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Abstract:  
Basket options are among the most popular products of the new generation of exotic 
options. This attraction is explained by the fact that they can efficiently and 
simultaneously hedge a wide variety of intrinsically different financial risks. They are 
flexible enough to include all the risks faced by non-financial firms. Unfortunately, the 
existing literature on basket options considers only homogeneous baskets where all the 
underlying assets are identical and hedge the same kind of risk. Moreover, the empirical 
implementation of basket-option models is not yet well developed, particularly when they 
are composed of heterogeneous underlying assets. This paper focus on the 
modelization and the parameters estimation of basket options on commodity price with 
stochastic convenience yield, exchange rate, and domestic and foreign zero-coupon 
bonds in a stochastic interest rates setting. We empirically compare the performance of 
the heterogeneous basket option to that of a portfolio of individual options. The results 
show that the basket strategy is less expensive and more efficient. We apply the 
maximum-likelihood method to estimate the different parameters of the theoretical 
basket model as well as the correlations between the variables. Monte Carlo studies are 
conducted to examine the performance of the maximum-likelihood estimator in finite 
samples of simulated data. A real data study is presented. 
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1 Introduction

The vast majority of non �nancial �rms faces di¤erent �nancial risks (interest rates, exchange

rates, commodity prices, etc.) and would like more e¢ cient and cheaper ways to hedge.

Traditionally, these �rms use derivative securities to hedge each of these risks separately. A

portfolio approach (like the basket option) allows the inclusion of correlations between these

risks. Usually traded over the counter, the design of the basket option is made to meet the

speci�c needs of the �rm and, when the underlying basket is well diversi�ed, its theoretical

price is lower than the price of a basket of individual options. However, in practice, it may

be di¢ cult to �nd a counterpart (usually a bank) and the latter requires high premiums for

these options due to the lack of liquidity.

The existing literature on basket options (Gentle (1993), Curran (1994), Huynh (1994),

Barraquand (1995), Milevsky and Posner (1998a, 1998b), Posner and Milevsky (1999), Dahl

(2000), Dahl and Benth (2001), Flamouris and Giamouridis (2007), Pellizzari (2001), Wan

(2002), Ju (2002), Datey et al. (2003), Deelstra et al. (2004), Vanmaele et al. (2004),

Brigo et al. (2004), and Laurence and Wang (2004)) is proposing di¤erent ways to price an

homogenous basket, that is, the underlying portfolio is constituted of identical assets (such

as exchange rates or equities) usually modeled with multidimensional geometrical Brownian

motions with constant spot interest rate. Unfortunately, this type of basket does not always

correspond to a �rm�s needs.

Going beyond the existing recent papers, the focus of our work will be on modeling, per-

formance analysis, and estimation of parameters related to basket options on heterogeneous

underlying assets. Our main contribution consists in considering a basket option on multiple

underlying assets which are intrinsically di¤erent. In the same basket, we combine commod-

ity prices, exchange rates, and zero-coupon bonds. The basket option we propose allows
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non-�nancial �rms to cover some of their �nancial exposure with a single hedge and at a

lower cost than if the company were to hedge each of these risks separately. This paper treats

all the aspects related to basket options, such as modelization and empirical implementation

of the theoretical model, making our contributions very useful, especially for practitioners

who use this kind of product for hedging. To our knowledge, it is the �rst time that an het-

erogeneous basket composed with intrinsically di¤erent assets including stochastic interest

rates is considered. Moreover, in this extended framework, the estimation of the model�s

parameters is non trivial and is required for a practical use of these options.

The �rst objective of this paper consists in developing a theoretical model for a basket

option under the equivalent martingale measure. As to be later justi�ed, we suppose that

the commodity price and the convenience yield share the same source of risk, which allows

us to work with a complete market and adopt a single price for the basket option. This

simpli�cation frees us from having to de�ne and estimate a functional form for the market-

price risk associated with the stochastic convenience yield.

Second, we compare the performance of a basket option to that of a portfolio of individual

plain vanilla options by computing option prices and pro�ts. We prove empirically that the

heterogeneous basket option costs less and is more e¢ cient. Given that our model depends on

several underlying assets with di¤erent stochastic processes we do not obtain a closed-form

solution for the price of the basket option. Hence, we carry out a Monte Carlo simulation to

price the basket option.

Concerning the empirical implementation of the basket-option model, one of the main

di¢ culties is that some variables, such as the convenience yield and the instantaneous forward

rates, are not directly observable. A well-suited technique to deal with such situations

is to use the maximum-likelihood method. The main advantage of using the maximum-
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likelihood approach to estimate basket parameters comes from the asymptotic properties of

its estimator, properties such as consistency and normality. These properties are necessary

for statistical inference, because they make it possible to build con�dence intervals when

applying maximum likelihood to real data. In this paper, we use this technique to estimate all

the parameters of the basket model as well as the correlations between the underlying assets

composing the basket. This estimation procedure is implemented empirically on simulated

data, and its performance is analyzed using a Monte Carlo study. We also use real data

on commodity prices, exchange rates, and futures on zero-coupon bonds to estimate the

di¤erent parameters of the basket model.

The remainder of the paper is organized as follows. Section 2 presents the model including

the commodity with stochastic convenience yield, exchange rate and stochastic domestic and

foreign interest rates chosen among the Heath, Jarrow and Morton (hereafter HJM) family.

In Section 3, the performances of the basket option and a portfolio of individual options are

compared numerically. The basket option is priced using Monte Carlo simulation. Section

4 discusses the parameters�estimation using the maximum likelihood framework. A Monte

Carlo study analyses the performance of the estimators. A study using real data is also

presented. Section 5 concludes.

2 The model

Let St denotes the commodity price at time t expressed in the domestic currency and �t

represents its stochastic convenience yield.1 This model is inspired from Schwartz (1997),

at the di¤erence that both processes share the same source of risk. Indeed, allowing for

1The convenience yield of a given commodity is de�ned as the �ow of services that accrues to a holder
of the physical commodity, but not to a holder of a contract for future delivery of the same commodity
(Brennan 1991).
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stochastic convenience yield with an extra source of noise will leads to an incomplete model,

since the convenience yield is not a tradable asset. Our simpli�cation solves this problem

and may be justi�ed with a highly positive correlation between the commodity return and

its convenience yield (see Brennan (1991)). The exchange rate Ct is the value at time t of one

unit of the foreign currency expressed in the domestic currency. The instantaneous forward

rates�models (f (t; T ) denotes the domestic rate and f � (t; T ) stands for the foreign rate) are

chosen among the HJM family where the volatility parameters �t;T and �
�
t;T are deterministic

functions2 of time t and maturity T . Under the objective measure P , the model is

dSt = St

h
(�s � �t) dt+ �sdW (1)

t

i
; (1a)

d�t = �(� � �t)dt+ ��dW (1)
t ; (1b)

dCt = Ct

h
�cdt+ �cdW

(2)
t

i
; (1c)

df (t; T ) = 
t;Tdt+ �t;TdW
(3)
t ; (1d)

df� (t; T ) = 
�t;Tdt+ �
�
t;TdW

(4)
t ; (1e)

where
n
Wt =

�
W

(1)
t ;W

(2)
t ;W

(3)
t ;W

(4)
t

�
: t � 0

o
is a four dimensional P�Brownian motion

with a constant correlation matrix % =
�
�ij
�
i;j2f1;2;3;4g : The parameters �s; �s; �; �; ��; �c; �c

are unknown and need to be estimated. The deterministic functions 
t;T ; 

�
t;T ; �t;T ; �

�
t;T will

be speci�ed and estimated as well in Section 4. Note that both instantaneous forward rates

are Gaussian processes allowing for potential negative interest rates.

We consider some zero coupon bonds paying one unit of their currency at time T . Ac-

cording to Equations (1d) and (1e), the time t values of the domestic and foreign zero coupon

2Although it is possible to develop the pricing model in this general setting, the functions �t;T and �
�
t;T

will be set to some constants (� and ��) or some exponential functions (� exp (�t)) and �� exp (��t)) at the
estimation stage.
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bonds follow respectively

dP (t; T ) = P (t; T )

��
rt � �t;T

�

t;T
�t;T

� �t;T
��

dt� �t;TdW
(3)
t

�
; (1f)

dP � (t; T ) = P � (t; T )

" 
r�t � ��t;T

 

�t;T
��t;T

� ��t;T

!!
dt� ��t;TdW

(4)
t

#
(1g)

where rt = f (t; t) and r�t = f � (t; t) are respectively the domestic and the foreign spot

interest rates at time t and �t;T =
R T
t
�t;sds, �

�
t;T =

R T
t
��t;sds. Finally, the time t value of

the domestic and foreign bank accounts are characterized respectively by dDt = rtDtdt and

dD�
t = r

�
tD

�
t dt:

Following the classical approach of risk neutral evaluation3, the model is obtained under

the unique risk neutral measure Q :

dSt = St

h
(rt � �t) dt+ �sdfW (1)

t

i
(2a)

d�t = (�� � ��
�s
(�s � rt)� ��t)dt+ ��dfW (1)

t (2b)

dCt = Ct

h
(rt � r�t ) dt+ �cdfW (2)

t

i
(2c)

dP (t; T ) = P (t; T )
h
rtdt� �t;TdfW (3)

t

i
(2d)

dP �(t; T ) = P � (t; T )
h�
r�t + �

�
t;T�c�2;4

�
dt� ��t;TdfW (4)

t

i
(2e)

where
nfWt =

�fW (1)
t ;fW (2)

t ;fW (3)
t ;fW (4)

t

�
: t � 0

o
is a four dimensional Q�Brownian motion

with a constant correlation matrix %.

3In order to determine the risk free measure Q, one need to constitute the self �nancing assets expressed in

the domestic currency. There are four of them which are : (1) the value Y (1)t = St exp
�R t

0
�sds

�
of a portfolio

initially formed with the commodity S0, and, whenever they are perceived, the pro�ts are reinvested to buy
more of the commodity; (2) the value Y (2)t = CtD

�
t of the foreign bank account expressed in the domestic

currency; (3) the domestic zero-coupon bond; and (4) the value Y (3)(t; T ) = CtP �(t; T ) of the foreign zero-
coupon bond converted in the domestic currency. Using the standard methodology, Q is constructed such
that the four relevant assets have the risk free rate as return. Details are available from the authors upon
request.
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3 Hedging performance of the European basket option:
a Monte Carlo study

Whenever the underlying assets are not perfectly and positively correlated, the portfolio

is partially diversi�ed and its volatility is then reduced. We can apply this reasoning to a

basket option which gives to its owner the right to buy or sell the portfolio at a predetermined

exercise price at a pre-speci�ed date. Hence, the basket option allows to hedge simultaneously

di¤erent �nancial risks such as the �uctuations of the commodity price, the exchange rate

and the interest rates at a possible lower cost than the one associated to the individual

hedge of each of these risks. The advantage link to the basket option should increase as the

portfolio is well diversi�ed, including assets with negative correlation. In this section, we

will demonstrate numerically that the basket option is cheaper than a portfolio of standard

options and analyze its hedging performance. However, this analysis does not account for

the possible lack of liquidity of the basket option.

We consider an European basket option which gives to its holder the opportunity to

sell, at time T and at the exercise price KB; a portfolio formed with the commodity, a

domestic zero-coupon bond (with maturity T1 � T ) and a foreign zero-coupon bond (with

maturity T2 � T ) converted in domestic currency. We assume that w1; w2 and w3 correspond

respectively to the number of shares initially invested in the commodity, the domestic bond

and the foreign bond. The time t value of this option is

V Baskett = DtE
Q
t

�
D�1
T max (KB � w1ST � w2P (T; T1)� w3CTP � (T; T2) ; 0)

�
:

Since the portfolio value is a weighted sum of lognormally distributed random variables,

there is no closed form solution to this valuation problem4 and the pricing is obtained via

4Dionne et al. (2008) proposed some analytical approximations to price an heterogeneous basket option.
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Table 1: Parameters�distributions

Drift coe¢ cients Volatilities Correlations

�s � U (�0:10;+0:35) �s � U (0:100; 0:25) �12 � U (+0:05;+0:35)
� � U (+0:05;+0:65) �� � U (0:015; 0:045) �13 � U (�0:40;+0:20)
� � U (+0:01;+0:35) �14 � U (�0:40;+0:20)
�c � U (�0:04;+0:07) �c � U (0:030; 0:10) �23 � U (�0:30;+0:30)

f (0; t) = r � U (+0:01;+0:07) � � U (0:001; 0:04) �24 � U (�0:30;+0:30)
f� (0; t) = r� � U (+0:01;+0:07) �� � U (0:001; 0:04) �34 � U (+0:35;+0:80)

� � U (+0:01;+0:05)e� � U (+0:01;+0:05)
x � U (a; b) means that x has been simulated using a uniform distribution on the interval [a; b]. For this

study, the volatility parameters of both instantaneous forward rates models is set to some constants, that is,

for any 0 � t � T; �t;T = � and ��t;T = ��.

Monte Carlo simulations.

We now analyze empirically the performance of basket option as an hedging instrument.

To avoid the possibility that the results may be in�uenced by the choice of model parameters,

we compute option prices over a wide range of parameters. Like Broadie and Detemple

(1996), we use 1; 000 parameters�combinations generated randomly from a realistic set of

values and assuming a continuous uniform distribution as presented in Table 1.

We consider a gold mining �rm that, in six month from now (T = 1=2), will sell w1 =

10; 000 ounces of gold, sell w2 = 1; 500; 000 domestic zero-coupon bonds (with maturity

T1 = 3=4) and convert w3 = 2; 000; 000 of foreign currency in the domestic currency. To

reduce its risk, this �rm may choose between buying a basket put option or buying a portfolio

of individual options. We assume that the �rm holds the risky assets. The determination of

the optimal composition of the basket that accounts for the correlations between the assets
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are beyond the goals of this study.

Using the objective measure P and for each parameters set, 1; 000 scenarios of possible

gold prices, exchange rates and domestic bond prices are simulated. For each generated

scenario, the pro�t and the return of both hedging strategies are computed. More precisely,

let

Bt = w1St + w2P (t; T1) + w3CtP
� (t; T )

be the time t value of the basket. Note that the foreign bond has the same maturity than

the option. The pro�t

PRB = max (KB �BT ; 0) + (BT �B0)� V Basket0

associated to the basket option strategy corresponds to the cash-�ows generated by the

basket option�s exercise to which is added the pro�t (or loss) associated with the detention

of the assets and minus the initial price V Basket0 of the basket option. The pro�t

PRIO = max [w1 (KS � ST ) ; 0] + max [w2 (KP � P (T; T1)) ; 0] + max [w3 (KC � CT ) ; 0]

+ (BT �B0)�
�
V Gold0 + V Bond0 + V Fx0

�
associated to the individual options strategy is composed of the cash-�ows generated at time

T by the exercise of the put option on gold price, the put option on the domestic zero-

coupon bond and the put option on the exchange rate to which is added the pro�t (or loss)

associated with the detention of the assets and minus the initial prices V Gold0 , V Bond0 , V Fx0 of

the individual options. KB, KS, KP and KC correspond respectively to the exercise prices

of the basket option, the gold price option, the domestic bond option and the exchange rate

option. All option�s prices are computed under the risk-free measure Q using a Monte Carlo
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simulation with 200; 000 trajectories and an antithetic variable. The pro�t associated with

a non-hedging strategy is simply

PRNH = BT �B0:

The returns of the basket option strategy, the individual options strategy and the non-

hedging strategy are de�ned respectively by

RTB =
PRB

V Basket0 +B0
, RTIO =

PRIO
V Gold0 + V Bond0 + V Fx0 +B0

and RTNH =
PRNH
B0

:

The exercise prices are determined to favor the exercise of each of the options. More precisely,

each exercise price corresponds to some predetermined quantile of the underlying assets�

prices at maturity date T . Technically, the 1; 000 simulated prices are ordered and the

exercise price is �xed such that it is larger than i% of the simulated prices.

For each parameter sets, the percentage (%PR) of the 1,000 scenarios for which the pro�t

PRB associated to the basket option strategy is larger than the pro�t PRIO of the individual

options strategy have been calculated.

At a �rst glance on Table 2, the non-hedging strategy seems to dominate the basket

strategy since the pro�ts associated to the basket strategy are larger than the non hedging

strategy�s ones in some moderate proportions ranging between 37% to 57% of the simulated

scenarios. However, looking at the average pro�ts and returns, the basket option strategy

surpasses the non-hedging strategy. The introduction of the basket option shifts the portfolio

distribution to the left (because of the initial cost) but increases the right tail of the distri-

bution as the protection comes in (see Figure 1). The bene�ts of the basket option enlarge

the right tail of the distribution much more signi�cantly than the option price contributes

to the left tail of the distribution. The asymmetric e¤ect leads to the basket portfolio�s
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Table 2: Hedging performance of the basket option using random parameters

Q0:90 Q0:80 Q0:70 Q0:60 Q0:50

%PR�NH 56,7% 52,2% 47,7% 42,8% 37,1%
%PR�IO 95.1% 91.0% 87.8% 86.4% 85.2%

PRNH 312 226 $ 312 226 $ 312 226 $ 312 226 $ 312 226 $

PRB 500 811 $ 459 996 $ 428 513 $ 402 272 $ 378 569 $

PRIO 460 090 $ 418 571 $ 388 277 $ 360 674 $ 338 745 $

Sharpe ratioNH 0.46 0.46 0.46 0.46 0.46
Sharpe ratioB 0.38 0.36 0.35 0.34 0.34
Sharpe ratioIO 0.34 0.32 0.31 0.31 0.30

%RT�NH 56,1% 51,6% 47,1% 42,2% 36,6%
%RT�IO 94,4% 90,5% 87,9% 86,5% 85,8%

RTNH 3,7% 3,7% 3,7% 3,7% 3,7%

RTB 5,7% 5,3% 5,0% 4,7% 4,5%

RT IO 5,2% 4,8% 4,5% 4,2% 4,0%

V B 667 484 $ 481 854 $ 369 683 $ 286 766 $ 218 152 $
V IO 800 867 $ 586 443 $ 461 844 $ 361 241 $ 286 913 $

1000 scenarios for each of the 1000 parameters sets have been simulated. Qi means that the di¤erent exercise

prices, KB ;KS ;KP ; and KC ; are set to the ith quantile of BT ; ST ; P (T; T1) ; and CT respectively (these Qi
vary with the parameter sets). The initial values are S0 = 325$, C0 = 0:85, �0 = 1%. %PR��

�
%RT��

�
is

the percentage of the 106 scenarios for which the pro�ts (returns) associated to the basket option strategy is

larger than the pro�ts (returns) of the other strategy. PR�
�
RT �

�
are the average pro�ts (returns) based

on the 106 scenarios. The average Sharpe ratios over the 1000 parameter sets are reported. V B and V IO
represent respectively the average basket option price and the sum of the average individual option prices.
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Figure 1: Portfolio distributions for one of the 1000 simulated parameter sets. NH
stands for the non-hedging strategy while B represents the basket option strategy.
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distribution which has a larger mean and a larger variance than the non-hedging strategy.

Since the Sharp ratio only accounts for the two �rst moments of the distribution, it in not

an appropriate risk measure in this context as it penalizes the right tail of the distribution

as much as the left tail responsible for the losses.

Compared to the individual options strategy, the basket option dominates in each of the

considered measures. However, there are a couple of other aspects of basket options that

should be mentioned. In practice investment banks who issue these options tend to include

high margins in their pricing since the contracts are di¢ cult to hedge. Furthermore, some of

them are very sensitive to the correlations and correlations are often unstable and di¢ cult

to estimate. This tends to increase their price.

4 Parameters estimation

In this section, the parameters of Model (1) are estimated using the maximum likelihood

framework. However, this is not a straight forward application principally because the con-

venience yield is not an observable variable. More precisely, let t0 < t1 < ::: < tn be the

points in time where the sample is observed and note that ln
�
Sti=Sti�1

�
depends on the

convenience yield �ti�1:

ln
Sti
Sti�1

=

�
�s �

�2s
2
� �
�
(ti � ti�1)�

�
�ti�1 � �

� 1� exp (�� (ti � ti�1))
�

+

Z ti

ti�1

�
�s � ��

1� exp (�� (ti � v))
�

�
dW (1)

v :

We rely on forward contracts on the commodity to estimate �ti�1. Let F (t; T ) denotes the

time t value of a forward contract on the commodity with maturity date T . As shown in

Appendix A, if the time to maturity " = T � t of the contract is small, then the convenience
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yield may be approximated by:

�ti�1
�=

1

"
ln

Sti�1
F (ti�1; ti�1 + ")P (ti�1; ti�1 + ")

+
1

2"
VarQti�1

�
ln
�
Sti�1+"

��
��

2
s

2
� 1

2"

Z ti�1+"

ti�1

�2v;ti�1+"dv

where VarQti�1
�
ln
�
Sti�1+"

��
, given in the appendix (at line (5), page 29), is a function of time

and the maturity date. Note that it is possible to �nd the exact expression for �ti�1 using

the forward contract F (ti�1; Ti�1) with an arbitrary maturity date Ti�1 but it involves the

instantaneous forward rates f (ti�1; u), ti�1 � u � Ti�1 which would have to be estimated at
each sampling date (for a sample of size n it requires the estimation of n term structures of

instantaneous forward rates).

We now determine what should be the other assets to be observed at each sampling

date. We argue that it is better to use the forward contracts on zero-coupon bonds instead

of the bonds themselves. First, let consider the domestic case. Following HJM, there is

a close relationship between the drift and the di¤usion terms of the forward rates which

is 
t;T = �t;T

�
�t;T + �

(3)
t

�
where �(3) is some risk premium and �t;T =

R T
t
�t;sds. This

relationship appears in the construction of the risk neutral measure Q. Since the domestic

zero-coupon bond satis�es the relationship

ln
P (ti; T )

P (ti�1; T )
=

Z ti

ti�1

f (ti�1; u) du�
1

2

Z ti

ti�1

�
�2v;T � �2v;ti

�
dv

�
Z ti

ti�1

�(3)v

�Z T

ti

�v;udu

�
dv �

Z ti

ti�1

�Z T

ti

�v;udu

�
dW (3)

v ;

then the term structure of the instantaneous forward rates f (ti�1; �) is required at each sam-
pling date. However, these rates are not directly observable and, to avoid their estimation,

we rely on forward contracts on zero-coupon bonds. Indeed, if F (ti; Ti; Ui) denotes the time

ti value of some forward contract on a zero-coupon bond, where Ti is the maturity date of

the contract and Ui > Ti is the maturity date of the underlying zero-coupon bond, then5 for

5Sketch of the proof. Following Jarrow (1996), the F (�; T; U) is a Q�martingale. Therefore,
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0 � ti�1 � ti � Ti � Ui,

ln
F (ti; Ti; Ui)

F (ti�1; Ti; Ui)
=

0@ �1
2

R ti
ti�1

�
�u;Ti � �u;Ui

�2
du

�
R ti
ti�1

�R Ui
Ti
�v;udu

�
�(3)v dv �

R ti
ti�1

�R Ui
Ti
�v;udu

�
dW

(3)
v

1A :
Therefore, if the risk premium is a deterministic function of time t, then fF (t; Ti; Ui) : 0 � t � Tig
is a Gaussian Markovian process under the objective measure P and depends only on the

di¤usion coe¢ cient ��;� and the risk premium �(3)� .

Similarly, the case of the foreign bond is as follows: the relationship between the drift

and the di¤usion terms of the forward rates is 
�t;T = �
�
t;T

�
��t;T � �c�2;4 + �

(4)
t

�
where �(4) is

a risk premium and ��t;T =
R T
t
��t;sds. The foreign zero-coupon bond requires the unobserved

term structure of the instantaneous forward rates f � (t; �). Let F � (t; T �i ; U�i ) denotes the time
t value of some forward contracts on a foreign zero-coupon bond, where T �i is the maturity

date of the contract and U�i > T
�
i is the maturity date of the underlying zero-coupon bond.

The forward contract value sati�es

ln
F � (ti; T

�
i ; U

�
i )

F � (ti�1; T �i ; U
�
i )
=

0@ �1
2

R ti
ti�1

�
��u;U�i � �

�
u;T �i

�2
du+ �c�2;4

R ti
ti�1

�R U�i
T �i
��v;udu

�
dv

�
R ti
ti�1

�(4)v

�R U�i
T �i
��v;udu

�
dv �

R ti
ti�1

�R U�i
T �i
��v;udu

�
dW

(4)
v

1A :
Consequently, if the risk premium is a deterministic function of time t, then the stochastic

process fF � (t; T �i ; U�i ) : 0 � t � T �g is Markovian and normally distributed under the ob-
jective measure P and depends only on the di¤usion coe¢ cients ���;� and �c, the correlation

coe¢ cient �2;4 and the risk premium �(4)� .

The last component of the sample is based on the exchange rate

ln
Cti
Cti�1

=

�
�C �

�2C
2

�
(ti � ti�1) + �C

�
W

(2)
ti �W (2)

ti�1

�
:

F (t; T; U) = EQt [F (T; T; U)] = EQt [P (T;U)] = exp
�
EQt [lnP (T;U)] +

1
2Var

Q
t [lnP (T;U)]

�
where EQt [�]

denotes the conditional expectation with respect to the information available at time t : EQ [� jFt ]. The last
equality is justi�ed by the lognormal distribution of P (T;U). The �nal result is obtained from the evaluation
of the conditional moments of lnP (T;U) under the risk neutral measure Q.
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For pragmatic reasons and to keep the number of parameters to be estimated as small as

possible, we have set the risk premiums to be constant: for any t � 0; �(3)t = � and �(4)t = ��.

Let � =(�1;�2) denotes the set of parameters that will be estimated where �1 contains the

parameters needed in the pricing of the basket option while �2 are some parameters that

will be estimated but not used in the pricing procedure:

�1 =
�
�; �; �s; ��; �c; �t;T ; �

�
t;T ; �1;2; �1;3; �1;4; �2;3; �2;4; �3;4

�
;

�2 = (�s; �c; �; �
�) :

De�ne

Xti =

0BB@
ln
�
Sti=Sti�1

�
ln
�
Cti=Cti�1

�
ln (F (ti; Ti; Ui) =F (ti�1; Ti; Ui))

ln (F � (ti; T
�
i ; U

�
i ) =F

� (ti�1; T
�
i ; U

�
i ))

1CCA :
As shown in Appendix B, the log-likelihood function associated with the observed sample

xt1 ; :::;xtn is

L (�1;�2;xt1 ; :::xtn) = �2n ln (2�)�
1

2

nX
i=1

ln j�tij �
1

2

nX
i=1

�
xti � �ti

�0
��1
ti

�
xti � �ti

�
; (4)

where �ti = Eti�1 [Xti ] and covariance matrix �ti = Varti�1 [Xti ] are given in Appendix B.

Because of the large number of parameters to be estimated, it is di¢ cult to maximize

Equation (4) directly. We therefore follow a two steps procedure:

Step 1 : We estimate the parameters �3 =
�
�c; �c; �; �

�; �t;T ; �
�
t;T ; �2;3; �2;4; �3;4

�
associated to

the exchange rate and the domestic and foreign interest rates using the log-likelihood

function

L� (�3; zt1 ; :::ztn) = �2n ln (2�)�
1

2

nX
i=1

ln j�tij �
1

2

nX
i=1

�
zti � ��ti

�0
��1ti

�
zti � ��ti

�
;

where zti contains the three last components of xti, �
�
ti
is formed with the three last

components of �ti and �ti is the 3� 3 matrix (�ti;`;j)`;j=2;3;4.
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Note that in the case6 where ��ti = �
� and �ti = �, that is, the two �rst moments are

constant through time, then it is possible to �nd analytically the maximum likelihood

estimates b�� and b� that maximize the log-likelihood function L�. The parameters
estimates b�3 are chosen such that �� (b�3) = b�� and � (b�3) = b�.

Step 2 : Assuming that �3 = b�3, then the log-likelihood L (�1;�2;xt1 ; :::xtn) is maximized to
get estimates for �s; �; �; �s; ��; �1;2; �1;3 and �1;4:

The numerical optimization routine used to maximize these two log-likelihood functions

is the quadratic hill-climbing algorithm of Goldfeld, Quandt and Trotter (1996) with a con-

vergence criterion based on the absolute values of the variations in parameter values and

functional values between successive iterations. When both of these changes are smaller

than 10�5, we attend convergence. The solution obtained this way may not maximize the

global loglikelihood function (4). We therefore perform a Monte Carlo study to assess nu-

merically the quality of our estimates.

4.1 Monte Carlo study

We conduct a Monte Carlo study to evaluate the quality of the coe¢ cients estimated using

the maximum likelihood method. We verify numerically that the two-step procedure do

not produce biased estimates. Moreover, we assess numerically how well the asymptotic

normal distribution proposed by the theory approximates the empirical distributions for

a reasonable sample size. More precisely, we generate daily observations for two di¤erent

sampling periods: 4 and 10 years. For each time series, maximum likelihood estimates

6In the particular case where the volatility parameters �t;T = � and ��t;T = �� of the instantaneous
forward rates are constant, the time between to sample observations ti � ti�1 = h is constant, and the
di¤erences between the maturity date of the underlying bond and the maturity date of the forward contract
Ui � Ti = H and U�i � T �i = H� are constant, then

�� =

0B@
�
�C � �2C

2

�
h

��hH
�
�+ 1

2�H
�

���hH� ��� + 1
2�

�H� � �c�2;4
�
1CA and � =

0@ �2Ch ��2;3�C�Hh ��2;4�C��H�h
��2;3�C�Hh �2H2h �3;4��

�HH�h

��2;4�C��H�h �3;4��
�HH�h (��)

2
(H�)

2
h

1A :
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Table 3: Simulations�results for the parameters estimations (4 years sample)

�c �c � �� � �� �23 �24 �34

True 0.0900 0.0300 1.2000 1.2000 0.0200 0.0150 0.1500 0.2000 0.8500
Mean 0.0911 0.0299 1.2589 1.2649 0.0199 0.0149 0.1501 0.2010 0.8497
Median 0.0911 0.0299 1.2325 1.2515 0.0200 0.0150 0.1515 0.2016 0.8502
Std 0.0218 0.0013 0.6215 0.6098 0.0016 0.0022 0.0538 0.0464 0.0127

25 % cvr 0.2460 0.2405 0.2980 0.3115 0.2655 0.2695 0.2510 0.2745 0.2450
50 % cvr 0.4910 0.4960 0.5315 0.5465 0.5090 0.5065 0.4930 0.5085 0.5000
75 % cvr 0.7435 0.7435 0.7470 0.7515 0.7520 0.7525 0.7625 0.7475 0.7590
90 % cvr 0.8910 0.9000 0.8575 0.8600 0.8990 0.9035 0.9080 0.9060 0.8970
95 % cvr 0.9430 0.9490 0.8930 0.8965 0.9450 0.9475 0.9480 0.9445 0.9415
99 % cvr 0.9850 0.9880 0.9315 0.9365 0.9835 0.9850 0.9830 0.9810 0.9820

Mean, median and std are the descriptive statistics based on the simulated sample of 2000 parameter�s

estimates. The coverage rates (cvr) represent the proportion of the con�dence intervals based on the

Gaussian distribution that contain the true parameter�s value. The estimates written in bold are signi�cantly

di¤erent than their theoritical counterpart (at a con�dence level of 95%).

are computed as well as their associated estimated standard error and con�dence intervals

based on the Gaussian distribution. We repeat the simulation run 2000 times and reports

averages of the points estimates and the proportions of the simulated scenarios producing

con�dence intervals that contain the true parameter value. If the Gaussian distribution and

the estimation of the standard error are appropriate, then the proportions should be close

to their corresponding con�dence level. The forward contracts on the commodity have a

time-to-maturity of 1 day.

As it appears in Tables 3, 4, 5 and 6, for all the parameters, the maximum likelihood

estimators are unbiased. However, the standard deviations of the risk premium estimators

as well as the convenience yield�s parameters are large, which means that the punctual

estimation is imprecise. The coverage rate associated to these parameters indicates that

the asymptotic distribution has not been reached, even with the 10 years sample. For all

other parameters, the standard errors indicate that we are in presence of precise punctual
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Table 4: Simulations�results for the parameters estimations (4 years sample)

�s �s � � �� �12 �13 �14

True 0.2500 0.1200 0.2000 0.1000 0.1500 -0.1000 -0.2500 -0.3000
Mean 0.2715 0.1197 0.1605 0.1089 0.1676 -0.0976 -0.2493 -0.2997
Median 0.2677 0.1197 0.1622 0.1058 0.1260 -0.0991 -0.2499 -0.3008
Std 0.0871 0.0043 0.1337 0.0578 0.1831 0.0498 0.0412 0.0405

25 % cvr 0.2590 0.2535 0.4420 0.6695 0.2135 0.2505 0.2600 0.2440
50 % cvr 0.5090 0.4935 0.5385 0.8300 0.4065 0.4815 0.4860 0.4960
75 % cvr 0.7450 0.7390 0.5815 0.8965 0.4870 0.7375 0.7410 0.7505
90 % cvr 0.8875 0.8920 0.6120 0.9325 0.5255 0.8640 0.8955 0.8865
95 % cvr 0.9345 0.9460 0.6255 0.9435 0.5345 0.9080 0.9425 0.9315
99 % cvr 0.9735 0.9860 0.6475 0.9525 0.5500 0.9445 0.9835 0.9850

Mean, median and std are the descriptive statistics based on the simulated sample of 2000 parameter�s

estimates. The coverage rates (cvr) represent the proportion of the con�dence intervals based on the

Gaussian distribution that contain the true parameter�s value. The estimates written in bold are signi�cantly

di¤erent than their theoritical counterpart (at a con�dence level of 95%).

estimators and that the Gaussian distribution is appropriate for inference.

4.2 Real data study

In the following, we apply the procedure outlined in Section 4 to real data.

4.3 Data

In order to estimate the parameters of the domestic and foreign zero-coupon bonds
^
�;

^
�� and

^
�34; we use the three-month Eurodollar Time Deposit futures contracts traded on the Chicago

Mercantile Exchange (CME), and the three-month Canadian Bankers�Acceptance (BAX)

futures contracts traded in the Montreal Exchange7. Both BAX and Eurodollar futures

contracts are settled in cash and have the same delivery date on the second London bank

business day immediately preceding the third Wednesday of the contract month. While the

7Both the Eurodollar Time Deposit and the BAX are on a $1 million principal value with a maturity of
90 days.
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Table 5: Simulations�results for the parameters estimations (10 years sample)

�c �c � �� � �� �23 �24 �34

True 0.0900 0.0300 1.2000 1.2000 0.0200 0.0150 0.1500 0.2000 0.8500
Mean 0.0898 0.0300 1.1986 1.1994 0.0200 0.0150 0.1499 0.1998 0.8499
Median 0.0900 0.0300 1.2087 1.1941 0.0200 0.0150 0.1503 0.2000 0.8501
Std 0.0093 0.0004 0.3136 0.3209 0.0003 0.0002 0.0186 0.0185 0.0055

25 % cvr 0.2618 0.2495 0.2811 0.2781 0.2663 0.2623 0.2825 0.2781 0.2505
50 % cvr 0.4985 0.5030 0.5148 0.5059 0.5118 0.5049 0.5286 0.5350 0.5108
75 % cvr 0.7456 0.7392 0.7130 0.7106 0.7510 0.7623 0.7766 0.7771 0.7579
90 % cvr 0.9078 0.8955 0.8402 0.8269 0.8881 0.9073 0.9083 0.8999 0.9019
95 % cvr 0.9443 0.9487 0.8802 0.8787 0.9487 0.9551 0.9443 0.9433 0.9512
99 % cvr 0.9768 0.9882 0.9285 0.9334 0.9852 0.9877 0.9808 0.9798 0.9887

Mean, median and std are the descriptive statistics based on the simulated sample of 2000 parameter�s

estimates. The coverage rates (cvr) represent the proportion of the con�dence intervals based on the

Gaussian distribution that contain the true parameter�s value. The estimates written in bold are signi�cantly

di¤erent than their theoritical counterpart (at a con�dence level of 95%).

Eurodollar contract is chosen for its extreme liquidity, the less liquid BAX contract represents

the more tradable contract on a riskless zero-coupon bond available in Canada. Our sample

consists of daily prices for both contracts ranging from January 3, 2005 to December 29,

2006. It should be noted that both futures contracts are traded on an index basis that is the

contract price is calculated by subtracting the annualized implied yield on the underlying

from 100. For example, a December BAX (Eurodollar) contract quoted as 97:30 on the

exchange �oor implies a 2:70% (i.e. 100 � 97:30) annual yield for the BAX (Eurodollar)

issued in December. To carry out the estimation, we need the futures prices under the

physical measure P; hence we must convert the quoted prices using the equations :

F = 1� 0:25
�
1� Z

100

�
and F � =

1

1 +
�
1� Z�

100

�
90
360

;

where Z and Z� represent the quoted price for the Eurodollar and BAX futures contracts

respectively.

We also use daily gold prices as well as the CAD/USD exchange rate covering the same
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Table 6: Simulations�results for the parameters estimations (10 years sample)

�s �s � � �� �12 �13 �14

True 0.2500 0.1200 0.2000 0.1000 0.1500 -0.1000 -0.2500 -0.3000
Mean 0.2527 0.1199 0.1930 0.0977 0.1400 -0.1006 -0.2500 -0.2999
Median 0.2528 0.1199 0.1899 0.0977 0.1448 -0.1010 -0.2497 -0.3004
Std 0.0528 0.0017 0.0486 0.0437 0.0532 0.0194 0.0187 0.0184

25 % cvr 0.2489 0.2696 0.4634 0.4643 0.2873 0.2573 0.2602 0.2420
50 % cvr 0.4786 0.5224 0.6916 0.6950 0.4771 0.5027 0.5007 0.4988
75 % cvr 0.7004 0.7560 0.8190 0.8077 0.6449 0.7368 0.7304 0.7290
90 % cvr 0.8396 0.8977 0.8819 0.8603 0.7467 0.8770 0.8849 0.8869
95 % cvr 0.8859 0.9474 0.9026 0.8844 0.7821 0.9188 0.9356 0.9385
99 % cvr 0.9415 0.9902 0.9297 0.9051 0.8259 0.9661 0.9818 0.9848

Mean, median and std are the descriptive statistics based on the simulated sample of 2000 parameter�s

estimates. The coverage rates (cvr) represent the proportion of the con�dence intervals based on the

Gaussian distribution that contain the true parameter�s value. The estimates written in bold are signi�cantly

di¤erent than their theoritical counterpart (at a con�dence level of 95%).

time period as above to estimate the parameters related to the commodity price and the

exchange rate: the drifs �s and �c; the volatilities �s and �c and the correlation coe¢ cient �12.

Finally, we use gold futures contracts to estimate the convenience yield and its parameters.

The data is obtained from Datastream. Table 7 shows the summary statistics for the

various data used.

4.4 Empirical results

We proceed with a two-step estimation in order to avoid any convergence problems. First, we

estimate the exchange rate, the domestic and foreign zero-coupon bonds parameters as well as

the correlation coe¢ cients between these three variables
�
�c; �c; �; �

�; �t;T ; �
�
t;T ; �2;3; �2;4; �3;4

�
.

Then, we use these estimates to determine the parameters related to the commodity and the

convenience yield
�
�s; �; �; �s; ��;b�1;2; �1;3; �1;4� that maximize the global likelihood function

given in Equation (4). We apply the quadratic hill-climbing algorithm of Goldfeld, Quandt

21



Table 7: Summary Statistics for daily observations between 01/03/2005 and 12/29/2006

Assets Mean Median Standard deviation

Gold Prices 524.86 528.1 86.611
Exchange rates CAD/USD 0.854 0.858 0.033
Eurodollar futures contracts 0.989 0.988 0.002
BAX contracts 0.991 0.991 0.002
Gold futures contracts 525.57 527.9 86.659
Number of observations = 520

The descriptive statistics are based on a sample of daily observations over two years.

and Trotter (1996), and we use di¤erent starting points to increase the probability of reach-

ing a global maxima8. The results from the maximum likelihood estimation are reported in

Table 8.

The results show that the instantaneous returns�estimate of the commodity �s and the

exchange rate �c are rather imprecise and statistically insigni�cant from zero. However, these

two parameters are not used in the pricing of the basket option. The convenience yield mean

reversion parameters�estimates,
^
� = 0:244 and

^
� = 0:276, also are insigni�cant. This result

tallies with the �nding in Schwartz (1997) that mean reversion for convenience yields does

not seem to hold for gold . However it may also be attributed to the small sample e¤ect

on these estimators. On the other hand, the volatility parameters for commodity, exchange

rate, domestic and foreign zero-coupon bonds are estimated fairly accurately and are highly

signi�cantly di¤erent from zero.

The correlation coe¢ cients are between the di¤erent Brownian motions. However, from

the nature of the model, they are also related to the correlations among the logarithm of the

forward contracts, gold prices and exchange rate as established in Appendix B. As expected,

the correlation �34 between the Canadian and American zero-coupon bonds�noise terms is

high and statistically di¤erent from zero. We observe a non-signi�cant negative correlation

between the Brownian motions involved in the gold prices and futures contracts on both Eu-

8Given that we have several parameters to estimate simultaneously, and that the algorithm is time-
consuming, we choose only three di¤erent starting values for each parameter. For each repetition, we �nd
that the algorithm converges to the same optima.
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Table 8: Summary Statistics for daily observations between 01/03/2005 and 12/29/2006

Estimate Std P-value

�s -0.1204 0.1056 0.255
�c 0.0208 0.0512 0.685
�s 0.1664 0.0051 0.000
�c 0.0747 0.0023 0.000
� 0.0032 0.0001 0.000
�� 0.0031 0.0001 0.000
� 2.9313 0.7066 0.000
�� 2.0211 0.7165 0.005

Estimate Std P-value

� 0.2440 0.1713 0.155
� 0.2760 0.1765 0.119
�� 0.0151 0.0238 0.525
�12 0.3485 0.0373 0.000
�13 -0.0594 0.0325 0.068
�14 -0.0524 0.0363 0.150
�23 -0.0391 0.0431 0.366
�24 0.0454 0.0512 0.376
�34 0.5218 0.0319 0.000

The estimates and their standard deviations are obtained from daily observations over a two year sample, go-

ing from January 3, 2005 to December 29, 2006. The p-values are computed using the Gaussian distribution.

These p-values should be interpreted with precaution since, for some parameters like the convenience yield�s

ones and the risk premia, the sample is to small to justify the use of the estimator�s asymptotic distribution.

rodollars,
^
�13 = �5:94%; and BAX,

^
�14 = �5:24%. We also note a highly signi�cant positive

correlation between gold price and foreign exchange
^
�12 = 34:85%. However, the correla-

tions between the exchange rate and futures contracts on both domestic
�
^
�23 = �3:91%

�
and foreign

�
^
�24 = 4:54%

�
bonds are not signi�cantly di¤erent from zero.

5 Conclusion

In this paper we develop a theoretical model for an heterogeneous basket option based

on commodity prices, exchange rates, and zero-coupon bonds. Our contributions consist

essentially in looking at a basket option based on multiple underlying assets which are

intrinsically di¤erent and in considering all the aspects of basket options: modelization,

performance analysis, and parameters� estimation. The empirical implementation of our

model raises several problems. Many of the variables prove to be unobservable, variables

such as the commodity�s convenience yield, the market price of convenience-yield risk; and

the market-price risk related to zero-coupon bonds. To overcome these problems, we �rst

suppose that the process describing the convenience yield shares the same source of risk as
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the commodity process; this simpli�cation frees us from having to estimate the market-price

risk related to the convenience yield. Second, we view the futures contract as a derivative

instrument based on the instantaneous forward rate and so deriving its uncertainty from the

same source of risk as the forward rate.

We make an empirical comparison between the performance of a basket-option strategy

and that of a portfolio of individual plain-vanilla options using a large variety of parameters�

values. Our results show that the heterogeneous basket option dominates the individual

option strategy. Compared to the non-hedging strategy, the pro�ts distribution has fatter

tails with a positive skewness, meaning that the probability of larger pro�ts is augmented.

Consequently, the basket option is a good hedging strategy.

We estimate our theoretical model empirically, using both simulated and real data. In-

deed, we apply the maximum-likelihood method to estimate the parameters of risky assets

and we obtain satisfactory results.
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A Forward contract on commodity

Following Shreve (2004), the time t value of a forward contract with maturity date T is F (t; T ) =

EQt [ST ]. Therefore,

F (t; T ) = EQt [ST ] = E
Q
t [exp (ln (ST ))] = exp

�
EQt [ln (ST )] +

1

2
VarQt [ln (ST )]

�
since ln (ST ) is normally distributed under the measure Q and where EQt [�] = EQt [�jFt] : Recall
that

lnST = lnSt �
�2s
2
(T � t) +

Z T

t
rudu�

Z T

t
�udu+ �s

Z T

t
dfW (1)

u :

We �rst compute EQt [ln (ST )] = lnSt �
�2s
2 (T � t)� E

Q
t

h
�
R T
t rudu

i
� EQt

hR T
t �udu

i
. Since

Z T

t
rudu =

Z T

t
f (t; u) du+

Z T

t

�Z u

t
�v;u�v;udv

�
du+

Z T

t
�v;TdfW (3)

v

and because any normally distributed random variable Z, E [exp (Z)] = exp
�
E [Z] + 1

2Var [Z]
�

implies that E [Z] = lnE [exp (Z)]� 1
2Var [Z],

EQt

�
�
Z T

t
rudu

�
= lnEQt

�
exp

�
�
Z T

t
rudu

��
� 1
2
VarQt

�Z T

t
rudu

�
= lnP (t; T ) +

1

2

Z T

t
�2v;Tdv:

Moreover, if T � t is small,
R T
t �udu

�= �t (T � t) and

EQt [ln (ST )]
�= lnSt �

�2s
2
(T � t)� lnP (t; T )� 1

2

Z T

t
�2v;Tdv � �t (T � t) :

We use this approximation to avoid the introduction of the instantaneous forward rates in the

expression of EQt [ln (ST )]. Second, we evaluate Var
Q
t [ln (ST )]. Since

lnST = lnSt �
�2s
2
(T � t) +

Z T

t
rudu�

Z T

t
�udu+ �s

Z T

t
dfW (1)

u ;Z T

t
rudu =

Z T

t
f (t; u) du+

Z T

t

�Z u

t
�v;u�v;udv

�
du+

Z T

t
�v;TdfW (3)

v ;Z T

t
�udu =

�
� � ��

�s

�s
�

�
(T � t) +

�
�t � � +

��
�s

�s
�

�
1� exp (�� (T � t))

�

+
��
�s

Z T

t

1� exp (�� (T � u))
�

f (t; u) du+
��
�s

Z T

t

1� exp (�� (T � u))
�

�Z u

t
�v;u�v;udv

�
du

+
��
�s

Z T

t

�Z T

v
�v;u

1� exp (�� (T � u))
�

du

�
dfW (3)

v + ��

Z T

t

1� exp (�� (T � u))
�

dfW (1)
u ;
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then

VarQt [ln (ST )]

=

Z T

t

�
�v;T �

��
�s

Z T

v
�v;u

1� exp (�� (T � u))
�

du

�2
dv +

Z T

t

�
�s � ��

1� exp (�� (T � v))
�

�2
dv

+2�13

Z T

t

�
�s � ��

1� exp (�� (T � v))
�

��
�v;T �

��
�s

Z T

v
�v;u

1� exp (�� (T � u))
�

du

�
dv

=

Z T

t

�
�v;T �

��
�s

Z T

v
�v;u

1� exp (�� (T � u))
�

du

�2
dv (5)

+
�
�s �

��
�

�2
(T � t) + 2��

�

�
�s �

��
�

� 1� exp (�� (T � t))
�

+
�2�
�2
1� exp (�2� (T � t))

2�

+2�13

Z T

t

�
�s � ��

1� exp (�� (T � v))
�

��
�v;T �

��
�s

Z T

v
�v;u

1� exp (�� (T � u))
�

du

�
dv:

Hence,

F (t; T ) �= exp
�
lnSt �

�2s
2
(T � t)� lnP (t; T )� 1

2

Z T

t
�2v;Tdv � �t (T � t) +

1

2
VarQt [ln (ST )]

�
which implies that whenever T � t is small,

�t �=
ln St

F (t;T )P (t;T ) +
1
2Var

Q
t [ln (ST )]�

�2s
2 (T � t)�

1
2

R T
t �

2
v;Tdv

(T � t) :

B The log-likelihood function

In this section, we determine the log likelihood function (4).

De�ne Yti = (lnSti ; lnCti ; lnF (ti; Ti; Ui) ; lnF
� (ti; T �i ; U

�
i ))

0 and let fYt1 ;:::Ytn
(�;�1;�2) de-

notes the joint density of the random vectors Yt1 ; :::Ytn and fYti jYti�1

�
�
��yti�1 ;�1;�2� stands for

the conditional density of Yti given Yti�1 = yti�1 . The log-likelihood function associated with the

observed sample yt1 ; :::;ytn is

L (�1;�2;yt1 ; :::ytn) = ln fYt1 ;:::Ytn
(yt1 ; :::ytn ;�1;�2)

= ln

nY
i=1

fYti jYti�1

�
yti
��yti�1 ;�1;�2�

=

nX
i=1

ln fYti jYti�1

�
yti
��yti�1 ;�1;�2�

= �2n ln (2�)� 1
2

nX
i=1

ln j�ti j �
1

2

nX
i=1

�
xti � �ti

�0
��1ti

�
xti � �ti

�
:
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According to Equations (3),

�ti =

0BBBBBB@

�
�s � �2s

2 � �
�
(ti � ti�1)�

�
�ti�1 � �

� 1�exp(��(ti�ti�1))
��

�C �
�2C
2

�
(ti � ti�1)

�1
2

R ti
ti�1

�
�u;Ti � �u;Ui

�2
du� �

R ti
ti�1

�R Ui
Ti
�v;udu

�
dv

�1
2

R ti
ti�1

�
��u;U�i � �

�
u;T �i

�2
du+ �c�2;4

R ti
ti�1

�R U�i
T �i
��v;udu

�
dv � ��

R ti
ti�1

�R U�i
T �i
��v;udu

�
dv

1CCCCCCA
and �ti = (�ti;`;j)`;j=1;2;3;4 where

�ti;1;1 =
�
�s �

��
�

�2
(ti � ti�1) + 2

�
�s �

��
�

� ��
�

1� exp (�� (ti � ti�1))
�

+
�2�
�2
1� exp (�2� (ti � ti�1))

2�

�ti;1;2 = �12�C

��
�s �

��
�

�
(ti � ti�1) +

��
�

1� exp (�� (ti � ti�1))
�

�
�ti;1;3 = ��13

Z ti

ti�1

�
�s � ��

1� exp (�� (ti � v))
�

��Z Ui

Ti

�v;udu

�
dv

�ti;1;4 = ��14
Z ti

ti�1

�
�s � ��

1� exp (�� (ti � v))
�

� Z U�i

T �i

��v;udu

!
dv

�ti;2;2 = �2C (ti � ti�1)

�ti;2;3 = ��2;3�C
Z ti

ti�1

�Z Ui

Ti

�v;udu

�
dv

�ti;2;4 = ��2;4�C
Z ti

ti�1

 Z U�i

T �i

��v;udu

!
dv

�ti;3;3 =

Z ti

ti�1

�Z Ui

Ti

�v;udu

�2
dv

�ti;3;4 = �3;4

Z ti

ti�1

�Z Ui

Ti

�v;udu

� Z U�i

T �i

��v;udu

!
dv

�ti;4;4 =

Z ti

ti�1

 Z U�i

T �i

��v;udu

!2
dv:
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