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Abstract:  
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1. Introduction

In Hayashi�s (1982) neoclassical model of investment average Q (the value of

existing capital divided by its replacement cost) is equal to marginal Q (the value

of an additional unit of installed capital). This property famously implies that

averageQ is a su¢ cient statistic for determining a �rm�s investment decision. This

implication has often been empirically rejected. Cash-�ow and lagged-investment

e¤ects are present in virtually every investment-regression speci�cation and data

sample.1 These e¤ects suggest that Hayashi�s model is an inadequate description

of the behavior of investment at the �rm level.

In this paper we search for an empirically successful model of investment. We

�nd that investment regression estimates are very sensitive to the presence of mea-

surement error in Q. So, instead of using these regressions as our guide, we use

a broad set of empirical moments (means, standard deviations, persistence, and

skewness properties of cash �ow, Q, and investment) to estimate three candidate

models. Our estimates are based on the simulated method of moments imple-

mented on �rm-level data for the top quartile of Compustat �rms sorted by the

size of the capital stock in the beginning of the sample. These are the �rms that

Fazzari, Hubbard, and Petersen (1988) (henceforth FHP) use as their frictionless

benchmark because they are unlikely to be a¤ected by �nancial frictions.

Our models are driven by stochastic shocks that can be interpreted as produc-

tivity or demand shocks. We assume that these shocks follow a regime-switching

process. This model feature is important, because it generates skewness in cash

�ows, as well as the low correlation between Q and current cash �ow observed in

the data.
1The lagged-investment e¤ect has attracted less attention than the cash-�ow e¤ect but it

is empirically much more important. Lagged investment is a much better predictor of current
investment than either Q or cash �ow.
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The �rst model, which we call the �decreasing-returns model,� features de-

creasing returns to scale in production, a �xed operating cost, and quadratic

capital adjustment costs.2 The conditions for Q to be a su¢ cient statistic for in-

vestment choice are not satis�ed in this model because the production function is

not homogeneous of degree one. However, in a single-regime version of the model,

the decision rule for optimal investment can still be very closely approximated

by a log-linear function of Q. The second model, which we call the �Hayashi

model,� is a version of Hayashi�s (1982) model with quadratic investment ad-

justment costs. The third model, which we call the �CEE model� incorporates

adjustment costs that penalize changes in the level of investment, as proposed

by Christiano, Eichenbaum, and Evans (2005). This speci�cation has gained cur-

rency in the macroeconomics literature because it generates impulse responses

to monetary policy shocks that are consistent with those estimated using vector

auto-regressions.

Surprisingly, we �nd that both the Hayashi model and the decreasing-returns

model �t �rm-level data very well. The CEE model also provides a reasonably

good �t, but it generates excess persistence and insu¢ cient skewness in invest-

ment. These properties result from the fact that the CEE model penalizes large

changes in investment, generating a highly persistent investment series that ex-

hibits very few investment spikes.

Our estimates suggest that there is substantial measurement error in Q. This

�nding is consistent with the results in Erikson and Whited (2000) who estimate

the importance of measurement error in Q using the information contained in

the third and higher-order moments of the joint distribution of the regression

variables.
2Curvature in the revenue function, which we model as arising from decreasing returns to

scale in production, can also arise from monopoly power. We discuss this equivalent formulation
when we develop the model.
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This measurement error can arise from any component of Q that is better

observed by the �rm than by the researcher, including the market value of debt

or the replacement value of the capital stock.3 More controversially, measurement

error inQ can also arise from di¤erences between the intrinsic value and the market

value of equity, as suggested by Shiller (1989, 2000). Consistent with this view,

measures of Q that do not rely on the market value of equity tend to be better

predictors of investment than conventional measures of Q. Examples of these

alternative Q measures, include estimates based on cash-�ow forecasts (Gilchrist

and Himmelberg (1995)), analyst forecasts of earnings growth (Cumins, Hassett,

and Oliner (2006)), and bond prices (Philippon (2008)).

The cash-�ow e¤ect present in our data is likely to be caused by measurement

error and/or model mispeci�cation. We draw this inference because we �nd cash-

�ow e¤ects in our sample, even though it only contains very large �rms that

are unlikely to face borrowing constraints.4 To investigate this possibility we run

investment regressions on data generated by simulating our three models. All three

models generate cash-�ow and lagged-investment e¤ects. These results suggest

that the investment regressions that have received so much empirical attention

are ine¤ectual to discriminate between alternative models.

The decreasing-returns model generates e¤ects that are remarkably similar

to those we estimate in our data. In this model these e¤ects emerge both from

measurement error in Q and from mispeci�cation in the investment regression,

since average and marginal Q do not coincide. The optimal level of investment is

3We studied the case in which measurement error arises from the use of book value as the
seed in the perpetual inventory calculation of the capital stock. However, we found that this
source of error alone decayed too quickly, owing to depreciation, to have a signi�cant e¤ect on
our estimates.

4Several authors suggest that cash-�ow e¤ects can be generated by deviations from Hayashi�s
(1982) assumptions. For example, Schiantarelli and Georgoutsos (1990), Cooper and Ejarque
(2003), Gomes (2001), Alti (2003), and Moyen (2004) study the implications of decreasing
returns to scale, while Abel and Eberly (2001, 2005) analyze the e¤ects of growth options.
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a function of three state variables: the capital stock, the shock, and the regime.

So any additional independent variable that is correlated with the state variables

has explanatory power in a regression equation. As a result, cash-�ow and lagged-

investment e¤ects emerge naturally, even though the model is not designed to

produce them.

Our analysis di¤ers in this respect from that of Cooper and Ejarque (2003).

These authors show that they can parameterize a model without �nancial frictions

so that it generates a cash-�ow e¤ect that is similar to that present in the data.

They do so by estimating a model to match the coe¢ cients of Q and cash-�ow in

an investment regression estimated by Gilchrist and Himmelberg (1995) as well

as three other moments (the serial correlation of investment rates, the standard

deviation of pro�t rates, and the average value of average Q).

Our paper is organized as follows. In Section 2 we present the decreasing-

returns model. In Section 3 we discuss our data and estimation procedure. Section

4 presents the results for a version of the decreasing-returns model in which the

demand or productivity shock has a single regime. We also discuss the e¤ects of

introducing asymmetric investment adjustment costs, investment irreversibility, a

variable discount factor, as well as a behavioral bias. In Section 5 we discuss results

for the regime-switching version of the model.5 Section 6 considers the Hayashi

model. Section 7 contains results for the CEE model. Section 8 concludes.
5Since our estimates are based on �rm-level data, this result does not imply that these

features are not useful to understand investment in less aggregated data (e.g. at the plant level
or in smaller �rms).
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2. The decreasing-returns model

The �rm�s problem is given by the following Bellman equation, where y0 denotes

next period�s value of variable y:

V (K;X; z) = max
I
[zK�X1�� � �X � � [I=K � � � (
 � 1)]2K � I

+�

Z
V (K 0; X 0; z0)F (dz0; z)],

K 0 = I + (1� �)K.

The �rm�s output is given by zK�X1��. The variable X denotes the level of

exogenous technological progress. This variable grows at a constant rate 
 > 1,

X 0 = 
X. The stochastic variable z is governed by the distribution F (�). This
variable represents a shock to productivity or to the price of the �rm�s output.

We can interpret the production function as requiring a single production factor,

capital. Alternatively, we can think of output as being produced with capital,

labor, and other variable factors, with labor and variable factors being adjustable

without frictions. In this case zK�X1�� represents output net of labor and other

variable costs. Under this interpretation, which we adopt throughout the paper,

the variable z can also represent shocks to the real wage or to the price of other

variable factors.

We assume that � < 1. We can interpret this property as re�ecting the

presence of decreasing returns to scale in production. Alternatively, we can think

of � < 1 as resulting from a setting in which the production function exhibits

constant-returns to scale but the �rm has monopoly power and faces constant-

elasticity demand function.

The function V (K;X; z) represents the value of a �rm with capital stock K,

technical progress, X, and total factor productivity, z. We denote the discount
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factor by �. Capital depreciates at rate �. The variable � represents a �xed

operating cost paid in every period.6

Investment, denoted by I, is subject to quadratic adjustment costs, which

are represented by the term � [I=K � � � (
 � 1)]2K. This formulation has the
property that adjustment costs are zero when the �rm grows at its steady state

growth rate, 
. The parameter � controls the size of the adjustment costs.

We de�ne cash-�ow (CFt) as:

CFt = zK
�X1�� � �X � � [I=K � � � (
 � 1)]2K,

which is net revenue after �xed operating costs and investment costs, so we inter-

pret investment adjustment costs as reducing output or revenue.

Investment, average, and marginal Q The optimal level of investment is

given by:

1 + 2� [I=K � � � (
 � 1)] = �
Z
V1(K

0; X 0; z0)F (dz0; z)]. (2.1)

Equation (2.1) implies that investment is a function of marginal Q, de�ned as the

value of an additional unit of installed capital (�
R
V1(K

0; X 0; z0)F (dz0; z)]). This

function is linear as a consequence of our assumption that adjustment costs are

quadratic.

Average Q is de�ned as the ratio of �rm value to the stock of capital:

Q =
V (K;X; z)

K
. (2.2)

In this model marginal and average Q do not coincide, so investment cannot be

written as a linear function of Q. The di¤erence between average and marginal Q

6This cost is �xed with respect to the investment decision, but grows with the technology X,
so that the �xed cost does not become irrelevant as the �rm grows.
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arises for three reasons: the presence of decreasing returns to production (� < 1),

the presence of �xed costs (�), and timing considerations that result from the

discrete-time nature of our model.

To explain these timing considerations consider the case in which � = 1 and

� = 0. Then average Q, de�ned as (2.2) is still di¤erent from marginal Q. In

order for marginal and average Q to coincide we must measure Q at the end of

the period. We denote end-of-period Q by Q�:

Q� =
V �(K 0; X 0; z)

K 0 ,

Here V �(K 0; X 0; z) is the end-of-period value of the �rm, de�ned as the value of

the �rm after it receives its cash �ow and incurs investment costs but before it

learns z0. It is easy to show that, if � = 1 and � = 0, marginal and end-of-period

average Q coincide:

Q� = �

Z
V1(K

0; X 0; z0)F (dz0; z)].

Using equation (2.1) we can write investment as a linear function of Q�.

The fact that V �(K 0; X 0; z) is computed before the �rm learns z0 makes it

di¢ cult to compute empirically. For this reason we use the conventional de�nition

of Q, given by equation (2.2), in our analysis, so that it more closely corresponds

to empirical measures.

Single versus Regime-Switching Regime We consider two versions of the

shock process. In the �single-regime model�, z follows a Markov chain where the

mean shock is normalized to one and the support is given by:

z 2 f1� �; 1; 1 + �g .
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We assume that the Markov chain for the single-regime model takes the form:

� =

24 p2 2p(1� p) (1� p)2
p(1� p) p2 + (1� p)2 p(1� p)
(1� p)2 2p(1� p) p2

35 .
The �rst-order serial correlation of the shock implied by this matrix is: � = 2p�1
(see Rouwenhorst (1995)).

In the �regime-switching model�the support of z is given by:

z 2
�
�L � �L; �L; �L + �L; �H � �H ; �H ; �H + �H

	
,

where:

�L = 1� ��, (2.3)

�H = 1 + ��.

The variable �� governs the distance between the means of the two regimes. Pro-

ductivity alternates between two regimes, the low regime (�L � �L; �L; �L + �L)
and the high regime (�H � �H ; �H ; �H + �H). The evolution of z is governed by
a Markov chain.

Since we allow for growth in the model, it is useful to rewrite the �rm�s problem

in terms of detrended variables, k = K=X, i = I=X, and v(k; z) = V (K;X; z)=X:

V (k; z) = max
i;k0
[zk� � �� � [i=k � � � (
 � 1)]2 k � i

+�


Z
V (k0; z0)F (dz0; z)],


k0 = i+ (1� �)k.

We solve the model using the value-function iteration method (see Appendix

9.3).
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3. Estimation

In this section we �rst describe the data used in our estimation and summarize

some key data properties using simple regressions. We then describe our estima-

tion procedure.

3.1. Data

To estimate the model we use a balanced panel of Compustat �rms with annual

data for the period 1981-2003. Using a balanced panel introduces a selection

bias towards more stable �rms which are the intended focus of our study. Our

sample includes 776 �rms and roughly 14; 000 �rm-year observations. We focus our

analysis on the large �rms in our data, de�ned as being those in the top quartile

of �rms sorted by size of the capital stock in 1981. In the beginning of the sample,

the top quartile of �rms represents 30 percent of aggregate private non-residential

investment and 40 percent of corporate non-residential investment. We use data

for the four variables present in our model: investment in property, plant, and

equipment, the physical capital stock, Q, and cash �ow. We exclude from our

sample �rms that have made a major acquisition to help ensure that investment

measures purchases of new property, plant, and equipment. We estimate the

physical capital stock using the perpetual inventory method. We use the book

value of capital as the starting value for the capital stock and four-digit industry-

speci�c estimates of the depreciation rate. Q is calculated as the market value of

equity plus the book value of debt, divided by the capital stock estimate. Cash

�ow is measured using the Compustat item for Income before extraordinary items

+ depreciation and amortization + minor adjustments. We describe the data in

more detail in Appendix 9.1.

In Table 1 we report summary statistics for the fourth quartile (largest) �rms

in our sample, both for the 1981-2003 period and for two sub-periods, 1981-1992
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and 1993-2003. Standard errors are indicated in parenthesis. We report the me-

dian across �rms of selected time-series moments. An alternative would have

been to compute moments for the average across �rms of the variables of interest.

However, this procedure would eliminate the idiosyncratic variability associated

with individual �rms. The median time-series averages are 1:3 for Q, 0:15 for

the investment-capital ratio, and 0:17 for the cash-�ow-capital ratio. We report

the standard deviations for both the logarithms and levels of the main variables.

Q is the most volatile variable, closely followed by cash �ow/capital and invest-

ment/capital. The estimates in Table 1 are similar to those reported in other

studies that use Compustat data.

There are important di¤erences across sub-samples. In particular, the mean

and standard deviation of Q and cash �ow in the second sub-sample are signi�-

cantly higher than in the earlier period. All variables exhibit positive skewness,

and there is more skewness in the full sample than in each of the two sub-samples.

The systematic di¤erences across sub-samples lead us to consider a regime switch-

ing model in our estimation strategy. Finally, Q exhibits strong serial correlation,

while investment and cash �ow exhibit moderate persistence.

In Table 2 we report pooled, time-series-cross-section regressions of the investment-

capital ratio on log(Q), log(cash �ow/capital) and the lagged investment/capital

ratio.7 The coe¢ cient on log(Q) is quantitatively small (0:06), but signi�cant,

with modest explanatory power (R2 = 0:29). Including cash �ow increases sig-

ni�cantly the explanatory power of the regression (R2 = 0:34) and reduces the

size (0:03) and signi�cance of the coe¢ cient on Q. Cash �ow has a large and

7We use a semi-log speci�cation since, as discussed in Abel and Eberly (2002), the log
speci�cation �ts the data better. The skewness in the independent variables, Q and the cash
�ow/capital ratio, favors the semi-log speci�cation over a conventional linear regression. When
we run linear regressions, the coe¢ cient on Q is small but signi�cant, and the coe¢ cient on cash
�ow/capital is larger and also statistically signi�cant. These results accord with the investment
regression results reported in the literature.
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statistically signi�cant e¤ect on the investment-capital ratio. As discussed in

the introduction, this cash-�ow e¤ect is surprising since we use data for the top

quartile of Compustat �rms, which a priori are unlikely to face borrowing con-

straints. We view this e¤ect as likely stemming from measurement error and/or

mispeci�cation, and explore these possibilities in sections 4 and 5. Adding the

lagged investment-capital ratio to the regression leads to a large improvement in

the goodness of �t (R2 = 0:61). Even though much of the investment literature

focuses on the cash-�ow e¤ect, the lagged-investment e¤ect is far more important

from an empirical standpoint.

Figures 1 through 3 provide scatter plots of pooled time-series-cross-section

data that are useful to visualize the relation between di¤erent variables. Figure

1 shows a scatter plot of investment versus log(Q). Figure 2 shows a scatter plot

of investment and log(cash �ow/capital). Figure 3 shows the close correlation

between the investment-capital ratio and its lagged value.

Figure 4 displays the histograms for I=K, average Q, and cash-�ow/K for the

�rms in our sample. Figure 4 depicts three features of the data that are relevant

for our analysis. The �rst feature is that only 0.5 percent of the observations for

I=K are near zero (less than 0.02). This �nding suggests that that investment

irreversibilities do not play an important role in our data, as there is little dis-

cernible range of inaction in which investment is zero. We introduce investment

irreversibility into our model, in section 4.3, and �nd that the irreversibility con-

straint never binds and the �t of the model does not improve. The second feature

is that the histogram shows no concentration of large spikes in investment, sug-

gesting that �xed costs of investment are not likely to be useful in matching the

properties of the investment data for these large �rms. The third feature is that all

three variables are skewed. This property suggests that asymmetric adjustment

costs to investment may not be needed to match the skewness in investment,
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since the underlying cash �ows and Q are already skewed. We investigate these

possibilities formally in section 4.3, where we further discuss these issues.

3.2. Estimation Procedure

Our solution method does not yield an analytical representation for the population

moments implied by the model. For this reason, we estimate the model using the

simulated method of moments proposed by Lee and Ingram (1991). We �rst

use our data to estimate the vector of moments 	D, as described in Section 3.1.

We focus on the moments that are most directly related to the parameters of

the model. The moment vector that we use to estimate the single regime model

includes the mean, standard deviation, and serial correlation of cash �ow (to

identify the shock process), the variance of investment (to identify adjustment

costs), and the mean ofQ (to identify the �xed cost). We �nd the parameter vector

�̂ that minimizes the distance between the empirical and simulated moments,

	(�̂) computed for the median �rm,

L(�̂) = min [	(�)�	D]0W [	(�)�	D] . (3.1)

The weighting matrix W is computed using a block-bootstrap method on our

panel dataset (see Appendix 9.6 for a description). This estimation method gives

a larger weight to moments that are more precisely estimated in the data

We solve the minimization problem (3.1) using an annealing algorithm. This

procedure is used to avoid convergence to a local minimum. Finally, the standard

errors of the estimated parameters are computed as


̂ =
(�0W�)�1

n
,

where � is the matrix of derivatives,

� =
@	(�̂)

@�̂
,
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which we compute numerically. The estimation method is discussed in more detail

in Appendix 9.6.

4. Results: decreasing-returns model, single regime

We choose the exogenous rate of technical progress to be 
 = 1:03. This growth

rate is equal to the real annual growth rate of corporate net cash �ows from

January 1981 to January 2004. We set � = 0:8. This value is consistent with the

estimate of the average degree of returns to scale across industries by Burnside

(1996). We �x � because we cannot separately identify � and � using the moments

of the data that we consider. Both parameters control curvature, so when �

changes, the value of � can be adjusted to restore the �t of the model. We

estimate two versions of the model, with and without measurement error in Q.

4.1. Parameter and moment estimates

We report our parameter estimates and standard errors in Table 3. Our estimate

of the adjustment cost parameter, �, is 0:4148 (with a standard error of 0:0035).

This estimate implies that the average investment adjustment cost is 0:8 percent

of revenue net of variable costs, zK�X1�� in the notation of the model. Our

estimate for the �xed operating cost, �, is 87:07 (with a standard error of 2:23).

This estimate implies annual �xed operating costs that are 22 percent of revenue

net of variable costs.8 We normalize the average shock z to one. We estimate the

spread between shocks to be 0:522. As we discuss below, these values allow the

model to match the mean and standard deviation of the cash-�ow-capital ratio in

the data.
8To calibrate this value to revenue, suppose that variable costs, including labor, are a two-

thirds share of expenditure. In this case, the �xed operating cost would be on average .22/3 =
7.3% of revenue.
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Table 1 reports summary statistics for a panel of �rms constructed by simu-

lating our model. The moments in bold are included in the 	D vector, so our

estimation algorithm seeks to make these moments as close as possible to those

estimated from Compustat data. The algorithm matches all of these moments

closely. The remaining moments are not �targeted�by the algorithm.

Table 1 shows that the single-regime model matches well the �rst-order serial

correlations of sales, cash �ow, and investment, although Q is signi�cantly less

persistent than in the data. Our main �nding is that the model generates a much

lower standard deviation and skewness of Q than those we �nd in the data. The

volatility of Q generated by the model is one-fourth of the volatility of Q present

in the data (0:157 versus 0:625).

We then estimate the model with measurement error in Q in order to match

the standard deviation, �rst-order serial correlation, and skewness of our empir-

ical measure of Q. The estimated noise process generates Qnoiset = Qt exp("t)

+0:7486"t, where "t+1 = 0:8761"t + 0:1369�t+1 and �t v N(0; 1). Note that since
the estimated measurement error is serially correlated, it cannot be corrected in

the investment regressions using instrumental variables.

4.2. Simulated regression results

To evaluate the performance of our model from a di¤erent angle we estimate

investment regressions on a panel of �rms constructed by simulating our model.

We use as explanatory variables both the state variables, which are only observable

in the model, as well as Q, cash �ow, and lagged investment. We report our results

in Table 2. The �rst column shows that regressing investment on the true state

variables of the model (k and the shock, z) using a semi-log speci�cation yields

an R2 of 0:95. This speci�cation proves a very good description of how optimal

investment depends on the state variables.
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We discussed in Section 2 three reasons why average Q is di¤erent from mar-

ginal Q: the presence of decreasing returns to production, the presence of �xed

costs, and timing issues that result from our discrete-time formulation. Still, we

obtain a very good �t (the R2 is 0:95) when we regress investment on log(Q).

When Q is measured without error, average Q is an excellent proxy for marginal

Q. In this sense, this model is not much di¤erent from the original Hayashi (1982)

model.

When we use the noisy version of Q in our investment regressions the R2 falls

to 0:08 and the coe¢ cient on Q is 0:037 (compared to 0:466 for the true Q ).

When cash �ow is added to the regression with noisy Q, the coe¢ cient on Q

falls below 0:01, cash �ow has a coe¢ cient of 0:079, and the R2 rises to 0:71.

When we replace cash �ow with the state variable z in the investment regression,

we obtain an R2 that is similar to that obtained using cash �ow as a dependent

variable. Since there are no frictions in the model, cash �ow enters signi�cantly

in the regression because it is a proxy for the shock, z.

One shortcoming of the single-regime model is that it cannot explain the role of

lagged investment in investment regressions. When we include lagged investment

in the model-based regressions we obtain a very small coe¢ cient (0:02, compared

to 0:63 in the data) and no increase in explanatory power.

In summary, the decreasing-returns model can generate a cash-�ow e¤ect be-

cause when Q is measured with error, cash �ow is a proxy for z. However, we also

�nd that the model is inconsistent with the importance of lagged investment in

investment regressions and with the skewness properties of Q, cash �ow, and in-

vestment. In Section 5 we show that the performance of the model can be greatly

improved by adding a regime-switching component to the Markov chain for z.
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4.3. Other model speci�cations

Before turning to regime-switching, we explored several alternative model speci�-

cations to identify the features that are important to replicate the key moments of

our data. We considered di¤erent speci�cations of the adjustment cost function,

a time-varying discount factor, as well as a behavioral bias.

The skewness in investment led us to consider asymmetric adjustment costs,

both in the form of asymmetric quadratic adjustment costs and an irreversibility

constraint. The asymmetric adjustment costs that we considered take the form:

�1 (I=K � �)2K
�2 (I=K � �)2K

if I=K > �;
if I=K < �.

This formulation is similar to that considered in Zhang (2005). When �2 > �1,

this formulation can match the skewness in investment. It does not, however,

generate enough skewness and volatility in Q, and cannot explain the presence of

signi�cant lagged-investment e¤ects in empirical regressions.

We studied a version of the model that incorporates irreversibility in invest-

ment. This constraint never binds in our model, simulated using the estimated

parameter values. This result is not surprising. Other authors, such as Doms

and Dunne (1998) show that aggregating data for smaller �rms or for individual

plants tends to smooth out non-convexities in investment.9 Hence, non-convex

costs that are important for understanding more disaggregated data do not gener-

ate realistic dynamics when applied to more aggregated data, such as our sample

of large �rms.

We found that introducing empirically plausible variability in the discount

factor had almost no impact on the implications of our model for the moments of

9Cooper and Haltiwanger (2006) use the Longitudinal Research Database to show that the
properties of investment at the plant level are very di¤erent from those at the �rm level. They
estimate a model that captures key features of investment at the plant level. Since the plant-level
data do not include Q and cash �ow, these variables are not part of their analysis.
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interest. For this reason, we computed our main results using a constant discount

rate.

In order to generate a higher volatility of Q, we introduced a behavioral bias

into the model. Speci�cally, we assumed that managers forecast fundamentals us-

ing the correct Markov chain but investors forecast future shocks using a distorted

Markov chain with higher persistence (larger diagonal values). This speci�cation

generated enough volatility in Q, but failed to replicate the skewness of Q found

in the data.

Finally, we re-estimated the model using a more �exible speci�cation for the

shock distribution that allows for a skewed support. This model can match the

skewness of investment in the data, but it requires skewness in cash �ow that is

four times greater than in the data. Moreover, even when we match the skewness

of investment with this approach, there is still no lagged investment e¤ect.

5. Results: decreasing-returns model with regime switching

The regime-switching speci�cation allows for a second regime in the productivity

shock z. The average shock is normalized to one. We separately estimate spreads

across regimes (��, see equation (2.3)) and within regimes (�L and �H). We

also estimate the discount factor, the persistence of the shocks, and the switching

parameters in the Markov chain. In all our regime-switching speci�cations, we

use a moment vector that includes the mean and standard deviation of cash �ow

in both regimes, the overall standard deviation and serial correlation of cash �ow,

the mean of Q in both regimes and its overall serial correlation, and the standard

deviation and skewness of investment. These moments are reported in bold in

Table 1.
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5.1. Parameter and moment estimates

We report the estimated model parameters and standard errors in Table 3. Our

estimate for the adjustment cost parameter, �, is 0:7654 (with a standard error

of 0:0643). This estimate is much larger that the one we obtained for the single

regime model (0:4148). This di¤erence re�ects the fact that the support of z is

much wider in the regime-switching model. In the absence of adjustment costs,

this wider support would generate higher volatility of investment than that of

the single regime model. As a result, we need higher adjustment costs in the

regime-switching model to match the empirical volatility of investment.

This value of � implies that the average investment adjustment cost is 1:3

percent of revenue net of variable costs. The estimated �xed operating cost, �,

is 102:2 with a standard error of 1:734. These estimates imply that annual �xed

operating costs are 25:1 percent of revenue minus variable costs.10

Figure 5 displays the distribution of shocks. The high regime has a higher

average productivity, but also a higher standard deviation. It is interesting to note

that the support of the two regimes overlap. In fact, the low shock in the high

regime is lower than the low shock in the low regime. All of these parameters are

precisely estimated. The estimated Markov chain described in Table 4 exhibits

strong persistence: the parameter � is 0:5972 (recall that our data has annual

frequency). We also estimate the probabilities of switching regime from either the

middle state or from the state closest to the alternative regime (e.g., transiting

from the highest low state to the high regime, or from the lowest high state to the

low regime). These probabilities are 3:63 percent and 17:59 percent, respectively.

These estimates imply that the (unconditional) probability of a regime switch is

10Calibrating to revenue, and again supposing that variable costs, including labor, are a two-
thirds share of expenditure, this value implies that the �xed operating cost would be on average
.251/3 = 8.4% of revenue.
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approximately 7 percent per year.

Table 1 reports summary statistics for the panel of �rms simulated using the

regime-switching model. The highlighted moments are included in the 	D vec-

tor. The algorithm matches all of these moments quite closely. We estimate

the measurement error process to match the standard deviation, persistence, and

skewness of Q.11 The results reported in Table 1 show that incorporating regime

switching improves the �t of the model, particularly for the higher moments of

the data. Compared to the single-regime model, the standard deviation of Q is

substantially higher, and the model generates skewness in Q and investment that

are much closer to the data. The serial correlation properties are also better than

those of the single regime model.

In order to better understand the dynamics of the model, we calculate the

elasticity of each moment in the 	D vector with respect to the parameters of the

model. This exercise shows how changes in parameter values a¤ect the model�s

performance. We report this elasticity matrix in Table 5. In the �rst row of

the table we see that average Q in the �rst (low) regime is heavily in�uenced

by the �xed operating cost, �, as well as by the discount factor �. The �xed

operating cost, �, in�uences the moments of Q and cash �ow but in�uences only

the skewness of investment.

Since we keep the average shock, z, constant in the model, the average cash

�ow for each of the two regimes is largely determined by the spread � across

regimes. This parameter establishes in turn the mean shocks �L and �H and

a¤ects the average cash �ow in each regime. Similarly, the standard deviation of

cash �ow in each regime has a unit elasticity with respect to the standard deviation

of shocks in the regime. The standard deviation of the investment-capital ratio is

11We generate Qnoiset = Qt exp("t) +1:24"t; where "t+1 = 0:841"t + 0:104�t+1 and �t v
N(0; 1).

19



largely determined by the adjustment cost parameter � and the volatility of shocks

within and across regimes. Finally, the skewness of investment is in�uenced by the

adjustment cost and the �xed operating cost, as well as the parameters governing

the distance between the shocks in the two regimes.

Figure 6a and 6b plot the value functions and policy functions for each state in

the two regimes as a function of the �rm�s capital stock. The lower bounds of the

support of z in the two regimes (�L��L and �H��H) are very similar. However,
the value and policy functions evaluated at these two lower bounds take on very

di¤erent values. The value of the �rm is higher when the shock is �H ��H rather
than when it is �L � �L even though �H � �H < �L � �L. This property re�ects
the fact that, even when the current state is low, the probability of transiting

to the highest value of the shock, �H + �H , is higher when the current state is

�H � �H than when the state is �L � �L.

5.2. Simulated regression results

We now regress investment on its determinants using simulated data. We report

our results in Table 2. In the �rst column, we use K, z, and a dummy variable

for the regime to explain investment using a semi-log speci�cation. As in the

single regime model, this speci�cation provides a good approximation to the policy

function for the investment-capital ratio, with a R2 of 0:97.

A regression of investment on Q has a R2 of only 0:48 (compared to 0:95 for

the single-regime model) and the Q coe¢ cient is equal to 0:1137. The di¤erence

between average and marginal Q is greater in this model, relative to the single-

regime model, because the support of z is much wider.

If we use the noisy measure of Q the coe¢ cient on Q falls to 0:0218 and the

R2 drops sharply to 0:11. When we control for the regime the R2 rises from 0:11

to 0:27 while the coe¢ cient on Q falls from 0:0218 to 0:011.
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When we add cash �ow to this regression, the coe¢ cient on Q falls to 0:0155.

Cash �ow enters signi�cantly with a coe¢ cient of 0:0339 and the R2 rises from 0:11

to 0:21. As in the single regime model, we obtain similar results when we replace

cash �ow with z. In column (7), cash-�ow enters signi�cantly in the investment

regression because it is a proxy for z.

Finally, including lagged investment in the regression improves the �t con-

siderably in both model and data regressions, lowering the coe¢ cients on Q and

cash �ow. The parameter estimates are very similar in model and data regres-

sions. Recall that this similarity is not present in the investment regressions for

the single-regime model. In those regressions lagged investment is driven out by

cash �ow (see Table 2). The last column (column (10)) of the table shows that

this result also holds when we use the true measure of average Q, rather than the

noisy measure. The misspeci�cation in average Q, relative to marginal Q, admits

both a cash-�ow e¤ect and a lagged investment e¤ect in the regression even when

average Q is measured perfectly.

The presence of regime switching improves the ability of the model to �t the

moments of the data. It also helps the model match the empirical covariation

and partial covariation among investment, cash �ow, and Q. These results sug-

gest that the presence of regime switching is crucial to understanding investment

regressions. In the data and in the simulation, both the true Q and noisy Q have

relatively poor explanatory power for investment when there is regime switching

(Table 2). Cash �ow improves the �t of the regression, but not nearly as dramati-

cally as it did in the single regime model, where using cash �ow to proxy the shock

raised the R2 from 0:04 to 0:70. In the regime switching model, the addition of

cash �ow only increases the R2 from 0:11 to 0:27. Figure 7 illustrates this prop-

erty. It plots the investment rate, i=k, as a function of the capital stock for each

value of the shock, z, in the regime switching model. The relation between the
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current shock and current investment is non-monotonic. The lowest investment

rates occur on the lowest branch of the graph, when the shock is in the low regime

and z = 0:5876. Investment rates are substantially higher when the shock is in

the high regime and z takes on its lowest value: z = 0:5178. This property results

from the fact that the probability of transiting between regimes is low. Within the

high regime, even when current z is very low, future prospects are bright because

there is a high probability of transiting to a high value of z. In the low regime,

even when current z is high, the prospects for the future are relatively bleak and

thus investment remains low. The transition dynamics within and across regimes

break the monotonic relation between investment and z and between investment

and cash �ow.

A similar argument explains why the regime-switching model can replicate

the lagged-investment e¤ect present in the data. Since regime changes do not

occur often, last period�s level of investment is a good indicator of the current

regime. In other words, lagged investment acts as a proxy for an aspect of the

shock process (the regime) that is not embodied by cash �ow. In contrast, in the

single-regime model, the close relation between the shock and cash �ow makes

lagged investment redundant in explaining current investment.

5.3. Introducing �rm heterogeneity

So far our results are based on data simulated for a single �rm which we compare to

the median �rm in our sample. To investigate the robustness of our results, since

most empirical work addresses a heterogeneous panel of �rms, we now introduce

�rm heterogeneity. We allow for the average value of z to be di¤erent across �rms.

For every �rm i we choose z so that the steady state stock of capital coincides

with the average value of the capital stock of �rm i in the sample (see Appendix

9.7) for details. We generate simulated data for the di¤erent �rms and use the
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resulting data panel to run investment regressions with �xed e¤ects. The results

are reported in Table 2. The �t of the di¤erent regressions and the magnitude of

the cash �ow and investment e¤ects are comparable to our previous results.

6. Hayashi�s Model

In this section we study a version of Hayashi�s model by considering a special case

of the decreasing-returns model in which returns to scale are constant (� = 1)

and the �xed cost of operating is zero (� = 0).

The �rm�s problem is given by the following Bellman equation:

V (K; z) = max
i;k0
[zK � � (I=K � �)2K � I (6.1)

+�

Z
V (K 0; z0)F (dz0; z)],

subject to:

K 0 = I + (1� �)K. (6.2)

We consider a regime-switching process and choose the Markov chain and the

support of z so that the model matches the empirical volatility of the cash-�ow-

to-capital ratio. The support of z is given by:12

z 2
�
�L � �L; �L; �L + �L; �H � �H ; �H ; �H + �H

	
.

We solve the model taking advantage of the fact that the value function is homo-

geneous of degree one (see Appendix 9.4 for details).

One interesting �nding is that if we set � = �, this model fails to match even

the most basic moments of the data, such as the average value of Q and the

volatility of I=K. The fact that the model generates in�nite values for V and Q

12The performance of this regime-switching version of Hayashi�s model is much better than
that of a single-regime version. To conserve space we do not report results for the single-regime
version.
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for many parameter combinations is at the heart of this failure. When the discount

factor is high (i.e. the real interest rate is low) the average values of V and Q

are often in�nity. The value of the �rm is �nite only when the adjustment cost

parameter, �, is very high. However, high adjustment costs imply low investment

volatility. When the discount factor is low (i.e. the real interest rate is high) it

is possible to generate a �nite �rm value with low values of �. However, the low

discount factor produces very low values for Q.

We avoid this conundrum by analyzing a version of the model in which we

estimate �. Table 3 reports the parameter estimates and standard errors for

the Hayashi model with regime switching. The estimate of the adjustment cost

parameter, �, is much higher than that obtained for the decreasing-returns model

(3:4510 versus 0:7654). In the absence of adjustment costs investment would

be �nite in the decreasing-returns model because of the presence of decreasing

returns to production. In contrast, without adjustment costs, investment in the

Hayashi model would alternate between +1 (when z � � > 1=� � 1) and �1
(when z � � < 1=� � 1). As a consequence, we need higher adjustment costs in
the Hayashi model in order to match the volatility of investment observed in the

data. Our parameter estimates imply that adjustment costs represent on average

4:6 percent of revenue net of variable costs.

Table 1 compares the implied data moments from the model to those in the

data.13 The model matches closely the data moments, including the average level of

Q in both regimes, and the overall volatility and skewness of Q. Since investment

closely tracks Q in this model, overall investment volatility and skewness also

match the data. However, the adjustment cost required to match the data reduces

investment volatility within regimes (for example, the volatility of investment is

13We added the average level of It=Kt to the moment vector used in the estimaton of the
Hayashi model. In the generalized-Hayashi model the ratio It=Kt is determined by the depre-
ciation rate and the long run growth rate. This property is not present in the Hayashi model.
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0:015 in the low regime, compared to 0:05 in the data). The model requires a large

change in the average level of It=Kt across regimes (from 0:113 to 0:215 from the

low to high regimes) that is not present in the data. Overall, the �t is comparable

to that of the decreasing-returns model. In some dimensions the �t is superior

(e.g., the dynamics of Q) in the Hayashi model, while in others (e.g., investment

dynamics) the decreasing-returns model is a better �t.

6.1. Simulated regression results

Table 2 reports the results of estimating investment regressions on data simulated

from the Hayashi model. The only reason why Q is not a su¢ cient statistic for

investment is the timing issue that arises in discrete time, which we discuss in

Section 2. So, it is not surprising that we �nd that Q is an excellent predictor of

investment: the R2 of the regression of investment on log(Q) is 0:97.

The second set of regressions use a version of the model where Q is mea-

sured with error. As with our previous model, this measurement error process

is estimated so that the resulting Q matches the empirical standard deviation,

persistence and skewness of Q.14 In this version of the model Q is no longer a suf-

�cient statistic for the choice of investment, and cash-�ow and lagged-investment

e¤ects emerge. However, these e¤ects are much weaker than in the data. Regress-

ing investment on noisy Q alone generates an R2 of 0:42; adding only cash �ow

reduces the coe¢ cient on Q from 0:0633 to 0:0554 with a coe¢ cient on cash �ow

of 0:0271. Adding lagged investment raises the R2 further to 0:80, with a lagged

investment coe¢ cient of 0:7325. In this speci�cation the coe¢ cient on Q is twice

as large as it is in the data.

14We generate Qnoiset = Qt exp("t) +6:998"t; where "t+1 = 0:662"t + 0:023�t+1 and �t v
N(0; 1).
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7. CEE Model

Many recent macroeconomic models incorporate a form of adjustment costs pro-

posed by Christiano, Eichenbaum, and Evans (2005). In this formulation, adjust-

ment costs depend on changes in the level of investment, so lagged investment

e¤ects are likely to arise naturally in investment regressions. In this section we

study the properties of a version of our model that incorporates CEE-style ad-

justment costs.

The �rm�s problem, written in terms of detrended variables, is given by:

v(k; i�1; z) = max
i;k0

�
zk� � i� �+ �


Z
V (k0; i; z0)F (dz0; z)

�
,

subject to:


k0 = i
�
1� ��(
i=i�1 � 
)2

�
+ (1� �)k. (7.1)

Here i�1 denotes the value of investment in the previous period. The presence of a

third state variable in the value function requires us to adopt a di¤erent algorithm

to solve the model. We describe this algorithm in the appendix.

There are four reasons why average and marginal Q do not coincide in this

model. The �rst three reasons are common to the decreasing-returns model: there

are decreasing returns to production, a �xed cost, and the timing issue that arises

in discrete time. The fourth reason has to do with the fact that the value function

depends, not only on k and z, but also on i�1. If we set � = 1 and � = 0 in the

Hayashi model we obtain a value function that is homogeneous of degree one and

so: V (k; z) = V1(k; z)k, implying that V (k; z)=k = V1(k; z). If we set � = 1 and

� = 0 in the CEE model the value function is homogeneous in degree one in k and

i�i.15 This property implies that: v(k; i�1; z) = v1(k; i�1; z)k+v2(k; i�1; z)i�1. So,

v(k; i�1; z)=k 6= v1(k; i�1; z).
15See Jaimovich and Rebelo (2008) for a proof.
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We estimate that the adjustment cost parameter, ��, is equal to 0:9829, with a

standard error of 0:0567.16 The other parameter estimates, shown in Table 3, are

close to those for the decreasing-returns model. Average adjustment costs as a

fraction of revenue net of variable costs are 0:8 percent. The �xed cost represents

25:4 percent of revenue net of variable costs.

Table 1 shows that the �t of the model with CEE adjustment costs is gen-

erally very good. This �t is comparable to that of the decreasing-returns model

with two exceptions. First, the CEE formulation generates too much investment

persistence. The �rst-order serial correlation of investment is 0:94 in the model

and 0:60 in the data. The high degree of investment persistence generated by the

model is not surprising since this speci�cation penalizes changes in the level of

investment. Second, the model does not generate enough skewness in investment

(0:31 in the model versus 0:42 in the data). This property is a direct consequence

of the adjustment cost speci�cation: an increase in �� reduces both the standard

deviation and skewness of investment, and the estimation procedure cannot �nd

a set of parameter values which �ts both moments.

Table 2 reports the results of estimating investment regressions on data sim-

ulated from the model with CEE adjustment costs.17 This model generates a

regression coe¢ cient on Q that is very similar to the data. The cash-�ow e¤ect

is weak and sometimes negative. The model generates a lagged investment e¤ect

that is much stronger than that found in the data (0:9269 versus 0:6253). This

property re�ects the fact that lagged investment is a state variable in this model.

16The value of �� estimated by CEE using macro data and a model with a constant returns
to scale in production is 1:24. CEE estimate �00(1) = 2:48, where �00(1) is the second derivative
of the adjusment cost function evaluated at the steady state. In our case the adjustment cost
function is quadractic, so �� = �00(1)=2.
17We generate Qnoiset = Qt exp("t) +4:336"t; where "t+1 = 0:740"t + 0:042�t+1 and �t v

N(0; 1).

27



8. Conclusions

We estimate three models of investment and examine their implications for the

mean, standard deviation, skewness and persistence of investment, cash �ow, and

Q. While all three models can closely match the key data moments, the decreasing-

returns model and the Hayashi model both replicate the salient empirical features

of investment, cash �ow and value in our sample of large �rms. These models

would nonetheless be rejected by tests based on investment regressions. We �nd

empirically plausible cash-�ow and lagged-investment e¤ects in data simulated

from these models when we incorporate our estimates of measurement error in

the construction of Q. This result illustrates the importance of going beyond

investment regressions when assessing investment models.

The estimated regime-switching process for the shocks is an important feature

of the model. This process generates skewness in cash �ow, Q, and investment,

and also implies that Q and cash �ow are not informationally redundant for the

investment decision. WhenQ is mismeasured or misspeci�ed (as in the decreasing-

returns model), current cash �ow does not perfectly predict expected investment

opportunities. Instead there is a role for both cash �ow and lagged investment to

predict current investment, even when controlling for Tobin�s Q. These �ndings

show that a neoclassical model with quadratic adjustment costs can match the

key data moments of large publicly-traded �rms, while simultaneously generating

empirically relevant cash �ow and lagged investment e¤ects.
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9. Appendix

9.1. Data Sources and Calculations

Annual data items from the dataset cstsann in the CRSP/Compustat Merged

database, 1981-2003, are �rst listed, followed by the calculations underlying the

constructed variables. Sources for non-Compustat items are given in parentheses.

� I : expenditures on property, plant, and equipment, data 30

� CashF low: income before extraordinary items + depreciation and amor-

tization + minor adjustments, calculated as follows (from the Compustat

manual):

Income Before Extraordinary Items, 123

+ Depreciation and Amortization, 125

+ Extraordinary Items and Discontinued Operations, 124

+ Deferred Taxes, 126

+ Equity in Net Loss (Earnings), 106

+ Sale of Property, Plant, and Equipment and Sale of Investments �Loss(Gain),

213

+ Funds from Operations �Other, 217

+ Accounts Receivable �Decrease (Increase), 302

+ Inventory �Decrease (Increase), 303

+ Accounts Payable and Accrued Liabilities �Increase (Decrease), 304

+ Income Taxes �Accrued �Increase (Decrease), 305

+ Assets and Liabilities �Other (Net Change), 307

= Operating Activities �Net Cash Flow, 308

� inventories: total inventories (end of period), data 3
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� debt: long-term debt (end of period), data 9

� PPE, book value of capital: property, plant, and equipment,

� data 182: PPE - Beginning Balance �check if it is still reported after

1997;

� data 187: PPE - Ending Balance (Schedule V);

� data 184: PPE - Retirements (Schedule V) - not reported after 1997;

� data 185: PPE - Other Changes (Schedule V) - not reported after 1997.

� Pk, price of capital: implicit price de�ator for nonresidential investment,
Economic Report of the President, Table B-3, various years.

� u, investment tax credit: obtained by year for 51 asset classes from Dale

Jorgenson. These data are aggregated to the two-digit industry level using

the BEA historical cost capital �ow matrix (asset by industry by year).

Speci�cally, the weight of asset type n in industry j in year t is calculated

as wn;j;t � In;j;t=
P
n

In;j;t. The investment tax credit applied to industry j in

year t, uj;t, is then constructed as the weighted sum uj;t =
P
n

wj;n;tuj;n;t.

� z, value of depreciation allowances: obtained by year for 51 asset classes from
Dale Jorgenson. These data are aggregated to the two-digit industry level

using the BEA historical cost capital �ow matrix (asset by industry by year).

Speci�cally, the weight of asset type n in industry j in year t is calculated

as wn;j;t � In;j;t=
P
n

In;j;t. The value of depreciation allowances in industry j

in year t, zj;t, is then constructed as the weighted sum zj;t =
P
n

wj;n;tzj;n;t.

� � , corporate tax rate: obtained from King and Fullerton (1984), table 6.4,

and Fullerton and Karayannis (in Jorgenson and Landau (1993)), p. 343,

updated to 2003 by Dale Jorgenson.
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� market value of equity: closing stock price times number of common shares
outstanding (end of period) plus redemption value of preferred stock (end

of period) = prc * shrout/1000 + data56, where,

� prc: closing stock price from msf �le (monthly stock - securities);

� shrout: Common shares outstanding from msf �le (monthly stock -

securities);

� data 56: Preferred Stock - Redemption Value.

� L, useful life of capital goods: by two-digit industry, the useful life of cap-
ital goods is calculated as Lj � 1

Nj

P
i2j

PPEi;t�1+DEPRi;t�1+Ii;t
DEPRi;t

, where Nj is

the number of �rms, i, in industry j. Using the double-declining balance

method, the implied depreciation rate for industry j, �j, is 2=Lj.

� K, replacement value of capital stock: Using the method of Salinger and
Summers (1983) the replacement value of the capital stock is constructed by

�rm from its book value using the recursion: Ki;t =
�
Ki;t�1

PK;t
PK;t�1

+ Ii;t

�
(1� �j),

where the recursion is initialized using the book value of capital.

� Tobin�s Q: [(market value of equity)t�1 + (debt)t�1 - (inventories)t�1]/Kt.
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9.2. Sample Selection

Starting from the dataset cstsann in the CRSP/Compustat Merged database, the

following �lters were applied:

� If the �rm was involved in a merger or acquisition, then delete (using aftnt35:
=�01�as indication of a Merger & Acquisition)

� end-of-period capital (data 187) is not missing

� investment (data 30) is not missing

� operating pro�t (data 178) is not missing

� incorrect capital accumulation (only for data before 1994, due to data184
and data185 not being reported after 1997)

� if disinvestment > end-of-period capital then delete

� if operating loss is greater than end-of-period capital then delete

� if operating pro�t is greater than 2.5 times end-of-period capital then delete

� if q is missing or q<0 then delete

� if investment (data 30) < 0 then delete

� if dis-investment (data107) < 0 then delete
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9.3. Solution Method, decreasing-returns model

We assume that k can only take nk discrete values. We start with a guess for

the value function, V 0(k; z) for each pair (k; z). We compute the policy function

k
0
= h0(k; z)by �nding the value of k0 that maximizes the value of the �rm for each

pair (k; z). The new value function, V 1(k; z) is given by the following equation

with m = 1:

V m(k; z) = max
i;k0
[zk� � �� � f[k0 � (1� �)k] =k � �g2 k � [
k0 � (1� �)k]

+�


Z
V m�1(k0; z0)F (dz0; z)].

We use V 1(k; z) to �nd a new policy function k
0
= h1(k; z) and a new value

function, V 2(k; z). We continue to iterate until V m�1(k; z) and V m(k; z) converge

for every (k; z) pair.

In practice, this method is slow to converge. To speed up the procedure in

the context of our SMM estimation, which requires solving the model at every

iteration, we instead adopt a hybrid method. We start with a policy function

iteration approach: we iterate as above until hm�1(k; z) and hm(k; z) converge

for every (k; z) pair. Once this is done, we iterate on the value function, keeping

the policy function constant, until convergence. Not having to �nd a new policy

function at that stage makes this hybrid procedure signi�cantly faster.
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9.4. Solution Method, Hayashi Model

The value function, V (K; z), is homogeneous of degree one in the capital stock.

This property follows from the fact that we can write the value function as a

sum of functions that are homogeneous of degree one. The homogeneity property

allows us to rewrite (6.1) as:

V (1; z) = max
i=k
[z � � (I=K � �)2 � I=K (9.1)

+(I=K + 1� �) �
Z
V (1; z0)F (dz0; z)],

Using the fact that V1(1; z) = V (1; z), we can write the optimal value of I=K as:

I

K
=
�
R
V (1; z0)F (dz0; z)� 1

2�
+ � (9.2)

We solve the model using value-function iteration. We start with a guess for the

value function, V 0(1; z) for each value of z. We use (9.2) to compute the optimal

value of I=K associated with each value of z. We then compute the new value

function, V 1(k; z). This function is given by the following equation with m = 1:

V m(1; z) = max
i=k

"
z � 1

�

�
�
R
V m�1 (1; z0)F (dz0; z)� 1

2

�2
�

�
R
V m�1 (1; z0)F (dz0; z)� 1

2�
+ � + (9.3)�

�
R
V m�1 (1; z0)F (dz0; z)� 1

2�
+ 1

�
�

Z
V m�1(1; z0)F (dz0; z)

�
.
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9.5. Solution Method, CEE Model

We obtain numerical solutions to the model with CEE adjustment costs using the

following algorithm developed in Lkhagvasuren (2006):

1. De�ne a coarse grid for (k; i�1; z);

2. Choose a guess for v(k; i�1; z) and evaluate it on the coarse grid;

3. Choose a �ne grid for i�1;

4. Generate a �ne grid for k compatible with �ne grid for i�1 using the resource

constraint, (7.1);

5. Use bilinear interpolation to evaluate v(k; i�1; z) for every value of z on the

�ne grid for i�1 and z;18

6. Find the optimal value of i for every (k; i�1; z) combination;

7. Save the new value of v(k; i�1; z) evaluated on the coarse grid;

8. Save the policy function for i, i(k; i�1; z), evaluated on the �ne grid;

9. Check whether the value function has converged;

10. If the value function has converged then stop; else go to step 5;

To simulate the model we can use a bilinear interpolation of i(k; i�1; z) evalu-

ated for every z, for every pair (k; i�1) evaluated on the �ne grid. This interpola-

tion procedure avoids k and i�1 having to take values on the real line.

18Bilinear interpolation is an extension of linear interpolation for bivariate functions. Suppose
we know the values of the function f(x; y) evaluated at four points: (x1; y1), (x2; y1), (x1; y2),
and (x2; y2). Then f(x; y) ' f(x1;y1)

(x2�x1)(y2�y1) (x2 � x)(y2 � y) +
f(x2;y1)

(x2�x1)(y2�y1) (x � x1)(y2 � y) +
f(x1;y2)

(x2�x1)(y2�y1) (x2 � x)(y � y1) +
f(x2;y2)

(x2�x1)(y2�y1) (x� x1)(y � y1).
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9.6. Estimation Method

The objective of the simulated method of moments is to �nd the parameter vector

�̂ that minimizes the distance between empirical (	D) and simulated moments

(	(�)):

L(�̂) = min [	(�)�	D]0W [	(�)�	D] . (9.4)

The weighting matrix, W , is obtained using the variance-covariance matrix of the

empirical moments, 
D:

W =
1


D(1 + 1=k)
, (9.5)

where k = length of simulation=length of sample. We estimate the matrix 
D

using a block-bootstrap method as follows: We form m samples. Each sample

consists of data for n �rms drawn with replacement from our data set. For each

of the m samples we compute the vector of empirical moments. We use the m

observations on the vector of moments to estimate the variance-covariance matrix

of the empirical moments, 
D.

We solve the minimization problem (9.4) using an annealing algorithm. The

�rst step consists in choosing initial values for the parameter vector, �, admissible

ranges for the parameters, as well as the �temperature�and the step size. As

we discuss below, the temperature controls the probability that, given the best

parameter vector so far, ��, we accept a parameter vector �0 that yields a worse �t

(L(�0) > L(��)). This procedure is used to avoid convergence to a local minimum.

We start with a high temperature value, so that the algorithm explores di¤erent

regions of the parameter space.

The second step is to generate a new parameter vector, �0, by adding random

shocks to the elements of �� within their admissible range. Next we solve the

model using value-function iteration for the parameter vector �0 and simulate

1940 representative �rms (each with 23 years of data). Since the number of �rms
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in our Compustat sample is equal to 194, this implies that k in (9.5) equals

10. The fourth step consists in computing the simulated moments and L(�0).

If L(�0) < L(��) we set �� = �0. If L(�0) > L(��) we set �� = �0 with

probability exp [� (L(�0)� L(��)) =temperature]. Finally, we reduce the values of
temperature and step size before going back to step two. The vector of parameter

estimates is the one that generates the lowest value of L. We denote this vector

by �̂.

To verify the convergence properties of our estimation procedure, we used a

simple robustness check. Starting with a parameter vector ~�, we simulate a panel

of �rms and compute the simulated moments, 	(~�). We then use the SMM pro-

cedure described above to �t these moments. Ideally, we would like the parameter

estimates �̂ to be as close as possible to the true parameter values ~� (the ones

that generated the data). Failure to do so may indicate that the estimation pro-

cedure is not adequate or that the model parameters are not identi�ed. We �nd

that our procedure can recover reasonably well the true parameter values. This

is also con�rmed by the fact that we obtain similar parameter estimates across

SMM runs with di¤erent starting values.
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9.7. Simulation Method, Panel of Firms

We construct a panel of �rms using our estimation results for the decreasing

returns version of the model, with regime switching. We proceed as follows:

1. From our Compustat sample, classify �rms into bins based on their average

level of capital.

2. Using the expression for the steady state level of capital, back out the

average level of the shock z for a �rm/bin.

3. For a given bin, compute the median across �rms of the �rst three time-

series moments of Tobin�s Q.

4. For a given bin, solve the �rm�s problem, using the estimated parameters

for the decreasing returns model with regime switching.

5. Simulate series for capital, cash �ow and investment of length NT .

6. Adjust the �xed cost to match the average of Tobin�s Q for that particular

bin (corresponds to the �median��rm for that bin).

7. Find the noise process to match the standard deviation and skewness of Q

for that particular bin. Create the variable Qnoise.

8. Divide the simulated series into N �rms of T years each.

9. Repeat the procedure for each bin.
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Decreasing 
returns model

Full Sample Single regime

1981‐2003 1981‐1992 1993‐2003 All Low High All Low High All Low High

Time‐series 
average
Q 1.298 0.950 1.892 1.316 1.235 0.920 1.550 1.355 0.976 1.748 1.286 0.930 1.657
I/K 0.150 0.146 0.161 0.151 0.152 0.124 0.179 0.163 0.113 0.215 0.153 0.124 0.183
Cash Flow/K 0.169 0.155 0.199 0.172 0.156 0.141 0.172 0.180 0.171 0.190 0.162 0.137 0.189

Time‐series 
standard 
deviations
Q 0.625 0.256 0.589 0.157 0.397 0.207 0.269 0.475 0.148 0.365 0.433 0.162 0.294
Q + noise 0.625 0.636 0.468 0.613 0.624 0.386 0.566 0.625 0.435 0.594
ln(Q) 0.420 0.280 0.280
I/K 0.055 0.050 0.046 0.055 0.055 0.039 0.056 0.057 0.015 0.033 0.057 0.044 0.054
ln(I/K) 0.370 0.330 0.300
Cash Flow/K 0.078 0.046 0.089 0.079 0.072 0.050 0.086 0.079 0.052 0.098 0.074 0.044 0.087

Skewness
Q 0.577 0.160 0.350 0.084 0.278 0.690 0.571
Q + noise 0.577 0.160 0.350 0.577 0.555 0.584 0.575

I/K 0.418 0.320 0.330 0.014 0.479 0.422 0.314
Cash Flow/K 0.245 ‐0.040 0.050 ‐0.063 0.306 0.292 0.545

Serial 
correlation
Q 0.838 0.780 0.660 0.426 0.848 0.856 0.860
Q + noise 0.838 0.780 0.660 0.838 0.842 0.838 0.837

I/K 0.600 0.550 0.540 0.397 0.741 0.877 0.938
Cash Flow/K 0.540 0.500 0.370 0.535 0.515 0.508 0.586

*For each variable, we compute the time series average for each firm in the sample, and report the median across firms. 

 “Q” is Tobin’s Q, I is investment in property, plant, and equipment, and K is the capital stock.  

Construction of the variables is described in the text and in the data appendix.

Regime switching Regime switching Regime switchingSubsamples

Table 1: Summary statistics, data and model implications

Decreasing returns 
model

Median across large firms (4th 
quartile of Compustat firms)*

Hayashi model CEE model



Regressors 1 2 3 4 5 6 7 Regressors 1 2 3 4 5 6 7 8 9 10

0.1406 0.219 0.0413 0.0849 0.1359 0.1508 0.0993 0.1722 ‐0.0046 0.0072
(0.0016) (0.0052) (0.0023) (0.005) (0.0003) (0.0003) (0.0013) (0.0013) (0.0006) (0.0006)

0.7515 0.6253 0.8728 0.9269
(0.0116) (0.0132) (0.0020) (0.0019)

0.06 0.0331 0.0126 0.0887 0.1020 0.0302
(0.0016) (0.0023) (0.0019) (0.0008) (0.0009) (0.0004)

0.0387 0.017 0.0205 0.0184 0.0048
(0.0024) (0.0020) (0.0004) (0.0004) (0.0002)

R2 0.29 0.34 0.57 0.61 ‐0.0176 0.0110 ‐0.0094 ‐0.0018

(0.0006) (0.0006) (0.0002) (0.0002)

R2 0.27 0.07 0.29 0.08 0.90 0.88

1.490 0.006 0.139 0.299 0.158 0.311 1.1158 0.1333 0.1503 0.1269 0.2177 0.1951 0.1554 0.0848 0.0392 0.0665
(0.003) (0.0002) (0.0003) (0.0006) (0.0002) (0.0002) (0.0012) (0.0002) (0.0003) (0.0003) (0.0010) (0.0009) (0.0002) (0.0010) (0.0005) (0.0009)

0.02 0.1289 0.0477 0.0482
(0.0029) (0.0001) (0.0005) (0.0005)

0.466 0.6644 0.7415 0.5154
(0.0006) (0.0034) (0.0033) (0.0036)

0.037 0.009 0.008 0.008 0.1136 0.063
(0.0006) (0.0004) (0.0004) (0.0004) (0.0006) (0.0007)

0.079 0.097 0.0218 0.0110 0.0155 0.0045 0.0143 0.0064
(0.0003) (0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (00003) (0.0002)

‐0.171 0.0339 0.0344 0.0173 0.0016
(0.0004) (0.0005) (0.0004) (0.0004) (0.0004)
0.133 0.109 ‐0.1309

(0.0002) (0.0003) (0.0002)

R2 0.95 0.95 0.08 0.71 0.73 0.72 0.1075 0.0577

(0.0001) (0.0007)

R2 0.97 0.48 0.11 0.27 0.21 0.37 0.25 0.59 0.55 0.65

Decreasing returns model, regime switching, heterogneous firms, panel data with fixed effects (in logs)
Constant 0.1228 0.152 0.0921 0.2027 0.22238 0.0889 0.0536 0.141 0.2241 0.1977 0.1023

(0.0001) (0.0002) (0.0002) (0.0009) (0.0008) (0.0002) (0.0008) (0.0001) (0.0003) (0.0003) (0.0004)
It‐1/Kt‐1 0.0306 0.7325 0.5215

(0.0012) (0.0028) (0.0014)
ln(Q) 0.1653 0.1769 0.1722

(0.0001) (0.0001) (0.0002)
ln(Q+noise) 0.0633 0.0554 0.0488 0.02 0.0522 0.0462 0.0278

(0.0003) (0.0004) (0.0004) (0.0003) (0.0002) (0.0002) (0.0002)
ln(Cash Flow/K) ‐0.0153 0.0271 ‐0.0149 0.0074 0.0344 0.0262 0.0168

(0.0001) (0.0004) (0.0001) (0.0003) (0.0001) (0.0002) (0.0001)
ln(z) 0.0398

(0.0004)

R2 0.97 0.42 0.99 0.47 0.52 0.99 0.80 R2 0.15 0.1 0.24 0.57

Table 2: Investment regressions

Dependent variable I/K, standard errors in parenthesis

Hayashi model, regime switching

CEE adjustment costs, regime switchingData

Decreasing returns model, single regime

Constant

Decreasing returns model, regime switching

ln(Q+noise)

ln(z)

Constant

It‐1/Kt‐1

ln(Q)

ln(Q+noise)

ln(Cash Flow/K)

Constant

ln(Cash Flow/K)

ln(Q)

Constant

(I/K)t‐1

ln(Q)

ln(Cash Flow/K)

ln(K)

ln(Q)

(I/K)t‐1

(I/K)t‐1

Dummy high 
regime

(I/K)t‐1

ln(Q)

ln(Q+noise)

ln(z)

ln(K)

ln(Q+noise)

ln(Cash Flow/K)

Constant



Hayashi model CEE model

Single regime Regime switching Regime switching Regime switching

Estimated parameters
Adjustment cost : ξ 0.4148 0.7654 3.451 0.9829

(0.0035) (0.0643) (0.0429) (0.0567)
Adjustment cost : v 0.1201

(0.0007)
Fixed cost: φ 87.07 102.1559 85.3994

(2.23) (1.3417) (0.4526)
Discount factor: β 0.9514 0.9557 0.9575 0.9507

(0.0007) (0.0004) (0.0009) (0.0001)
Shock range: σ 0.522 0.121 0.1458

(0.0028) (0.0024) (0.0013)
Low regime center shock: μL 0.1621

(0.001)
High regime center shock: μH 0.249

(0.0018)
Low regime shock range:  σL 0.291 0.0699 0.2522

(0.0024) (0.0005) (0.0016)
High regime shock range:  σH 0.603 0.162 0.5988

(0.0069) (0.0012) (0.0042)
Switching parameter 1 0.0069 0.0679 0.0246

(0.0004) (0.0037) (0.0007)
Switching parameter 2 0.2823 0.1963 0.0914

(0.0031) (0.0131) (0.0018)
Shock persistence: ρ 0.5345 0.5972 0.5765 0.5332

(0.0013) (0.0031) (0.0037) (0.0035)
Calibrated parameters
Mean shock: μ 1.00 1.00 1.00 1.00
Returns to scale: α 0.80 0.80 1.00 0.80
Depreciation rate: δ 0.12 0.12 0.15 0.12
Growth: γ 1.03 1.03 1.03

Decreasing returns model

Table 3: Parameter estimates (standard errors in parenthesis)



Decreasing returns model CEE model

Support of the distribution Support of the distribution

μL - σL μL μL + σL μH - σH μH μH + σH μL - σL μL μL + σL μH - σH μH μH + σH

0.5876 0.879 1.1704 0.5178 1.121 1.7241 0.602 0.8542 1.1064 0.547 1.1458 1.7446

Transition matrix Transition matrix

μL - σL μL μL + σL μH - σH μH μH + σH μL - σL μL μL + σL μH - σH μH μH + σH

μL - σL 0.6378 0.3217 0.0406 0 0 0 μL - σL 0.5876 0.3579 0.0545 0 0 0

μL 0.1597 0.6736 0.1597 0.0069 0 0 μL 0.1745 0.6263 0.1745 0.0246 0 0

μL + σL 0.0291 0.2309 0.4577 0.2823 0 0 μL + σL 0.0495 0.3252 0.5339 0.0914 0 0

μH - σH 0 0 0.2823 0.4577 0.2309 0.0291 μH - σH 0 0 0.0914 0.5339 0.3252 0.0495

μH 0 0 0.0069 0.1597 0.6736 0.1597 μH 0 0 0.0246 0.1745 0.6263 0.1745

μH + σH 0 0 0 0.0406 0.3217 0.6378 μH + σH 0 0 0 0.0545 0.3579 0.5876

Hayashi model

Support of the distribution

μL - σL μL μL + σL μH - σH μH μH + σH

0.0922 0.1621 0.232 0.0866 0.249 0.4114

Transition matrix

μL - σL μL μL + σL μH - σH μH μH + σH

μL - σL 0.6214 0.3338 0.0448 0 0 0

μL 0.1556 0.621 0.1556 0.0679 0 0

μL + σL 0.036 0.2683 0.4994 0.1963 0 0

μH - σH 0 0 0.1963 0.4994 0.2683 0.036

μH 0 0 0.0679 0.1556 0.621 0.1556

μH + σH 0 0 0 0.0448 0.3338 0.6214

Low Regime High Regime

Table 4: Estimated Markov chains for regime‐switching models

Low Regime High Regime Low Regime High Regime



        

ξ φ σ* σL σH
Switching 
parameter 

1

Switching 
parameter 

2
β ρ

Average q, low regime ‐0.2 ‐4.2 0.2 0.3 ‐0.4 0.0 ‐0.2 131.0 0.5
Average q, high regime ‐0.1 ‐1.4 0.3 0.1 ‐0.1 ‐0.1 ‐0.3 43.4 0.5

Average cash‐flow, low regime 0.1 ‐0.4 ‐0.3 0.0 ‐0.1 0.1 0.1 4.7 0.3

Average cash‐flow, high 
regime

0.0 ‐0.2 0.0 0.0 ‐0.2 ‐0.1 ‐0.2 ‐1.4 0.3

Standard deviation of cash 
flow, low regime

‐0.2 0.1 0.1 1.1 0.0 ‐0.1 ‐0.4 ‐10.1 ‐0.3

Standard deviation of cash 
flow, high regime

‐0.1 0.0 ‐0.1 0.0 0.9 ‐0.1 ‐0.1 ‐7.9 ‐0.4

Standard deviation, cash flow ‐0.1 0.0 0.0 0.2 0.6 ‐0.1 ‐0.1 ‐9.5 ‐0.4

Standard deviation, I/K ‐0.3 0.4 1.0 0.5 1.1 0.3 ‐0.2 ‐1.6 1.0
Skewness I/K ‐1.6 2.5 2.6 ‐1.6 3.0 ‐1.3 2.0 1.2 1.7
Skewness of CF/K 0.2 ‐0.2 0.5 ‐2.5 ‐0.5 ‐0.2 ‐0.4 ‐6.7 ‐4.4
Serial correlation, q 0.0 0.7 ‐0.1 ‐0.1 0.0 0.0 0.0 ‐23.4 0.0
Serial correlation, CF/K ‐0.1 0.2 0.4 ‐0.2 ‐0.2 ‐0.1 0.3 ‐5.9 0.5

Table 5: Elasticity of moments with respect to parameters, Decreasing returns model with regime‐switching



 
Figure 1a: Investment rate (I/K) versus Tobin’s Q 

 
Figure 1b. 
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Figure 2a: Investment rate (I/K) versus cash flow (CF/K) 

 
 
 
Figure 2b. 
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Figure 3: Investment rate (I(t)/K(t)) versus lagged investment rate  
      (I(t-1)/K(t-1)) 

 

 
 
 
 
 
 
 

I(t)/K(t) and I(t-1)/K(t-1)

I(t)/K(t) = 0.7515(I(t-1)/K(t-1)) + 0.0413
R2 = 0.566
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Figure 4: Histograms of I/K, Average Q and CashFlow/K 
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Figure 5: Regime-switching model, estimated distribution of Z shocks 
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Figure 6a: Regime-switching model, value function by state in each regime  

 
Solid lines are high-regime states, dotted lines are low-regime states 
 
 

 
Figure 6b: Regime-switching model, policy function by state in each regime 

 
Solid lines are high-regime states, dotted lines are low-regime states 
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Figure 7: Regime-switching model, investment (I/K) by state in each regime 
 

Circles are high-regime states, squares are low-regime states 
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