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Abstract:  
A new test is proposed for the null of absence of serial correlation. The test uses a data-
driven smoothing parameter. The resulting test statistic has a standard limit distribution 
under the null. The smoothing parameter is calibrated to achieve rate-optimality against 
several classes of alternatives. The test can detect alternatives with many small 
correlation coefficients that can go to zero with an optimal adaptive rate which is faster 
than the parametric rate. The adaptive rate-optimality against smooth alternatives of the 
new test is established as well. The test can also detect ARMA and local Pitman 
alternatives converging to the null with a rate close or equal to the parametric one. A 
simulation experiment and an application to monthly financial square returns illustrate 
the usefulness of the proposed approach. 
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1. Introduction

Testing for absence of correlation is important in many econometric contexts. Ignoring autocorrelation

of the residuals in a linear regression model can lead to erroneous con�dence intervals or tests. Correlation

of residuals from an ARMA model or of the square residuals from an ARCH model can indicate an improper

choice of the order. In macroeconomics, dynamic stochastic general equilibrium models impose non correla-

tion restrictions as noted in Durlauf (1991). In �nance, the presence of autocorrelation can indicate a failure

of an e¢ ciency condition or rational expectation hypothesis.

The earliest tests for absence of serial correlation were based on con�dence intervals for individual

autocorrelation coe¢ cients as described in Brockwell and Davies (2006), Chat�eld (1989), Fan and Yao

(2005) and Lütkepohl and Krätzig (2004). Tests of no correlation can be based on the percentage of sample

autocorrelation coe¢ cients outside these individual con�dence bounds. A joint con�dence interval, based

for instance on the null limit distribution of the maximal sample autocorrelation, can also be used. A

second approach was established by Grenander and Rosenblatt (1952) and Bartlett (1954) who extended

the goodness-of-�t tests such as Kolmogorov and Cramér-von Mises tests to testing for absence of serial

correlation. Goodness-of-�t type tests for autocorrelation proposed by Durlauf (1991) and Anderson (1993)

can detect Pitman local alternatives converging to the null with the parametric rate n�1=2, where n is the

sample size.

A third approach, initiated by Box and Pierce (1970), builds on a nonparametric method where a

smoothing parameter needs to be selected. Hong (1996) has proposed a test for serial autocorrelation and

Paparoditis (2000) has put forward a speci�cation test based on the spectral density function. These authors

consider smooth alternatives in which the spectral density of the processes has bounded derivatives up to a

given order. While Hong and Paparoditis have examined power of the test against �xed or local alternatives

only, Ermakov (1994) has used a minimax approach to propose a test which is optimal in rate and in power

against all alternatives of a given smoothness. The construction of the smoothed nonparametric tests of

Ermakov (1994) and Hong (1996) uses the knowledge of the smoothness of the alternative, a characteristic

which is generally not available to practitioners. This is a considerable limitation for practical applications

of the smoothed nonparametric tests. As discussed in Section 4.1 below, existing plug-in bandwidth choices

do not address this limitation in a satisfactory way.

The need to address the lack of knowledge of smoothness has spurred the development of adaptive

methodology, leading to fully data-driven optimal tests. Fan (1996), Spokoiny (1996) and Horowitz and

Spokoiny (2001) have studied adaptive tests based on some maximum statistics in the context of coe¢ cient

model, continuous time white noise model and parametric regression speci�cation testing, respectively. Fan

(1996) has noted that the asymptotic critical values of maximum tests do not perform well in practice and

intensive bootstrap procedures must be used, see for example Horowitz and Spokoiny (2001). This contrasts

with the simple data-driven smoothing parameter used by Guay and Guerre (2006) for dynamic model

speci�cation testing based on a penalized test statistic. The test proposed by Guay and Guerre (2006)

uses standard chi-square critical values and does not resort to simulation procedures that can be di¢ cult to

implement in the time series context.
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Adaptive methodology for serial correlation testing has been slower to develop. Fan and Yao (2005)

outline, but do not analyze, an adaptive test for serial correlation which is based on the maximum of a

set of Box-Pierce statistics. In our paper we set out to propose a data-driven test for absence of serial

autocorrelation. In order to avoid pitfalls of the maximum tests mentioned above, we base the test on a

penalized test statistic in the spirit of Guay and Guerre (2006). Our �rst contribution is to show that standard

critical values such as chi-square or normal can be employed. This theoretical �nding is corroborated by a

simulation study which shows that the level of the proposed test is close to its nominal size.

A second important contribution of the paper is to show that the knowledge of smoothness of the

alternatives is not required and that the test is adaptive rate-optimal in the sense that it detects alternatives

of unknown smoothness converging to the null at the fastest possible rate. We also consider a related class of

ARMA-type alternatives with exponentially decreasing autocorrelation coe¢ cients where the rate of decrease

is unknown, and demonstrate that the test is consistent against alternatives of this class which converge to

the null with a rate close to n�1=2. The test can moreover detect Pitman local alternatives which converge

to the null with a rate close or equal to the parametric n�1=2.

A vast majority of the adaptive literature has been concerned with smooth alternatives. However, when

looking at a plot of sample autocorrelation function, it is not easy for a practitioner to decide whether it is

appropriate to describe the correlation function as smooth. A third contribution of the paper is therefore the

introduction of a new class of alternatives that are not characterized by an abstract smoothness condition.

On practical grounds, what matters when testing for no correlation is the proportion of large autocorrelation

coe¢ cients. This consideration is at the core of the notion of sparse alternatives investigated by Ingster

(1997) and Donoho and Jin (2004) in a Gaussian white noise model. A transposition of such alternatives to

our context would induce us to introduce autocorrelation functions where among the �rst Pn lags, a number

Nn of autocorrelation coe¢ cients is equal to �n or ��n for some given Pn, Nn and �n. We develop a more
general class of alternatives where Nn is the number of autocorrelation coe¢ cients larger than �n. In our

framework, the sequences Pn and �n are not given a priori as in Ingster (1997) and Donoho and Jin (2004).

We propose a de�nition of adaptive rate-optimality of the test against a class that is described by a relation

among Pn, �n and Nn and develop a relevant theory to show that our test is adaptive rate-optimal against

this class of alternatives.

An interesting �nding is that alternatives with a high enough number of autocorrelation coe¢ cients

larger than �n can be detected by the new test even when �n converges to zero at a rate faster than the

parametric rate n�1=2. The ability to detect autocorrelations that converge to zero uniformly at a rate

faster than n�1=2 contrasts with many statistical frameworks and we refer to such fast-shrinking alternatives

as �small�. The paper gives an example of small alternatives that consist of high-order moving average

processes with moving average coe¢ cients of order o
�
n�1=2

�
. It is shown theoretically and through a

simulation experiment that the Cramér-von Mises test has no power against such small moving average

alternatives. This illustrates the potential bene�ts of using our data-driven nonparametric test. Examples

of empirical time series where autocorrelation is detected by our test but not by the Cramér-von Mises test

are considered in the application section.
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The paper is organized as follows. Section 2 introduces the new adaptive test and states the assumptions.

Section 3 states the main results which address the level of the new test, its consistency, adaptive rate-

optimality against small and smooth alternatives as well as detection of ARMA-type and local Pitman

alternatives. Section 4 reports the results of the simulation experiments and Section 5 applies the test to

monthly squared �nancial returns. Section 6 summarizes the paper and mentions some potential applications

of our methodology to other econometric testing problems. The proofs are gathered in two appendices.

2. Construction of the test and main assumptions

2.1. Construction of the test. Consider a parametric model

(2.1) m(Xt; Xt�1; : : : ; Xt�p; �) = ut

and observations Xt, t = 1; :::; n. The scalar error term ut has zero mean and �nite variance and is unob-

servable when � is unknown. We are interested in testing that ut is uncorrelated. For example, in AR(p)

model

Xt = �0 + �1Xt�1 + � � �+ �pXt�p + ut;

correlated ut indicates a choice of too small order p. Another model of interest is the ARCH(p) model

(2.2)
X2
t

�2t
� 1 = ut; �2t = �0 + �1X

2
t�1 + � � �+ �pX2

t�p;

where ut is uncorrelated if an appropriate order p is chosen. For many models, consistent estimators b�
are available and ut can be estimated by residuals but = ut(b�). In some cases ut is directly observed. For
instance, in �nance, returns are directly observed, ut = Xt � Xt�1, or observed up to a mean parameter,

ut = Xt �Xt�1 � � where � = E [Xt �Xt�1] :

Suppose futg is a stationary process with zero mean and covariance function Rj = Cov(ut; ut+j). The
null and alternative hypotheses are

(2.3)
H0 : Rj = 0 for all j 6= 0;
H1 : Rj 6= 0 for some j 6= 0:

A natural estimator of the covariance is

bRj = 1

n

n�jjjX
t=1

butbut+jjj; j = 0;�1; : : : ;�(n� 1):

Let K be a kernel and p a smoothing parameter. Hong (1996) has based his test of no correlation on the

test statistic

(2.4) bSp = n

n�1X
j=1

K2

�
j

p

� bR2j :
Large values of bSp indicate evidence against the null. When K is the uniform kernel, K(t) = I(t 2 [0; 1]), bSp
is the Box-Pierce statistic

(2.5) dBP p = n

pX
j=1

bR2j :
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Box and Pierce (1970) have shown that when the errors are independent and observed, but = ut, a normalized

statistic dBP p= bR20 is asymptotically chi-square distributed with p degrees of freedom, whereas for residuals
obtained from a well-speci�ed ARMA(s; q) model with independent innovations the limit distribution ofdBP p= bR20 is chi-square with degrees of freedom p � s � q. For uncorrelated but dependent and possibly

estimated futg, Francq, Roy and Zakoian (2005) show that the null limit distribution ofdBP p= bR20 is a mixture
of chi-square distributions. Romano and Thombs (1996) consider bootstrap procedures for uncorrelated but

dependent futg.
When the kernel K is non-uniform, it is convenient to de�ne

E(p) =
n�1X
j=1

�
1� j

n

�
K2

�
j

p

�
and V 2(p) = 2

n�1X
j=1

�
1� j

n

�2
K4

�
j

p

�

which are approximations of the mean and variance of bSp= bR20 when errors ut are independent. The no-
correlation test of Hong (1996) is based on the studentized statistic

(2.6)
bSp= bR20 � E(p)

V (p)
:

As shown by Hong (1996), the statistic (2.6) is asymptotically normal for ARMA models with independent

identically distributed errors futg when p = pn diverges with the sample size. We note that for moderate

p, the quadratic nature of the statistic (2.6) suggests that chi-square or gamma approximation can be more

accurate.

In practice, an important issue is the choice of an appropriate smoothing parameter p. We consider a

data-driven smoothing parameter bp that can take values in a set P. We assume that the set P is �nite and
has a dyadic structure

P =
�
p; p� 2; :::; p� 2Q = p

	
;

where Q + 1 is the cardinality of P. Since p � n � 1, set P has at most O (lnn) elements. The structure

of P is similar to the structure of the set of bandwidth values considered by Horowitz and Spokoiny (2001).
The minimal value of the smoothing parameter, p = p

n
, is chosen by the practitioner and can be bounded

or can grow with n.1 A test based on (2.6) for p = p would reject the null if bSp= bR20 � E(p) � V (p)zn(�),

where zn(�) satis�es

(2.7) lim
n!1

P

 bSpbR20 � E(p) � V (p)zn(�)

!
= � under H0.

The preceding two paragraphs suggest many correct choices of the critical value zn(�) under various kernels

K and parametric models generating the residuals but.
Our aim is to �nd a data-driven smoothing parameter bp such that the test based on bSp̂ improves on

the test based on bSp in terms of power. Consider the following approximations of the mean and variance of
1A recommendation based on Theorems 4, 5 and 6 below would be to choose p as small as possible with p growing at most

with the order lnn. In practice, choosing p = 1 may give simpler null limit distributions for uncorrelated but dependent futg.
The test using p = 1 corresponds to the optimal likelihood ratio test of � = 0 for the Gaussian AR(1) model ut = �ut�1 + "t.
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(bSp � bSp)= bR20 when the errors ut are independent:
E(p; p) = E(p)� E(p) and V 2(p; p) = 2

n�1X
j=1

�
1� j

n

�2�
K2

�
j

p

�
�K2

�
j

p

��2
:

We propose to select bp as the smallest maximizer of a penalized statistic,
(2.8) bp = argmax

p2P

 bSpbR20 � E(p)� 
nV (p; p)
!
= argmax

p2P

 bSp � bSpbR20 � E(p; p)� 
nV (p; p)
!
;

where 
n > 0 is a penalty sequence which grows with n. The rationale behind such selection procedure

is as follows. Under the null, the level of the test based on bSp is expected to be very close to its nominal
size. Hence the selection mechanism (2.8) is constructed in such a way that bp is asymptotically equal to p
under the null. But using the �rst p correlation coe¢ cients may be insu¢ cient to detect some alternatives,

in particular when p is small. Since (bSp � bSp)= bR20 � E(p; p)� 
nV (p; p) = 0 when p = p, the expression on

the right of (2.8) shows that bp di¤ers from p when there is p 2 Pn
�
p
	
such that

(2.9) (bSp � bSp)= bR20 � E(p; p) > 
nV (p; p):

Inequality (2.9) can be interpreted as statistical evidence that there are nonzero correlation coe¢ cients

among lags p + 1; : : : ; p. Hence the test statistic bSp should be preferred to bSp for any value of p for which
inequality (2.9) is satis�ed. The procedure (2.8) selects the p 2 P for which the di¤erence between left- and
right-hand sides in (2.9) is largest, ensuring that the test statistic will diverge under the alternative.

Under the null hypothesis of no correlation, the standardized values of bSp and bSp should not be statis-
tically di¤erent and the inequality (2.9) should not hold for any p provided 
n is large enough. It is then

expected that bSbp = bSp, so that these two statistics should have asymptotically the same behavior. The
rejection region of the data-driven test is therefore

(2.10)
bSbpbR20 � E(p) � V (p)zn(�);

where the critical value zn(�) satis�es condition (2.7).2 The test (2.10) based on the optimized choice

p = p̂ gains in power compared to the test based on the choice p = p. This can be seen from the following

discussion. Suppose that K � 0 is nonincreasing on [0;+1) so that E(p), V (p), E(p; p) and V (p; p) are
increasing functions of p. De�nition (2.8) of p̂ implies thatbSbpbR20 = max

p2P

 bSpbR20 � E(p)� 
nV (p; p)
!
+ E(bp) + 
nV (bp; p)

�
bSpbR20 � E(p)� 
nV (p; p) + E(bp) + 
nV (bp; p) for all p 2 P:

Since E(bp) � E(p) and V (bp; p) � 0,
(2.11)

bSbpbR20 � E(p)� V (p)zn(�) �
bSpbR20 � E(p)� 
nV (p; p)� V (p)zn(�) for all p 2 P.

2An alternative studentization,
�bSbp= bR20 � E(bp)� =V (bp), would use the data-driven bp. However, simulation experi-

ments of Guerre and Lavergne (2005) suggest that this studentization would give a test as powerful as the test using

maxp2P
�bSp= bR20 � E(p)

�
=V (p) proposed by Fan and Yao (2005) but less powerful than the test described by (2.10).
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This gives the following lower bound for power of test (2.10):

(2.12) P

 bSbpbR20 � E(p) � V (p)zn(�)

!
� P

 bSpbR20 � E(p) � V (p)zn(�) + 
nV (p; p)

!
for all p 2 P.

Since the penalization term 
nV (p; p) vanishes for p = p, it follows in particular that

(2.13) P

 bSbpbR20 � E(p) � V (p)zn(�)

!
� P

 bSpbR20 � E(p) � V (p)zn(�)

!
:

Hence in terms of power, the test (2.10) improves on the test based on the statistic bSp which uses the smallest
smoothing parameter p. More generally, bound (2.12) indicates that up to a potential loss of power induced

by the term 
nV (p; p), the test based on rejection region (2.10) is as powerful as the test based on the

rejection region bSp= bR20�E(p) � V (p)zn(�) for any p 2 P. This is an indication that the selection procedure
(2.8) is adaptive. Since the power bound (2.12) improves with decreasing 
n, the penalty term should be

chosen as small as possible in order to maximize power.

2.2. Notation and main assumptions. In what follows, #A is the cardinality of the set A and C0; : : : ; C5
are positive constants. For two sequences fang and fbng, an � bn means that fang and fbng have the same
order in the sense that there is a 0 < C <1 such that janj =C � jbnj � C janj for all n. When studying the
performance of the test under the alternative, we consider a sequence fut;ng = fut;n; t 2 Ngn2N of stationary
alternatives with autocovariance coe¢ cients fRj;n; j 2 Ngn2N. Our main assumptions are given below.

Assumption K. The kernel function K (�) from R+ to (0;1) is nonincreasing, bounded away from 0 on

[0; 1] and continuous over its compact support which is a subset of [0; 3=2].

Assumption P. Condition (2.7) holds. The penalty sequence 
n satis�es 
n > 0, 
n !1 and 
n = o (n)

as n!1. The smoothing parameters set P is dyadic, P =
�
p; 2� p; : : : ; 2Q � p

	
, with the largest element

p = 2Qp and #P = Q + 1. The smallest element p may depend on n and p = o(p). For some s > 5=4 and

� > 0, the maximal element p tends to in�nity and

(n=
n)
�+2=(4s+1) � p = o(n1=3) as n!1:

Assumption R. The sequence of alternatives fut;ng has zero mean, it is eighth order stationary with 1=C0 �
R0;n � C0 and it has absolutely summable cumulants Cum

�
ut1;n ; : : : ; utq;n

�
= �n(t1; : : : ; tq) satisfying

+1X
t2;:::;tq=�1

j�n (0; t2; : : : ; tq)j � C1R
q=2
0;n ; q = 2; : : : ; 8:

Assumption M. The model (2.1), the estimator b� and the sequence of alternatives fut;ng satisfy the fol-
lowing conditions:

(i) There is a sequence f�ng in Rp such that
p
n(b� � �n) = OP(1).
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(ii) The residuals ût = ut

�
�̂
�
admit a second order expansion

but = ut;n + (b� � �n)0u(1)t;n + kb� � �nk2u(2)t;n
where fut;n; u(1)t;n; u

(2)
t;ng is a stationary process with E1=2ku

(1)
t;nk2 � C2, E1=2

���u(2)t;n���2 � C3 and

1X
j=�1




E hut�j;nu(k)t;ni


 � C4; k = 1; 2;

sup
j2Z

E






 1n
nX
t=1

�
ut�j;nu

(1)
t;n � E[ut�j;nu

(1)
t;n]
�






2

� C5
n
:

Assumption K is weak. In particular, as is typical of the minimax approach adopted, for example, by

Ingster (1993), it does not impose any conditions on the moments of the kernel. The compact sets [0; 1]

and [0; 3=2] of Assumption K are somehow arbitrary and can be replaced by intervals [0; a] and [0; b] with

0 < a < b < 1. For a de�nition of cumulants in Assumption R, see for example Brillinger (2001, p. 19).
In the Gaussian case, the cumulant summability condition is automatically satis�ed for q � 3 since these

cumulants are 0. When q = 2, the cumulant summability condition requires that

(2.14)
1X
j=1

����Rj;nR0;n

���� � C1;

so that long range dependence is ruled out. A sequence of independent variables futg satis�es Assumption
R provided E [ut] = 0, Var (ut) = �2 > 0 and supt E

�
u8t
�
< 1. Assumption M(i) is standard and can

be veri�ed using regularity assumptions on the parametric model. Assumption M(ii) can be easily checked

under suitable mixing conditions. Assumption M becomes vacuous if futg is directly observed.

3. Main results

An important issue in the construction of the test (2.10) is the choice of the penalty sequence. The

discussion of the construction of the test in Section 2 has revealed that choosing 
n large enough guarantees

that under the null, the distribution of the test statistic
�bSbp= bR20 � E(p)� =V (p) is standard and chi-square

or normal critical values can be employed. On the other hand, power considerations based on bound (2.12)

lead to a small 
n penalty recommendation. The trade-o¤ of the size and power concerns is analyzed in

Sections 3.1, 3.3 and 3.4. It transpires in Section 3.1 that the lower bound for penalty 
n for which a test

of the desired level is obtained is of rate (2 ln lnn)1=2. It is then shown in Sections 3.3 and 3.4 that this rate

is low enough to ensure that our test is adaptive rate-optimal under both small and smooth alternatives.

Section 3.2 gives a general consistency result that holds under weaker conditions than the rate-consistency

results. Sections 3.5 and 3.6 examine the performance of the test against ARMA-type and Pitman local

alternatives.

3.1. Asymptotic level of the test. The following theorem gives a lower bound for 
n which ensures that

the test is asymptotically of level � under independence.



8

Theorem 1. Let Assumptions K and P hold. Assume that futg is independently distributed and satis�es
Assumptions M and R. If the penalty sequence f
n; n � 1g satis�es

(3.1) 
n � (2 ln lnn)
1=2
+ � for some � > 0;

then

lim
n!1

P
�bp = p

�
= 1

and the test (2.10) is asymptotically of level �.

The discussion following Proposition 1 in Section 3.3 shows that choosing 
n = o
�
(2 ln lnn)

1=2
�
gives a test

with a degenerate asymptotic level equal to one and therefore that one cannot improve on (3.1) in terms

of rate. A conjecture is that the order (2 ln lnn)1=2 cannot be improved in constant either. A heuristic

argument is as follows. Since E(p; p) = 0 and V (p; p) = 0, the de�nition (2.8) of bp gives
(3.2) P

�bp 6= p
�
= P

 
max

p2Pnfpg

 
(bSp � bSp)= bR20 � E(p; p)

V (p; p)

!
� 
n

!
:

To simplify the discussion, assume that the kernel is uniform so that bSp is the Box-Pierce statistic (2.5) andbSp � bSp = n
Pp

j=p+1
bR2j . For 1 � j � p, variables n bR2j= bR20 are asymptotically independent and identically

distributed and
nbSp � bSp; p 2 Po behaves asymptotically like a partial sum process. Since p = p2q for

q = 1; :::; Q and V 2(p; p) = 2p (1 + o(1)) for large p, a candidate Gaussian approximation of the statistics in

(3.2) is

(3.3)

(
(bSp � bSp)= bR20 � E(p; p)

V (p; p)
; p 2 P n fpg

)
d'
(
W
�
p2q
�

p1=22q=2
; q = 1; :::; Q

)
d
=

�
W (2q)

2q=2
; q = 1; :::; Q

�
;

where W is a Brownian motion process on [0;1). The discrete-time Gaussian Markov process W (2q)=2q=2

is a stationary AR(1) process with autoregression coe¢ cient 1=21=2 because

Cov

0@W (2q)

2q=2
;
W
�
2q

0
�

2q0=2

1A = 2�
jq�q0j

2 :

Hence, since Q � lnn, it follows from a theorem of Berman (1962, p. 96) that

(3.4) max
q=1;:::;Q

�
W (2q)

2q=2

�
= (2 lnQ)

1=2
+ oP(1) = (2 ln lnn)

1=2
+ oP(1):

Therefore (3.1) implies that limn!1 P
�bp = p

�
= 1. The bound (3.4) together with (3.2) and (3.3) suggest

that limn!1 P
�bp = p

�
= 0 if 
n � ((2� �) ln lnn)1=2 for some � in (0; 2). Hence limn!1 P

�bp = p
�
= 1

should imply 
n � (2 ln lnn)
1=2. The order (3.4) also shows that the bound

(3.5) 
n � (2 lnQ)
1=2
+ � for some � > 0;

may work better than (3.1) in small samples.
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3.2. Consistency. In this section we give a general consistency result for alternatives with a maximal

correlation coe¢ cient bounded away from zero. The subsequent sections then examine rate consistency and

adaptive rate-optimality against several speci�c classes of alternatives.

Theorem 2. Let Assumptions K and P hold. Assume that 
n = O(p1=2). Consider a sequence of alternatives

fut;ng satisfying Assumption M with

1=C � R0;n = O(1);
2nX
j=1

R2j;n
R20;n

= o(n)

and with fourth order cumulant �n satisfying

1X
t2;t3;t4=1

j�n (0; t2; t3; t4)j = O(1)

Then if max1�j�p jRj;n=R0;nj � � > 0, the test is consistent.

Theorem 2 does not employ Assumption R and admits processes with long range dependence, including

fractional Gaussian processes
n
(1� L)�d "t

o
of order d < 1=2.

When testing for no autocorrelation, there are alternatives against which no test is consistent. Consider

a sequence of moving average processes

(3.6) ut;n = "t �  "t�n;  6= 0,

where "t is independent identically distributed with mean zero and variance �2. The sample fu1;n; :::; un;ng
consists of independent variables and no test will detect correlation. In the terminology of Ingster (1993), H0

and H1 in (2.3) are indistinguishable or, according to Pötscher (2002), testing H0 against H1 is an ill-posed

problem. Condition max1�j�p jRj;n=R0;nj � � > 0 of Theorem 2 precludes ill-posed problems by limiting

the set of admissible alternatives. However, this condition is not overly restrictive. Since p tends to in�nity,

Theorem 2 shows that our test is consistent against sequence of alternatives in a growing set H1;n (�) which

asymptotically contains all the alternatives such that maxj�1 jRj=R0j � � > 0.

3.3. Small alternatives. Under stronger assumptions, it is possible to improve on Theorem 2 and to

consider alternatives converging to the null such that maxj�1 jRj;n=R0;nj � �n for some �n ! 0. Given such

a choice of �n, correlation coe¢ cients larger than �n can be viewed as large. As discussed in Section 3.2

and in the introduction, alternatives that can be detected must have enough large correlation coe¢ cients at

small enough lags, say j � Pn. To quantify the number of large correlation coe¢ cients, we de�ne

(3.7) Nn = Nn (fut;ng ; Pn; �n) = # fjRj;n=R0;nj � �n; 1 � j � Png :

Correlation coe¢ cients smaller than �n can be seen as negligible and the proportionNn=Pn can be interpreted

as an indicator of sparsity. The following theorem states a condition on Pn and �n which guarantees

consistency of the test. The condition requires that there exist a suitable pair (Pn; �n) satisfying a sparsity

restriction. The testing procedure in�uences the smallest possible rate �n compatible with detection through

the penalty sequence 
n and a constant �
� that depends on the kernel K and the set P.
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Theorem 3. Let Assumptions K and P hold. Consider a sequence of alternatives fut;ng satisfying Assump-
tions M and R. The test (2.10) is consistent against the sequence of alternatives fut;ng if there exists some
�n > 0 and Pn 2 [p; p] such that for n large enough,

(3.8) �n �
��

n1=2

 

nP

1=2
n

Nn

!1=2
;

where �� does not depend on the alternative fut;ng.

The consistency condition (3.8) allows for alternatives where �n and Pn can be chosen such that

(3.9) �n �
1

n1=2

 

nP

1=2
n

Nn

!1=2
:

Of special interest is the case where limn!1 
nP
1=2
n =Nn = 0 since (3.9) shows that the test can detect small

alternatives, that is alternatives with correlation coe¢ cients converging to the null at a rate that is faster

than the parametric rate n�1=2. The condition limn!1 
nP
1=2
n =Nn = 0 requires that the number Nn of large

correlation coe¢ cients jRj;n=R0;nj, 1 � j � Pn, diverges faster than 
nP
1=2
n . This allows for �saturated�

alternatives with Nn = Pn and limn!1 P
1=2
n =
n = 1 but also for sparse alternatives with Nn=Pn = o (1)

provided that the sparsity indicator Nn=Pn does not go to 0 too fast, satisfying limn!1(Nn=Pn)(P
1=2
n =
n) =

1.3

Let us now investigate the adaptive optimality of the rate �n in (3.8). Observe that the smaller the �
�

the better the consistency rate. Though for our test procedure the �� is �xed once the kernel and the set P
are chosen, one might ask whether there exist better tests that would detect alternatives satisfying a bound

like (3.8) but with a �� which converges to zero when the sample size increases. The following proposition

gives a negative answer to this question when 
n has the smallest possible order (2 ln lnn)
1=2 for which the

test is asymptotically of level �.

Proposition 1. Let the process futg be observed and suppose Assumption P holds. Then for any 0 <

� < 1 there exists a sequence of alternatives fut;ng satisfying Assumption R that cannot be detected by any
asymptotically �-level test, � 2 (0; 1), although there is a Pn 2

�
p; p
�
and a �n ! 0 so that

�n �
1� �
n1=2

 
(2 ln lnn)

1=2
P
1=2
n

Nn (fut;ng ; Pn; �n)

!1=2
; lim

n!1

Nn (fut;ng ; Pn; �n)�
(2 ln lnn)

1=2
P
1=2
n

� =1:
.

Proposition 1 implies that when 
n is asymptotically proportional to (2 ln lnn)
1=2, our test is adaptive

rate-optimal. Indeed, by Theorem 3, our test is consistent against the alternatives for which

(3.10) �n � ��n�1=2 (2 ln lnn)
1=4

P 1=4n N�1=2
n

3This contrasts with Ingster (1997) and Donoho and Jin (2004) who only achieve the consistency rate (lnn=n)1=2 for very

sparse alternatives where Nn=Pn goes to 0 with a faster rate. On the other hand, although their results are obtained in a

nonadaptive simple setup, it suggests that our test is not optimal against such very sparse alternatives.



11

under the assumptions of Proposition 1. However, neither our test nor any other will detect alternatives for

which �n � (1� �)n�1=2 (2 ln lnn)
1=4

P
1=4
n N

�1=2
n where � 2 (0; 1). This means that when 
n � (2 ln lnn)

1=2,

the �� in (3.10) cannot approach zero, hence the adaptive rate-optimality.

Proposition 1 further implies that there are alternatives satisfying

�n �
1

n1=2

0@o
�
(2 ln lnn)

1=2
�
P
1=2
n

Nn

1A1=2

that cannot be detected by any nondegenerate asymptotic �-level tests. Hence tests that can detect such

alternatives are asymptotically trivial and must always reject the null. Since Theorem 3 shows that choosing


n = o
�
(2 ln lnn)

1=2
�
would permit detection of these alternatives, the resulting test must have a degenerate

asymptotic level equal to one, implying that the rate (2 ln lnn)1=2 in the bound (3.1) of Theorem 1 cannot

be improved.

As an example of small alternatives that satisfy (3.9), consider the following sequence of high-order

moving average processes,

(3.11) ut;n = "t +
�


1=2
n

n1=2P
1=4
n

PnX
k=1

 k"t�k; lim
n!1

Pn =1;

where f"tg is a white noise with variance �2 and � is a scaling constant. The following lemma describes the
covariance function of fut;ng in (3.11).

Lemma 1. If
PPn

k=1  
2
k = O(Pn), Pn = o((n=
n)

2=3) and limn!1 
nn
�1 = 0, then alternatives (3.11)

satisfy

R0;n = �2
�
1 +O

�

nP

1=2
n =n

��
and, uniformly in 1 � j � Pn,

Rj;n =
�


1=2
n

n1=2P
1=4
n

 j�
2 + o

 


1=2
n

n1=2P
1=4
n

!
:

A distinctive feature of alternatives (3.11) when max1�k�Pn j kj = O (1) is that both their moving average

and correlation coe¢ cients approach zero uniformly faster than n�1=2 provided Pn=
2n tends to in�nity. Let

us now check consistency of the test under the assumption that mink2[1;Pn]
�� k�2�� � 1. Our choice of �n is

(3.12) �n =
�

2



1=2
n

n1=2P
1=4
n

:

Lemma 1 states that the number of large correlations is asymptotically equal to Pn, that isNn = Pn (1 + o(1)).4

The choice of �n in (3.12) is such that

�n =
�

2n1=2

 

nP

1=2
n

Nn

!1=2
(1 + o (1)) ;

4Condition Nn = Pn (1 + o(1)) implies that the alternatives (3.11) are saturated, that is, there are no  k coe¢ cients equal

to zero . Introducing more sparsity, that is setting some coe¢ cients to zero, would not a¤ect Proposition 2 below provided

limn!1
�
(ln lnn)1=2 P

1=2
n =Nn

�
= 1. Corresponding alternatives (3.11) would have only Nn nonzero  k coe¤�cients and a

normalization factor 
1=2n P
1=4
n =(nNn)1=2 instead of 


1=2
n =(n1=2P

1=4
n ).
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so that (3.8) holds provided � � 2�� and Theorem 3 shows that the test is consistent if p � Pn � p.

Consistency of our test against alternatives (3.11) contrasts with the performance of other testing

procedures. Due to the small o
�
n�1=2

�
order of the moving average and correlation coe¢ cients, standard

con�dence interval procedures will fail to detect serial correlation. The next proposition implies that the

Cramér-von Mises (CvM) test of Durlauf (1991) is also not consistent against the alternatives satisfying

(3.11). The CvM test is based on the following statistic:

(3.13) CvM =
n

�2

n�1X
j=1

bR2j
j2 bR20 :

Proposition 2. Let futg be observed. Consider alternative (3.11) with independent Gaussian "t with mean
zero and variance �2. Assume

PPn
k=1  

2
k = O(Pn), max1�k�Pn j kj = O (1) ; min1�k�Pn

�� k�2�� � 1 and

� > 0. Assume that 
n !1 with, for some C > 0 and � > 0 small enough,


n � C lnn and 
1=2+�n =C � Pn � C

�
n


2n lnn

�2=3
:

Then the test statistic (3.13) has the same limit distribution under the alternative and under the null of

independence, and the CvM test is not consistent.

The small alternatives considered here also illustrate the di¤erence between rates for estimation and testing.

While the best possible rate for estimation of the moving average or correlation coe¢ cients is the parametric

rate n�1=2, our test can detect coe¢ cients that tends to zero at a faster rate than the parametric rate.

3.4. Smooth alternatives. This section considers alternatives with a smooth spectral density. For an

integer number s, let eC(L; s) be the class of zero-mean stationary processes whose normalized spectral
density function f0 (�) has sth derivative f (s)0 (�) with mean-square norm smaller than ��1=2L. Since

f
(s)
0 (�) =

1

2�

+1X
j=�1

Rj
R0
(ij)

s
exp(ij�) and

Z �

��

���f (s)0 (�)
���2 d� = 1

�

+1X
j=1

j2s
�
Rj
R0

�2
;

this class of functions can be de�ned also for noninteger s using the summability condition
P+1

j=1 j
2s (Rj=R0)

2 �
L2. Restricting the class eC(L; s) to processes ut satisfying Assumption R, we de�ne

C(L; s) =

8<:futg: futg satis�es Assumption R and
1X
j=1

j2s
�
Rj
R0

�2
� L2

9=; ; L; s > 0:

Much attention has been paid to hypothesis testing when the number of derivatives s is known, see for

example work of Hong (1996), Paparoditis (2000) and the references therein. We focus here on the case

where the smoothness indexes L and s of the alternatives are unknown and can depend on the sample size.

In this context, Spokoiny (1996) has shown that when using
P1

j=1 (Rj=R0)
2 as a measure of the deviation

from the null, the optimal adaptive consistency rate is5

(3.14) Rn(L; s) = L1=(4s+1)
�
(ln lnn)1=2

n

�2s=(4s+1)
.

5Spokoiny (1996) considers the ideal continuous-time white noise model. The equivalence result of Golubev, Nussbaum and

Zhou (2009) shows that this rate is also adaptive optimal for directly observed Gaussian futg with s > 1=2. This is su¢ cient to

show that the adaptive optimality statement of Spokoiny (1996) extends to the case where the process futg is directly observed.
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The following theorem shows that the test is adaptive rate-optimal when 
n � (2 ln lnn)1=2.

Theorem 4. Let Assumptions K and P hold with p = O (lna n), a > 0. Assume that 
n is of order

(ln lnn)1=2. Let Ln and sn be two sequences of positive real numbers such that for s as in Assumption P,

and for C large enough,

(3.15) s � sn = o(lnn); and
�
Cp
�sn+ 1

4

�

n

23=2snn

�1=2
� Ln �

�
p

C

�sn+ 1
4
�


n
23=2snn

�1=2
:

Let fut;ng be a sequence of alternatives in C(Ln; sn) satisfying Assumption M.
The test (2.10) is consistent if, for � > 0 large enough,

1X
j=1

�
Rj;n
R0;n

�2
� �2R2

n(Ln; sn);

where � does not depend on Ln and sn or on the alternative fut;ng.

The main bene�t of smoothness adaptation is as follows. Tests that are designed for a speci�c class C (L1; s1)

are in general suboptimal for smoother alternatives in C (L2; s2) with s2 > s1. In contrast, our test achieves

the best adaptive optimal detection rates over the two classes of alternatives, achieving in particular a better

rate for the smoother alternatives.

Theorem 4 does not require Ln to be bounded away from zero and sn to be bounded from above. This

extends existing adaptive results.6 Consider for instance Pitman local alternatives converging to the null at

the rate Ln ! 0,

(3.16) ut;n = "t + Lnvt,

where f"tg is a strong white noise and where E [vt] = 0, Var("t) = Var(vt) = 1, Cov ("t�j ; vt) = rj for j > 0

and 0 for j � 0 with
P1

j=1 j
2sr2j <1 for s � s, and f"t; vtg is a stationary process with Cov (vt; vt�j) = cj .

The covariance function of the process fut;ng in (3.16) is given by

(3.17) R0;n = 1 + L
2
n; Rj;n = Lnrj + L

2
ncj :

If fvtg is in C(1; s) then fut;ng is in C(L0n; s) with L0n = O(Ln) because
P1

j=1 j
2sr2j < 1. If p = O (1),

(3.15) holds for a smoothness parameter Ln converging to zero at the rate of (ln lnn)
1=4

=n1=2. In this case,
1X
j=1

�
Rj;n
R0;n

�2
= (1 + o(1))L2n

1X
j=1

r2j �
(ln lnn)

1=2

n

1X
j=1

r2j :

Since

R2
n(L

0
n; s) �

 
(ln lnn)

1=2

n

! 1
4s+1

 
(ln lnn)

1=2

n

! 4s
4s+1

=
(ln lnn)

1=2

n
;

Theorem 4 shows that the test (2.10) is consistent against Pitman local alternative (3.16) provided
P1

j=1 r
2
j is

large enough. Hence the test can detect Pitman alternatives converging to the null at the rate of Rn(L
0
n; s) �

(ln lnn)
1=4

=n1=2. This rate improves on the rates derived by Hong (1996) and Paparoditis (2000).

6Spokoiny (1996), Fan (1996), Horowitz and Spokoiny (2001) and Guerre and Lavergne (2005) do not allow for sn ! 1,
Ln ! 1 or Ln ! 0: The inequality (3.15) allows for Ln � (n=
n)

�1=2+�, � 2 (0; 1=2). If p = O(1), then (3.15) allows for

Ln � (n=
n)�1=2.
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3.5. Pitman alternatives. The detection rate (ln lnn)1=4 =n1=2 derived for local alternatives (3.17) can be

improved upon when correlation coe¢ cients with j � p are large enough. The best rate for Pitman local

alternatives allowing for consistency is 1=o
�
n1=2

�
which is the best consistency rate for the optimal Neyman-

Pearson test that compares the likelihood of the null hypothesis and of the local alternative. Theorem 5

implies that the test can achieve the rate 1=o
�
n1=2

�
for some Pitman alternatives provided p = O(1). The

following theorem admits long range dependence processes but restricts the memory parameter to d < 1=4.

Theorem 5. Let Assumptions K and P hold. Consider a sequence of alternatives satisfying Assumption M

and

1=C � R0;n � C,
1X
j=0

�
Rj;n
R0;n

�2
= O(1) and

+1X
j2;j3;j4=�1

j�n(0; j2; j3; j4)j = O(1):

Then if (n=p)1=2max1�j�p jRj;n=R0;nj ! 1, the test (2.10) is consistent.

3.6. ARMA-type alternatives. A class of alternatives of practical interest consists of ARMA-type al-

ternatives whose correlation function decreases at an exponential rate. The following theorem addresses

detection of alternatives with a correlation function going to zero at an unknown exponential rate. The

detection rate achieved by our test is very close to the parametric rate.

Theorem 6. Let Assumptions K and P hold. Let p = o(lnn), 
n ! 1 and 
n = o(p1=2). Consider a

sequence of alternatives fut;ng satisfying Assumptions M and R and such that, for some unknown r 2 (0; 1)
and L > 0, ����Rj;nR0;n

���� � L

�
1� r2
2 ln (1=r)

�1=2
rj for all j � 1.

Then the test (2.10) is consistent if, for � > 0 large enough,

1X
j=1

�
Rj;n
R0;n

�2
� �2 (1 + o(1))


n
n

0@ ln
�
(Lr)

2
n=
n

�
ln(1=r)

1A1=2

;

where � does not depend on L and r or on the alternative fut;ng.

Choosing a penalty sequence 
n of order (ln lnn)
1=2 that satis�es (3.1) leads to a test of asymptotic level �

with a tractable null distribution. The consistency rate of such test is (ln lnn)1=4 (lnn)1=4 =n1=2. Inspection

of the proof of the theorem reveals that if we chose instead a penalty 
p = (2 ln ln p)
1=2
(1 + "), we would

obtain a test with a slightly better consistency rate of (ln ln lnn)1=4 (lnn)1=4 =n1=2. However this test would

have a nonstandard null limit distribution and may be di¢ cult to use in practice.

4. Simulation experiments

In this section, we investigate small sample properties of the test (2.10), hereafter GGL. We compare

the performance of our test with the performance of a data-driven test procedure based on an integrated

mean square error (IMSE) criterion (hereafter M test) and of the Cramér-von Mises (CvM) test (3.13).
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Two versions of the test (2.10) are considered. The �rst version uses the uniform kernel for which the test

statistics Ŝp in (2.4) becomes the Box-Pierce statistics (2.5). The second version uses the Parzen kernel

(4.1) K(x) =

8>><>>:
1� 6x2 + 6jxj3; jxj � 1=2;
2(1� jxj)3; 1=2 < jxj � 1;
0 otherwise.

4.1. Benchmark tests. The critical values of the CvM are given in Anderson and Darling (1952). The

simulation experiments of Durlauf (1991) show that these critical values give a level close to the nominal

level for sample sizes as small as n = 50. To construct the M test, we follow Hong (1999) and Hong and Lee

(2005) in considering a test statistic

(4.2) M =M(bpIMSE) =
SbpIMSE

� E (bpIMSE)

V (bpIMSE)
;

where bpIMSE is data-driven and where the Parzen kernel (4.1) is used in the de�nition of Ŝp.7 The M test

rejects absence of correlation if M � zn (�) where zn (�) is a critical value usually given by the normal

distribution, see Hong (1996, 1999). To de�ne bpIMSE , observe �rst that

bSp = n
2�bR20
Z �

��

���f̂n(�; p)���2 d�; f̂n(�; p) =
1

2�

1X
j=�1

K

�
j

p

� bRj exp (�ij�) .
In the formula above, f̂n(�; p) is a nonparametric kernel estimator of the spectral density function f (�) =P1

j=�1Rj exp (�ij�) =(2�). Following a proposal of Andrews (1991) and Newey and West (1994), Hong
(1999) and Hong and Lee (2005) used a data-driven parameter p that asymptotically achieves the minimum

of the integrated mean squared error of f̂n(�; p) de�ned as

(4.3) IMSE(f̂n(�; p); f) = E
�Z �

��
jf̂n(�; p)� f(�)j2d�

�
:

For the Parzen kernel (4.1) and twice di¤erentiable spectral density, the ideal smoothing parameter pIMSE =

argmin IMSE(f̂n(p); f) is asymptotically of order n1=5, pIMSE = cn1=5 (1 + o (1)). Robinson (1991a) has

shown that

lim
n!1

n4=5IMSE(f̂n(�; p); f) =
Z �

��
jf(�)j2 d�� c

Z
K2 (x) dx+

Z �

��
jf (2)(�)j2d��

�
K(2) (0)

2c2

�2
;

therefore the optimal constant c in the expansion pIMSE = cn1=5 (1 + o (1)) is equal to

c (f) =

 
K(2) (0)

2 �
R �
�� jf

(2)(�)j2d�R
K2 (x) dx�

R �
�� jf(�)j

2
d�

!1=5
=

 
144

P1
j=�1 j4R2j

0:539285
P1

j=�1R2j

!1=5
:

The data-driven smoothing parameter bpIMSE in (4.2) is based on an estimated value of c (f),

(4.4) bpIMSE = bc1=5 (f)n1=5, where bc (f) = 144
Pn�1

j=�(n�1)K (j=ep) j4 bR2j
0:539285

Pn�1
j=�(n�1)K (j=ep) bR2j ;

and ep is a pilot bandwidth set to ep = (4n=100)4=25 as in Newey and West (1994).
7The performance of test (4.2) is generally believed not to be very sensitive to the choice of the kernel, see Hong (1999).
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A �rst di¢ culty with the data-driven bpIMSE concerns the null limit distribution of the test statistic

M . Hong (1999) and Hong and Lee (2005) have shown that M = M(bpIMSE) behaves asymptotically as

M(pIMSE) provided that c (f) > 0 and bc (f) =c (f) tends to 1 in probability at a su¢ ciently fast rate.
Unfortunately, such a result is mostly useful under the alternative since c(f) = 0 under the null, so that

this result cannot be used to derive the null limit distribution of M(bpIMSE). The common practice is to

ignore this issue and to regard the random bpIMSE as deterministic when computing the critical values of

M(bpIMSE). This contrasts with our method of choosing the data-driven p̂ since in our case the test statistics

has a clear-cut null limit distribution.

A second issue with the data-driven bpIMSE concerns its behavior under the alternative. Alternatives

converging to the null may give a c (f) which is close to zero or tends to zero, so that the aforementioned

result of Hong (1999) and Hong and Lee (2005) may not apply. More importantly, the data-driven bpIMSE

is derived from the minimization of the criterion (4.3), which is designed for estimation of spectral density

functions and may not be appropriate for testing. For instance, it follows from the results of Ermakov (1994)

that the nonadaptive optimal bandwidth for testing against alternatives with twice di¤erentiable spectral

density is n2=9 which is slightly larger that the order n1=5 used in (4.4). Furthermore, the fact that the data-

driven bpIMSE is calibrated for twice di¤erentiable spectral density functions limits the adaptive properties

of the M test.

4.2. Other details of the simulation experiments. We consider experiments with 10; 000 replications

of samples of size n = 200 and 1; 000. As suggested in (3.5), we use a penalty sequence 
n which depends

on the cardinality Q + 1 of the set P of admissible smoothing parameters. Some preliminary experiments

have shown that


n = (2 lnQ)
1=2 + 3:2

works well. For the case with 200 observations, we use P = f2; 4; 8; 16; 32g. With 1,000 observations, p is
also set to 2 but P increases to f2; 4; 8; 16; 32; 64; 128; 256g. The rejection region (2.10) makes use of critical
values

(4.5) zn (�) = zn
�
�; p

�
=
cn
�
�; p

�
� E

�
p
�

V
�
p
�

where the choice of cn(�; p) depends on the kernel. The rejection region (2.10) and (4.5) implies that the

test rejects if bSbp � cn(�; p) bR20. In the case of uniform kernel, cn(�; p) is given by the chi-square distribution

with p degrees of freedom. For the Parzen kernel, cn(�; p) is given by a gamma distribution �(�; �) with

shape and scale parameters that match the null approximations of the mean and variance of Ŝp,8

� =
E
�
p
�2

V 2
�
p
� and � =

E
�
p
�

V 2
�
p
� .

The M test uses the gamma critical values zn (�; bpIMSE).

8The theoretical justi�cation of our gamma approximation is given by Shorack (2000), Theorem 4.1. Note also that for the

uniform kernel, E
�
p
�
= p and V 2

�
p
�
= 2p asymptotically and �(�; �) is equal to a chi square with p degrees of freedom.

Observe also that limp!1zn (�; p) is the 1� � quantile of the standard normal distribution.
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4.3. Under the null. We consider independent sequences distributed respectively as a standard normal, a

Student with 5 degrees of freedom and a centered and standardized chi-square with 1 degree of freedom. The

experiments with the Student distribution allow us to examine the behavior of the testing procedures when

heavy tail processes are present whereas the chi-square distribution allows us to examine the sensitivity to

skewness. The chi-square distribution also arises when investigating ARCH speci�cations (2.2) with Gaussian

error terms.

Table 1 reports the associated rejection rates. For the experiments with 200 observations, the empirical

levels for all testing procedures are close to the nominal levels. Under the null, the choice of the kernel does

not seem to a¤ect the rejection rate of our procedure. Those results are not very sensitive to the choice of

distribution for the white noise. For the experiments with 1,000 observations, the empirical levels are very

close to the nominal levels for all testing procedures and all distributions with the exception of the M test,

which slightly overrejects for all cases.

GGL GGL M CvM

Kernel Uniform Parzen Parzen

10 % 5 % 10 % 5 % 10 % 5 % 10 % 5 %

n = 200

Normal 9.43 5.00 9.77 4.94 10.32 4.92 9.36 4.70

Student 9.58 5.10 9.54 4.83 10.01 4.81 9.24 4.60

Chi-square 9.18 4.79 9.77 4.74 10.29 4.74 9.14 4.48

n = 1;000

Normal 10.30 5.04 10.20 5.00 11.21 5.43 10.12 4.91

Student 10.10 4.93 10.05 4.89 10.82 5.36 9.54 4.92

Chi-square 9.62 5.08 10.29 5.03 11.25 5.37 9.88 4.82

Table 1: Level of tests.

4.4. First set of alternatives: Cramér-von Mises alternatives. We consider autoregressive and moving

average alternatives

(4.6) AR(P; �) : ut = �ut�P + "t and MA(P; �) : ut = "t + �"t�P :

In the simulation, the noise f"tg is a sequence of i.i.d. standard normal variables. TheMA(P; �) alternatives

are similar to the moving average processes de�ned in (3.6) but with moderate values of P = 1; 4 or 6. De�ne

the Cramér-von Mises distance DCvM as a theoretical counterpart of �2CvM=n in (3.13);

D2
CvM =

n�1X
j=1

R2j
j2R20

:
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The values of parameters � and � in (4.6) solve

(4.7)

n

�2
D2
CvM (AR(P; �)) =

3

�2

and
n

�2
D2
CvM (MA(P; �))) =

3

�2
;

respectively, for n = 200 and 1; 000 and for P = 1; 4 or 6. Solutions of (4.7) are given in Table 2 below. The

numerical value 3 in (4.7) has been chosen because 3=�2 ' 0:3040 which is close to the 90% quantile of the

CvM null limit distribution. Elementary algebra gives

D2
CvM (AR(P; �)) =

1X
k=1

�2k

(Pk)2
=
D2
CvM (AR(1; �))

P 2
and D2

CvM (MA(P; �)) =
�2

P 2(1 + �2)2
:

Hence the solutions of (4.7) are such that

(4.8) �P;n =
31=2P

n1=2
(1 + o (1)) and �P;n =

31=2P

n1=2
(1 + o (1)) ;

and the processes de�ned in (4.6) can be seen as n1=2 local Pitman alternatives up to a negligible term.

Simulation results are summarized in Table 2.

For AR(1) and MA(1) processes, the procedure GGL with Parzen kernel performs similarly to the M

test and the CvM test while the GGL procedure with uniform kernel is less powerful. The underperformance

of the GGL test when the kernel is uniform can be due to shape of the kernel and the choice of p. Since

p = 2 in the simulation experiments, the uniform kernel puts the same weight on the �rst and second order

autocorrelation although the �rst order autocorrelation is more important for these alternatives, particularly

for the MA(1) process. The additional weight on the second order autocorrelation coe¢ cient increases the

variance of the test statistic but is not helpful for detection of MA(1) alternatives. In contrast, the fact that

the Parzen kernel and the CvM test correctly put more weight on the �rst order autocorrelation coe¢ cient

explains why they perform better.

With increasing P , the power of the CvM test increases9. However, for processes with a higher order P

(MA(4) and AR(6)), our procedure has a power close to one and substantially outperforms the CvM test.

This is due to the fact that increasing P increases the size of the maximal correlation coe¢ cients, as can

be seen from (4.8), and to the fact that our test is more sensitive to high order correlations than the CvM

test. The M test performs poorly against the higher order alternatives (4.8). This is because the data-drivenbpIMSE is too small in a vast majority of the simulations.

4.5. Second set of alternatives: small correlation coe¢ cients. This section considers alternatives

(3.11). More speci�cally, we consider

(4.9) ut = ut (P; b) = "t +
(3
n)

1=2

n1=2P 1=4

PX
k=1

 k;b"t�k,  k;b
i.i.d.� N (0; 1) .

9This can be explained by the fact that E
�
�2CvM

�
= DCvM + n

P1
j=1 Var

� bRj� =j2. Further inspection of our simulation
experiments shows that E

�
�2CvM

�
can be up to twice larger than 3 = DCvM , hence the important impact of the term

n
P1
j=1 Var

� bRj� =j2.
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GGL GGL M CvM

Kernel Uniform Parzen Parzen

10 % 5 % 10 % 5 % 10 % 5 % 10 % 5 %

n = 200

ut = "t + 0:1244"t�1 44.17 30.96 53.66 40.84 54.48 40.70 52.34 39.34

ut = "t + 0:8165"t�4 100.00 100.00 99.98 99.98 17.11 9.86 77.46 41.87

ut = 0:1233ut�1 + "t 42.82 31.12 52.59 39.57 53.25 39.51 51.20 38.45

ut = 0:6849ut�6 + "t 100.00 100.00 100.00 100.00 35.88 25.64 89.74 69.03

n = 1;000

ut = "t + 0:055"t�1 43.65 31.41 53.14 40.14 53.94 40.51 52.01 39.58

ut = "t + 0:2307"t�4 99.98 99.98 98.92 98.92 12.08 6.07 75.88 41.12

ut = 0:0548ut�1 + "t 44.72 32.38 54.24 41.35 54.93 41.80 52.86 40.82

ut = 0:3242ut�6 + "t 100.00 100.00 100.00 100.00 16.18 9.07 84.89 47.92

Table 2: Power of tests under Cramér-von Mises alternatives.

In this setting b = 1; :::; 10; 000 is the simulation index. New moving average coe¢ cients
�
 k;b

	
are drawn

for each simulations. Randomizing the moving average coe¢ cients allows us to explore various shapes of the

correlation function. The noise f"tg is independent of the moving average coe¢ cients
�
 k;b

	
and is drawn

randomly from the standard normal distribution. The lag index P is set to 15 and 30 for 200 observations

and 75 and 150 for 1,000 observations. Since
PP

k=1  
2
k;b = P (1 + oP (1)) when P tends to in�nity, the

covariance structure of the alternatives (4.9) is described in Lemma 1. Simulation results are given in Table

3.

As implied by Proposition 2, the adaptive procedure developed in this paper outperforms the CvM

and M(bpIMSE) tests for all values of P and n considered in the simulation. The higher the value of P , the

larger is the di¤erence in favor of our procedure. The di¤erence in the rejection rate can be as large as 70%.

The relative poor performance of the CvM test is easily explained by the fact that the CvM statistic places

more emphasis on low order autocorrelations than on higher order autocorrelation. However, the CvM test

outperforms the M test for P = 15 and 30 and the two tests are equivalent for P = 75 and 150. The poor

performance of the M test is again due to a low bpIMSE . Finally, for our procedure, the uniform kernel

performs better than the Parzen kernel, with a di¤erence in rejection rate that can be as large as 15% for

P = 150. This result is not surprising since the Parzen kernel puts larger weight on low order autocorrelation

coe¢ cients and smaller weight on higher order coe¢ cients. This contrasts with the simulation results for

alternatives (4.6) showing that the choice of the kernel may a¤ect detection of speci�c alternatives.
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GGL GGL M CvM

Kernel Uniform Parzen Parzen

10 % 5 % 10 % 5 % 10 % 5 % 10 % 5 %

n = 200

P = 15 83.11 79.96 68.11 64.38 50.20 39.64 59.39 46.54

P = 30 78.45 75.25 54.21 49.15 42.58 31.69 49.17 36.95

n = 1;000

P = 75 94.60 93.75 92.90 92.33 40.44 29.14 42.75 30.55

P = 150 94.03 93.26 79.71 77.84 32.56 21.66 33.13 22.24

Table 3: Power of tests under small correlation coe¢ cients alternatives.

5. Applications to financial squared returns

5.1. Correction for heteroskedasticity and details of the test. To deal with the problem of het-

eroskedasticity, Deo (2000), Francq, Roy and Zakoian (2005), Lobato, Nankervis and Savin (2001) and

Robinson (1991b) have proposed to modify the existing tests by using a better standardization of bRj in
place of bR0 as explained now. Relaxing independence of futg and assuming that fut; t � 1g is a sequence of
centered martingale di¤erences, we obtain that

Var
� bRj� = Var 1

n

n�jX
t=1

utut+j

!
=
1

n

�
1� j

n

�
E
�
u2tu

2
t+j

�
=
1

n

�
1� j

n

�
�2j ;

where �2j may di¤er fromR20 if E
�
u2tu

2
t+j

�
6= E

�
u2t
�
E
�
u2t+j

�
. It follows that it may be advisable to standardize

the estimated covariances bRj using �̂j with �̂2j =
Pn�j

t=1 û
2
t û
2
t+j=n. In our application, we consider the

modi�ed Box-Pierce statistics

BP �p = n
n�1X
j=1

 
R̂j
�̂j

!2
; p 2 P.

With this de�nition, the mean and variance terms E(p), V 2(p) and V 2(p; p) in the de�nition of the test

(2.10) can be set equal to p, 2p and 2(p� p) respectively.
We consider monthly returns vt = log (Pt=Pt�1), t = 1; :::; n, of the Dow Jones Index from January

1950 to April 2008 (n = 700) and monthly returns of the Coca-Cola share from January 1962 to April 2008

(n = 555). In both cases, the returns are found to be uncorrelated. The tests are then applied to squared

de-meaned returns but = (vt � v)2 � (vt � v)2; t = 1; :::; n:

Although the mean of the returns and of the squared returns is estimated, elementary expansions show that

this does not a¤ect the joint null limit distribution of the covariances. It follows that the CvM statistic has

its usual null limit distribution. Similarly, the null limit distribution of BP �bp is a chi-square with p degrees
of freedom. In order to limit small sample impact of mean estimation, the minimal lag index p is set to 4, a
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value which is slightly larger than the minimal lag index 2 used in the simulation experiments. For the Dow

Jones returns, p is equal to 256 and the penalty is as in the simulation experiment, 
n = (2 log 6)
1=2
+ 3:2.

For the Coca-Cola returns, a smaller p = 128 is considered due to a smaller sample size and the penalty is

equal to 
n = (2 log 5)
1=2
+ 3:2.

5.2. Index returns. Figure 1 below displays the standardized squared sample covariances n( bRj=b�j)2, j =
1; :::; 256; of the de-meaned squared returns of the Dow Jones Index. The upper horizontal line is the 5%

critical value10, 15:24, of the test based on maxj2[1;256] n( bRj=b�j)2. The lower horizontal line corresponds to
1:962 = 3:8416, so that 95% of the n( bRj=b�j)2, j = 1; :::; 256, should lie below this line under the null.

Figure 1: Sample standardized autocovariance of the Dow Jones Index squared monthly returns. The

upper horizontal line is the 5% critical value, 15.24, of the test based on max1�j�128 n(R̂j=�̂j)2. The lower

horizontal is the asymptotic 95% quantile of the individual n(R̂j=�̂j)2.

The observed value of n Maxj2[1;256](R̂j=�̂j)2 is below its 5% critical value. The value of the CvM

statistic is 0:31 (p-value 0:12). The M statistic, with bpIMSE = 11:33, gives a slightly smaller p-value of 0:08.

Hence all these tests accept the null at the 5% level. This conclusion contrasts with quite high percentage

12:5% of standardized squared sample correlations above the 1:962 line, which gives a negligible p-value to

the null. That the CvM and M tests do not detect may be due to the fact that high correlation coe¢ cients

are mostly achieved for high lags typically larger than 70. Our selection procedure (2.8) with bp = 256 is more
sensitive to the high lag behavior of the sample correlation function. Our test statistic BP �bp has a value of
210 and rejects the absence of serial correlation at any reasonable statistical level.

10Since under the null of independence the n1=2 bRj=b�j are asymptotically independent standard normal, this critical value
has been computed using the double exponential approximation of the maximum of p = 256 independent chi square variables

with 1 degree of freedom.
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5.3. Stock returns. Figure 2 reports the standardized squared sample covariances n( bRj=b�j)2, j = 1; :::; 128;
of the de-meaned squared returns of the Coca-Cola stock. The upper horizontal line corresponds to the 5%

critical value of the test based on maxj2[1;128] n( bRj=b�j)2 which has a slightly lower value of 14:18 for p = 128.
The lower horizontal line corresponds to 1:962, so that 95% of the n( bRj=b�j)2 for j = 1; :::; 128 should lie

below this line under the null.

Figure 2: Sample standardized autocovariance of Coca Cola squared monthly returns. The upper horizontal

line is the 5% critical value, 14.18, of the test based on max1�j�128 n(R̂j=�̂j)2. The lower horizontal is the

asymptotic 95% quantile of the individual n(R̂j=�̂j)2.

The sample covariance function in Figure 2 di¤ers from the function given in Figure 1 and shares

some aspects with the covariance functions that can be generated by an uncorrelated process or by small

alternatives (3.11). In particular, the percentage of n( bRj=b�j)2 above 1:962 is very low, with a value of 1:56%.
Not surprisingly, the asymptotic p-value of the CvM test statistic is 0:17, so the CvM test accepts the null

of absence of serial correlation at usual statistical levels. The M statistic gives a p-value larger than 0:50 for

the null.

The conclusion based on the M, CvM and con�dence interval test contrasts with the conclusion based

on our test which with BP �bp = 121 rejects the null of absence of serial correlation at all reasonable levels.

Such a high value of the test statistic may be due to the fact that many standardized covariances n(R̂j=�̂j)2

are close to 1:962 for lags j 2 [30; 70]. Although this corresponds to small values for the standardized

covariances, it is su¢ cient to drive the selected value of bp up to 64.
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6. Concluding remarks

The paper proposes an adaptive test for absence of serial correlation. The test is based on a new

data-driven selection procedure of the smoothing parameter in the test statistics used by Box and Pierce

(1970) and Hong (1996). The test can be based on simple critical values such as chi-square or normal and

does not rely on bootstrap procedures than can be di¢ cult to apply in time series contexts. The selection

procedure is speci�c to testing and is designed to achieve rate-optimality properties. An important theoretical

�nding is that the adaptive test can consistently detect alternatives with autocorrelation coe¢ cients of order

�n = o
�
n�1=2

�
where n is the sample size. Such a result holds provided that the number of autocorrelation

coe¢ cients of order larger or equal to �n remains large enough. The analysis of such alternatives has led us

to develop a new class of so called small alternatives with autocorrelation coe¢ cients of order o
�
n�1=2

�
. The

proposed test has been shown to be adaptive rate-optimal against this class of small alternatives, as well as

adaptive rate-optimal against smooth alternatives, a framework previously used in Horowitz and Spokoiny

(2001). The test is also consistent against Pitman local alternatives which converge to the null at a rate

close or equal to the parametric rate n1=2, and against ARMA-type alternatives which converge to the null

at a rate close to the parametric rate.

The paper gives examples of alternatives with small autocorrelation coe¢ cients of order o
�
n�1=2

�
which

are detected by the new test. These examples consist of high-order moving average processes with moving

average coe¢ cients converging to zero at a o
�
n�1=2

�
rate. Due to the small size of the coe¢ cients, standard

con�dence interval techniques for the moving average or autocorrelation coe¢ cients will wrongly conclude

that the serial correlation is absent. The paper shows that the Cramér-von Mises test of Durlauf (1991)

is not consistent against such small alternatives either. Our simulation experiments demonstrate that the

power of a data-driven version of the Hong (1996) test based on Andrews (1991) and Newey and West (1994)

is also very low. Interestingly, an empirical example of monthly squared �nancial returns similarly exhibits

correlation coe¢ cients which are not signi�cantly large when considered individually or when tested using

the Hong (1996) or CvM tests. In contrast, our test indicates presence of autocorrelation.
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Appendix A: proofs of main results

This section contains the proofs of the results of Section 3. For j = 1; : : : ; n� 1 and p = 1; : : : ; n, let

eRj = 1

n

n�jjjX
t=1

utut+jjj and eSp = n
n�1X
j=1

K2

�
j

p

� eR2j
be the sample covariances and the test statistics computed using u1; :::; un. In this section, C and C 0 are

constants that may vary from line to line but only depend on the constants of the assumptions. Notation [�]
is used for the integer part of a real number.

We �rst state some intermediary results that are used in the proofs of our main results. These interme-

diary results are proven in Appendix B. Lemma A.1 gives the order of standardization terms E(p), E(p; p),

V (p) and V (p; p). Propositions A.1 and A.2 deal with the impact of the estimation of �. Proposition A.3

is used to study the asymptotic null behavior of the test. Propositions A.4 and A.5 together with the lower

bounds (2.11) are the key tools for the derivation of the consistency results.

Lemma A.1. Suppose that Assumption K holds and that p=n � 1=2.
(i) There exists a constant C > 1 such that, for q = 1; 2 and for any p � p � p,

p

C
�

n�1X
j=1

�
1� j

n

�q
K2q

�
j

p

�
� Cp;

p

C
�

n�1X
j=1

K2q

�
j

p

�
� Cp; V 2(p; p) � Cp;

and E(p; p) �
n�1X
j=1

�
K2

�
j

p

�
�K2

�
j

p

��
� Cp1=2V (p; p):

(ii) Under Assumption P, for all n,

V (p; p) � C(p� p)1=2 for all p 2 P;

V (p; p) � Cp1=2 for p 6= p 2 P;
E(p; p) � 0 for all p 2 P:

Proposition A.1. Suppose the sequence fut;ng satis�es Assumption M. If

1

C
� R0;n � C and

+1X
j1;j2;j3=�1

j�n(0; j1; j2; j3)j � C

then for any jn = o(n),

bRjnbR0 = Rjn;n
R0;n

+OP

0B@
0@n�1 2nX

j=0

�
Rj;n
R0;n

�21A1=2
1CA+OP �n�1=2� :
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If fut;ng also satis�es Assumption R then

bRjn= bR0 = Rjn;n=R0;n +OP

�
n�1=2

�
:

Proposition A.2. Let Assumptions K, M, P and R hold. Then for any p0 2
�
p; p
�
,

max
p2P;p>p0

jbSp � eSpj
R20;nV (p; p)

= OP

0B@p�1=20 +
n1=2

p0

0@ 1X
j=1

�
Rj;n
R0;n

�21A1=2
1CA ;

and for any p = O(n1=2),

(bSp � eSp)=R20;n = OP

0B@1 +
0@n
p

1X
j=1

�
Rj;n
R0;n

�21A1=2
1CA :

Proposition A.3. Assume that ut are independent real random variables with Eut = 0, Var(ut) = �2 and
Ejutj8 � C. If Assumptions K, P, and M hold then for any � > 0,

lim
n!1

P

 
max

p2Pnfpg

(bSp � bSp)= bR20 � E(p; p)
V (p; p)

� (2 lnQ)1=2 + �
!
= 0:

Proposition A.4. Under Assumptions K, and P, there are some C;C 0 > 0 such that for any p 2 P and n
large enough,

EeSp �R20 n�1X
j=1

�
1� j

n

�
K2

�
j

p

�
� Cn

pX
j=1

R2j � C 0R20:

Proposition A.5. Under Assumptions K, P and R, there is a constant C > 0 such that for any p 2 P and
n large enough,

Var
�eSp� � C

0@nR20 1X
j=1

R2j + pR
4
0

1A :

The proofs of Theorems 3, 4 and 6 use the following result.

Theorem A.1. Let Assumptions K and P hold. Consider a sequence of alternatives fut;ng satisfying
Assumptions R and M. Then test (2.10) is consistent if one of the two following conditions hold,

max
p2[p;p]

0@ n

(2p)
1=2

pX
j=1

�
Rj;n
R0;n

�21A � (1 + o(1)) �2
n;(A.1)

n
1X
j=1

�
Rj;n
R0;n

�2
� (1 + o(1)) �2 min

p2[p;p]

0@n 1X
j=p

�
Rj;n
R0;n

�2
+ 
n (2p)

1=2

1A ;(A.2)

where � is a large enough constant independent of fut;ng.

The proof of Theorem A.1 is given in Section A.3.
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A.1. Proof of Theorem 1. We �rst show that limn!1 P(bp 6= p) = 0. We observe that Q = O(lnn) so

that for n large enough, (3.1) yields that


n � (2 lnQ)
1=2
+ �0:

Since
�bSp � bSp� = bR20�E(p; p)�
nV (p; p) = 0 when p = p, de�nition (2.8) and the lower bound above imply

that

P(bp 6= p) = P
��bSp � bSp� = bR20 � E(p; p)� 
nV (p; p) � 0 for some p 2 P n fpg�

= P

0@ max
p2Pnfpg

�bSp � bSp� = bR20 � E(p; p)
V (p; p)

� 
n

1A
� P

0@ max
p2Pnfpg

�bSp � bSp� = bR20 � E(p; p)
V (p; p)

� (2 lnQ)1=2 + �0
1A :

Hence by Proposition A.3, limn!1 P(bp 6= p) = 0. This establishes the �rst part of the theorem. It follows

that bSbp = bSp asymptotically and (2.7) implies that the test has asymptotic level �. 2

A.2. Proof of Theorem 2. Under the conditions of Theorem 2, there is 1 � jn � p such that jRjn;n=R0;nj �
�. Setting p = p in (2.11) and using Lemma A.1, we obtain

bSbpbR20 � E(p)� V (p)zn(�) �
bSpbR20 � E(p)� 
nV (p; p)� V (p)zn(�) � n

 bRjnbR20
!2
�O(p):

Proposition A.1 implies that

n

 bRjnbR20
!2

= n

�
Rjn;n
R0;n

+ oP (1)

�2
� n�2(1 + oP(1));

hence bSbpbR20 � E(p)� V (p)zn(�) � n�2(1 + oP(1))� o(n) = n�2(1 + oP(1))
P! +1

because p = o(n). This establishes consistency. 2

A.3. Proof of Theorem A.1. We only give a proof of (A.2) because the proof of (A.1) is similar. Let Rn

and p�n be de�ned as

nR2
n = min

p2[p;p]

0@n 1X
j=p

�
Rj;n
R0;n

�2
+ 
n (2p)

1=2

1A ;(A.3)

p�n = arg min
p2[p;p]

0@n 1X
j=p

�
Rj;n
R0;n

�2
+ 
n (2p)

1=2

1A :

Let qn be an integer number such that 2qn�1p < p�n � 2qnp, and set pn = 2qnp. Observe that pn is in P and
satis�es

(A.4) nR2
n � n

1X
j=pn

�
Rj;n
R0;n

�2
+ 
n (2pn)

1=2 � n

1X
j=p�n

�
Rj;n
R0;n

�2
+ 21=2
n (2p

�
n)
1=2 � 21=2nR2

n:
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Lemma A.1, Proposition A.1, (2.11) and the second equality of Proposition A.2 yield thatbSbpbR20 � E(p)� V (p)zn(�) �
bSpnbR20 � E(pn)� 
nV (pn; p)� V (p)zn(�)

�
bSpnbR20 � E(pn)� C
n(2pn)1=2

�
eSpnbR20 +OP

2641 +
0@ n

pn

1X
j=1

�
Rj;n
R0;n

�21A1=2
375� E(pn)� C
n(2pn)1=2:(A.5)

By the Chebyshev inequality and Propositions A.4 and A.5,

eSpn �R20;nE(pn) = E
heSpni�R20;nE(pn) +OP�Var�eSpn�1=2�

� R20;n

264Cn 1X
j=1

�
Rj;n
R0;n

�2
� Cn

1X
j=pn

�
Rj;n
R0;n

�2
+OP

264
0@n 1X

j=1

�
Rj;n
R0;n

�21A1=2

+ p1=2n

375
375 :

Inequality (A.2) implies that

n

1X
j=1

�
Rj;n
R0;n

�2
� (1 + o (1)) �2nR2

n � 21=2�2
n !1;

therefore eSpn
R20

� E(pn) � Cn

1X
j=1

�
Rj;n
R0;n

�2
(1 + oP (1))� Cn

1X
j=pn

�
Rj;n
R0;n

�2
+OP

�
p1=2n

�
:

By Proposition A.1, bR20=R20;n = 1+OP �n�1=2� under Assumption R. Substituting this bound in (A.5) gives
bSbpbR20 � E(p)� V (p)zn(�) �

R20;nbR20
24Cn 1X

j=1

�
Rj;n
R0;n

�2
(1 + oP (1))� Cn

1X
j=pn

�
Rj;n
R0;n

�2
+OP

�
p1=2n

�35
+OP

2641 +
0@ n

pn

1X
j=1

�
Rj;n
R0;n

�21A1=2
375+ R20;nbR20 � 1

!
E(pn)

�C
n(2pn)1=2:

By Lemma A.1,
�
R20;n=

bR20;n � 1�E(pn) = OP(pn=n
1=2) = 
np

1=2
n oP(1). Since n

P1
j=1 (Rj;n=R0;n)

2 ! 1
and 
n !1, the lower bound above implies that

bSbpbR20 � E(p)� V (p)zn(�) � Cn

1X
j=1

�
Rj;n
R0;n

�2
(1 + oP (1))� C 0 (1 + oP (1))

0@n 1X
j=pn

�
Rj;n
R0;n

�2
+ 
n(2pn)

1=2:

1A
� Cn

1X
j=1

�
Rj;n
R0;n

�2
(1 + oP (1))� 21=2C 0 (1 + oP (1))R2

n;

where the last inequality comes from (A.4). Hence if (A.2) holds with �2 > 21=2C 0=C then bSbp= bR20 �E(p)�
V (p)zn(�) diverges in probability to in�nity and the test (2.10) is consistent. 2
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A.4. Proof of Theorem 3. The proof proceeds by checking the consistency condition (A.1) of Theorem

A.1. If �� is large enough compared to � then it follows from (3.8) that

max
p2[p;p]

0@ n

(2p)
1=2

pX
j=1

�
Rj;n
R0;n

�21A � n

(2Pn)
1=2

PnX
j=1

�
Rj;n
R0;n

�2
� nNn�

2
n

(2Pn)
1=2

� �
n (1 + o (1))

because Pn 2 [p; p]. 2

A.5. Proof of Proposition 1. We �rst introduce a set of alternatives. Let f (�) denote the spectral density
of a centered Gaussian stationary process futg :with covariance coe¢ cients Rj . De�ne a Hölder class of
processes as

Hölder (L) =

8<:futg : 1=3 � inf
�2[��;�]

f (�) � sup
�2[��;�]

f (�) � 3, sup
�2[��;�]

jf 0 (�)j � L;
1X
j=0

jRj j � L

9=; :

We state an auxiliary result.

Lemma A.2. Consider a centered stationary Gaussian process futg with spectral density function f (�) =
exp (g (�)) = (2�), where

(A.6) g (�) = 2�

pX
k=1

bk cos (k�) ; bk = �1; 0; 1:

If p � 1 and � � 0 are such that p2� � � � 1=6 then there is some constant L > 0, independent of �, p, �
and fbk; k = 1; :::; pg, such that

(i) jR0 � 1j � 6�� and jRj � �bj j � 6�� for j = 1; :::; p,
(ii) jRj j � 3� (2�)` for all j in [`p+ 1; (`+ 1) p) and all ` � 1,
(iii) futg is in Hölder(L).

Proof of Lemma A.2. Rewrite g as

g (�) = �

pX
k=�P

bk exp (ik�) ; b0 = 0; bk = b�k = bjkj:

Since exp (x) =
P1

m=0 x
m=m! uniformly over any compact set and max� jg (�)j � 2p� � 2� � 1=3, we have

(A.7) Rj =

Z �

��
exp (�ij�) f (�) d� = 1

2�

1X
m=0

1

m!

Z �

��
exp (�ij�) (g (�))m d�:

For m > 0, since
R �
�� exp (�ij�) d� = 2� if j = 0 and 0 if j 6= 0,

1

2�

Z �

��
exp (�ij�) (g (�))m d� =

�m

2�

X
(k1;:::;km)2Km

bk1 � � � � � bkm
Z �

��
exp (i (k1 + : : :+ km � j)�) d�

= �m
X

(k1;:::;km)2Km(j)

bk1 � � � � � bkm ;(A.8)

where Km is the set of m-tuples with entries in [�p; p] n f0g so that #Km = (2p)
m and Km (j) contains

m-tuples in Km for which k1 + � � �+ km = j so that #Km(j) � (2p)m�1.
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Proof of (i). Part (i) is a consequence of (A.7), (A.8) and inequality 2p� � 2� < 1 which together imply
that for j = 0; :::; p,

jRj � I (j = 0)� �bj j � �
1X
m=2

(2p�)
m�1

m!
� 2p�2

1X
m=0

1

m!
� 2e�� < 6�":

Proof of (ii). Let `p + 1 � j > (`+ 1) p. Observe that Km (j) is an empty set when m � `. Hence it

follows from (A.7) and (A.8) that

jRj j �
����� 12�

1X
m=`+1

1

m!

Z �

��
exp (�ij�) (g (�))m d�

����� � �
1X

m=`+1

(2p�)
m�1

m!
� � (2�)

`
e:

Proof of (iii). Observe that jg (�)j � 2�p � 2� � 1=3 and that therefore

1=3 < 1� 1=3 < exp (�1=3) � f (�) � exp (1=3) � e � 3 for all � 2 [��; �] :

Parts (i), (ii) and 0 � � � � < 1=6, p� � 1=6 yield that, for L large enough,

1X
j=0

jRj j � R0 +

pX
j=1

jRj j+
1X
`=1

(`+1)pX
j=`p+1

jRj j � 1 + 6��+ (1 + 6�) p�+ 3
1X
`=1

(`+ 1) p� (2�)
`

� 1 + 1 + 1=3 + 1=2
1X
`=1

(`+ 1) (2�)
` � L:

Since f 0 (�) = g0 (�) f (�) with g0 (�) = �2�
Pp

k=1 bkk sin (k�), we have sup�2[��;�] jf 0 (�)j � 3�2P 2� � 1.2
We will now de�ne a family Fn of correlated Gaussian alternatives. We �rst introduce some notation.

Consider 
n = (2 ln lnn)
1=2, �1 2 (0; 1=2) and �2 2 (0; 2=7). Let A = 2[ln(1=v

2
1)= ln 2],

p0 = max

�
A[

ln lnn
lnA ]; A

h
ln p

lnA+1
i�

and p0 = min

�
A

h
2 ln(n=
n)
(4s+1) lnA

i
; A

h
( 27��2)

ln(n=
n)
ln(A)

i�
;

and let P 0 be the A-adic set
�
p0; p0A; : : : ; p0 = p0AQ

	
. Under Assumption P we have P 0 �

�
p; p
�
. De�ne also

(A.9) �2n(p) =
2
n
np1=2

and e�n(p) = (1 + �2) �n(p):
Let �n = (p0)

2
�n(p

0) so that p2�n(p) � �n for all p 2 P 0 and

�n =
(2
n)

1=2

n1=2
(p0)

7=4 � (2
n)
1=2

n1=2

�
(n=
n)

2=7��2
�7=4

= o (1) :

In the sequel, �n plays the role of the real number � of Lemma A.2 and we assume from now on that n is

large enough that �n � 1=6. Consider the following log-spectral density functions:

g (�; b; p) = 2e�n(p) X
k2(�1p;p]

bk cos (k�) ; b = (b1; : : : ; bp0) :

Functions g are of the form speci�ed in (A.6). Let W be a symmetric standard Brownian motion process

independent of B and P . Consider a centered stationary Gaussian processes

ut;n (b; p) =
1

(2�)
1=2

Z �

��
exp

�
g (�; b; p)

2

�
exp (it�) dW (�) :
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Observe that fut;n (0; p)g does not depend on p and is a Gaussian white noise process with variance 1. Let
fRj;n (b; p)g denote the covariance function of fut;n (b; p)g. The family Fn of Gaussian processes can now be
de�ned as

Fn =
n
fut;n (b; p)g ; b 2 f�1; 0; 1gp

0
; p 2 P 0

o
:

Lemma A.2(iii) implies that all sequences fut;ng in Fn satis�es Assumption R and that Fn � Hölder(L).
We now introduce a probability distribution over Fn. Let P and B = (Bk; k = 1; :::; p0) be independent

random variables with distribution � as follows. The random variables P and B are independent, the

marginal distribution of P is uniform over P 0 and the Bk are i.i.d. with

�(Bk = 0) = 1� � and �(Bk = 1) = � (Bk = �1) =
�

2
; where � =

1� �1
2

:

We now study the asymptotic behavior of the stochastic covariance sequence fRj;n (B;P )g. Let Nn (b; p) be
de�ned as in (3.7), that is

Nn (b; p) = Nn (fut;n (b; p)g ; p; �n (p)) = #
�����Rj;n (b; p)R0;n (b; p)

���� � �n (p) ; j 2 [1; p]
�

and consider the event

En =
n
(b; p) : Nn (b; p) �

p

2
(1� �)2

o
;

where � is as in Proposition 1. Lemma A.2(i) yields that jRj;n (b; p) =R0;n (b; p)j � e�n(p) (jbj j � 6�n) = (1 + 6e�n(p)�n)
for �1p < j � p. Hence, provided that �n is small enough compared to �2, (A.9) implies that

En � E 0n =
n
(b; p) : # fjbj j = 1; j 2 (�1p; p]g �

p

2
(1� �)2

o
:

We now show that �((B;P ) 2 E 0n)! 1 for �1 small enough, so that

(A.10) lim
n!1

�((B;P ) 2 En) = 1:

Since jBj j is either 0 or 1 and since P 2 P 0, it is

�((B;P ) 2 E 0n) = �

0@ 1
P

X
j2(�1P;P ]

jBj j �
1

2
(1� �)2

1A � �

0@min
p2P0

1

p

X
j2(�1p;p]

jBj j �
1

2
(1� �)2

1A :

By the strong law of large numbers,

1

p

X
j2(�1p;p]

jBj j =
1

p

pX
j=1

jBj j � �1
1

�1p

X
j2[1;�1p]

jBj j

converges �-almost surely to (1� �1) � = (1� �1)2 =2 when p ! 1. Hence, since p0 ! 1; we have
�((B;P ) 2 E 0n)! 1 for �1 < �.

Let us now return to the proof of Proposition 1. The fact that (b; p) 2 En together with (A.9) implies
that

�2n (p) =
2
n
np1=2

� (1� �)2 
n
n

p1=2

Nn (b; p)
:

Hence Proposition 1 holds if

inf
Tn2T (�)

max
(b;p)2En

Pb;p (Tn = 0) � 1� �+ o (1) ;
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where Pb;p (�) is the probability distribution of fut;n (b; p)g, where Tn = 0 (Tn = 1) if test Tn based on n

observations accepts H0 (H1 respectively), and where T (�) is the class of all tests asymptotically of level �.

Note that this will follow from

inf
Tn2T

max
(b;p)2En

[P0 (Tn = 1) + Pb;p (Tn = 0)] � 1 + o (1) ;

where P0 (�) is the distribution of fut;n (0; p)g and T is the class of all tests. Since

max
(b;p)2En

[P0 (Tn = 1) + Pb;p (Tn = 0)] �
Z
[P0 (Tn = 1) + Pb;p (Tn = 0)]

I ((b; p) 2 En)
� ((B;P ) 2 En)

d�(b; p)

= (1 + o (1))

Z
[P0 (Tn = 1) + Pb;p (Tn = 0)] d�(b; p) + o (1)

by (A.10), Proposition 1 holds if

(A.11) inf
Tn2T

[P0 (Tn = 1) + P� (Tn = 0)] � 1 + o (1) ;

where P� (�) is the marginal distribution of fut;n (B;P )g, that is P� (�) =
R
Pb;p (�) d�(b; p).

The proof of (A.11) builds on an equivalence result due to Golubev, Nussbaum and Zhou (2009).

Consider the continuous time Gaussian processes

dUn (�; b; p) = g (�; b; p) d�+ 2�1=2
dW (�)

n1=2
; � 2 [��; �] :

Let Qb;p be the probability distribution of fUn (�; b; p) ; � 2 [��; �]g, let Q� (�) =
R
Qb;p (�) d�(b; p), and

let Q0 be the probability distribution of fUn (�; 0; p) ; � 2 [��; �]g =
�
2�1=2W (�) =n1=2; � 2 [��; �]

	
. Since

Lemma A.2 shows that the support Fn of fut;n (B;P )g is a subset of Hölder(L), the equivalence result of
Golubev et al. (2009) holds and implies that (A.11) is equivalent to

(A.12) inf
tn2T U

[Q0 (tn = 1) +Q� (tn = 0)] � 1 + o (1) ;

where T U is the class of all tests of b = 0 against b 6= 0 based on the observation of the path fUn (�) ; � 2 [��; �]g.
To prove (A.12), observe that the in�mum on the left of (A.12) is achieved by the Bayesian likelihood

ratio test. This test rejects b = 0 if the log-likelihood ratio

Ln =
dQ�
dQ0

(fUn (�) ; � 2 [��; �]g) =
dQ�=d�
dQ0=d�

(fUn (�) ; � 2 [��; �]g) ; � = Q0 +Q�;

is larger than 1. It follows that

inf
tn2T U

[Q0 (tn = 1) +Q� (tn = 0)]

�
Z �

I (Ln � 1)
dQ0
d�

(fUn (�) ; � 2 [��; �]g) + I (Ln < 1)
dQ�
d�

(fUn (�) ; � 2 [��; �]g)
�
d�

=

Z
min

�
dQ0
d�

(fUn (�) ; � 2 [��; �]g) ;
dQ�
d�

(fUn (�) ; � 2 [��; �]g)
�
d�

=

Z
min (1;Ln) dQ0:

Hence the Fatou Lemma implies that (A.12) holds if

(A.13) Ln
Q0! 1:
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To prove (A.13), we �rst derive a more explicit expression for Ln. The Girsanov theorem implies that

dQb;p=dQ0 (fUn (�) ; � 2 [��; �]g) is equal to

dQb;p
dQ0

(fUn (�) ; � 2 [��; �]g) = exp
�
n

4�

�Z �

��
g (�; b; p) dUn (�)�

1

2

Z �

��
g2 (�; b; p) d�

��
:

Hence, under the null that b = 0 this expression is equal to

exp

0@ X
k2(�1p;p]

 
n1=2e�n (p) bk

�1=2

Z �

��
cos (k�) dW (�)� ne�2n (p)

2
b2k

!1A
= exp

0@ X
k2(�1p;p]

 
n1=2e�n (p) bk�k � ne�2n (p)

2
b2k

!1A ;

where the random variables �k are de�ned as

�k =
1

�1=2

Z �

��
cos (k�) dW (�) ; k = 1; :::; p0:

Hence the variables �k are i.i.d. standard normal and independent of B and P . The de�nition of � implies

that

Ln =
1

#P 0
X
p2P0

Lp;n

with

Lp;n =
Y

k2(�1p;p]

 
1� � + �

2

�
exp

�
n1=2e�n (p) �k�+ exp��n1=2e�n (p) �k�� exp

 
�ne�2n (p)

2

!!

=
Y

k2(�1p;p]

 
1 + �

 
cosh

�
n1=2e�n (p) �k� exp

 
�ne�2n (p)

2

!
� 1
!!

;(A.14)

where cosh(x) = (exp (x) + exp (�x)) =2.
Under the null that b = 0, the expectation of Ln isZ

dQ�
dQ0

(fUn (�) ; � 2 [��; �]g) dQ0 = 1

so that to complete the proof of (A.13) it is su¢ cient to show that Var (Ln) ! 0. By the de�nition of

P 0, (�1p1; p1] \ (�1p2; p2] = ; for all p1 = p0Aq1 < p2 = p0Aqin P 0 provided �1 is small enough, because
A = 2[ln(1=v

2
1)= ln 2] � 1=

�
2�21
�
. Hence Cov (Lp1;n;Lp2;n) = 0 for all p1 < p2, p1; p2 2 P 0, and we have

Var (Ln) =
1

(#P 0)2
X
p2P0

Var (Lp;n) :

To compute this variance, recall that for a N
�
0; �2

�
variable V it is E (cosh (V )) = E (exp (V )) = exp

�
�2=2

�
and

E
�
cosh2 (V )

�
=
1

4
E [2 + exp (2V ) + exp (�2V )] = 1

2

�
1 + exp

�
2�2
��
:
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It then follows that

E
�
cosh

�
n1=2e�n (p) �k� exp��12ne�2n (p)

��
= 1;

E

"�
cosh

�
n1=2e�n (p) �k� exp��12ne�2n (p)

��2#
=

1

2

�
1 + exp

�
2ne�2n (p)�� exp��ne�2n (p)�

= cosh
�
ne�2n (p)� :

This implies that

E

24 1 + � cosh�n1=2e�n (p) �k� exp
 
�ne�2n (p)

2

!
� 1
!!235

= 1 + 2�E

"
cosh

�
n1=2e�n (p) �k� exp

 
�ne�2n (p)

2

!
� 1
#

+�2

 
E

"�
cosh

�
n1=2e�n (p) �k� exp��12ne�2n (p)

��2#
� 2E

�
cosh

�
n1=2e�n (p) �k� exp��12ne�2n (p)

��
+ 1

!
= 1 + �2

�
cosh

�
ne�2n (p)�� 1� :

Hence by (A.14) gives

Var (Lp;n) � E
�
L2p;n

�
=

Y
k2(�1p;p]

E

24 1 + � cosh�n1=2e�n (P ) �k� exp
 
�ne�2n (p)

2

!
� 1
!!235

� exp
�
(1� �1) p ln

�
1 + �2

�
cosh

�
ne�2n (p)�� 1��� :

Recall now that � = (1� �1) =2 and ne�2n (p) = (1 + �2)
2
2
n= (p)

1=2 � (1 + �2)
2
2 (2 ln lnn)

1=2
=
�
p0
�1=2

=

o(1) for all p 2 P 0. We also have coshx� 1 = (1 + o (1))x2=2 when x! 0 and ln (1 + t) � t. It follows that,

for some � 2 (0; 1), uniformly in p 2 P 0,

Var (Lp;n) � exp

 
(1� �1) p

(1� �1)2

4

1

2
(1 + �2)

4 4� 2 ln lnn
p

(1 + o (1))

!
= exp

�
(1� �1)3 (1 + �2)4 (1 + o (1)) ln lnn

�
� C ln1�� n; � 2 (0; 1) ;

provided �1 and �2 are taken small enough that (1� �1)3 (1 + �2)4 < 1. Since #P 0 � lnn, we have

Var (Ln) =
O
�
ln1�� n

�
#P 0 = O

�
ln�� n

�
= o (1)

and (A.13) holds. 2

A.6. Proof of Lemma 1. The �rst approximation R0;n = �2
�
1 +O

�

nP

1=2
n =n

��
follows easily from the

de�nition (3.11) of the alternative. To show that the second approximation is valid, note that for j = 1; :::; Pn,

Rj;n =
�


1=2
n

n1=2P
1=4
n

 j�
2 +

 
�


1=2
n

n1=2P
1=4
n

!2 �
 j+1 1 + � � �+  Pn Pn�j

�
�2:
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By the Cauchy-Schwarz inequality,
�� j+1 1 + � � �+  Pn Pn�j�� � PPn

k=1  
2
k = O(Pn) for all j = 1; :::; Pn,

hence, uniformly in j = 1; :::; Pn,

Rj;n =
�


1=2
n

n1=2P
1=4
n

 j�
2 +O

 

nP

1=2
n

n

!
=

�

1=2
n

n1=2P
1=4
n

 j�
2 + o

 


1=2
n

n1=2P
1=4
n

!

because Pn = o((n=
n)
2=3). 2

A.7. Proof of Proposition 2. Assume without loss of generality that �2 = 1. De�ne

�t = �t;n = �

PnX
k=1

 k"t�k; so that ut;n = "t +


1=2
n

n1=2P
1=4
n

�t:

De�ne also

brj = 1

n

nX
t=j+1

"t"t�j :

Consider the numerator of the CvM statistic. The triangular inequality yields�������
0@n n�1X

j=1

bR2j
j2

1A1=2

�

0@n n�1X
j=1

br2j
j2

1A1=2
������� �

0B@n n�1X
j=1

� bRj � brj�2
j2

1CA
1=2

:

The square of the right-hand side of the last inequality satis�es

n
n�1X
j=1

� bRj � brj�2
j2

� C

264n n�1X
j=1

1

j2

0@ 1
n


n

nP
1=2
n

nX
t=j+1

�t�t�j

1A2

+ n
n�1X
j=1

1

j2

0@ 1
n



1=2
n

n1=2P
1=4
n

nX
t=j+1

"t�t�j

1A2

+n
n�1X
j=1

1

j2

0@ 1
n



1=2
n

n1=2P
1=4
n

nX
t=j+1

�t"t�j

1A2
375 :(A.15)

We now show that each of the three terms on the right of (A.15) are oP (1). Variables �t areN
�
0; �2

PPn
k=1  

2
k

�
so that E1=4

�
�4t
�
� C

�PPn
k=1  

2
k

�1=2
� CP

1=2
n . By the Cauchy-Schwarz inequality,

E

264n n�1X
j=1

1

j2

0@ 1
n


n

nP
1=2
n

nX
t=j+1

�t�t�j

1A2
375 � C
2n

n3Pn
E

24 nX
t=1

�2t

!235 � C
2n
nPn

E
�
�4t
�
= O

�

2nPn
n

�
= o (1) :

It follows from the Markov inequality that the �rst term on the right of (A.15) is oP (1). Further, since "t�t�j
is a martingale di¤erence process,

E

264n n�1X
j=1

1

j2

0@ 1
n



1=2
n

n1=2P
1=4
n

nX
t=j+1

"t�t�j

1A2
375 =


n

n2P
1=2
n

n�1X
j=1

1

j2

nX
t=j+1

E
�
�2t�j

�
� C
n

nP
1=2
n

�2
PnX
k=1

 2k

= O

 

nP

1=2
n

n

!
= o(1):

By the Markov inequality, the second term on the right of (A.15) is oP (1).
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Let us now turn to the last term in (A.15). Consider t1 < t2. If t2 � t1 > Pn + j, or equivalently

t2 � j � t1 > Pn, then

E
�
�t1"t1�j�t2"t2�j

�
= 0 for j > Pn;

E
�
�t1"t1�j�t2"t2�j

�
= E

�
�t1"t1�j

�
� E

�
�t2"t2�j

�
=  2j for j � Pn:

If t2 � t1 � Pn + j, the Cauchy-Schwarz inequality yields��E ��t1"t1�j�t2"t2�j��� � E1=4 ��4t1�E1=4 �"4t1�j�E1=4 ��4t2�E1=4 �"4t2�j� � CPn:

Hence

E

264
0@ nX
t=j+1

�t"t�j

1A2
375 =

nX
t=j+1

E
�
�2t "

2
t�j
�
+ 2

X
j+1�t1<t2�n

E
�
�t1"t1�j�t2"t2�j

�

� C

0@nPn + nX
t1=j+1

t1+Pn+jX
t2=t1+1

Pn + I (j � Pn)
nX

t1=j+1

nX
t2=t1+j+Pn+1

 2j

1A
� C

�
n (Pn + j)Pn + n

2I (j � Pn) 
2
j

�
:

Since
Pn�1

j=1 1=j � C lnn and max1�j�Pn
�� j�� = O (1), we obtain

E

264n n�1X
j=1

1

j2

0@ 1
n



1=2
n

n1=2P
1=4
n

nX
t=j+1

"t�t�j

1A2
375 � C
n

n2P
1=2
n

n�1X
j=1

n (Pn + j)Pn
j2

+
C
n

P
1=2
n

PnX
j=1

max1�j�Pn
�� j��2

j2

� C

nP

3=2
n

n
+ C


nP
1=2
n

n

n�1X
j=1

1

j
+ C


n

P
1=2
n

= O

 

nP

3=2
n

n
+

nP

1=2
n lnn

n
+


n

P
1=2
n

!
= o(1):

Hence the third term on the right of (A.15) is oP (1) by the Markov inequality.

For the denominator of the CvM statistic, similar arguments can be used to show that bR20�br20 = oP (1) :

Since br0 = 1 + oP (1), we obtain from the de�nition of the brj that
CvM =

n

�2

n�1X
j=1

�
1
n

Pn
t=j+1 "t"t�j

�2
j2
�
1
n

Pn
t=1 "

2
t

�2 (1 + oP (1)) + oP (1) ;

so that the limit distribution of CvM under the considered alternative is the same as under the null. 2

A.8. Proof of Theorem 4. Let Rn be as in (A.3). Since fut;ng 2 C(Ln; sn), we have
1X
j=p

�
Rj;n
R0;n

�2
=

1X
j=p

j2sn

j2sn

�
Rj;n
R0;n

�2
� 1

p2sn

1X
j=p

j2sn
�
Rj;n
R0;n

�2
� L2np

�2sn :

This implies that

(A.16) Rn � min
p2[p;p]

Rn(p;Ln; sn; 
n) where R2
n(p;Ln; sn; 
n) = L2np

�2sn +

n (2p)

1=2

n
:
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Elementary algebra gives that minp2NRn(p;Ln; sn; 
n) is achieved for one of the integer numbers p
�
n, p

�
n� 1

or p�n + 1 where

p�n = p�n (Ln; sn; 
n) =

"�
23=2snL

2
nn


n

� 2
4sn+1

#
=

"
exp

 
2 ln

�
23=2sn

�
4sn + 1

!�
L2nn


n

� 2
4sn+1

#
:

Assumption P and (3.15) imply that p�n, p
�
n � 1 and p�n + 1 are in

�
p; p
�
for n large enough and that

min
p2[p;p]

R2
n(p;Ln; sn; 
n) = (1 + o(1))L

2
4sn+1
n

�
n
n

� 4sn
4sn+1

 
exp

 
�
4sn ln

�
23=2sn

�
4sn + 1

!
+ 2

1
2 exp

 
ln
�
23=2sn

�
4sn + 1

!!
� C(1 + o(1))R2

n(Ln; sn);

where R2
n(Ln; sn) has been de�ned in (3.14). The inequality above and (A.16) show that choosing � large

enough in the consistency condition of Theorem 4 implies the validity of (A.2) in Theorem A.1. 2

A.9. Proof of Theorem 5. De�ne jn = argmaxj2[1;p] jRj;n=R0;nj. Lemma A.1 and bound (2.13) imply
that

P

 bSbpbR20 � E(p)� V (p)zn(�) � 0
!
� P

 bSpbR20 � E(p)� V (p)zn(�) � 0
!
� P

0@n bRjnbR20
!2
�O(p) � 0

1A :

Since R0;n � C and
P1

j=1 (Rj;n=R0;n)
2
= O(1), Proposition A.1 implies that

n

 bRjnbR20
!2
�O(p) = n

�
Rjn;n
R0;n

+OP

�
n�1=2

��2
�O(p)

= p

24 �n
p

�1=2
Rjn;n
R0;n

+OP

�
p�1=2

�!2
�O (1)

35 P! +1;

therefore the test (2.10) rejects the null with a probability tending to 1. 2

A.10. Proof of Theorem 6. We need to check that condition (A.2) of Theorem A.1 holds. Let Rn be as

in (A.3). For the alternatives considered in the theorem, it is

1X
j=p

�
Rj;n
R0;n

�2
� L2

1� r2
2 ln (1=r)

1X
j=p

r2j =
L2

2 ln (1=r)
r2p+2:

It follows that

(A.17) Rn � min
p2[p;p]

Rn(p); where nR2
n(p) =

(Lr)
2

2 ln (1=r)
nr2p + 
n (2p)

1=2
:

Since
@
�
nR2

n(t)
�

@t
= � (Lr)2 n exp

�
�2t ln

�
1

r

��
+


n
(2t)1=2

;

the real number t�n that achieves the minimum of nR2
n over [1;1) solves the equality

(Lr)
2
nr2t

�
n =


n

(2t�n)
1=2

:
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Observe that t�n diverges. Hence

t�n =
ln
�
(Lr)2n

n

�
2 ln(1=r)

(1 + o(1)) and R2
n(t

�
n) =


n (2t
�
n)
1=2

n
(1+o(1)) =


n
n

0@ ln
�
(Lr)

2
n=
n

�
ln(1=r)

1A1=2

(1+o(1)):

The integer p�n which achieves the minimum of Rn(p) over N is in the interval [t�n � 1; t�n + 1]. Since p =
o (lnn) and p diverges faster than lnn, p�n 2

�
p; p
�
asymptotically. It follows that

min
p2[p;p]

R2
n(p) = R2

n(t
�
n)(1 + o(1)) =


n
n

0@ ln
�
(Lr)

2
n=
n

�
ln(1=r)

1A1=2

(1 + o(1)):

Theorem A.1 and (A.17) imply that Theorem 6 holds true. 2

Appendix B: Proofs of intermediary results

In what follows, we drop subscript n in expressions for ut;n, Rj;n and �n. We denote

(B.1) kj(p) = K2

�
j

p

�
�K2

�
j

p

�
and K1n(p) =

n�1X
j=1

kj(p):

B.1. Proof of Lemma A.1. (i) The �rst three bounds of the lemma follow directly from Assumption K

which implies that K2 (j=p) � K2
�
j=p
�
for all j and I(x 2 [0; 1])=C � K2q(x) � CI(x 2 [0; 3=2]) for some

C > 0. The Cauchy-Schwarz inequality implies that for any p 2 [p; n=2],

E(p; p) =

n�1X
j=1

�
1� j

n

�
kj(p) � K1n(p) � p1=2

0@ pX
j=1

k2j (p)

1A1=2

� Cp1=2V (p; p);

which is the last bound in (i).

(ii) It follows from the dyadic structure of P that for p 2 P, it is p = p2r � 3p=2 with r � 1 if p 6= p.

Therefore when p 6= p,

V 2(p; p) � 1

2

pX
j=3p=2+1

K4

�
j

p

�
� C

�
p� 3p=2

�
� C

2
(p� p):

When p = p, we have V 2(p; p) = 0 and the �rst bound holds for p 2 P. It also follows from the dyadic

structure of P that p � p � p when p 6= p whence the second bound. Since K is nonincreasing, p 7�!
E (p)� E

�
p
�
= E(p; p) is non decreasing and E(p; p) � 0 for all p 2 P. 2

B.2. Proof of Propositions A.1 and A.2. We �rst show the following intermediary lemma.

Lemma B.1. For any stationary zero-mean process futg,

sup
0�j�n�1

Var
� eRj� � 1

n

0@4 2nX
j=0

R2j +
1X

j2;j1;j3=�1
j� (0; j2; j3; j4)j

1A :

If futg satis�es Assumption R then sup0�j�n�1Var
� eRj

R0

�
� C

n :
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Proof of Lemma B.1. Equation (5.3.21) in Priestley (1981) and the Cauchy-Schwarz inequality imply that

for j = 0;�1; : : : ;� (n� 1),

Var
� eRj� =

1

n

n�j�1X
j1=�n+j+1

�
1� jj1j+ j

n

��
R2j1 +Rj1+jRj1�j + � (0; j1; j; j1 + j)

�
� 2

n

2nX
j1=�2n

R2j1 +
1

n

+1X
j2;j3;j4=�1

j� (0; j2; j3; j4)j :

This gives the �rst bound of the lemma. The second bound follows from Assumption R because (2.14)

implies that
2nX
j=0

�
Rj
R0

�2
�

0@ 1X
j=0

����RjR0
����
1A2

< C21 :

2

B.2.1. Proof of Proposition A.1. By Lemma B.1 and by the bound above, it is su¢ cient to show thatbRjn = eRjn +OP(n�1=2). Assumption M implies that for any jn � 0,
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1

n

n�jnX
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�
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+ u
(1)
t u
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�
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:

Assumption M also implies that
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E
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n�jnX
t=1

u
(2)
t u

(2)
t+jn

����� � E
���u(2)t u

(2)
t+jn

��� � E ����u(2)t ���2� � C:

This yields the desired result since b� = � +OP
�
n�1=2

�
. 2
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B.2.2. Proof of Proposition A.2. Since bR2j � eR2j = � bRj � eRj�2 + 2 eRj � bRj � eRj�, Proposition A.2 is a
direct consequence of Lemmas B.2 and B.3 below.

Lemma B.2. Assume that Assumptions K, M and P hold. Then for any p0 2
�
p; p
�
,

max
p2P;p>p0

����nPn�1
j=1

�
K2(j=p)�K2(j=p)

� � bRj � eRj�2����
V (p; p)

= OP

�
p
�1=2
0

�
and, for any diverging p!1, p = o(n),

n
n�1X
j=1

K2

�
j

p

�� bRj � eRj�2 = OP(1):

Lemma B.3. Assume that Assumptions K, M, P and R hold. Then for any p0 2
�
p; p
�
,

max
p2P;p>p0

���nPn�1
j=1

�
K2(j=p)�K2(j=p)

� eRj � bRj � eRj����
V (p; p)

= OP

0@p�10 +
n

p0

1X
j=1

R2j

1A1=2

and, for any p!1, p = O(n1=2),

n
n�1X
j=1

K2(j=p) eRj � bRj � eRj� = OP

0@1 + n

p

1X
j=1

R2j

1A1=2

:

Proof of Lemma B.2. Let kj(p) and K1n(p) be as in (B.1). De�ne et = but � ut and write
(B.2) bRj � eRj = 1

n

n�jX
t=1

(utet+j + ut+jet) +
1

n

n�jX
t=1

et+jet:

It follows that

(B.3)
n

V (p; p)

������
n�1X
j=1

kj (p)
� bRj � eRj�2

������ � 2 (An (p) +Bn (p)) ;
where

An(p) =
n

V (p; p)

n�jX
t=1

jkj(p)j
 
1

n

nX
t=1

(utet+j + ut+jet)

!2
; Bn(p) =

n

V (p; p)

n�jX
t=1

jkj(p)j
 
1

n

nX
t=1

e2t

!2
:

For the �rst term, we have

An(p) � 2 (A1n(p) +A2n(p)) ;

where, by Assumption M,

A1n(p) =
n

V (p; p)

n�1X
j=1

kj(p)



b� � �


2 1

n

n�jX
t=1

utu
(1)
t+j + ut+ju

(1)
t

!2
;

A2n(p) =
n

V (p; p)




b� � �


4 n�1X
j=1

kj(p)

 
1

n

n�jX
t=1

�
utu

(2)
t+j + ut+ju

(2)
t

�!2

� 4nK1n(p)

V (p; p)




b� � �


4 1
n

nX
t=1

u2t

! 
1

n

nX
t=1

�
u
(2)
t

�2!
:
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Lemma A.1(i), Assumption M and the Markov inequality then imply that maxp2PnfpgA2n(p) = OP
�
p1=2=n

�
.

For A1n(p), Lemma A.1(ii) and Assumptions K and M give

max
p2P;p>p0

A1n(p) � C
n

p1=2




b� � �


2
0@ 1X
j=�1




E hut+ju(1)t i


2

+

O(p)X
j=1






 1n
n�jX
t=1

�
utu

(1)
t+j + ut+ju

(1)
t � E

h
utu

(1)
t+j

i
� E

h
ut+ju

(1)
t

i�





2
1A

= p
�1=2
0 OP

�
1 +

p

n

�
:

Hence

(B.4) max
p2P;p>p0

jAn(p)j = p
�1=2
0 OP

�
1 +

p

n

�
:

Consider now the term Bn(p) in (B.3). Under Assumptions K and M we have by Lemma A.1 that

max
p2P;p>p0

Bn(p) � Cnp
�1=2
0




b� � �


4 O(p)X
j=1

 
1

n

nX
i=1

�


u(1)t 


2 + 


b� � �


2 ���u(2)t ���2�
!2

= p
�1=2
0 OP

�
p

n

�
:

Substituting this bound together with (B.4) into (B.3) shows that the �rst bound of the lemma is proved.

The second bound can be established in a similar way. 2

Proof of Lemma B.3. De�ne Rj = E
h eRji = (1� j=n)Rj . We have

(B.5)

������ n

V (p; p)

n�1X
j=1

kj(p) eRj � bRj � eRj�
������ � Cn(p) +Dn(p);

where

Cn(p) =

������ n

V (p; p)

n�1X
j=1

kj(p)Rj

� bRj � eRj�
������ ; Dn(p) =

������ n

V (p; p)

n�1X
j=1

kj(p)
� eRj �Rj�� bRj � eRj�

������ :
Regarding the �rst term, the Cauchy-Schwarz inequality implies that

Cn(p) �
C

V 1=2(p; p)

0@n 1X
j=1

R2j

1A1=2
0B@n

Pn�1
j=1 k

2
j (p)

� bRj � eRj�2
V (p; p)

1CA
1=2

:

Hence Lemma B.2 and Lemma A.1(ii) yield that

(B.6) max
p2P;p>p�

jCn(p)j = OP

0B@
0@ n

p0

1X
j=1

R2j

1A1=2
1CA :
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Regarding the term Dn(p) from (B.5), equality (B.2) and Assumption M imply that

��� bRj � eRj��� �



b� � �





E hutu(1)t+j + ut+ju(1)t i



+



b� � �







 1n

nX
t=1

�
utu

(1)
t+j + ut+ju

(1)
t � E

h
utu

(1)
t+j + ut+ju

(1)
t

i�





+



b� � �


2 ����� 1n

nX
t=1

�
utu

(2)
t+j + ut+ju

(2)
t

������+ 1

n

nX
t=1

e2t ;

where et = ût � ut. By Assumption M(i),

max
p2P;p>p0

Dn(p) = OP(n
�1=2)

�
max

p2P;p>p0
D1n(p) + max

p2P;p>p0
D2n(p)

�
+OP(n

�1) max
p2P;p>p0

D3n(p)

+

 
1

n

nX
t=1

e2t

!
max

p2P;p>p0
D4n(p);(B.7)

where

D1n(p) =
n

V (p; p)

n�1X
j=1

jkj(p)j
��� eRj �Rj��� 


E hutu(1)t+j + ut+ju(1)t i


 ;

D2n(p) =
n

V (p; p)

n�1X
j=1

jkj(p)j
��� eRj �Rj���






 1n
nX
t=1

�
utu

(1)
t+j + ut+ju

(1)
t � E

h
utu

(1)
t+j + ut+ju

(1)
t

i�




 ;
D3n(p) =

n

V (p; p)

n�1X
j=1

jkj(p)j
��� eRj �Rj���

����� 1n
nX
t=1

�
utu

(2)
t+j + ut+ju

(2)
t

������ ;
D4n(p) =

n

V (p; p)

n�1X
j=1

jkj(p)j
��� eRj �Rj��� :
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By Assumption K and M(ii) and by Lemmas A.1(ii) and B.1, we have

E
�
max

p2P;p>p0
D1n(p)

�
� Cnp

�1=2
0

O(p)X
j=1

E
��� eRj �Rj��� 


E hutu(1)t+j + ut+ju(1)t i




� Cnp
�1=2
0

O(p)X
j=1

Var1=2
� eRj�


E hutu(1)t+j + ut+ju(1)t i


 � C(n=p0)

1=2;

E
�
max

p2P;p>p0
D2n(p)

�
� Cnp

�1=2
0

O(p)X
j=1

E

"��� eRj �Rj���





 1n

nX
t=1

�
utu

(1)
t+j + ut+ju

(1)
t � E

h
utu

(1)
t+j + ut+ju

(1)
t

i�





#

� Cnp
�1=2
0

O(p)X
j=1

Var1=2
� eRj�E1=2






 1n
nX
t=1

�
utu

(1)
t+j + ut+ju

(1)
t � E

h
utu

(1)
t+j + ut+ju

(1)
t

i�





2

� Cpp
�1=2
0 ;

E
�
max

p2P;p>p0
D3n(p)

�
� Cnp

�1=2
0

O(p)X
j=1

E

"��� eRj �Rj���
����� 1n

nX
t=1

�
utu

(2)
t+j + ut+ju

(2)
t

������
#

� Cnp
�1=2
0

O(p)X
j=1

Var1=2
� eRj�E1=2

����� 1n
nX
t=1

�
utu

(2)
t+j + ut+ju

(2)
t

������
2

� Cp(n=p0)
1=2;

E
�
max

p2P;p>p0
D4n(p)

�
� Cnp

�1=2
0

O(p)X
j=1

E
��� eRj �Rj��� � Cnp

�1=2
0

O(p)X
j=1

Var1=2
� eRj� � Cp(n=p0)

1=2:

The Markov inequality gives us the stochastic orders of magnitude of the four maxima in (B.7). Since

p = o
�
n1=2

�
by Assumption P and n�1

Pn
t=1 e

2
t = OP(n

�1) by Assumption M, we have

max
p2P;p>p0

jDn(p)j = p
�1=2
0 OP

�
1 +

p

n1=2

�
= OP

�
p
�1=2
0

�
:

Substituting the last equality and (B.6) in (B.5) �nishes the proof of the lemma. 2

B.3. Proof of Proposition A.3. The proof of Proposition A.3 employs Lemmas B.4 and B.5 established

in this section. For any `-times di¤erentiable function f , de�ne kfk`;1 = supj=0;���` supx2R


f (j)(x)

. For

any real numbers k1; : : : ; kp, let

K1n =

pX
j=1

jkj j and K2n =

0@2 pX
j=1

k2j

�
1� j

n

�21A1=2

:

Lemma B.4. Assume that ut are independent real random variables with E (ut) = 0, Var(ut) = �2 and
Ejutj8 � C. Let Z1; : : : ; Zp be independent N(0; 1) variables that are independent of ut. Then there exists a
constant C such that for any three-times continuously di¤erentiable function I from R to R, any 1 � p < n
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and any real numbers k1; : : : ; kp with
Pp

j=1 jkj j 6= 0,�������E
264I
0B@n

Pp
j=1 kj

� eR2j � �4(1� j=n)�
�4
�
2
Pp

j=1 k
2
j (1� j=n)2

�1=2
1CA
375
��������
�������E
264I
0B@Pp

j=1 kj(1� j=n)(Z2j � 1)�
2
Pp

j=1 k
2
j (1� j=n)2

�1=2
1CA
375
�������(B.8)

� C

"
kIk3;1
n1=2

�
LK1n

K2n
+ 1

�3
+ kIk2;1

 
sup
j2[1;p]

jkj j+ 1
!�

LK1n

K2n

�2 � p
n

�1=2#
:

Lemma B.5. Let Z1; : : : ; Zp be independent N(0; 1) variables. Then there exists a constant C such that,
for any three-times continuously di¤erentiable function I from R to R, any 1 � p < n and any real numbers
k1; : : : ; kp with

Pp
j=1 jkj j 6= 0,�������E

264I
0B@Pp

j=1 kj(1� j=n)(Z2j � 1)�
2
Pp

j=1 k
2
j (1� j=n)2

�1=2
1CA
375� E [I (N (0; 1))]

������� � C kIk3;1 sup
j2[1;p]

jkj j
K1n

K3
2n

:

Proof of Lemma B.4. Put ut = 0 for t � 0. Let wj;t be independent N(0; 1) variables for t� j > 0, and

wj;t = 0 for t� j � 0. Let �t and e�t be Cp vectors
�t =

1

�2

h
k
1=2
1 utut�1; : : : ; k

1=2
p utut�p

i0
and e�t = hk1=21 w1;t; : : : ; k

1=2
n wp;t

i0
;

which are such that

E�t = Ee�t = 0; Var(�t) = Var(e�t):
For 1 � t � n, x 2 [0; 1], and � 2 Cp, de�ne

Vt(�) =
t�1X
i=1

�i + � +
nX

i=t+1

e�i; Vt(x; �) = Vt(x�);

Qt(�) =
V 0t (�)Vt(�)=n�

Pp
j=1 kj(1� j=n)

K2n
; Qt(x; �) = Qt(x�);

It(�) = I (Qt(�)) ; It(x; �) = It(x�):

In the summation signs above, we let
Pt�1

i=1 � = 0 if t� 1 < 1 and
Pn

i=t+1 � = 0 if t+1 > n. By the de�nition

of �t, we have

n
Pp

j=1 kj

� eR2j � �4(1� j=n)�
�4
�
2
Pp

j=1 k
2
j (1� j=n)2

�1=2 = Qn(�n):

Since the coordinates Vj;1(e�1) of V1(e�1) are independent N(0; kj (1� j=n)) random variables by de�nition

of wj;t, variable Q1(e�1) has the same distribution asPp
j=1 kj(1� j=n)(Z2j � 1)�
2
Pp

j=1 k
2
j (1� j=n)2

�1=2 :
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Observe that It+1(e�t+1) = It(�t). The left-hand side of inequality (B.8) is equal to
jE (In(�n)� I1(e�1))j

= jE (In(�n)� In(e�n) + In�1(�n)� In�1(e�n) + � � �+ I2(�2)� I2(e�2) + I1(�1)� I1(e�1))j
�

nX
t=1

jE (It(�t)� It(e�t))j :(B.9)

Let I(j)t (x; �) = djIt(x; �)=djx. Since It(�) = It(1; �) and It(0; �) = It(0), a third-order Taylor expansion
with integral remainder gives

It(�) = It(0) + I(1)t (0; �) +
1

2
I(2)t (0; �) +

1

2

Z 1

0

(1� x)2I(3)t (x; �)dx

so that

jE (It(�t)� It(e�t))j =
���E�I(1)t (0; �t)� I

(1)
t (0;e�t)�

+
1

2
E
�
I(2)t (0; �t)� I

(2)
t (0;e�t)�+ 12

Z 1

0

(1� x)2E
�
I(3)t (x; �t)� I

(3)
t (x;e�t)� dx���� :(B.10)

In this expansion, the derivatives are

(B.11)

8>><>>:
I(1)t (0; �) = 2

nK2n
�0Vt(0)I(1)(Qt(0));

I(2)t (0; �) = 2
nK2n

k�k2I(1)(Qt(0)) + 4
(nK2n)2

(�0Vt(0))
2 I(2)(Qt(0));

I(3)t (x; �) = 12
(nK2n)2

k�k2�0Vt(x; �)I(2)(Qt(x; �)) + 8
(nK2n)3

(�0Vt(x; �))
3 I(3)(Qt(x; �)):

Let Ft be the sigma �eld generated by �1; : : : �t�1 and e�t+1; : : : ;e�n. Note that Vt(0) and Qt(0) are Ft-
measurable while �t and e�t are centered given Ft. The �rst term on the right of (B.10) is therefore equal

to

E
�

2

nK2n
V 0t (0)I(1)(Qt(0))E [�t � e�t jFt ]� = 0;

hence substituting (B.10) into (B.9) gives

jE (In(�n)� I1(e�1))j
� 1

2

nX
i=1

���E�I(2)t (0; �t)� I
(2)
t (0;e�t)����+ 12

nX
i=1

Z 1

0

����EI(3)t (x; �t)
���+ ���EI(3)t (x;e�t)���� dx:(B.12)

The study of the two terms in (B.12) is carried out in three steps.

Step 1: a moment bound. We prove that for any 1 � a+ b � 8 and any x 2 [0; 1],

(B.13) max
�
E
h
k�tka kVt(x; �t)k

b
i
;E
h
ke�tka kVt(e�t;x)kbi� � C(LK1n)

(a+b)=2nb=2:

We prove a bound for E
h
k�tka kVt(x; �t)k

b
i
. The bound for E

h
ke�tka kVt(e�t;x)kbi is simpler to prove due

to the normality of e�t. The Hölder inequality gives
E
h
k�tka kVt(x; �t)k

b
i
� E a

a+b
�
k�tka+b

�
E

b
a+b

h
kVt(x; �t)k

a+b
i
;

therefore it is su¢ cient to prove that

(B.14) E
a

a+b
�
k�tka+b

�
� C(LK1n)

a=2 and E
b

a+b

h
kVt(x; �t)k

a+b
i
� C(LK1nn)

b=2:
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Regarding the �rst bound in (B.13), the de�nition of �t and the Minkowski inequality yield that

E
a

a+b
�
k�tka+b

�
=

0B@E 2
a+b

264
0@ pX
j=1

jkj j
�utut�j

�2

�21A
a+b
2

375
1CA

a
2

�

0@ pX
j=1

jkj jE
2

a+b

��utut�j
�2

�2� a+b
2

1A a
2

� C

0@L pX
j=1

jkj j

1A a
2

= C(LK1n)
a=2

because a+b � 8. Regarding the second bound in (B.14), the de�nition of Vt(x; �t), the Minkowski inequality
and the bound above imply that

E
b

a+b

h
kVt(x; �t)k

a+b
i
� E b

a+b

24





t�1X
i=1

�i







a+b
35+ C(LK1n)

b=2 + E
b

a+b

24





nX

i=t+1

e�i






a+b
35 :

We now bound Eb=(a+b)
�


Pt�1

i=1 �i




a+b�. The bound for E b
a+b

h

Pn
i=t+1 e�i

a+bi is simpler due to normality.

For each j � 1, the f
Pt

i=1 ui�jui; t 2 Ng is a martingale. Hence the de�nition of �t, Minkowski inequality
and the Burkholder inequality (see Theorem 1, p. 396 in Chow and Teicher (1988)) yield that

E
b

a+b

24





t�1X
i=1

�i







a+b
35 =

0B@E 2
a+b

0@ pX
j=1

jkj j
 
1

�2

t�1X
i=1

ui�jui

!21A
a+b
2

1CA
b
2

�

0@ pX
j=1

jkj jE
2

a+b

����� 1�2
t�1X
i=1

ui�jui

�����
a+b
1A b

2

=

0B@ pX
j=1

jkj j

0@E 1
a+b

����� 1�2
t�1X
i=1

ui�jui

�����
a+b
1A2
1CA

b
2

�

0BB@ pX
j=1

jkj j

0B@E 1
a+b

������
 
t�1X
i=1

�ui�jui
�2

�2! 1
2

������
a+b
1CA
2
1CCA

b
2

=

0@ pX
j=1

jkj jE
2

a+b

�����
t�1X
i=1

�ui�jui
�2

�2�����
a+b
2

1A
b
2

� C

0@L pX
j=1

jkj j(t� 1)

1A b
2

� C(LK1nn)
b=2:

This completes the proof of (B.14) so (B.13) holds.

Step 2: the third-order term in (B.12). By the Cauchy-Schwarz inequality, (B.11) and (B.13),

���EI(3)t (x; �t)
��� � kIk3;1

�
12

(nK2n)2
E
��k�tk2�0tVt(x; �)��+ 8

(nK2n)3
E j�0tVt(x; �)j

3
�

� kIk3;1
�

12

(nK2n)2
E
�
k�tk3kVt(x; �)k

�
+

8

(nK2n)3
E
�
k�0tk3Vt(x; �)k3

��
� C kIk3;1

�
n1=2(LK1n)

2

(nK2n)2
+
n3=2(LK1n)

3

(nK2n)3

�
:
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Since
���EI(3)t (x;e�t)��� can be bounded similarly, the second term in (B.12) is bounded by

C kIk3;1
�
n3=2(LK1n)

2

(nK2n)2
+
n5=2(LK1n)

3

(nK2n)3

�
=
C kIk3;1
n1=2

 �
LK1n

K2n

�2
+

�
LK1n

K2n

�3!
�
C kIk3;1
n1=2

�
LK1n

K2n
+ 1

�3
:

Step 3: the second-order term in (B.12). (B.11) implies that���E (I)(2)t (0; �t)� E (I)
(2)
t (0;e�t)���

� 2

nK2n

���E h�k�tk2 � ke�tk2� I(1)(Qt(0))i���+ 4

(nK2n)2

���E h�(�0tVt(0))2 � �e�0tVt(0)�2� I(2)(Qt(0))i��� :(B.15)

The study of the two terms in (B.15) requires additional notation. De�ne

V t =

t�p�1X
i=1

�i +
nX

i=t+1

e�i = Vt(0)�
t�1X
i=t�p

�i;

Qt =
V
0
tV t=n�

Pp
j=1 kj(1� j=n)
K2n

= Qt(0) +




Pt�1
i=t�p �i




2
nK2n

� 2
V 0t (0)

Pt�1
i=t�p �i

nK2n
:

The rationale for introducing these quantities is that V t and Qt depend only on u1; : : : ut�p�1 and are

therefore independent of �t.

Consider the �rst term in (B.15). Since V t and Qt are independent of (e�t; �t) and since �t and e�t are
centered and have the same variance matrix, we have

E
h
k�tk2I(1)(Qt)

i
= E

h
ke�tk2I(1)(Qt)i :

It follows that���E h�k�tk2 � ke�tk2� I(1)(Qt(0))i��� � E ���k�tk2 �I(1)(Qt(0))� I(1)(Qt)����+E ���ke�tk2 �I(1)(Qt(0))� I(1)(Qt)���� :
It is su¢ cient to bound the �rst term on the right of the last inequality. The Taylor and Hölder inequalities

and the bound (B.13) give

E
���k�tk2 �I(1)(Qt(0))� I(1)(Qt)����

� kIk2;1 E

264k�tk2
nK2n

0B@







t�1X
i=t�p

�i








2

+ V 0t (0)
t�1X
i=t�p

�i

1CA
375

�
kIk2;1
nK2n

0B@E1=2[k�tk4]E1=2
264







t�1X
i=t�p

�i








4
375+ E1=2[k�tk4kVt(0)k2]E1=2

264







t�1X
i=t�p

�i








2
375
1CA

� C
kIk2;1
nK2n

L2K2
1n(p+ (np)

1=2) � CL2 kIk2;1
K1n

K2n
K1n

� p
n

�1=2
:

It follows that the �rst term in (B.15) is bounded by

(B.16) C
kIk2;1
n

�
L
K1n

K2n

�2 � p
n

�1=2
:
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Let us now turn to the second term in (B.15). Since Ft is the sigma �eld generated by �1; : : : ; �t�1 ande�t+1; : : : ;e�n, random variables Vt(0), V t and Qt are Ft-measurable. De�ne

N2
k (Vt(0)) = E

h
(�0tVt(0))

2 jFt
i
=

pX
j=1

kjV
2
jt(0):

We have���E h�(�0tVt(0))2 � (e�t0Vt(0))2� I(2)(Qt(0))i���
�
���E hE h��0tV t�2 � �e�0tVt(0)�2 jIt i I(2)(Qt(0))i���+ kIj2;1 E

�������2
�
�0tV t

�0@�0t t�1X
i=t�p

�i

1A+
0@�0t t�1X

i=t�p
�i

1A2
�������

� kIj2;1

0B@E ��N2
k (V t)�N2

k (Vt(0))
��+ 2E1=2 �k�tk4kV tk2�E1=2








t�1X
i=t�p

�i








2

+ E1=2k�tk4E1=2







t�1X
i=t�p

�i








4
1CA :

The bound (B.13) implies that

E1=2
�
k�tk4kV tk2

�
E1=2




Pt�1
i=t�p �i




2 + E1=2k�tk4E1=2 


Pt�1
i=t�p �i




4 � C(LK1n)
2
�
(np)1=2 + p

�
;

E
��N2

k (V t)�N2
k (Vt(0))

�� � supj2[1;p] jkj j�2E1=2kVt(0)k2E1=2 


Pt�1
i=t�p �i




2 + E


Pt�1
i=t�p �i




2�
� C supj2[1;p] jkj j(LK1n)

2
�
(np)1=2 + p

�
:

The second term in (B.15) is therefore bounded from above by

(B.17) C kIk2;1
supj2[1;p] jkj j+ 1

n

�
LK1n

K2n

�2
p1=2

n
:

Substituting bounds (B.16) and (B.17) in (B.15) yields that the �rst term of (B.12) admits the bound

1

2

nX
i=1

���E�I(2)t (0; �t)� I
(2)
t (0;e�t)���� � C kIk2;1

 
sup
j2[1;p]

jkj j+ 1
!�

LK1n

K2n

�2 � p
n

�1=2
:

Substituting the bounds from Step 2 and Step 3 in (B.12) completes the proof of Lemma B.4. 2

Proof of Lemma B.5. Inequality (18) of Pollard (2002, p. 179) yields that�������E
264I
0B@Pp

j=1 kj(1� j=n)(Z2j � 1)�
2
Pp

j=1 k
2
j (1� j=n)2

�1=2
1CA
375� E [I (N (0; 1))]

������� � C
kIk3;1
K3
2n

pX
j=1

E
��kj(1� j=n)(Z2j � 1)��3

� C kIk3;1 sup
j2[1;p]

jkj j
K1n

K3
2n

:

2
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B.3.1. Proof of Proposition A.3. We derive a suitable deviation inequality. Recall that kj(p) and K1n(p)

are de�ned in (B.1) and that Q is the cardinality of P n fpg. There exists a three-times continuously

di¤erentiable function with bounded third derivative such that

I
�
x � (2 lnQ)1=2 + �=2

�
� I

�
x� (2 lnQ)1=2

�
� I

�
x � (2 lnQ)1=2

�
:

By Lemmas B.4 and B.5, the Mill Ratio inequality, Lemma A.1, (3.1) and Assumptions K and P,

P

 eSp � eSp � �4E(p; p)
�4V (p; p)

� (2 lnQ)1=2 + �=2
!

� P
�
N (0; 1) � (2 lnQ)1=2

�
+

C

n1=2

 �
LK1n(p)

V (p; p)

�3
+

�
LK1n(p)

V (p; p)

�2
p1=2

!
+ C

K1n(p)

V 3(p; p)

�
exp

�
�
�
(2 lnQ)1=2

�2
=2
�

p
2�(2 lnQ)1=2

+
C

n1=2

��
Lp1=2

�3
+
�
Lp1=2

�2
p1=2

�
+ Cp�1=2

� 1p
2�(2 lnQ)1=2Q

+ CL3

 �
p3

n

�1=2
+

1

p1=2

!
(B.18)

for all p 2 P n fpg.
We treat the cases of diverging p and bounded p separately. Consider �rst a diverging p0 � p, p0 2 P,

so that p = p02
Q0 with Q0 � Q. We have

P

0@ max
p2Pnfpg

�bSp � bSp� = bR20 � E(p; p)
V (p; p)

� (2 lnQ)1=2 + �

1A
� P

0@ max
p2P;p>p0

�bSp � bSp� = bR20 � E(p; p)
V (p; p)

� (2 lnQ)1=2 + �

1A(B.19)

+ P

0@ max
p2P;p<p�p0

�bSp � bSp� = bR20 � E(p; p)
V (p; p)

� (2 lnQ)1=2 + �

1A :(B.20)
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We �rst deal with (B.19). By Lemma A.1, Propositions A.1 and A.2 and Assumption P,

max
p2P;p>p0

�bSp � bSp�� E(p; p) bR20
V (p; p)

�
�
(2 lnQ)1=2 + �

� bR20
� max

p2P;p>p0

�eSp � eSp�� E(p; p)�4
V (p; p)

�
�
(2 lnQ)1=2 + �

�
�4

+ max
p2P;p>p0

����� bSp � eSpV (p; p)

�����+ ��� bSp � eSp��� max
p2P;p>p0

1

V (p; p)

+
����4 � bR20��� � max

p2P;p>p0

E(p; p)

V (p; p)
+
�
(2 lnQ)1=2 + �

��

� max
p2P;p>p0

�eSp � eSp�� E(p; p)�4
V (p; p)

�
�
(2 lnQ)1=2 + �

�
�4 +OP

�
p
�1=2
0

�
1 + p�1=2

��
+OP

 
p
1=2
0 + ln1=2 n

n1=2

!

= max
p2P;p>p0

�eSp � eSp�� E(p; p)�4
V (p; p)

+ oP(1):

The bound above implies that (B.19) is bounded by

P

0@ max
p2P;p>p0

�eSp � eSp� =�4 � E(p; p)
V (p; p)

� (2 lnQ)1=2 + �=2

1A+ o(1):
It follows from (B.18) that

P

0@ max
p2P;p>p0

�eSp � eSp� =�4 � E(p; p)
V (p; p)

� (2 lnQ)1=2 + �=2

1A
�

X
p2P;p>p0

P

 eSp � eSp � �4E(p; p)
�4V (p; p)

� (2 lnQ)1=2 + �=2
!

�
Q0X
q=1

 
1p

2�(2 lnQ)1=2Q
+ CL3

 �
p30
n

�1=2
23q=2 +

2�q=2

p
1=2
0

!!

=
Q0p

2�(2 lnQ)1=2Q
+ CL3

 �
p30
n

�1=2
23Q0=2 � 1
23=2 � 1 +

1

p
1=2
0

1� 2�Q0=2

(1� 2�1=2)

!
= o(1) +O

��
p3=n

�1=2�
+O

�
p
�1=2
0

�
= o(1)(B.21)

because lnQ = O (lnn) under Assumption P. This means that (B.19) is o (1).

Suppose that p diverges. In this case, we take p0 = p in (B.19) and (B.21). There is no need to study

(B.20) and the proposition is proved. Hence it remains to deal with the case where p stays bounded. In this

case, choose p0 = o(ln1=3Q). Then Propositions A.1 and A.2, the Markov inequality, Lemmas B.1 and A.1
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yield

max
p2P;p<p�p0

�bSp � bSp�� E(p; p) bR20
V (p; p)

� max
p2P;p<p�p0

�eSp � eSp�� E(p; p)�4
V (p; p)

+OP (1))

� OP

0@ X
p2P;p<p�p0

E
��� eSp � eSp���+ E(p; p)

V (p; p)

1A+OP (1)
= OP

0@ X
p2P;p<p�p0

Pn�1
j=1

��K2(j=p)�K2(j=p)
��

V (p; p)

1A+OP (1)
= OP

0@ X
p2P;p<p�p0

p1=2

1A+OP (1) = OP(p
3=2
0 ) = oP(ln

1=2Q):

Substituting this bound in (B.20) proves the proposition. 2

B.4. Proof of Propositions A.4 and A.5. When studying the mean and variance of eSp, we make use of
Theorem 2.3.2 in Brillinger (2001) which implies in particular that, for any real zero-mean random variables

Z1; : : : ; Z4,

(B.22) Var (Z1Z2; Z3Z4) = Var(Z1; Z3)Var(Z2; Z4) + Var(Z1; Z4)Var(Z2; Z3) + Cum (Z1; Z2; Z3; Z4) :

B.4.1. Proof of Proposition A.4. Set kj = K2(j=p) so that eSp = n
Pn�1

j=1 kj
eR2j . Equality (B.22) yields

E eR2j =
1

n2

n�jX
t1;t2=1

E (ut1ut1+jut2ut2+j)

=
1

n2

n�jX
t1;t2=1

�
R2j +R

2
t2�t1 +Rt2�t1+jRt2�t1�j + � (0; j; t2 � t1; t2 � t1 + j)

�
;

where

n�jX
t1;t2=1

R2t2�t1 = (n� j)R20 + 2
n�j�1X
`=1

(n� j � `)R2` ;

n�jX
t1;t2=1

Rt2�t1+jRt2�t1�j = (n� j)R2j + 2
n�j�1X
`=1

(n� j � `)R`+jR`�j ;

n�jX
t1;t2=1

� (0; j; t2 � t1; t2 � t1 + j) =

n�j�1X
`=�n+j+1

(n� j � j`j)� (0; j; `; `+ j) :
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We have

EeSp �R20 n�1X
j=1

�
1� j

n

�
K2

�
j

p

�
(B.23)

= n
n�1X
j=1

 �
1� j

n

�2
+
1

n

�
1� j

n

�!
kjR

2
j

+ 2
n�1X
j=1

kj

n�j�1X
`=1

�
1� j + `

n

��
R2` +R`+jR`�j

�
+
n�1X
j=1

kj

n�j�1X
`=�n+j+1

�
1� j + j`j

n

�
� (0; j; `; `+ j) :

Assumption K implies that kj = K2(j=p) � CI(j � p) and p � n=2 for all p 2 P for n large enough. It

follows that the �rst term on the right of (B.23) is larger than Cn
Pp

j=1R
2
j . To bound the remaining terms

in (B.23), we note that by Assumptions K, (2.14) and R,������
n�1X
j=1

kj

n�j�1X
`=1

�
1� j + `

n

�
R2`

������ � C
n�1X
j=1

I(j � Cp)�
1X
j=1

R2j � Cp
1X
j=1

R2j = o(n)
1X
j=1

R2j ;

������
n�1X
j=1

kj

n�j�1X
`=1

�
1� j + `

n

�
R`+jR`�j

������ � C
+1X
j=1

+1X
`=1

jR`+jR`�j j � C

0@ 1X
j=0

jRj j

1A2

� CR20;������
n�1X
j=1

kj

n�j�1X
`=�n+j+1

�
1� j + `

n

�
� (0; j; `; `+ j)

������ � C
1X

t2;t3;t4=�1
j�(0; t2; t3; t4)j � CR20

uniformly with respect to p 2 P. Substituting these bounds into (B.23) establishes the proposition. 2

B.4.2. Proof of Proposition A.5. Let f be the spectral density of the alternative. Using (2.14), we obtain

(B.24) sup
�2[��;�]

jf (�)j � C jR0j and
1X
j=1

R2j � C jR0j2

because sup�2[��;�] jf (�)j �
�
jR0j+ 2

P1
j=1 jRj j

�
=(2�) and

P1
j=1R

2
j �

�P1
j=1 jRj j

�2
. We recall thateRj =Pn�j

t=1 utut+j=n and de�ne

Rj = E eRj = �1� j

n

�
Rj :

Let kj = K2(j=p) and Dj = eRj �Rj . It is EDj = 0 and

eSp = n
n�1X
j=1

kjR
2

j + 2n
n�1X
j=1

kjRjDj + n
n�1X
j=1

kjD
2
j :

The inequality (a+ b)2 � 2a2 + 2b2 implies that

(B.25) Var
�eSp� � 4Var

0@n n�1X
j=1

kjRj eRj
1A+ 2Var

0@n n�1X
j=1

kjD
2
j

1A :

By identity (B.22),

Var

0@n n�1X
j=1

kjRj eRj
1A =

n�1X
j1;j2=1

kj1kj2Rj1Rj2

n�j1X
t1=1

n�j2X
t2=1

Cov (ut1ut1+j1 ; ut2ut2+j2) � V1 +K1
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with

V1 =

������
n�1X

j1;j2=1

kj1kj2Rj1Rj2

n�j1X
t1=1

n�j2X
t2=1

(Rt2�t1Rt2�t1+j2�j1 +Rt2�t1�j1Rt2�t1+j2)

������ ;
K1 =

������
n�1X

j1;j2=1

kj1kj2Rj1Rj2

n�j1X
t1=1

n�j2X
t2=1

� (t1; t1 + j1; t2; t2 + j2)

������ :
The second term on the right of (B.25) is, up to a multiplicative constant, equal to

Var

0@n n�1X
j=1

kjD
2
j

1A = n2
n�1X

j1;j2=1

kj1kj2 Cov
�
D2
j1 ; D

2
j2

�
:

Applying (B.22) twice we obtain

Cov
�
D2
j1 ; D

2
j2

�
=

1

n4

n�j1X
t1;t2=1

n�j2X
t3;t4=1

Cov

"
2Y
q=1

�
utqutq+j1 � E[utqutq+j1 ]

�
;
4Y
q=3

�
utqutq+j2 � E[utqutq+j2 ]

�#

=
1

n4

n�j1X
t1;t2=1

n�j2X
t3;t4=1

[Cov (ut1ut1+j1 ; ut3ut3+j2) Cov (ut2ut2+j1 ; ut4ut4+j2)

+Cov (ut1ut1+j1 ; ut4ut4+j2) Cov (ut2ut2+j1 ; ut3ut3+j2)]

+
1

n4

n�j1X
t1;t2=1

n�j2X
t3;t4=1

Cum(ut1ut1+j1 ; ut2ut2+j1 ; ut3ut3+j2 ; ut4ut4+j2)

=
2

n4

 
n�j1X
t1=1

n�j2X
t2=1

(Rt2�t1Rt2�t1+j2�j1 +Rt2�t1�j1Rt2�t1+j2 + �(t1; t1 + j1; t2; t2 + j2))

!2

+
1

n4

n�j1X
t1;t2=1

n�j2X
t3;t4=1

Cum(ut1ut1+j1 ; ut2ut2+j1 ; ut3ut3+j2 ; ut4ut4+j2) :

Since (a+ b+ c)2 � 3(a2 + b2 + c2), we can write

Var

0@n n�1X
j=1

kjD
2
j

1A � 6V2 +K2 + 6K
0
2

with

V2 =
1

n2

n�1X
j1;j2=1

kj1kj2

0@ n�j1X
t1=1

n�j2X
t2=1

Rt2�t1Rt2�t1+j2�j1

!2
+

 
n�j1X
t1=1

n�j2X
t2=1

Rt2�t1�j1Rt2�t1+j2

!21A ;

K2 =

������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

Cum(ut1ut1+j1 ; ut2ut2+j1 ; ut3ut3+j2 ; ut4ut4+j2)

������ ;
K 0
2 =

1

n2

n�1X
j1;j2=1

kj1kj2

 
n�j1X
t1=1

n�j2X
t2=1

� (t1; t1 + j1; t2; t2 + j2)

!2
;
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Substituting in (B.25) shows that the proposition holds if the following inequalities hold:

V1 � CnR20

1X
j=1

R2j ; V2 � CpR40; K1 � CnR20

1X
j=1

R2j ; K 0
2 � CR40; K2 � CR40

p2

n
:

We establish these inequalities in �ve steps.

Step 1: bound for V1. We note that jRj j � jRj j and that under Assumption K, 0 � kj � C for all j.

Using a covariance spectral representation Rj =
R �
�� exp(�ij�)f(�)d�, the Cauchy-Schwarz inequality and

(B.24), we obtain������
n�1X

j1;j2=1

kj1kj2Rj1Rj2

n�j1X
t1=1

n�j2X
t2=1

Rt2�t1Rt2�t1+j2�j1

������
=

Z �

��

Z �

��

������
n�1X
j=1

kjRj

n�jX
t=1

eit�1ei(t+j)�2

������
2

f(�1)f(�2)d�1d�2

�
 

sup
�2[��;�]

jf(�)j
!2 Z �

��

Z �

��

n�1X
j1;j2=1

kj1Rj1kj2Rj2

n�j1X
t1=1

n�j2X
t2=1

eit1�1ei(t1+j1)�2e�it2�1e�i(t2+j2)�2d�1d�2

� CR20

n�1X
j=1

(n� j)k2jR
2

j � CnR20

1X
j=1

R2j ;

������
n�1X

j1;j2=1

kj1kj2Rj1Rj2

n�j1X
t1=1

n�j2X
t2=1

Rt2�t1�j1Rt2�t1+j2

������
=

������
Z �

��

Z �

��

n�1X
j1=1

kj1Rj1

n�j1X
t1=1

e�i(t1+j1)�1e�it1�2 �
n�1X
j2=1

kj2Rj2

n�j2X
t2=1

eit2�1ei(t2+j2)f(�1)f(�2)d�1d�2

������
�

Z �

��

Z �

��

������
n�1X
j=1

kjRj

n�jX
t=1

eit�1ei(t+j)�2

������
2

f(�1)f(�2)d�1d�2 � CnR20

1X
j=1

R2j

This establishes the bound for V1.

Step 2: bound for V2. We de�ne t2 = t1 + t
0
2, j2 = j1 + j

0
2. By Assumption K and by (2.14),

1

n2

n�1X
j1;j2=1

kj1kj2

 
n�j1X
t1=1

n�j2X
t2=1

Rt2�t1Rt2�t1�j1+j2

!2

� C

n2

n�1X
j1=1

K2(j1=p)
1X

j20=�1

 
n

+1X
t20=�1

jRt20Rt20+j20j
!2

� Cp�

0@ 1X
j2;t1;t2=�1

jRt1Rt1+j2Rt2Rt2+j2 j

1A � Cp

 1X
t=�1

jRtj
!4

� CpR40;
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1

n2

n�1X
j1;j2=1

kj1kj2

 
n�j1X
t1=1

n�j2X
t2=1

Rt2�t1�j1Rt2�t1+j2

!2

� C

n2

n�1X
j1=1

K2(j1=p)
1X

j20=�1

 
n

+1X
t20=�1

jRt20�j1Rt20+j1+j20j
!2

� Cp
1X

j02;t1;t2=�1

��Rt1�j1Rt1+j1+j02Rt2�j1Rt2+j1+j02�� � Cp
1X

j;t1;t2=�1
jRt1Rt1+jRt2Rt2+j j

� Cp

 1X
t=�1

jRtj
!4

� CpR40;

therefore indeed V2 � CpR40.

Step 3: bound for K1. De�ne t2 = t1 + t. Assumptions K and R and the Cauchy-Schwarz inequality

yield

K1 � Cn

1X
j1;j2=1

 
jRj1Rj2 j

1X
t=�1

j�(0; j1; t; t+ j2)j
!

� Cn

0@ 1X
j=1

R2j

1A0@ 1X
j1;j2=1

 1X
t=�1

j�(0; j1; t; t+ j2)j
!21A1=2

� Cn

0@ 1X
j=1

R2j

1A 1X
t1;t2;t3=�1

j�(0; t1; t2; t3)j
!
� CnR20

1X
j=1

R2j :

Step 4: bound for K 0
2. We have under Assumption R that

K 0
2 � 1

n2

n�1X
j1;j2=1

kj1kj2

 
n�j1X
t1=1

n�j2X
t2=1

j� (0; j1; t2 � t1; t2 � t1 + j2)j
!2

� C
+1X

j1;j2=1

 1X
t=�1

j�(0; j1; t; t+ j2)j
!2

= C

+1X
j1;j2=1

1X
t1;t2=�1

j�(0; j1; t1; t1 + j2)�(0; j1; t2; t2 + j2)j � C

 1X
t2;t3;t4=�1

j�(0; t2; t3; t4)j
!2

� CR40:

Step 5: bound for K2. Bounding K2 requires additional notation. First set t5 = t1 + j1, t6 = t2 + j1,

t7 = t3 + j2 and t8 = t4 + j2, and note that t5; : : : ; t8 depend upon t1; : : : ; t4 and j1; j2 only. For a partition

B = fB`; ` = 1; : : : ; dBg of f1; : : : ; 8g, de�ne

dB = CardB; �B(t1; : : : ; t8) =

dBY
`=1

Cum
�
utq ; q 2 B`

�
;

and recall that Cum(ut) = Eut = 0. Then the largest dB yielding a non-vanishing �B is dB = 4. When

dB = 4, B is a pairwise partition of f1; : : : ; 8g so that �B is a product of covariances. Let B be the set of
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indecomposable partitions of the two-way table

1 5

2 6

3 7

4 8

;

see Brillinger (2001, p. 20) for a de�nition. Then according to Brillinger (2001, Theorem 2.3.2),

Cum(ut1ut1+j1 ; ut2ut2+j1 ; ut3ut3+j2 ; ut4ut4+j2) =
X
B2B

�B(t1; : : : ; t8)

=
X

B2B;dB�3
�B(t1; : : : ; t8) +

X
B2B;dB=4

�B(t1; : : : ; t8):

Some properties of partitions in B are as follows. Call f1; 5g, f2; 6g, f3; 7g and f4; 8g fundamental pairs and
say that a B1 in a partition B breaks the pair f1; 5g if f1; 5g is not a subset of B1. Then partitions B 2 B
are such that each B` 2 B must break a fundamental pair. Note that fundamental pairs play a symmetric

role. Since tq+4� tq is j1 or j2 with vanishing kj1 or kj2 if j1 or j2 is larger than p, the indexes tq and tq+4 of
a fundamental pair also play a symmetric role in the computations below. We now discuss the contribution

to K2 of partitions of f1; : : : ; 8g according to the possible values 1; : : : ; 4 of dB . Due to symmetry, we only
consider representative partitions for each case.

Under Assumptions K and R, the case dB = 1 gives a contribution to K2 bounded by������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

� (t1; : : : ; t8)

������ � C

n2

nX
t1;:::;t8=�n

j� (0; t2 � t1; : : : ; t8 � t1)j

� C

n

1X
t02;:::;t

0
8=�1

j� (0; t02; : : : ; t08)j �
CR40
n

:

The case dB = 2 corresponds to fCardB1;CardB2g being f2; 6g, f3; 5g or f4; 4g. These cases are very
similar and we limit ourselves to f2; 6g and B1 = f1; 2g. The corresponding contribution to K2 is bounded

by ������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

�B (t1; : : : ; t8)

������ � C

n2

nX
t1;:::;t8=�n

j� (0; t2 � t1)� (t3 � t1; : : : ; t8 � t1)j

� C

n

nX
t02;:::;t

0
8=�n

j� (0; t02)� (t03; : : : ; t08)j �
C

n

nX
t=�n

jRtj
nX

t03;:::;t
0
8=�n

j� (0; t04 � t03; : : : ; t08 � t03)j

� C
1X

t=�1
jRtj

1X
t2;:::;t6=�1

j� (0; t2; : : : ; t6)j � CR40;

by Assumptions K and R.

The case dB = 3 corresponds to fCardB1;CardB2;CardB3g being f2; 2; 4g or f2; 3; 3g. We start with
CardB1 = 2, CardB2 = 2 and CardB3 = 4. The discussion concerns the number of fundamental pair

broken by B3. Note that the situation where B3 breaks only 3 or 1 fundamental pair is impossible. The case
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where B3 does not break any fundamental pairs corresponds to partitions that are not indecomposable, so

that the only possible cases are those where B3 breaks 4 or 2 fundamental pairs.

� B3 breaks 4 fundamental pairs. Consider B3 = f1; 2; 3; 4g, B2 = f5; 6g and B3 = f7; 8g. The
corresponding contribution to K2 is bounded by������ 1n2

n�1X
j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

�B (t1; : : : ; t8)

������
=

������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

� (0; t2 � t1; t3 � t1; t4 � t1)Rt2�t1Rt4�t3

������
� C

p2

n
sup
j
jRj j2

1X
t2;t3;t4=�1

j� (0; t2; t3; t4)j � CR40
p2

n
;

by Assumptions K and R.

� B3 breaks 2 fundamental pairs. Take B3 = f1; 2; 3; 5g, B2 = f4; 6g and B1 = f7; 8g. The change of
variables t2 = t02 + t1, t3 = t03 + t1 and t4 = t04 + t3 shows that contribution to K2 is bounded by������ 1n2

n�1X
j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

�B (t1; : : : ; t8)

������
=

������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

� (0; t2 � t1; t3 � t1; j1)Rt4�t2�j1Rt4�t3

������
� C

n

n�1X
j2=1

K2(j2=p)

1X
t02;t

0
3;j1=�1

j� (0; t02; t03; j1)j
+1X

t04=�1

��Rt04��� sup
j
jRj j � CR40

p

n
;

under Assumptions K and R.

We now turn to the case CardB3 = CardB2 = 3 and CardB1 = 2. Observe that B3 or B2 must break 3

or 1 fundamental pair. The discussion now concerns the fundamental pairs which are simultaneously broken

by B3 and B2. Note that B3 and B2 cannot break the same 3 fundamental pairs because if it did, B1 would

be given by the remaining fundamental pair in which case B1 cannot communicate with B2 or B3, a fact

that would contradict the requirement that the partition fB1; B2; B3g is indecomposable.

� B3 and B2 break 3 fundamental pairs, 2 of which are the same. Take B3 = f1; 2; 3g, B2 = f4; 5; 6g
and B1 = f7; 8g. Using change of variables t2 = t1 + t02, t3 = t1 + t03 and t4 = t3 + t04, we can see

that under Assumptions K and R the contribution to K2 of this case is bounded by������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

�B (t1; : : : ; t8)

������
=

������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

� (0; t2 � t1; t3 � t1)� (0; t1 � t4 + j1; t2 � t4 + j1)Rt4�t3

������
� C

n

n�1X
j1;j2=1

K2(j1=p)K
2(j2=p) sup

t2;t3

j�(0; t2; t3)j
1X

t02;t
0
3=�1

j� (0; t02; t03)j
+1X

t04=�1

��Rt04�� � CR40
p2

n
:
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Note that the case where B3 and B2 break 3 fundamental pairs with less than one in common is

impossible.

The next case assumes that B2 breaks only 1 fundamental pair, which is also necessarily broken by B3
since B2 must contain the remaining unbroken pair.

� B3 breaks 3 fundamental pairs and B2 breaks only 1 pair. Take B3 = f1; 2; 3g, B2 = f4; 5; 8g and
B3 = f6; 7g and consider a change of variables t2 = t1+ t

0
2, t3 = t1+ t

0
3 and t4 = t1+ j1� t04. Under

Assumptions K and R, the contribution of this term to K2 is bounded by

������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

�B (t1; : : : ; t8)

������
=

������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

� (0; t2 � t1; t3 � t1)� (t1 � t4 + j1; 0; j2)Rt3�t2+j2�j1

������
�

C supj jRj j
n

n�1X
j1

K2(j1=p)

1X
t02;t

0
3=�1

j�(0; t02; t03)j
1X

t04;j2=�1

j� (t04; 0; j2)j � CR40
p

n
:

� B3 and B2 break only 1 pair. Note that B3 and B2 cannot break the same pair because B1 must
be the remaining pair and cannot communicate, so that the partition is not indecomposable. Hence

all the partitions in this case are similar to B3 = f1; 2; 5g, B2 = f3; 4; 8g, B1 = f6; 7g. The change
of variable t2 = t1+ t

0
2, t3 = �j2+ t2+ j1+ t03 and t4 = t3� t04 yields a contribution to K2 bounded

by

������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

�B (t1; : : : ; t8)

������
=

������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

� (0; t2 � t1; j1)� (t3 � t4; 0; j2)Rt3�t2+j2�j1

������
� C

1X
j1;t02=�1

j�(0; t02; j1)j
1X

j2;t04=�1

j�(t4; 0; j2)j
1X

t03=�1

��Rt03�� � CR40:

It remains to deal with the case dB = 4 which corresponds to pairwise partition. Note that indecom-

posable partitions are such that all fundamental pairs are broken, but that two sets cannot break the same

fundamental pairs, see Brillinger (2001, p. 20). Hence such partitions are symmetric with B1 = f1; 2g,
B2 = f3; 4g, B3 = f5; 8g and B4 = f6; 7g. Using the change of variables j1 = t4 + j2 � t1 � j01, t2 = t1 + t02,
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t3 = t2 + j1 � j2 + t03 and t4 = t3 + t
0
4 gives, under Assumption K, a contribution to K2 bounded by������ 1n2

n�1X
j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

�B (t1; : : : ; t8)

������
=

������ 1n2
n�1X

j1;j2=1

kj1kj2

n�j1X
t1;t2=1

n�j2X
t3;t4=1

Rt2�t1Rt4�t3Rt4�t1+j2�j1Rt3�t2+j2�j1

������
� C

n

0@n�1X
j=1

K2(j=p)

1A 1X
j01=�1

jRj01 j
1X

t02;t
0
3;t

0
4=�1

��Rt02Rt03Rt04�� � CR40
p

n
:

Collecting terms shows that the bounds for K2 is proved since p � 1. 2
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