and Maheu and
McCurdy (2008).
We will now investigate the potential biases that may arise from using this assumption.

To do so, we reestimate all the models replacing the Poisson counting density in (2.12) with
the Bernoulli distribution where

Prt (nt+1 = 0) = p, and (3.1)

Prt (nt+1 = 1) = 1− p

The last line in Table 2 presents the log-likelihood values for the four proposed jump
models using the Bernoulli approximation. Note that the likelihood value decreases for all
models when using the Bernoulli approximation. Note also that based on these log-likelihood
values, the DVCJ model performs similar to the DVDJ model. The DVSDJ model performs
only slightly better than the DVCJ model, despite having 3 more parameters. The use of the
Bernoulli approximation therefore would have lead us to conclude that there is little or no
evidence to support the time-varying jump intensity specification. We conjecture that this is
one of several reasons why previous studies do not find evidence to support the presence of
time-varying jump intensities.
Based on these results, we conclude that the Bernoulli approximation may not be an in-

nocuous assumption for the estimation of jump models. The biases resulting from this approx-
imation are very significant, and may lead to erroneous conclusions regarding the importance
of time-varying jump intensities.

4 Option Valuation Theory

We now derive results that allow us to value derivatives using the four proposed jump models.
In our framework, the stock price can jump to an infinite set of values in a single period, and
therefore the uniqueness of the equivalent martingale measure cannot be established. Although
we consequently cannot identify unique option values through the absence of arbitrage, we
can proceed by establishing the existence of a risk-neutral probability density under which the
returns on all assets are equal to the risk-free rate, similar to the approach used in continuous-
time stochastic volatility models (see for example Heston (1993)). We start by explaining our
risk-neutralization procedure, with an emphasis on the importance of the assumption on the
equity premium in (2.1). Given our assumptions, the functional form of the risk-neutral
dynamic is identical to that of the physical dynamic. We further discuss the differences
between our setup and the approaches used in existing studies in section 6.3.

14



4.1 Risk-Neutralization

We proceed along the lines of Gerber and Shiu (1994), who use the Esscher (1932) transform
to get the risk neutral density Q (x;Λ) from the objective probability density P (x) via

Q (x;Λ) =
eΛxP (x)

M (Λ)
, (4.1)

where Λ is a real number such that the moment generating function M (Λ) of the stochastic
process x is finite. The Esscher transform has previously been used in the derivatives literature,
for instance by Carr and Wu (2004) for applications in continuous-time option pricing, and
by Ahn, Dai and Singleton (2006) for applications in discrete-time dynamic term structure
modeling. When x is the index return, the assumption of the Esscher transform corresponds to
the assumption of an economy with power utility, and Λ represents the coefficient of relative
risk aversion (see Bakshi, Kapadia, and Madan (2003)). Buhlmann, Delbaen, Embrechts,
and Shiryaev (1998) propose a discrete-time generalization of (4.1). For a discrete-time two-
dimensional stochastic process, the Esscher transform corresponds to the following form of
the conditional Radon-Nikodym derivative

dQt+1

dPt+1
dQt

dPt

=
exp (Λ0Xt+1)

M (Λ; Ht+1)
, (4.2)

whereXt+1 = (zt+1, yt+1)
0 is a vector of shocks to returns andHt+1 =(hz,t+1, hy,t+1)

0 is a vector
containing the variances of the normal component and the jump intensity. Because there are
two types of shocks in this economy, Λ = (Λz,Λy)

0 is a two dimensional vector of equivalent
martingale measure (EMM) coefficients that capture the wedge between the physical and
the risk-neutral measure. A proof that (4.2) is a proper change of measure can be obtained
by using the fact that the exponential term exp (Λ0Xt+1) is normalized by its joint moment
generating function M (Λ;Ht+1).4

Proposition 1 If the dynamic of returns under the physical measure P is given by (2.1), the
risk-neutral probability measure Q defined by the Radon-Nikodym derivative in (4.2) is an
equivalent martingale measure (EMM) if and only if

logM (Λ+ 1;Ht+1)− logM (Λ;Ht+1) +
¡
λz − 1

2

¢
hz,t+1 + (λy − ξ)hy,t+1 = 0 (4.3)

where 1 is a two-dimensional vector of ones, and we recall that ξ =
³
e
δ2

2
+θ − 1

´
.

Proof. For an EMM to exist, the expected return of St from time t to t+ 1 must equal the
risk-free rate

Et

"Ã
dQt+1

dPt+1
dQt

dPt

!
St+1
St

#
= er.

4M (Λ;Ht+1) is a joint moment generating function that describes the distribution of (zt+1, yt+1) . When
Λz = Λy then M (Λ;Ht+1) is the moment generating function of the process zt+1 + yt+1.
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Substituting the Radon-Nikodym derivative in (4.2) and the return dynamic in (2.1), and
taking expectations we have

er+(λz−
1
2)hz,t+1+(λy−ξ)hy,t+1Et

£
exp

¡
(Λ+ 1)0Xt+1

¢¤
M (Λ; Ht+1)

= er.

Using the fact that M (Λ+ 1;Ht+1) = Et

£
exp

¡
(Λ+ 1)0Xt+1

¢¤
and taking logs yields the

required result.
Proposition 1 provides us with a simple relation (4.3) that can be used to solve for Λ.

However, this implies that we have to uniquely determine Λz and Λy from a single equation.
To resolve this, we use the affine structure of the return process, and impose the restriction
that Λz and Λy are constants. This yields

Lemma 1 For the return dynamic in (2.1), the solution to (4.3) reduces to solving the fol-
lowing two equations

λy −
³
e
δ2

2
+θ − 1

´
− e

Λ2yδ
2

2
+Λyθ

³
1− e(

1
2
+Λy)δ2+θ

´
= 0 (4.4)

Λz + λz = 0 (4.5)

Proof. See Appendix B.
Equation (4.5) of course implies that Λz = −λz. This result is identical to the one obtained

using Duan’s (1995) LRNVR method which builds on Brennan (1979). It is not possible to
solve for the second EMM coefficient Λy in (4.4) analytically. However, it is well behaved and
can easily be solved for numerically. Note that due to the structure of the equity premium, the
market prices of risk λz and λy enter separately into the above two equations (4.5) and (4.4).
Given estimates of the physical parameters λz and λy, λz is sufficient to determine the EMM
coefficient Λz, and hence the wedge that links the two measures for the normal innovation.
Similarly, λy provides the change of measure for the jump innovation. An interesting special
case is λz = λy = 0, which means that the normal and jump risks are not priced in the
market. In this case the solutions to Λz and Λy are zero and the distribution of returns under
the physical and risk-neutral measures is identical. We will discuss the implications of these
two different types of risk premia further below.
Finally, it is also important to note that our method for risk-neutralization of the jump

component is somewhat different from several continuous-time studies, including Pan (2002),
Eraker (2004), and BCJ (2007). In Section 6, we further discuss their choice of risk-neutralization
procedure, and compare it to ours.

4.2 Risk-Neutral Dynamics

We have now completely characterized the specification of the Radon-Nikodym derivative in
(4.2). We can therefore derive the risk-neutral probability measure for the normal and jump
components of returns using a simple change of measure.

Proposition 2 Consider a stochastic process that is the sum of two contemporaneously inde-
pendent random variables zt+1 + yt+1, with each component distributed as

zt+1 ∼ N (0, hz,t+1) yt+1 ∼ J
¡
hy,t+1, θ, δ

2
¢
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under the physical measure P . N () and J () refer to the Normal and Compound Poisson
distribution respectively. According to the Radon-Nikodym derivative in (4.2), under the risk-
neutral measure Q the stochastic process can be written as z∗t+1 + y∗t+1, where

z∗t+1 ∼ N (Λzhz,t+1, hz,t+1) y∗t ∼ J
¡
h∗y,t+1, θ

∗, δ2
¢

with

h∗y,t+1 = hy,t+1 exp

Ã
Λ2yδ

2

2
+ Λyθ

!
θ∗ = θ + Λyδ

2.

Proof. See Appendix B.

The change of measure shifts the mean of the normal component to the left by Λzhz,t+1,
which amounts to z∗t+1 = zt+1 − λzhz,t+1. This result is identical to the one of Duan (1995),
who motivates the risk-neutralization using the power utility function. The compound Poisson
process under the Q measure differs from its distribution under the physical measure in terms
of the jump intensity h∗y,t+1 and the mean jump size θ

∗. This finding is consistent with available
results on the change of measure in the continuous-time jump literature.5

We have all the results needed to derive the risk-neutral dynamic for the four proposed
jump models. In order to avoid repetition, and recalling that the other three specifications are
nested in the DVSDJ specification, we show only the detailed result for the DVSDJ model.

Proposition 3 Risk-Neutral DVSDJ dynamic. Under the risk-neutral measure, the stock
return process can be written as

log

µ
St+1
St

¶
= r − 1

2
hz,t+1 − ξ∗h∗y,t+1 + zt+1 + y∗t+1, (4.6)

with the following Q-dynamics

hz,t+1 = wz + bzhz,t +
az
hz,t

(zt + y∗t − c∗zhz,t)
2 (4.7)

h∗y,t+1 = w∗y + byh
∗
y,t +

a∗y
h∗y,t

¡
zt + y∗t + Λzhz,t − c∗yh

∗
y,t

¢2
.

where we have the following transformation

h∗y,t+1 = hy,t+1Π , ξ∗ = e
δ2

2
+θ∗ − 1, w∗y = wyΠ

a∗y = Π2ay, c∗z = (cz − Λz) , c∗y =
cy
Π

for Π = e
Λ2yδ

2

2
+Λyθ. Recall that zt+1 ∼ N (0, hz,t+1) and y∗t+1 ∼ J

¡
h∗y,t+1, θ

∗, δ2
¢
.

Proof. See Appendix B.
5See for example Naik and Lee (1990), who assume power utility over consumption or wealth in a Lucas

type model, and derive the difference in jump intensity and mean jump size between the two measures.
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The discounted stock price process in (4.6) is a martingale where −1
2
hz,t+1 and ξ

∗h∗y,t+1 are
the compensating terms for the normal and jump components respectively. The risk-neutral
dynamic for the Heston-Nandi model is a special case of (4.6) and (4.7), for h∗y,t+1 = 0.
Unlike in the Heston-Nandi case, closed-form option valuation results are not available.

This is due to the jump innovation in the dynamic which does not yield an exponentially
affine moment generating function. However, the discrete-time GARCH structure of the model
renders option valuation straightforward via Monte-Carlo simulation.

5 Option Valuation Empirics

Estimating on returns data, the evidence in favor of jumps is overwhelming, and the results
point to the importance of time-varying jump intensities. We now discuss the importance of
jumps for the purpose of option valuation, and investigate how the jumps ought to be modeled
from this perspective.

5.1 Option Data

We evaluate the option pricing performance of our models using a rich sample of S&P500
call option data for 1996-2004. We retrieve European call option quotes from OptionMetrics
and eliminate quotes that report zero trading volume. Subsequently, we apply the filters
proposed by Bakshi, Cao, and Chen (1997) to the data. We only keep Wednesday options
with maturities ranging from one week to one year. We choose Wednesday because it is the
least likely day to be a holiday and it is less likely to be affected by weekend effects. For
further discussion of the advantages of using Wednesday data, we refer to Dumas, Fleming
and Whaley (1998).
Table 4 presents descriptive statistics for the option quotes by moneyness and maturity.

The shape of the volatility smirk is evident from Panel C across all maturities, with short
term options exhibiting the steepest volatility smirk. The middle panel of Figure 1 plots the
Black-Scholes implied volatility using at-the-money options. The bottom panel of Figure 1
represents a time series for the CBOE-VIX index for the same period. Clearly the data in our
sample are representative of the prevailing market conditions.

5.2 Overall Option Valuation Performance

We use the MLE estimates from Tables 2 and 3, risk-neutralize them, and then compute
option prices for 1996-2004. Due to the GARCH structure of the models, all the parameters
needed to value options can be estimated using MLE on the returns of the underlying asset.
We report implied volatility root mean squared error (IVRMSE). We refer interested read-

ers to BCJ (2007) for a discussion on the benefits of using the IVRMSE metric for compar-
ing option pricing models. For the computation of the IVRMSE, we invert each computed
call price Cj from the model using the Black-Scholes formula to get the implied volatilities
IV (Cj ,Kj, τ j,Sj,rj). The IVRMSE is then computed as

IV RMSE ≡
s
1

N

NP
j=1

¡
σBSj − IV (Cj, Kj, τ j, Sj, rj)

¢2
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where σBSj is the Black-Scholes implied volatility of the jth observed call price, andN = 18, 738
is the total number of option contracts used in the analysis. The variables Kj, τ j, Sj, and rj
are the strike, maturity, the underlying index level and the risk-free rate associated with
each option. Panel A in Table 5 summarizes the models’ option valuation performance. The
raw IVRMSE for the benchmark GARCH model is 5.69%. We report the models’ IVRMSE
ratios relative to the GARCH model for ease of comparison.
The most important finding is that the three proposed jump models with dynamic volatil-

ity for the normal component provide substantial improvements in option pricing. The DVDJ
model outperforms the GARCH model by almost 17%. Surprisingly, the most flexible model,
DVSDJ, only modestly outperforms the GARCH model by 7%. The DVCJ model is a re-
stricted form of the continuous-time SVCJ model. Thus we can compare our findings on
its option pricing performance to the existing literature. Based on the IVRMSE metric, the
DVCJ outperforms the GARCH by 11%. This is considerably larger than the 2.3% improve-
ment in fit documented by Eraker (2004) using a different loss function. Our finding is very
different from BCJ (2007) who show that the SVCJ model can improve on the IVRMSE over
the Heston (1993) model by a striking 50%. However, their implementation is very different
from ours. In their setup the spot volatility is estimated on options rather than filtered from
returns and they estimate the risk premia by minimizing the option pricing error.
Despite the large improvement of the CVDJ over the GARCH model in fitting the returns

data, it performs poorly in comparison to the GARCH model in option pricing. This result
confirms the importance of the time-varying normal component in the specification of the
return process for option valuation.

5.3 Valuation Errors by Moneyness, Maturity and Volatility Level

Table 5 provides additional evidence on the option fit of the four proposed jump models.
We report option IVRMSE for the simple GARCH model and the IVRMSE ratio of the four
proposed jump models versus the simple GARCH model. We report the results by moneyness,
maturity, and VIX index level. The performance of the four proposed jump models is very
robust across moneyness and maturity (see panels B-C). The poor option pricing performance
of the CVDJ model is also confirmed across both moneyness and maturity.
Panel D of Table 5 reports IVRMSE and IVRMSE ratios sorted by the level of the VIX

index. The DVDJ model performs exceptionally in medium and high volatility periods (when
VIX ≥14). In the lowest volatility period, only the DVSDJ model can significantly improve
on the simple GARCH model. This finding suggests that jumps provide little or no benefit for
option pricing in low volatility periods. It may seem surprising that the DVDJ model, with a
jump intensity specification that depends on the volatility level, performs so poorly in the low
volatility period. However, the jump intensity in DVDJ is affine in the variance of the normal
component, which is bounded below. Therefore, the jump intensity in the DVDJ model is
also bounded below, which implies that jumps can occur even in very low volatility periods.
The DVSDJ model, on the other hand, performs marginally better than the GARCH model
in the low volatility period. The reason is that the DVSDJ model has an separate dynamic
for the jump intensity.
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5.4 The Implied Volatility Bias over Time

Sections 5.2 and 5.3 indicate that the option RMSEs favor the DVDJ model. We now provide
more insight into this model’s performance. We first look at the ability of the four models to
match the time path of average at-the-money implied volatilities. Figure 6 presents the average
weekly at-the-money implied volatility bias (average observed market implied volatility less
average model implied volatility) over the 1996-2004 option sample, using the MLE estimates
from Tables 2 and 3.6 No model can produce implied volatilities that are sufficiently high
to match the data during high-volatility periods. The average biases in Figure 6 are as
follows: DVCJ: 0.0274, CVDJ: 0.0373, DVDJ: 0.0256, DVSDJ: 0.0334. These numbers can be
compared with the simple GARCH bias of 0.0360. The DVDJ model clearly has the lowest
bias, followed by the DVCJ and DVSDJ models. Interestingly, the time paths of implied
volatility bias are nearly identical for the DVCJ and DVSDJ models. While the DVDJ model
performs the best, overall the models do not differ spectacularly in this dimension.

5.5 The Implied Volatility Term Structure

The DVDJ performance could also be driven by its ability to better capture the implied
volatility term structure. Thus, we now look at the models’ ability to match average at-
the-money implied volatility across maturity, for three different volatility periods. Figure
7 presents data and model implied volatility across maturities. In order to investigate the
importance of different volatility regimes, we chose three periods each spanning four months.
We chose four-month windows because they are small enough to capture different volatility
regimes, while still containing sufficient data for robust analysis. The high volatility period
(top panel) is from March 1st to June 30th of 2001. The average VIX level in this period is
25.11. The medium volatility period (middle panel) is from March 1st to June 30th of 1997.
The average VIX level here is 19.88. Finally, the low volatility period (bottom panel) is from
August 1st to November 30th of 2004, with an average VIX level of 16.30. To save space, we
do not include the severely misspecified CVDJ model in this figure.
Note first that all models underestimate the level of volatility in the high volatility period.

The three depicted jump models clearly outperform the GARCH model, which confirms the
importance of jumps in the high volatility period. The GARCH model is most biased followed
by the DVSDJ and DVCJ models. The DVDJ model performs relatively well in the high
volatility period, and produces the least implied volatility bias at all maturities. For the
medium volatility period, the DVCJ and DVDJ models perform very well at medium to long
maturities, and their performance is quite comparable at all maturities. The DVSDJ model,
on the other hand, performs quite poorly with the same level of bias as the GARCH model.
For the low volatility period, the DVSDJ model performs relatively well at matching the
implied volatility term structure across maturities. On the other hand, the DVCJ and DVDJ
models produce volatility levels that are slightly high. The DVCJ model is clearly the most
upward biased, and we conjecture that this is due to its constant jump intensity specification,
whereas in the DVDJ model, the jump intensity can fall as the level of the variance drops.
Overall, the results in Figure 7 support the specification of the DVDJ model. It is the

best model at matching the implied volatility levels in the medium and high volatility periods,
while producing a slight upward bias in the low volatility period.

6We consider options to be at-the-money if their strike price lies within 2.5% of the underlying index.
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5.6 The Implied Volatility Smirk

Figure 8 presents the implied volatility smirks implied by the models. For each model, we
compute the implied volatility smirk for the three different volatility periods identical to the
ones used in Figure 7. In order to reduce the noise in the data, we pool the implied volatilities
into moneyness and maturity bins. We plot moneyness smirks for four different maturity
ranges (top to bottom): 15 to 30 days, 30 to 60 days, 90 to 140 days, and 200 to 340 days.
The left column reports on the low volatility period, while the center and right columns report
on the medium and high volatility periods. Again we do not include the misspecified CVDJ
model in this figure.
In the medium and high volatility periods, we notice that the DVDJ model is the best

at matching the implied volatility levels, especially for deep-in-the-money options. The slope
of the smirk is fairly flat for all models, and they cannot capture the shape of the smirk
implied by short maturity options. Nevertheless, DVDJ performs well compared to GARCH,
as it produces a somewhat steeper slope and a much higher level of implied volatility across
moneyness. As for the low volatility period, the DVCJ and DVDJ models again produce
excessively high implied volatility levels, especially at longer maturities. Nevertheless, the
DVDJ model is less biased than the DVCJ, confirming our earlier results. For the DVSDJ
model, the performance in the low volatility period is comparable to the GARCH model.

5.7 Jump Risk Premia and Equity Risk Premia

The option valuation results are based on parameter estimates obtained from physical returns.
We now further explore the implications of different risk premia estimates for option pricing
performance. We first perform a robustness analysis by investigating alternative assumptions
on the equity premium. Subsequently we investigate the different impact of the two risk
premium components.
We start by relaxing the assumption regarding the model’s implied equity premium. Specif-

ically, we use MLE estimates from Tables 2 and 3 and compute option IVRMSEs for other
economically plausible values of the equity premium, while constraining the equity premium
to be equal across models. For jump models, we allow both risk premia to jointly contribute
to the total equity premium.
Table 6 reports option pricing performance based on the IVRMSE metric for different

levels of the equity premium. Panel A shows the GARCH IVRMSE. Panels B, C, and D show
the IVRMSE ratios for three jump models relative to the GARCH model. In each panel,
the columns represents various levels of the equity premium ranging from 0% to 10%. The
rows represent various levels of the risk premium associated with the normal component. For
example, in Panel C, if the total equity premium is 8% and the risk premium for the normal
innovation is 2%, which means that the jump risk premium is 6%, the IVRMSE ratio is 0.86.
For this combination of risk premia, the DVDJ model thus improves over the GARCH model
by 14%. Note that for the GARCH case, we only have entries on the diagonal since the only
source of risk is associated with the normal innovation.
First, we investigate the robustness of the option pricing performance of the DVDJ model,

this refers to Panel C of Table 6. We see that the DVDJ model performs well compared to
the GARCH model at all levels and combinations of the risk premia. It performs particularly
well when a large part of the equity risk premium is attributed to jump risk.
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Next, we study the option pricing performance of jump models when the equity premium
is entirely due to non-jump risk, which corresponds to the diagonal entries. Regardless of
the equity premium, option pricing improvements are minimal in the absence of jump risk
premia; the DVDJ leads to a 4% improvement, and the DVSDJ actually underperforms the
GARCH model. On the other hand, when the equity premium is entirely due to jump risk,
the proposed jump models significantly improve on the GARCH model as the total equity
premium increases. This corresponds to the bolded cells in the first rows of panels B-D. The
strong dependence of option pricing performance on the presence of jump risk premia allows
us to conclude that jump risk premia are a necessary element for option pricing in this class
of models. The proposed jump models improve option pricing performance through jump risk
premia by reconciling the gap between the physical and the risk-neutral measures. To ensure
that our finding is not due to a specific choice of loss function, we repeat this analysis using
$RMSE instead of IVRMSE (not reported), and identical conclusions obtain.
To study the role of jump risk premia in more detail, we further investigate how the option

pricing performance of the proposed jump models is affected by the jump risk premia. Figure
9 presents volatility smirks implied by the DVDJ model at three different maturities, for
different levels and sources of risk premia. The left column presents results for zero jump risk
premia (λy = 0), with total equity premia of zero, five, ten, and fifteen percent. The right
column presents results for λz = 0, and the middle column represents the mixed case where
each component delivers half the equity risk premium. The conditional jump intensity and
conditional variance of the normal component are set equal to their long run mean values.
The importance of the jump risk premia is clearly evident. The shape and especially the

level of the implied volatility smirks are highly sensitive to the jump risk premium, but not
to the risk premium associated with the normal innovation. We have repeated this analysis
with the other proposed jump models, and obtain identical conclusions (not reported). For
options with 20 days to maturity, increasing the jump risk premia results in steeper slopes.
Interestingly, the location of the “hook” also changes as the jump risk premium increases. Our
findings are consistent with Bakshi, Kapadia, and Madan (2003), who show that the more
negative the risk-neutral skewness (and the higher the risk aversion), the steeper the implied
volatility slopes. For longer maturities, we see that high implied volatilities can be generated
with small jump risk premia. In the absence of jump risk premia this is not possible. Similar
findings can be found in Bakshi, Cao, and Chen (1997) and Bates (2000), who show that
the risk-neutral parameters required to fit stochastic volatility models to options prices are
unrealistic. Our conclusions regarding the impact of jump risk premia are also in line with
BCJ (2007).

6 Further Analysis of the Models

In this section we further investigate the jump models developed above.
First, recall that our models are designed so that the researcher does not need to separately

identify the two unobserved shocks zt+1 and yt+1, neither to estimate the models nor to use
them for option pricing. The likelihood is specified in terms of observed underlying returns
and the variance and jump dynamics are updated using observed returns rather than using the
two unobserved shocks individually. Nevertheless, in order to learn more about the models’
performance we may want to separate the shocks and we do so below using the particle filter.
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Second, our models are cast in discrete time. This is in line with a large body of work
on equity return modeling using GARCH models. However, the option valuation literature
mainly proceeds using continuous time models. In order to anchor our models in the broader
continuous time literature we therefore provide continuous time limits of our models later on
in this section.

6.1 Decomposition of Daily Returns by Particle Filtering

The two innovations zt+1 and yt+1 enter jointly into the dynamic (2.4), thus the GARCH
updating procedure is straightforward. However, in order to appreciate the rich dynamics
implied by the proposed jump specification, we use particle filtering to separately identify
both return components. The use of particle filtering was pioneered in finance by Pitt and
Shephard (1999). Johannes, Polson, and Stroud (2007) discuss applications to jump-diffusion
models. Using the MLE estimates in Table 2, we apply particle filtering to each jump model
and back out the time series of three unobservables: the jump time nt+1, the jump component
of the return yt+1, and the normal component of the return zt+1.
The filtering density for the number of jumps at jump time t+ 1, nt+1, is given by

Prt+1 (nt+1 = j) =
ft (Rt+1 | nt+1 = j) Prt (nt+1 = j)

ft (Rt+1)
(6.1)

∝ ft (Rt+1 | nt+1 = j) Prt (nt+1 = j) ,

where the expressions on the right hand side of (6.1) are given by (2.11), (2.12), and (2.13).
Prt+1 (nt+1 = j) represents the ex-post inference on nt+1, or the probability that j jumps have
arrived between time t and t+ 1 conditional on the information available at time t+ 1.
The filter for yt+1 and zt+1 is given by

Prt+1 (zt+1, yt+1) ∝ Prt (zt+1 | yt+1) Prt (yt+1) (6.2)

This represents the ex-post joint inference on zt+1 and yt+1, given time t + 1 information.
Note that the first term on the right hand side of (6.2) is conditionally normally distributed.
It can also be written as Prt (Rt+1 | yt+1). The second term on the right hand side of (6.2) is
distributed as a Compound Poisson process.
Given the filtering densities in (6.1) and (6.2), we use the Sampling Importance Resam-

pling (SIR) algorithm with 50,000 particles to integrate out the unobservables. We refer to
Pitt (2002) and Johannes, Polson, and Stroud (2007) for a more extensive discussion of the
algorithm’s implementation.
Figure 10 presents the results from applying particle filtering to the proposed jump models.

The expected ex-post number of jumps occurring in any given day is shown in the left panels.
The filtered jump, yt, and normal, zt, components are presented in the middle and right panels
respectively. We find strong evidence for multiple jumps per day in all the proposed jump
models. This is especially true for the October 19th, 1987 crash, when the DVCJ model
indicates two jumps on the same day, and the DVSDJ indicates the presence of more than
ten jumps on the same day.
For the DVCJmodel, which corresponds to the restricted case of the SVCJ in the continuous-

time literature, the jumps induce negative skewness in the return distribution. When jump
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intensities are time-varying (in the CVDJ, DVDJ and DVSDJ models), jump times are more
volatile with smaller jumps arriving at higher frequencies. The filtered state variables for
the DVDJ and DVSDJ models indicate the importance of time-varying jump intensities with
clustering effects. The highest jump arrival frequencies are observed in 1987 and in the early
period of the dot-com collapse. Interestingly, the crash of October 1987 is captured by the
arrival of four and twelve jumps in one day for the DVDJ and DVSDJ models respectively.
Because more jumps can arrive when the level of risk rises, these models do not require a large
negative jump mean in order to produce the 1987 crash and the volatility of the late 1990s.
While θ is slightly negative, we also observe jumps in the positive direction which represent
the arrival of good news. When allowing only the jump intensity to be time-varying as in the
CVDJ model, the jump component is very volatile, because jumps are the main shocks that
determine the magnitude of changes in daily returns.
When jumps occur, they are usually the dominating shock to returns. During the crash of

October 19th 1987, however, the jump component explains only about half of the 22.9% drop
in the S&P500 index. In EJP (2003) the jump component accounts for about two-thirds of
the drop in the index on this date. Presumably our results differ because of the combination
of time varying jump intensities, jumps in volatility, and the possibility that several jumps
can occur on the same day.
To understand this better, Figure 11 plots the particle filtering results of the proposed

jump models estimated using the Bernoulli approximation in (3.1) allowing for only one jump
per day. Comparing Figure 11 to Figure 10, it is evident that the jump components are larger
and more rare when using the Bernoulli approximation. Interestingly, the jump component
now is the largest contributor in the crash of October 19th 1987 for all models. The plots in
the left column of Figure 11 show the ex-post number of jumps, which is now capped at one
per day, and is thus interpretable as the jump probability.
In summary, the Bernoulli approximation enables the models to capture extremely large

and rare events such as the 1987 crash. However it does so at the expense of the rest of the
sample. The likelihood values at the bottom of Table 2 show that allowing for multiple jumps
per day increases the likelihood dramatically for all models.

6.2 Links to the Continuous-Time Literature

Our discrete-time jump setup has considerable computational advantages. However, most
related empirical results are obtained using a continuous-time setup. Thus, it is interesting
to investigate the continuous-time limits of the four proposed jump models. Recall that
when there is no jump in (2.1) and (2.4), hence hy,t+1 = 0, the model reduces to a simple
Heston-Nandi (2000) GARCH(1,1). Heston and Nandi (2000, Appendix B) show that their
model weakly converges to a diffusion limit which is the Heston (1993) square-root model.
We now demonstrate that the continuous-time limit of our jump models fall into the category
of non-affine quadratic jump-diffusion models. An alternative limit is part of the class of
time-changed Lévy processes of Carr and Wu (2004).
First rewrite the return dynamic in (2.1) using a new time-dependent parameterization,

as follows

logSt+∆ − logSt = r∆+
¡
λz − 1

2

¢
hz (t+∆) + (λy − ξ)hy (t+∆) + 10Xt+∆
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where the shocks to the return process are part of a two-dimensional vector Xt+∆

Xt+∆ =
¡
z (t+∆) y (t+∆)

¢0
.

Using vector notation, we can also write (2.4)-(2.5) using time-dependent parameterization.
This givesµ

hz (t+∆)

hy (t+∆)

¶
=

µ
wz (∆)

wy (∆)

¶
+ diag

µ
bz (∆) + az (∆) c

2
z (∆)

by (∆) + ay (∆) c2y (∆)

¶
·
µ
hz (t)

hy (t)

¶
+diag

µ−2az (∆) cz (∆)
−2ay (∆) cy (∆)

¶
·Xt + diag

µ
az (∆)h

−1
z (t)

ay (∆)h−1y (t)

¶
·X 0

tΣXt

where

Σ =

µ
1 2
0 1

¶
and diag

¡
ξ1
ξ2

¢
represents a 2× 2 diagonal matrix with first and second element given by ξ1 and

ξ2 respectively. Define υz (t) = hz (t) /∆ and υy (t) = hy (t) /∆ as the diffusive variance and
jump intensity per unit time. Now, consider letting the time interval shrink with parameter
specifications

wj (∆) = ωj∆
2 aj (∆) = αj∆

2

cj (∆) = γj∆
−1 bj (∆) = 1−

¡
αjγ

2
j − βj

¢
∆

for j = y, z. In the limit as ∆t→ dt, we get the process

d logSt = (r + λzυz (t) + λyυy (t)) dt+ 1
0dXt − υz (t)

2
dt− ξυy (t) dt (6.3)µ

dυz (t)

dυy (t)

¶
=

∙
W+B

µ
υz (t)

υy (t)

¶¸
dt+CdXt +A

µ
υ−1z (t)

υ−1y (t)

¶
dX 0

tΣdXt (6.4)

where

W =

µ
ωz

ωy

¶
C =

µ −2αzγz 0
0 −2αyγy

¶
B =

µ
βz 0
0 βy

¶
A =

µ
αz 0
0 αy

¶
.

and

dX(t) =

µ
dZ (υz (t))

dY (υy (t) , k, θ)

¶
=

µp
υz (t)dW (t)

Q (t) dN (t)

¶
.

The diffusion term can be written as the product of the Brownian motion W (t) and the
square root of the stochastic variance υz (t) . The jump term has a jump-size component Q (t)
and a component given by a Poisson counting process N (t) with instantaneous arrival rate
of υy (t) . The continuous-time limit of the return in (6.3) is nested within the jump diffusive
specification of Duffie, Pan, and Singleton (2000). However, the stochastic variance and jump
intensity in (6.4) are clearly non-affine, with quadratic dependence on dXt.
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Next we show how the above continuous-time limit can be interpreted as a time-changed
Lévy process. Consider the vector of potential stochastic time changes Tt =

£
T d
t , T

j
t

¤
applied

to two Lévy components Zt and Yt. By definition, the time change Tt is an increasing, right
continuous process with left limits satisfying the usual conditions, for all t ≥ 0 and Tt → ∞
as t→∞. At any time t, the dynamic of the random time is characterized by

T d
t =

Z t

0

υz (s) ds and T j
t =

Z t

0

υy (s) ds,

where υz (s) and υy (s) are usually referred to as the instantaneous activity rates, with υz (0) =
υy (0) = 0. Following Carr and Wu (2004), we can intuitively think of t as the calender time
and of Tt as business activity on calender day t. Days with higher volatility represent active
business days with higher instantaneous activity rates. Using (6.3), we can integrate and write
the price process at any given calender time t as

St = S0 exp

µZ t

0

d (logSs) ds

¶
= S0 exp

¡
rt+

¡
λz − 1

2

¢
T d
t + (λy − ξ)T j

t + Zt + Yt
¢
. (6.5)

The first of the two Lévy shocks to the stock price is a Brownian process Zt evaluated at a
stochastic time change T d

t . Thus, it is normally distributed with with mean zero and variance
T d
t . The second Lévy shock is a pure jump process, which we model as compound Poisson.
Jumps in Yt arrive over the interval [t, t+ dt] at a stochastic instantaneous rate of υy (t).
Therefore, the expected number of jumps occurring between times 0 and t is T j

t , with each
jump normally distributed with mean θ and variance δ2. The stochastic time change Tt that
determines the distribution of Zt and Yt is governed by the dynamics in (6.4). Note that the
stock price process in (6.5) is very similar to the MJDSV4 process in Huang and Wu (2004),
with a somewhat different specification of the stochastic time change process.
The special case of the DVDJ model which performs well empirically has the continuous-

time limit

dSt = (r + γt)Stdt+
p
υz (t)StdWt + dYt − ξStkυz (t) dt

dυz (t) = (ωz + βzυz (t)) dt− 2αzγz
p
υz (t)dWt +

αz

υz (t)

³p
υz (t)dWt + dYt

´2
where υz (t) = hz (t) /∆ can be thought as the stochastic variance process in the conven-
tional continuous-time models. The pure jump component in the model has the limit of
dYt = Q (t) dN (t) where jumps arrive according to a Poisson counting process dN (t) at
an instantaneous rate of υy (t) and the size of each jump Q (t) is log-normally distributed with
mean θ and variance δ2. The continuous-time limit of DVDJ resembles the SVSCJ model in the
continuous-time jump-diffusion literature, but with a non-affine stochastic variance process.

6.3 Risk-Neutralization in Continuous-Time Jump Models

Bates (1988, 2000) and Naik and Lee (1990) provide a general equilibrium treatment of jumps
in a continuous-time setup. They assume that the jump in the Compound Poisson process
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is normally distributed. Under the risk-neutral measure, the Compound Poisson process
undergoes changes in the jump intensity hy,t+1 and mean jump size θ. That is, the change of
measure will result in

{hy,t+1, θ} =⇒
©
h∗y,t+1, θ

∗ª .
Most empirical implementations of jump models are inspired by this general equilibrium setup,
in the sense that they adopt a stochastic discount factor (SDF) which allows for jump intensity
and jump mean size to differ across the two measures. However, these implementations do not
impose the full structure of Bates (1988, 2000) and Naik and Lee (1990). The most popular
choice of SDF in the continuous-time jump-diffusion literature is Lt = LD

t L
J
t , where the SDF

for the diffusive part LD
t is specified as

LD
t = exp

µZ t

0

Θ (s) dW (s)− 1
2

Z t

0

kΘ (s)k2 ds
¶
.

and the SDF component associated with the jump is given by

LJ
t =

NtQ
n=1

Ã
λQτn fQ (τn, Xn)

λτn f (τn,Xn)

!
exp

µZ t

0

½Z
Z

£
λsf (s,X)− λQs f

Q (s,X)
¤
dX

¾
ds

¶
(6.6)

where λs is the jump intensity and f (s,X) is the distribution of each jump X. This choice of
SDF has both advantages and disadvantages. The main advantage is that it is very flexible.
The risk neutral process is also Compound Poisson with jump intensity h∗y,t+1 and each jump
size distributed according to fQ (s,X), but the risk-neutral jump size distribution can be
different from the physical one. The same flexibility applies to the jump intensity.
This choice of SDF therefore allows for a highly flexible Compound Poisson jump structure

in the risk-neutral measure. The disadvantage of this SDF specification is that it is not possible
to identify the risk neutral h∗y,t+1 and fQ (s,X) from a given level of jump risk premium. To
see this, we will set the diffusion component equal to zero, so that only the jump risk premium
matters, and focus on a simple geometric compound Poisson process

dS (t) = S (t) (rt + γt − μλ) dt+ S (t) d

µ
NtP
n=1

£
eXn − 1¤¶ (6.7)

where Xn ∼ N
¡
θ, δ2

¢
is the distribution of each jump and μ = exp

³
θ + δ2

2

´
− 1 is the jump

compensator. Using the change of measure according to LJ
t above, the stock price under the

Q measure will be

dSQ (t) = S (t)
¡
rt − μQλQ

¢
dt+ S (t) d

Ã
Nt(Q)P
n=1

£
eXn(Q) − 1¤! . (6.8)

The above process is a martingale under the Q measure. Comparing (6.7) and (6.8), we see
that the instantaneous total equity premium γt is given by

γt = μλ− μQλQ,
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This illustrates the weakness of this SDF specification. Given an equity premium γt and
known P measure jump parameters μλ, one can only identify the Q measure compensator
μQλQ. Therefore, it is not clear how a given level of equity premium is split up between
μ − μQ and λ − λQ. The solution in many empirical implementations is to assume λQ = λ,
which means that all of the jump risk premium is absorbed through the μ − μQ factor. See
Pan (2002), EJP (2003), and Eraker (2004) for examples of this approach. BCJ (2007) use a
different approach, and allow for additional flexibility by assuming δ 6= δQ. They note that
prior studies constrain δ = δQ because of an underlying equilibrium model that assumes power
utility over consumption or wealth, as in Bates (1988) and Naik and Lee (1990), and argue
that when valuing options based on the absence of arbitrage, there is therefore no need to
restrict δ = δQ. However, it is worth noting that the pricing kernel used to risk-neutralize
the diffusion component in most jump-diffusion models, including in BCJ (2007), is based on
power utility. Therefore, there seems to be an internal inconsistency in this approach, in the
sense that the pricing kernels for the diffusion and jump components are possibly supported
by two different utility functions. In our approach, this is not the case. Moreover, this is not
due to the use of a discrete- versus a continuous-time framework. Our risk-neutralization can
be implemented in continuous-time, and the conventional continuous-time approach described
above can be implemented in discrete time.

7 Conclusion and Directions for Future Work

This paper presents a new framework for modeling and estimating jumps in returns and
volatility. The specification of the jump models is inspired by a popular class of jump-diffusion
models in the continuous-time literature. However, we specify the models using a discrete-
time GARCH setting, and as a result models with time-varying jump intensities and jumps
in volatility can be easily estimated from long time series of return data using a standard
MLE procedure. This enables us to analyze complex jump models, with features that are
difficult to study in a continuous-time setup because of their computational complexity. Our
general model encompasses four nested specifications which exhaust all possible sources of
heteroskedasticity. The time-varying properties of the proposed jump models are driven by
the dynamics of the variance of the normal shock and the dynamics of the jump intensity. Our
model shares some similarities with Maheu and McCurdy (2004), who study equity returns
but not options, and Duan, Ritchken, and Sun (2006) who study option pricing. However,
our model has different implications for option valuation, because our assumptions enable
us to characterize the risk-neutral dynamic systematically with separate jump and diffusion
(normal) risk premia. We also provide continuous time limits of our models, which allow us
to anchor our framework in the continuous time literature.
Our empirical analysis on S&P500 index return data and option prices leads to impor-

tant conclusions regarding the implication of jumps for asset pricing and option valuation.
We conclude that jump models should allow for heteroskedasticity both in the conditional
variance of the normal innovation and the jump intensity. Although jumps can complement
a heteroskedastic normal innovation by improving the modeling of the tails of the distribu-
tion, they cannot replace the normal innovations. The CVDJ model without time-varying
conditional variances for the conditional normal innovation appeared to be misspecified.
Our option valuation results also demonstrate the importance of jump risk premia. For a
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reasonable range of equity premia, we find that the risk premium associated with the condi-
tional normal innovation has little impact on the implied volatility term structure, and that
realistic shapes of the implied volatility term structure can only be generated with sizeable
jump risk premia. This finding is in line with Pan (2002) and BCJ (2007).
We also conclude that the frequency of jump arrivals should be time-varying and dependent

on the level of risk in the market. This finding contributes to the current debate on the
specification of jump intensities. Consistent with the results in Bates (2006), but contrary to
the findings of ABL (2002), we find evidence for time-varying jump intensities when estimating
the model using a long time series of returns. Our option pricing results favor a model with
jump intensities that are affine in the variance of the normal component. We also find that
jumps are not useful in low volatility regimes. Therefore, future specifications should allow for
frequent jump arrivals in high volatility regimes, and little or no possibility of jump arrivals
in low volatility regimes.
Our results can be extended in a number of ways. First, the models in this paper can be

estimated using options data, and the results can be compared with the parameter estimates
and the option valuation results in this paper. Joint estimation on returns and options as in
Chernov and Ghysels (2000) would be interesting as well. Second, we analyze jumps of finite
activity and finite variation, but the framework can be extended to incorporate the infinite
activity Lévy processes of Huang and Wu (2004). Third, it would be interesting to investigate
the marginal contribution of jumps to the return process when the variance of the normal
innovation follows a non-affine dynamic as in Duan (1995), or a richer GARCH dynamic such
as the component variance model of Engle and Lee (1999).

8 Appendix A: Long run variance and persistence

DVCJ

Without time-varying jump intensity, the long run variance of the normal innovation is

σ2z =
az + wz − 2azczwyθ +

√
C

2 (1− bz − azc2z)

where
C = (az + wz − 2azczwyθ)

2 − 4az
¡−1 + bz + azc

2
z

¢
wy

¡
δ2 + (1 + wy) θ

2
¢

and the persistence is ρz = bz + azc
2
z.

CVDJ

Without time-varying variance in the normal component, we only need to solve for the ex-
pression for the long run jump intensity. It is given by

σ2y =
1

2

wy + ay
¡
θ2 + δ2

¢
+
√
C¡

1− by − ay (cy − θ)2
¢
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where C is given by

C =
¡
wy + ay

¡
θ2 + δ2

¢¢2
+ 4aywz

¡
1− by − ay (cy − θ)2

¢
We can then easily see that the persistence is given by ρy = by + ay (cy − θ)2 .

DVDJ

The long run variance of the normal innovation is

σ2z =
1

2

wz − az
¡−1− ¡δ2 + θ2

¢
k
¢
+
√
C

(1− bz − azc2z − azθk (−2cz + θk))

where C is given by
C =

¡
az + wz + az

¡
δ2 + θ2

¢
k
¢2
.

It can then be seen that the persistence hz,t+1 is given by ρz = bz + azc
2
z + azθk (−2cz + θk) .

The long run jump intensity can be derived using the affine structure of the variance of the
normal component as σ2y = kσ2z.

DVSDJ

The derivation of the unconditional variance and persistence implied by the DVSDJ dynamic
requires some elaboration. We derive the long run mean of hz,t+1 and hy,t+1 by taking the
unconditional expectation of (2.5) and applying the law of iterated expectations,

σ2z =E [ Et [hz,t+2] ] and σ2y =E [ Et [hz,t+2] ] . (8.1)

The expressions on the right hand side are nonlinear functions of σ2z and σ2y. Solving the
system of two equations, we get

0 = az + wz − wy + (1− by + aycy (2θ − cy)− 2θazcz)σ2y + (8.2)¡
bz + azc

2
z − 1− aycydy − aydy (cy − 2θ)− ayσ

−2
y

¢
σ2z.

Notice that (8.2) does not imply a unique solution for σ2z and σ2y. We therefore define

σ2 ≡ V ar (Rt) = σ2z +
¡
δ2 + θ2

¢
σ2y (8.3)

where σ2 is the unconditional variance of the returns which can be estimated outside the model
by simply using the sample second moment. This relation amounts to variance targeting,
where the model’s implied second moment is matched to the variance of the estimation sample.
Applying (8.3) to (8.2), we can solve for σ2z and σ2y analytically.
For the long run jump intensity, the solution is

E [hy,t+1] ≡ σ2y =
2σ2ay
1− ρy

,

30



where ρy is the persistence of the jump intensity and is given by

ρy = 1−
¡
δ2 + θ2

¢
ay − az − σ2

¡−1 + bz + azc
2
z

¢
+ wy − wz −

√
C

where C is given by

C = 4σ2ay
¡
1 + δ2 + θ2 − by −

¡
δ2 + θ2

¢
bz − aycy (−2θ + cy)− azcz

¡
2θ +

¡
δ2 + θ2

¢
cz
¢¢
+¡−σ2 + ¡δ2 + θ2

¢
ay + σ2bz + az

¡
1 + σ2c2z

¢− wy + wz

¢2
.

The long run variance of the normal innovation is

E [hz,t+1] ≡ σ2z =
D0 +

q
− ¡δ2 + θ2

¢2
D1

2 (1− ρz)

where

D0 = −2θσ2az
³
θ +

¡
δ2 + θ2

¢2´
+
¡
δ2 + θ2

¢2
wz

D1 = 4σ2a2z
¡
θ +

¡
δ2 + θ2

¢
cz
¢2 − ¡δ2 + θ2

¢2
w2z +

4σ2az
³³¡

δ2 + θ2
¢2
+ θ2σ2

´
(bz − 1) + θ

¡
θ +

¡
δ2 + θ2

¢
cz
¢
wz

´
The persistence of the variance of the normal component is given by

ρz = −δ2 − θ2 + by +
¡
δ2 + θ2

¢
bz + aycy (cy − 2θ) + azcz

¡
2θ +

¡
δ2 + θ2

¢
cz
¢
.

9 Appendix B: Risk neutralization

Proof of Lemma 1

First, we need to find the joint moment generating function (MGF) of the return innovation.
Because the normal and jump components are contemporaneously independent, the condi-
tional joint MGF of zt+1 + yt+1 can be written as the product of their moment generating
functions

Et

£
exp

¡
φzzt+1 + φyyt+1

¢¤ ≡ exp ¡Ψz (φz;hz,t+1) +Ψy

¡
φy;hy,t+1

¢¢
. (9.1)

The expression Ψz (φz;hz,t+1) =
1
2
φ2zhz,t+1 is the exponent of the Normal MGF with mean

zero and variance hz,t+1. For the compound Poisson process with jump intensity hy,t+1, jump
mean size θ, and jump variance δ2, the exponent of its MGF is given by

Ψy

¡
φy;hy,t+1

¢
= hy,t+1

¡
exp

¡
φyθ +

1
2
φ2yδ

2
¢− 1¢

Substituting (9.1) for

logM (Λ;Ht+1) = exp (Ψz (Λz;hz,t+1) +Ψy (Λy;hy,t+1))
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in the EMM restriction (4.3) gives, after simplification and collecting terms

hy,t+1

µ
λy −

³
e
δ2

2
+θ − 1

´
− e

Λ2yδ
2

2
+Λyθ

³
1− e(

1
2
+Λy)δ2+θ

´¶
+ hz,t+1 (λz + Λz) = 0.

This is solved by equating the coefficients of hy,t+1 and hz,t+1 to zero, which gives (4.5) and
(4.4).

Proof of Proposition 2

We will prove this using the moment generating function. Our procedure is as follows. First,
we find the MGF of zt + yt under the risk-neutral measure Q,

EQ
t [exp (φ (zt+1 + yt+1))] = exp

¡
ΨQ (φ;Ht+1)

¢
(9.2)

where we let ΨQ (φ;Ht+1) be the exponent of the Q measure MGF. Next, we apply the change
of measure through the Radon-Nikodym derivative in (4.2). Subsequently, we retrieve the
stochastic process that will yield such form of MGF. Using the notation in (9.1), the change
of measure to (9.2) gives

EQ
t [exp (φ (zt+1 + yt+1))] = Et

"
dQΛ

dP
| Ft+1

dQΛ

dP
| Ft

exp (φ (zt+1 + yt+1))

#

= Et

∙
exp ((φ+ Λz) zt+1 + (φ+ Λy) yt+1)

M (Λ; Ht+1)

¸
,

where the conditional expectation on the right hand side is now under the physical measure.
Noting thatM (Λ; Ht+1) = exp (Ψz (Λz;hz,t+1) +Ψy (Λy;hy,t+1)) is predictable at time t, and
that zt and yt are conditionally independent, this gives

EQ
t [exp (φ (zt+1 + yt+1))] = exp (Az +Ay)

where

Az = Ψz (φ+ Λz;hz,t+1)−Ψz (Λz;hz,t+1)

Ay = Ψy (φ+ Λy;hy,t+1)−Ψy (Λy;hy,t+1)

It can be seen that Az is the exponent of the Normal MGF with mean Λzhz,t+1 and variance
hz,t+1

Az = φΛzhz,t+1 +
1
2
φ2hz,t+1.

We denote this risk-neutral measure normal component z∗t+1 ∼ N (Λzhz,t+1, hz,t+1). Similarly,
rearranging the expression in Ay yields

Ay = hy,t+1 exp
Λ2yδ

2

2
+Λyθ

µ
expφ(θ+Λyδ

2)+ δ2φ2

2 −1
¶
,
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which is the exponent of the Compound Poisson MGF with jump mean size θ∗ = θ + Λyδ
2,

and jump intensity h∗y,t+1 = hy,t+1 exp
³
Λ2yδ

2

2
+ Λyθ

´
. Again, we denote this risk-neutral mea-

sure jump component as y∗t ∼ J
¡
h∗y,t+1, θ

∗, δ2
¢
. The proof is complete as we have shown

that EQ
t [exp (φ (zt+1 + yt+1))] is the moment generating function of the stochastic process

z∗t+1 + y∗t+1.

Proof of Proposition 3

Using the result from Proposition 2, we see that under the risk-neutral Q measure, the returns
process in (2.1) can be written as

log

µ
St+1
St

¶
= r +

µ
λz − 1

2

¶
hz,t+1 + (λy − ξ)hy,t+1 − θhy,t+1 + z∗t+1 + y∗t+1. (9.3)

The change of measure affects only the return innovations. Therefore, other parameters will

remain the same after the measure change. The risk-neutral dynamics in (2.4) can be written
as

hz,t+1 = wz + bzhz,t +
az
hz,t

(z∗t + y∗t − czhz,t)
2 (9.4)

hy,t+1 = wy + byhy,t +
ay
hy,t

(z∗t + y∗t − cyhy,t)
2 .

Note that the risk-neutral distributions of the two shocks are z∗t+1 ∼ N (Λzhz,t+1, hz,t+1) and
y∗t+1 ∼ J

¡
h∗y,t+1, θ

∗, δ2
¢
. The convention in the GARCH literature is to express the normal

shock as a mean zero innovation. We therefore use the simple transformation z∗t+1 = zt+1 +
Λzhz,t+1. Recalling that the analytical solution to Λz is −λz, we can write (9.3)) as

log

µ
St+1
St

¶
= r − 1

2
hz,t+1 + (λy − ξ)hy,t+1 + zt+1 + y∗t+1.

Because the Q measure is constructed such that the discounted price process of St is a mar-
tingale, and we already know that Et

£
exp

¡
zt+1 − 1

2
hz,t+1

¢¤
is a martingale, we must have

exp ((λy − ξ)hy,t+1) = Et

£
exp

¡−y∗t+1¢¤ = ΨQ
y

¡
Λy;h

∗
y,t+1

¢
= exp

³
−
³
e
δ2

2
+θ∗ − 1

´´
h∗y,t+1 = exp

¡−ξ∗h∗y,t+1¢
and thus ξ∗ =

³
e
δ2

2
+θ∗ − 1

´
. Using the parameterization

w∗y = wyΠ, a∗y = Π2ay, c∗z = (cz − Λz) ,

c∗y =
cy
Π
, h∗y,t = hy,tΠ
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for Π = exp
³
Λ2yδ

2

2
+ Λyθ

´
, it can then be shown that (9.3) and (9.4) are equivalent to

log

µ
St+1
St

¶
= r − 1

2
hz,t+1 − ξ∗h∗y,t+1 + zt+1 + y∗t+1,

with the following Q-dynamics

hz,t+1 = wz + bzhz,t +
az
hz,t

(zt + y∗t − c∗zhz,t)
2

h∗y,t+1 = w∗y + byh
∗
y,t +

a∗y
h∗y,t

¡
zt + y∗t + Λzhz,t − c∗yh

∗
y,t

¢2
.

34



References

[1] Ahn, L., Dai, Q., Singleton, K., 2006. Discrete-time dynamic term structure models
with generalized market prices of risks. Unpublished working paper, University of North
Carolina at Chapel Hill.

[2] Andersen, T., Benzoni, L., Lund, J., 2002. An empirical investigation of continuous-time
equity return models. Journal of Finance 57, 1239-1284.

[3] Bakshi, C., Cao, C., Chen, Z., 1997. Empirical performance of alternative option pricing
models. Journal of Finance 52, 2003-2049.

[4] Bakshi, G., Kapadia, N., Madan, D., 2003. Stock return characteristics, skew laws, and
the differential pricing of individual equity options. Review of Financial Studies 16, 101-
143.

[5] Barone-Adesi, G., Engle, R., Mancini, L., 2008. A GARCH option pricing model with
filtered historical simulation. Review of Financial Studies 21, 1223-1258.

[6] Bates, D., 1988. Pricing options under jump-diffusion processes. Unpublished working
paper, University of Pennsylvania.

[7] Bates, D., 1996. Jumps and stochastic volatility: exchange rate processes implicit in
Deutsche Mark options. Review of Financial Studies 9, 69-107.

[8] Bates, D., 2000. Post-87 crash fears in S&P500 futures options. Journal of Econometrics
94, 181-238.

[9] Bates, D., 2006. Maximum likelihood estimation of latent affine processes. Review of
Financial Studies 19, 909-965.

[10] Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of
Political Economy 81, 637-659.

[11] Brennan, M., 1979. The pricing of contingent claims in discrete-time models. Journal of
Finance 34, 53-68.

[12] Broadie, M., Chernov, M., Johannes, M., 2007. Model specification and risk premia: the
evidence from the futures options. Journal of Finance 62, 1453-1490.

[13] Buhlmann, H., Delbaen, F., Embrechts, P., Shiryaev, A., 1998. On Esscher transforms in
discrete finance models. ASTIN Bulletin 28, 171-186.

[14] Carr, P., Geman, H., Madan, D., Yor, M., 2003. Stochastic volatility for Lévy processes.
Mathematical Finance 13, 345-382.

[15] Carr, P., Wu, L., 2003. The finite moment log stable process and option pricing. Journal
of Finance 58, 753-778.

[16] Carr, P., Wu, L., 2004. Time-changed Lévy processes and option pricing. Journal of
Financial Economics 17, 113—141.

35



[17] Chernov, M., Ghysels, E., 2000. A study towards a unified approach to the joint estima-
tion of objective and risk-neutral measures for the purpose of option valuation. Journal
of Financial Economics 56, 407-458.

[18] Chernov, M., Gallant, R., Ghysels, E., Tauchen, G., 2003. Alternative models for stock
price dynamics. Journal of Econometrics 116, 225-257.

[19] Cochrane, J.H., 1997. Where is the market going? Uncertain facts and novel theories.
Economic Perspectives 26, 3-40.

[20] Duan, J.C., 1995. The GARCH option pricing model. Mathematical Finance 5, 13-32.

[21] Duan, J.C., Ritchken, P., Sun, Z., 2006. Approximating GARCH-jump models, jump-
diffusion processes, and option pricing. Mathematical Finance 16, 21-52.

[22] Duan, J.C., Ritchken, P., Sun, Z., 2007. Jump starting GARCH: pricing and hedging op-
tions with jumps in returns and volatilities. Unpublished working paper, Rotman School,
University of Toronto.

[23] Duffie, D., Pan, J., Singleton, K., 2000. Transform analysis and asset pricing for affine
jump-diffusions. Econometrica 68, 1343-1376.

[24] Dumas, B., Fleming, J., Whaley, R., 1998. Implied volatility functions: empirical tests.
Journal of Finance 53, 2059-2106.

[25] Engle, R., Ng, V., 1993. Measuring and testing the impact of news on volatility. Journal
of Finance 48, 1749-1778.

[26] Engle, R., Lee, G., 1999. A permanent and transitory component model of stock return
volatility. In: Engle, R., White, H. (Eds.), Cointegration, causality, and forecasting: a
festschrift in honor of Clive W.J. Granger. Oxford University Press, New York, pp. 475-
497.

[27] Eraker, B., 2004. Do stock prices and volatility jump? Reconciling evidence from spot
and option prices. Journal of Finance 59, 1367-1403.

[28] Eraker, B., Johannes, M., Polson, N., 2003. The impact of jumps in volatility and returns.
Journal of Finance 58, 1269-1300.

[29] Esscher, F., 1932. On the probability function in the collective theory of risk. Skandinavisk
Aktuarietidskrift 15,175-195.

[30] Fernandez, P., 2006. Equity premium: historical, expected, required and implied. Un-
published working paper, IESE Business School, University of Navarra.

[31] Fleming, J., Kirby, C., 2003. A closer look at the relation between GARCH and stochastic
autoregressive volatility. Journal of Financial Econometrics 1, 365-419.

[32] Gerber, H., Shiu, E., 1994. Option pricing by Esscher transforms. Transactions of Society
of Actuaries, 46.

36



[33] Harvey, C., Siddique, A., 1999. Autoregressive conditional skewness. Journal of Financial
and Quantitative Analysis 34, 465-487.

[34] Harvey, C., Siddique, A., 2000. Conditional skewness in asset pricing tests. Journal of
Finance 55, 1263-1295.

[35] Hentschel, L., 1995. All in the family: nesting symmetric and asymmetric GARCH mod-
els. Journal of Financial Economics 39, 71-104.

[36] Heston, S., 1993. A closed-form solution for options with stochastic volatility with appli-
cations to bond and currency options. Review of Financial Studies 6, 327-343.

[37] Johannes, M., Polson, N., Stroud, J., 2007. Optimal filtering of jump-diffusions: extract-
ing latent states from asset prices. Forthcoming, Review of Financial Studies.

[38] Jones, C., 2006. A nonlinear factor analysis of S&P500 index option returns. Journal of
Finance 61, 2325-2363.

[39] Heston, S., Nandi, S., 2000. A closed-form GARCH option pricing model. Review of
Financial Studies 13, 585-626.

[40] Huang, J.Z., Wu, L., 2004. Specification analysis of option pricing models based on time-
changed Lévy processes. Journal of Finance 59, 1405—1439.

[41] Huang, X. and Tauchen, G., 2005. The relative contribution of jumps to total price
variance. Journal of Financial Econometrics 3, 456-499.

[42] Ibbotson Associates, 2006. Stocks, bonds, bills, and inflation, Valuation Edition, 2006
Yearbook.

[43] Li, H., Wells, M., Yu, C., 2007. A Bayesian analysis of return dynamics with Lévy jumps.
Forthcoming in the Review of Financial Studies.

[44] Maheu, J., McCurdy, T., 2004. News arrival, jump dynamics and volatility components
for individual stock returns. Journal of Finance 59, 755—793.

[45] Maheu, J., McCurdy, T., 2008. Modeling foreign exchange rates with jumps. Frontiers of
Economics and Globalization 3, 449-475.

[46] Mehra, R., Prescott, E., 2003. The equity premium in retrospect. Handbook of the Eco-
nomics of Finance ed. by G.M Constantinides, M. Harris and R. Stulz, North Holland,
Amsterdam, pp. 2-38.

[47] Merton, R., 1976. Option pricing when underlying stock returns are discontinuous. Jour-
nal of Financial Economics 3, 125-144.

[48] Naik, V., Lee, M., 1990. General equilibrium pricing of options on the market portfolio
with discontinuous returns. Review of Financial Studies 3, 493-521.

[49] Pan, J., 2002. The jump-risk premia implicit in options: evidence from an integrated
time-series study. Journal of Financial Economics 63, 3—50.

37



[50] Pitt, M., 2002. Smooth particle filters for likelihood evaluation and maximization. Un-
published working paper, University of Warwick.

[51] Pitt, M., Shephard, N., 1999. Filtering via simulation based on auxiliary particle filters.
Journal of the American Statistical Association 94, 590-599.

[52] Santa-Clara, P., Yan, S., 2008. Crashes, volatility, and the equity premium: lessons from
S&P500 options. Forthcoming, Review of Economics and Statistics.

[53] Siegel, J.J., Thaler, R., 1997. Anomalies: the equity premium puzzle. Journal of Economic
Perspectives 11, 191-200.

[54] Todorov, V., Tauchen, G., 2008. Volatility jumps. Unpublished working paper, Kellogg
School of Management, Northwestern University.

[55] Welch, I., 2000. Views of financial economists on the equity premium and on professional
controversies. Journal of Business 73, 501-537.

38



Figure 1: Daily Return and Implied Volatility on the S&P500.
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Notes to Figure: The top panel plots the daily S&P500 return from 1985 through 2004. The
middle panel plots the average weekly implied Black-Scholes volatility for the at-the-money
S&P500 call options from 1996 through 2004. The bottom panel plots the VIX index from
1996 through 2004.
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Figure 2: Conditional Variance Paths (Annualized)
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Notes to Figure: We plot the annualized conditional variance for each of the four proposed
jump models. The parameter values are obtained from the MLE estimates in Table 2.
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Figure 3: Conditional Variance: Jump Models less Benchmark GARCH (Annualized)
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Notes to Figure: We plot the difference between the annualized conditional variance of the
jump models and that of the benchmark conditionally normal GARCHmodel. The underlying
parameter estimates are from Tables 2 and 3. Note that the scale is different for the CVDJ
model in the top-right panel.
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Figure 4: Conditional Jump Intensities
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Notes to Figure: Using the parameter estimates in Table 2, we plot the daily conditional jump
intensity, hy,t+1 for each of the four jump models, from January 1, 1985 through December
31, 2004.
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Figure 5: Conditional Skewness and Kurtosis
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Notes to Figure: Using the parameter estimates in Table 2, we plot daily conditional skewness
and excess kurtosis for the four jump models, from January 1, 1985 through December 31,
2004. Note that the scale is different for the DVCJ model in the top row.
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Figure 6: Weekly Implied Volatility Bias for At-the-Money Options
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Notes to Figure: We plot the weekly average difference between the market and model implied
volatility for options with moneyness (index value over strike price) between 0.975 and 1.025.

44



Figure 7: Implied Volatility Term Structures in Three Volatility Regimes
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Notes to Figure: We compare the average implied Black-Scholes volatility term structure from
the GARCH and selected jump models in three volatility regimes. The dots mark the average
implied volatility from the data. The high volatility period is 2001/03/01 through 2001/06/30,
with an average VIX level of 25.11. The medium volatility period is 1997/03/01 through
1997/06/30, with an average VIX level of 19.88. The low volatility period is 2004/08/01
through 2004/11/30, with an average VIX level of 14.85.
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Figure 8: Implied Volatility Smirks in Three Volatility Regimes
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Notes to Figure: We compare the average implied Black-Scholes volatility smirks from the
GARCH and selected jump models in three volatility regimes. The dots mark the average
implied volatility from the data. The high volatility period is 2001/03/01 through 2001/06/30,
with an average VIX level is 25.11. The medium volatility period is 1997/03/01 through
1997/06/30, with an average VIX level of 19.88. The low volatility period is 2004/08/01
through 2004/11/30, with an average VIX level of 14.85.
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Figure 9: The Impact of Risk Premia on the IV Smirk in the DVDJ Model
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Notes to Figure: We plot the volatility smirks at different maturities and according to different
levels and sources of risk premia. In the left column, the equity premium results entirely from
the normal risk. In the middle column, jump and normal risk premia contribute equally to
the risk premium. In the right column, the equity premium results entirely from jump risk.
The conditional variance of the normal component and the conditional jump intensity are set
equal to their model’s implied long run mean.
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Figure 10: Decomposition of Daily Returns using the Particle Filter
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Notes to Figure: We filter the ex-post expected number of jumps (left), the jump component,
yt, (middle), and the normal component, zt, (right) using 50,000 particles. We use the MLE
estimates in Table 2. The top to bottom panels show the results for the DVCJ, CVDJ, DVDJ,
and DVSDJ models respectively. Note that the scales are different for all the models in the
plots showing the ex-post expected number of jumps.
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Figure 11: Decomposition of Returns using Particle Filtering and Bernoulli Approximation
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Notes to Figure: We filter the ex-post expected number of jumps (left), the jump compo-
nent, yt, (middle), and the normal component, zt, (right) using 50,000 particles. We use
MLE estimates where the Compound Poisson processes are approximated using the Bernoulli
distribution. The top to bottom panels show the results for the DVCJ, CVDJ, DVDJ, and
DVSDJ models respectively.
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Jumps Correlated Return State Dependent Stochastic Returns Options Joint Returns
Continuous-Time Models in Volatility and Volatility Jumps Jump Intensity Jump Intensity only only and Options
Merton (1976)
Bakshi, Cao, Chen (1997)
Bates (1996)
Bates (2000) 
Pan (2002)
Andersen, Benzoni, Lund (2002)
Chernov, Gallant, Ghysels, Tauchen (2003)
Eraker, Johannes, Polson (2003)
Eraker (2004)
Huang, Wu (2004)
Bates (2006) 
Li, Wells, Yu (2007)
Broadie, Chernov, Johannes (2007)
Santa-Clara, Yan (2008)

Jumps Correlated Return State Dependent Separate Dynamic for Returns Options Joint Returns
Discrete-Time Models in Volatility and Volatility Jumps Jump Intensity Jump Intensity only only and Options
Maheu, McCurdy (2004)
Duan, Ritchken, Sun (2006) 
DVCJ
CVDJ
DVDJ
DVSDJ

Notes to Table:  For each study we consider its most flexible specification and categorize it according to the following criteria: (1) The presence of jumps in volatility (2) Are jumps in 
returns and volatility correlated? (3) Is the jump intensity a function of a state variable such as volatility?, denoted as “State Dependent Jump Intensity”, (4) Is the jump intensity 
modeled as a separate stochastic process (not as a function of other state variable)?, denoted as “Stochastic Jump Intensity” for continuous-time models and “Separate Dynamic for 
Jump Intensity” for discrete-time models. We also include information on how the most flexible model in each paper is estimated in the three right-hand columns. Note that all models 
considered here have jumps in returns. 

Table 1: Selected Summary of the Literature on Finite-Activity Jump-Diffusion Estimation

Estimated fromJump Specification

Jump Specification Estimated from



Parameters Normal Jump Normal Jump Normal Jump Normal Jump

λ 1.159E-02 2.304E-04 4.826E-03 9.548E-04
(8.733E-03) (1.146E-04) (2.609E-03) (3.965E-04)

w -1.243E-06 1.417E-02 2.573E-05 -1.545E-03 -6.815E-07 -4.236E-07 1.833E-03
(2.174E-07) (4.181E-03) (1.327E-06) (6.334E-04) (1.974E-07) (1.092E-07) (6.998E-05)

b 9.392E-01 3.267E-01 9.341E-01 9.829E-01 1.197E-01
(7.795E-03) (2.233E-02) (8.304E-03) (5.720E-03) (5.851E-03)

a 2.676E-06 1.741E+02 2.215E-06 4.503E-07 3.970E+01
(2.522E-07) (2.923E+01) (2.404E-07) (8.566E-08) (1.169E-01)

c 1.202E+02 6.015E-02 1.271E+02 -1.081E+02 1.430E-01
(1.444E+01) (4.812E-03) (1.658E+01) (5.534E+01) (1.706E-04)

θ -1.804E-02 -1.105E-03 -6.874E-03 -2.543E-03
(8.184E-03) (2.402E-04) (2.195E-03) (1.059E-06)

δ 2.786E-02 8.252E-03 1.861E-02 1.036E-02
(2.978E-03) (3.121E-04) (1.302E-03) (3.003E-04)

k 7.847E+02
(1.91E+02)

Properties
Persistence 0.9779 0.9801 0.9730 0.9601 0.9698
Percent of Annual Variance 80.9% 19.1% 24.7% 75.3% 76.4% 23.6% 52.8% 47.2%
Avg Annual Vol
Implied Equity Premium
Log-Likelihood
Bernoulli Log-Likelihood

7.83%

16597

0.1634 0.1627

16620

0.1632 0.1619

Notes to Table: We apply MLE to the daily return series of the S&P500 index from January 1985 to December 2004. Values under “Normal” columns refer to 
estimates of parameters governing the normal component. Similarly, the estimates of parameters governing the jump component are reported in the “Jump” 
columns. Reported in brackets are the standard errors computed using the outer product of the gradient. Under Properties we report the Persistence, which refers 
to variance and jump intensity persistence respectively, the Percent of Annual Variance, which refers to the contribution to overall return variation arising from 
the normal and jump components respectively, as well as the average annualized volatility (standard deviation). The Implied Equity Premium refers to the 
annualized level of the equity premium implied from the MLE estimates. The second last row contains the log-likelihood values. The last row shows the log-
likelihoods when the models are estimated using the Bernoulli approximation. 

4.70%4.14%

16605

7.48%
16607 16632 16678
16160 16597

Table 2: MLE Estimates of Jump Models on S&P500 Returns, 1985-2004

DVCJ CVDJ DVDJ DVSDJ



Parameters Normal Jump Normal Jump Normal Jump

λ 2.68E+00 6.00E-04 2.899E+00
(1.36E+00) (2.85E-04) (1.37E+00)

w 1.18E-04 3.23E-05 5.18E-01 -8.756E-07
(5.18E-07) (2.12E-06) (4.55E-02) (1.87E-07)

b 9.041E-01
(7.52E-03)

a 4.546E-06
(2.64E-07)

c 1.159E+02
(1.06E+01)

θ -8.92E-04
(3.09E-04)

δ 1.20E-02
(3.48E-04)

Properties
Persistence 0.9652
Percent of Annual Variance 100% 30% 70% 100%
Avg Annual Vol
Implied Equity Premium
Log-Likelihood

0.1642 0.1631
7.98% 7.84% 7.70%
0.1726

Notes to Table: We apply MLE to the daily return series of the S&P500 index from January 1985 to December 2004. Values under 
“Normal” columns refer to estimates of parameters governing the normal component. Similarly, the estimates of parameters 
governing the jump component are reported in the “Jump” columns. Reported in brackets are the standard errors computed using 
the outer product of the gradient. See also the notes to Table 2.

15656 16245 16446

Table 3: MLE Estimates of Benchmark Models on S&P 500 Returns, 1985-2004

BSM Merton GARCH



DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 120 1,757 1,938 1,991 5,806

0.975<S/X<1.00 506 2,142 884 510 4,042
1.00<S/X<1.025 722 1,826 603 288 3,439
1.025<S/X<1.05 490 1,111 345 156 2,102
1.05<S/X<1.075 239 720 226 110 1,295

1.075<S/X 294 1,094 440 210 2,038
All 2,371 8,650 4,436 3,281 18,738

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 5.48 14.38 26.96 46.90 29.55

0.975<S/X<1.00 12.39 25.64 47.34 83.09 35.97
1.00<S/X<1.025 24.53 38.09 63.05 96.14 44.48
1.025<S/X<1.05 43.29 56.23 81.40 114.37 61.66
1.05<S/X<1.075 66.38 76.60 100.30 130.87 83.46

1.075<S/X 111.27 120.64 135.34 168.89 127.44
All 39.83 46.17 54.65 70.51 51.64

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.2100 0.1917 0.1931 0.1950 0.1937

0.975<S/X<1.00 0.1844 0.1901 0.1977 0.2050 0.1929
1.00<S/X<1.025 0.1928 0.1984 0.2083 0.2132 0.2002
1.025<S/X<1.05 0.2154 0.2133 0.2190 0.2204 0.2152
1.05<S/X<1.075 0.2611 0.2315 0.2252 0.2268 0.2354

1.075<S/X 0.3562 0.2750 0.2430 0.2362 0.2758
All 0.2237 0.2093 0.2047 0.2030 0.2089

Notes to Table: We use European call options on the S&P500 index. The data are obtained from 
OptionMetrics. The prices are taken from non-zero trading volume quotes on each Wednesday 
during the January 1, 1996 to December 31, 2004 period. We apply the moneyness and maturity 
filters used by Bakshi, Cao and Chen (1997) to the data. The implied volatilities are calculated using 
the Black-Scholes formula.

Table 4: S&P 500 Index Call Option Data (1996-2004)

Panel A. Number of Call Option Contracts

Panel B. Average Call Option Price

Panel C. Average Implied Volatility from Call Options



Panel A: Overall IVRMSE and Ratios
GARCH DVCJ CVDJ DVDJ DVSDJ

IVRMSE(%) IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio
5.689 0.891 1.030 0.835 0.930

Panel B: Sorting by Moneyness
GARCH DVCJ CVDJ DVDJ DVSDJ

Moneyness IVRMSE(%) IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio
S/X<0.975 4.560 0.878 1.150 0.818 0.962

0.975<S/X<1.00 4.358 0.904 1.109 0.837 0.964
1.00<S/X<1.025 4.818 0.905 1.058 0.839 0.941
1.025<S/X<1.05 5.832 0.877 1.004 0.824 0.911
1.05<S/X<1.075 7.078 0.859 0.958 0.816 0.891

1.075<S/X 9.719 0.903 0.935 0.852 0.911

Panel C: Sorting by Maturity
GARCH DVCJ CVDJ DVDJ DVSDJ

Maturity IVRMSE(%) IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio
DTM<20 7.568 0.905 0.995 0.887 0.929

20<DTM<80 5.582 0.902 1.034 0.840 0.919
80<DTM<180 5.108 0.877 1.056 0.800 0.936

DTM>180 5.100 0.850 1.037 0.777 0.957

Panel D: Sorting by VIX level
GARCH DVCJ CVDJ DVDJ DVSDJ

Maturity IVRMSE(%) IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio
VIX<14 3.145 1.401 0.919 1.161 0.848

14<VIX<18 3.154 0.923 0.899 0.934 0.905
18<VIX<22 4.315 0.783 1.082 0.815 0.880
22<VIX<26 5.602 0.845 1.087 0.806 0.935
26<VIX<30 7.136 0.912 1.065 0.834 0.922

30<VIX 9.740 0.963 0.946 0.853 0.963

Table 5. IVRMSE and Ratio IVRMSE by Moneyness, Maturity, and VIX Level

Notes to Table: We use the MLE estimates from Tables 2 and 3 to compute the implied volatility root 
mean squared error (IVRMSE) for various moneyness, maturity, and VIX level bins. The IVRMSE is 
reported in levels for the GARCH model and for the jump models we report the IVRMSE ratio with the 
GARCH model. The equity premium is assumed to consist exclusively of the jump risk premium. The 
IVRMSE ratio for the BSM model is 1.245, for the Merton model it is 1.202.



Panel A: GARCH IVRMSE    Panel B: DVCJ over GARCH IVRMSE ratio 

0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0
0.0 6.158 0.0 0.94 0.89 0.86 0.83 0.80 0.78
2.0 6.055 2.0 0.94 0.90 0.84 0.83 0.81
4.0 5.954 4.0 0.94 0.86 0.86 0.84
6.0 5.851 6.0 0.94 0.90 0.87
8.0 5.744 8.0 0.95 0.90
10.0 5.635 10.0 0.95

Panel C: DVDJ over GARCH IVRMSE ratio  Panel D: DVDSJ over GARCH IVRMSE ratio

0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0
0.0 0.97 0.93 0.90 0.86 0.83 0.79 0.0 1.00 0.99 0.97 0.94 0.91 0.88
2.0 0.96 0.93 0.90 0.86 0.83 2.0 1.017 1.00 0.98 0.95 0.92
4.0 0.96 0.93 0.90 0.86 4.0 1.04 1.02 0.99 0.96
6.0 0.96 0.93 0.90 6.0 1.05 1.02 1.00
8.0 0.96 0.93 8.0 1.06 1.05
10.0 0.96 10.0 1.08

Normal Risk 
Premium

Total Equity PremiumNormal Risk 
Premium 

Normal Risk 
Premium 

Table 6: Effects of Risk Premia on IVRMSE Option Valuation Performance

Total Equity Premium

Total Equity Premium

Notes to Table: We compute S&P500 Wednesday call option prices for 1996-2004 using MLE estimates from Tables 2 and 3, 
together with various assumptions on the long-run equity risk premium. Reported are the IVRMSEs of the benchmark Heston-
Nandi (2000) GARCH model and IVRMSE ratios of selected jump models relative to the Heston-Nandi model. The columns 
represent pricing errors as the total equity premium increases, and the rows represent the pricing errors as the normal risk premium 
increases. For example, when the total equity premium is 6% and the normal risk premium is 2%, the jump risk premium is 4%. 

Normal Risk 
Premium 

Total Equity Premium
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