Optimal Pass-Through of Oil Prices in an Economy with Nominal Rigidities

Hafedh Bouakez
Nooman Rebei
Désiré Vencatachellum

Octobre/October 2008
Abstract:
In many developing and emerging market economies, governments intervene to limit the degree to which oil-price increases are passed through to domestic fuel prices. This paper investigates whether, and to what extent, this intervention is warranted in an oil-importing economy characterized by nominal rigidities in the goods and labor markets. Our results indicate that, to the extent that monetary policy is capable of stabilizing the economy, government intervention in the oil market must be avoided. On the other hand, when complete stabilization is not attainable as a result of sub-optimal monetary policy, the government can improve social welfare by limiting the degree of pass-through of oil prices. We find, however, that the welfare gain from pursuing such a policy is negligible.

Keywords: Oil prices, pass-through, government, monetary policy, small open economy, welfare

JEL Classification: E3, E5, F3, F4
1. Introduction

How, if at all, should governments respond to oil-price shocks? Interest in this question has been revived by the recent episode of rapid and sustained increase in international oil prices, which started towards the end of 2003. This episode has led several developing and emerging market economies to adopt a number of policies aimed at cushioning the adverse effects of oil-price increases. Many of these policies sought to avoid the full pass-through of oil-price increases to domestic consumers by controlling retail fuel prices through implicit and explicit fuel subsidization. According to two recent studies by the World Bank (2006) and Baig et al. (2007), roughly half of the developing and emerging market economies surveyed did not fully pass through the increase in international fuel prices between the end of 2003 and mid-2006. In contrast, in most industrialized countries, governments abstained from intervening in the oil market, opting to maintain a full-pass-through policy. This behavior is consistent with the conventional wisdom that fuel prices ought to be completely deregulated. As is well known from the literature on regulation, however, this view is valid in a frictionless environment but may not be justified in the presence of market failure.

The objective of this paper is to determine whether, and to what extent, government intervention in the oil market is warranted in an economy characterized by nominal rigidities in the goods and labor markets. More specifically, we investigate whether limiting the degree of pass-through of oil prices in such an environment could be welfare improving relative to a full-pass-through policy. For this purpose, we consider a theoretical small open economy that uses oil as an input in the production process. Oil is imported by the government at the world price and sold to domestic producers at a domestic price that is determined according to a specified rule. This assumption is justified by the fact that in many oil-importing countries, the government sets domestic fuel prices according to ad hoc pricing formulae that aim at smoothing oil-price changes. In our model, the government sets the domestic price of oil in a given period as a convex combination of the current world price expressed in local currency and last period’s domestic price. The coefficient attached to the world price is then interpreted as the degree of pass-through. Any value of this coefficient that is strictly less than 1 implies incomplete pass-through of oil prices and the resulting wedge between the world price of oil and its domestic counterpart, i.e., the subsidy, is financed through taxes. Importantly, our analysis assumes that the government can pre-commit to the announced pricing rule and that agents are aware of both the rule and the pre-commitment.

In addition to oil, non-oil intermediate goods are also used as inputs in production. Some of these goods are imported and the rest are produced domestically using capital and labor. Intermediate-
good prices and wages are costly to adjust, which means that there is scope for monetary policy to affect real variables and to potentially alleviate the distortions associated with price and wage rigidities. We consider two alternative monetary policy regimes, one in which the monetary authority strictly targets CPI inflation, and one in which it fixes the nominal exchange rate. We focus on these two specific cases because they describe the conduct of monetary policy in a large number of developing and emerging market economies.

We start by determining the optimal level of pass-through of oil prices in a baseline version of the model in which (i) only domestic-intermediate-good prices are sticky and (ii) the government resorts to lump-sum taxes to finance oil-price subsidies. This case is instructive because the equilibrium allocation obtained by completely stabilizing domestic-intermediate-good prices coincides, under complete pass-through of oil prices, with the (efficient) flexible-price allocation, thus providing an exact benchmark to gauge the optimality of government intervention in the oil market. Our baseline results indicate that, under CPI inflation targeting, the optimal level of pass-through is slightly less than 20 percent. That is, aggressive stabilization of oil prices on the part of the government is desirable. On the other hand, under a fixed exchange rate regime, complete pass-through of oil prices is optimal.

The intuition for these results is the following. Under CPI inflation targeting and complete pass-through of oil prices, domestic prices are not completely stabilized. This in turn induces inefficiently large movements in the real exchange rate and causes output (and other real variables) to over-react to the oil-price shock and thus to deviate from the efficient allocation. On the other hand, a zero-pass-through policy stabilizes domestic prices, but does so at the expense of stabilizing the real exchange rate, thereby leading to insufficient variations in output. The departure of the economy from the efficient allocation in this case is simply a reflection of the distortionary effects of the subsidy involved. The optimal degree of pass-through, therefore, involves weighing the benefits of stabilizing domestic prices against the costs of destabilizing output (or, alternatively, the real exchange rate). Our analysis suggests that the trade-off between inflation stability and output stability is resolved at a rather low degree of pass-through of oil prices. We find, however, that the resulting welfare gain (relative to a full-pass-through policy) is negligible, barely exceeding 0.01 percent of permanent consumption. Under fixed exchange rates and complete pass-through of oil prices, on the other hand, the economy’s response to an oil-price shock coincides with the efficient allocation, because the latter involves stabilizing the nominal marginal cost of domestic producers, which, given our market structure, is tied down by the nominal exchange rate. Any attempt to limit the pass-through of oil prices in this case would generate a welfare loss, which will be larger the lower the degree of pass-through.
Our sensitivity analysis reveals that under strict CPI inflation targeting, the welfare maximizing level of pass-through increases with the price-elasticity of oil demand and decreases with the share of oil in production. The optimal degree of pass-through is also lower when the government relies on distortionary taxes rather than lump-sum taxes to finance oil-price subsidies. In each of these cases, the welfare gain associated with the optimal degree of pass-through remains negligibly small. When import prices or wages are assumed to be sticky, the optimal degree of pass-through falls to roughly 10 percent and the associated welfare gain increases significantly relative to the baseline model, though it remains small in absolute terms (less than a quarter of a percent of permanent consumption).

Of the vast literature on the macroeconomic effects of oil-price shocks, one particular stream is more closely related to our work. It consists of studies that examine the role of monetary policy in shaping the relationship between oil-price shocks and the macroeconomy. Some of these contributions are based on vector autoregressions (e.g., Bernanke, Gertler, and Watson 1997, Hooker 2002, Hamilton and Herrera 2004), while others use dynamic general-equilibrium models (e.g., Leduc and Sill 2004, Medina and Soto 2005, and Blanchard and Gali 2007). The main focus of this literature, however, is to determine whether the downturns that follow large oil-price shocks are caused by the systematic (contractionary) response of monetary policy to the inflationary pressure brought about by these shocks, rather than the shocks themselves. Our paper is also related to the recent literature on the welfare implications of macroeconomic policies in small open economies, as exemplified by the work of Kollmann (2002, 2006), Gali and Monacelli (2003), Ambler, Dib, and Rebei (2004), Monacelli (2005), and Devereux, Lane, and Xu (2006), among others. None of these studies, however, explicitly examines the optimality of government intervention in response to oil-price shocks.

The rest of the paper is structured as follows. Section 2 discusses the empirical evidence on pass-through of oil prices. Section 3 describes the model. Section 4 studies the dynamic response of the economy to an oil-price shock. Section 5 performs a welfare analysis. Section 6 examines the sensitivity of our results to alternative modelling assumptions. Section 7 concludes and discusses possible extensions of the model.

2 For comprehensive surveys of this literature, see Barsky and Kilian (2004) and Hamilton (2005).

3 Studies based on dynamic general-equilibrium models build on earlier papers by Kim and Loungani (2002), Rotemberg and Woodford (1996), Finn (2000), and Backus and Crucini (2000). These papers, however, consider real economies and abstract from money.

4 Blanchard and Gali (2007), on the other hand, find that monetary policy is one of the factors that account for the fact that oil-price shocks seem to have smaller effects on economic activity in the 1990s than in the 1970s.
2. Empirical Evidence on the Pass-Through of Oil Prices

Although it is well established that several developing and emerging market economies have attempted to limit the extent to which increases in the world price of oil are passed through to domestic fuel prices, little empirical work has been done to formally measure and compare the degree of pass-through of oil prices across countries. The only two studies that we are aware of are those by the World Bank (2006) and Baig et al. (2007), which use survey data from, respectively, 38 and 44 developing and emerging market countries to compute pass-through estimates for gasoline and diesel between January 2004 and mid-2006. In both cases, the degree of pass-through is measured as the ratio of the (absolute) change in domestic retail fuel prices (measured in local currency) to the (absolute) change in the international price (converted to local currency). Their results are summarized in Table 1. For comparison, results for six industrialized countries are also reported. With a few exceptions, the two studies report similar estimates for countries that are common to both samples.

Table 1 shows substantial heterogeneity in the degree of pass-through across countries. Estimates range from 0 to 2.5 in the study by the World Bank and from −0.17 to 2.8 in the study by Baig et al. For gasoline, the mean pass-through coefficient is 1.03 in the former study and 0.96 in the latter. For diesel, the corresponding numbers are 0.88 and 1.07. Of the 38 countries surveyed by the World Bank, at least 19 (22) did not fully pass through the oil-price increase to domestic gasoline (diesel) prices between 2004 and 2006. Baig et al. also find incomplete pass-through to gasoline (diesel) prices in at least 21 (19) of the 44 countries in their sample. Hence, roughly half of the developing and emerging market economies surveyed did not fully pass through the increase in the world price of oil. In a third of these countries, the degree of pass-through was less than 50 percent. In contrast, with the exception of Japan, most industrialized countries allowed oil-price increases in the world market to be fully passed through to domestic fuel prices.

Incomplete pass-through of oil-price increases reflects implicit or explicit subsidization of domestic fuel prices. Implicit subsidies are enacted through lower fuel taxes and smaller profit margins of state-owned oil companies. Explicit subsidies involve direct payments from the government to private fuel retailers to compensate them for whatever profits they forego by maintaining domestic fuel prices artificially low. In the survey conducted by the World Bank, 23 countries lowered taxes

5 An earlier study by Federico, Daniel, and Bingham (2001) also surveyed the pricing mechanisms of petroleum products in a sample of 45 transition and developing countries. This study did not provide estimates of the pass-through of oil prices, but it revealed that the majority of the countries surveyed were regulating petroleum prices and that only 8 countries were allowing for full pass-through.

6 Given the definition of pass-through used in both studies, complete pass-through of oil prices will correspond to a coefficient that exceeds unity whenever ad valorem taxes are levied on petroleum products.
on petroleum products between 2004 and 2006, while 14 countries suspended market-based pricing of oil, joining the 12 others that were already controlling fuel prices. Among the 44 countries surveyed by Baig et al., only 15 were found to have liberalized fuel prices. Prices in the remaining countries were regulated via automatic pricing mechanisms (8 countries) or in an ad hoc manner (21 countries). The study shows that the degree of pass-through in countries with liberalized prices was on average 13 (30) percentage points higher than in countries with automatic (ad hoc) pricing mechanisms.

3. The Model

3.1 Overview of the Model

We consider a small open economy, which consists of households, firms, a government, and a monetary authority. Each household supplies a differentiated labor supply for which it sets a nominal wage in a monopolistically competitive labor market. Wages are costly to change and are thus sticky. There are four types of goods: a final good, a composite non-oil good, oil, and intermediate goods. The final good, which serves consumption and investment purposes, is produced by perfectly competitive firms using oil and a non-oil composite good as inputs. The non-oil composite good is produced by mixing domestically produced and imported intermediate goods. Domestic intermediate goods are produced by monopolistically competitive firms that use domestic labor and capital as inputs. Domestically produced intermediate goods are also exported to the rest of the world. Export prices are determined at the world market and are exogenous to the economy. Foreign intermediate goods are imported by monopolistically competitive firms at the world price. These goods are then sold to local firms at domestic-currency prices. Prices set by monopolistic firms for the domestic market are subject to adjustment costs.

Oil used to produce the final good is imported by the government, who plays the role of an intermediary, buying oil at the world price, P^o_t, and reselling it to domestic firms at the domestic price P^o_t. These two prices need not be identical even after converting the world price to domestic currency. Depending on the way in which the government sets P^o_t, pass-through from the world price to the local price of oil can be full or incomplete. In the model, the government follows a pricing rule that can yield any degree of pass-through between zero and 100 percent. The monetary authority is assumed to set the nominal interest rate according to a Taylor-type rule, which nests strict CPI inflation targeting and fixed exchange rates as special cases.

The rest of this section provides a detailed description of the model, derives the first-order conditions, and defines the equilibrium. Throughout the paper, variables that originate in the rest
of the world are denoted by an asterisk, and variables that do not have a time subscript refer to steady-state values.

3.2 Households

There is a continuum of monopolistically competitive households indexed on the unit interval. Each household supplies a differentiated labor service to firms. As in Erceg, Hendersen and Levin (2000), it is convenient to assume that there is an employment agency that combines the different labor services into an aggregate labor index, h_t, defined as

$$h_t = \left(\int_0^1 h_t(j) \frac{\eta - 1}{\eta} dj \right)^{\frac{\eta}{\eta - 1}},$$

(1)

where η is the elasticity of substitution between different labor services. Let $W_t(j)$ denote the nominal wage set by household j. Demand for this household’s labor is

$$h_t(j) = \left(\frac{W_t(j)}{W_t} \right)^{-\eta} h_t,$$

(2)

where the aggregate wage index, W_t, is given by

$$W_t = \left(\int_0^1 W_t(j)^{1-\eta} dj \right)^{\frac{1}{1-\eta}}.$$

(3)

Setting the nominal wage rate is subject to adjustment costs of the form

$$\frac{\psi_w}{2} \left(\frac{W_t(j)}{W_{t-1}(j)\pi^w} - 1 \right)^2,$$

where $\psi_w \geq 0$ and π^w is the steady-state rate of wage inflation.

Household j maximizes its lifetime utility given by

$$U_0(j) = E_0 \sum_{t=0}^{\infty} \beta^t u(c_t(j), h_t(j)),$$

(4)

where β is the subjective discount factor ($0 < \beta < 1$), u is the instantaneous utility function, $c_t(j)$ is consumption, and $h_t(j)$ denotes hours worked.\(^7\) The instantaneous utility function is assumed to be

$$u(\cdot) = \frac{\gamma}{\gamma - 1} c_t(j)^{\frac{\gamma - 1}{\gamma}} + \varpi \log (1 - h_t(j)),$$

(5)

where γ and ϖ are positive parameters.

Household j enters period t with $B_{t-1}(j)$ domestic bonds, $B_{t-1}^*(j)$ foreign-currency bonds and a stock of capital, $k_t(j)$. In period t, the household pays a lump-sum tax, $T_t(j)$, to the government and

\(^7\)The total endowment of time is normalized to unity in each period.
receives dividends, $D_t(j)$, from monopolistic firms. It also receives income from selling labor and renting capital to firms. Labor income, $W_t(j)h_t(j)$, is taxed at a rate τ_t. The household’s income in period t is allocated to consumption, investment, and the purchase of nominal bonds. Acquiring foreign bonds entails paying portfolio-adjustment costs (denominated in the foreign good):\footnote{Without portfolio-adjustment costs, the model would have a unit root because the bond holdings process would follow a random walk.}

$$\frac{\psi_b}{2} \left(\frac{B_t^*(j) - B_t^*}{P_t} \right)^2$$

where ψ_b is a positive parameter and e_t is the nominal exchange rate defined as the number of units of domestic currency needed to purchase one unit of foreign currency. Investment, $i_t(j)$, increases the household’s stock of capital according to

$$k_{t+1}(j) = (1 - \delta)k_t(j) + i_t(j), \quad (6)$$

where $\delta \in (0, 1)$ is the capital depreciation rate. Capital is subject to quadratic adjustment costs:

$$\frac{\psi_k}{2} \left(\frac{i_t(j)}{k_t(j)} - \delta \right)^2 k_t(j),$$

where $\psi_k \geq 0$. The budget constraint of household j is given by

$$P_t(c_t(j) + i_t(j)) + B_t(j) + e_tB_t^*(j)$$

$$\leq (1 - \tau_t)W_t(j)h_t(j) + Q_tk_t(j) + R_{t-1}B_{t-1}(j) + e_tR_t^*B_{t-1}(j) + D_t(j) - T_t(j) - AC_t(j), \quad (7)$$

where P_t denotes the price of the final good and will henceforth be referred to as the CPI, Q_t denotes the rental rate of capital, $D_t(j)$ being dividends received from domestic intermediate-good producers and $D_t^m(j)$ those received from importers of foreign intermediate goods, R_t denotes the gross domestic nominal interest rate, R_t^* denotes the gross world nominal interest rate, and the term $AC_t(j) \equiv \frac{\psi_b}{2} \left(\frac{i_t(j)}{k_t(j)} - \delta \right)^2 P_t + \frac{\psi_k}{2} \left(\frac{i_t(j)}{k_t(j)} - \delta \right)^2 e_tP_t^* + \frac{\psi_w}{2} \left(\frac{W_t(j)}{W_{t-1}(j)^{\pi_w}} - 1 \right)^2 W_t(j)h_t(j)$ represents the sum of all adjustment costs incurred by household j.

Household j chooses $c_t(j)$, $B_t(j)$, $B_t^*(j)$, $k_{t+1}(j)$, and $W_t(j)$ to maximize its lifetime utility subject to its budget constraint (7), the labor demand equation (2), the capital accumulation equation (6), and a no-Ponzi-game condition on its holdings of assets. The first-order conditions
for this problem are

\[\lambda_t(j) = c_t(j)^{-\frac{1}{\nu}}, \quad \eta_{\omega} \]

\[\lambda_t(j) = \beta R_t E_t \left(\frac{\lambda_{t+1}(j)}{\pi_{t+1}} \right), \quad \eta_{\omega} \]

\[\lambda_t(j) = \beta R_t \left(1 + \psi_t \frac{B_t^*(j) - B}{P_t^*} \right)^{-1} E_t \left(\frac{\lambda_{t+1}(j)}{e_{t+1}} \right), \quad \eta_{\omega} \]

\[\lambda_t(j) = \frac{\beta E_t \{ \lambda_{t+1}(j) [1 + q_{t+1} - \delta + \psi_k (\lambda_{t+1}(j) - \delta) + \frac{\psi}{2} (\lambda_{t+1}(j) - \delta)^2] \}}{1 + \psi_k (\frac{\lambda_{t+1}(j)}{\pi_{t+1}} - \delta)}, \quad \eta_{\omega} \]

where \(\lambda_t(j) \) is the Lagrange multiplier associated with the budget constraint expressed in real terms; \(\pi_t \equiv P_t / P_{t-1} \) is the gross inflation rate; \(q_t \equiv Q_t / P_t \) is the real rental rate; \(w_t(j) \equiv W_t(j) / P_t \) is the real wage of household \(j \); and \(\pi_t^w(j) \equiv W_t(j) / W_{t-1}(j) \) is the growth rate of the nominal wage set by household \(j \).

3.3 Production

3.3.1 Final good

Firms in the final-good sector are perfectly competitive. They combine oil and a non-oil composite good to produce a single homogenous good using the following constant elasticity of substitution (CES) technology:

\[y_t = \left[\phi \left(y_t^o \right)^{\frac{1}{\nu}} + (1 - \phi) \left(y_t^{no} \right)^{\frac{1}{\nu}} \right]^{\frac{1}{\frac{1}{\nu} - 1}}, \quad \eta_{\omega} \]

where \(\phi > 0 \) is the weight of oil in the production of the final good and \(\nu > 0 \) is the elasticity of substitution between oil and non-oil inputs. Oil is imported by the government, who plays the role of an intermediary, buying oil at the world price, \(P_t^o \), and reselling it to domestic firms at the domestic price \(P_t^o \).

The representative final-good producer solves

\[\max_{\{y_t^o, y_t^{no}\}} P_t y_t - P_t^o y_t^o - P_t^{no} y_t^{no}, \quad \eta_{\omega} \]

where \(y_t \) is given by (13). Profit maximization implies

\[y_t^o = \phi \left(\frac{P_t^o}{P_t} \right)^{-\nu} y_t, \quad \eta_{\omega} \]
and

\[y_t^{no} = (1 - \phi) \left(\frac{P_t^{no}}{P_t} \right)^{-\nu} y_t. \] \hspace{1cm} (16)

Hence, the parameter \(\nu \) also represents the price-elasticity of oil demand. The zero-profit condition implies that the price of the final good, \(P_t \), is given by

\[P_t = \left[\phi(P_t^{no})^{1-\nu} + (1 - \phi)(P_t^{no})^{1-\nu} \right]^{\frac{1}{1-\nu}}. \] \hspace{1cm} (17)

3.3.2 Non-oil composite good

The non-oil composite good is produced by perfectly competitive firms using the following Cobb-Douglas technology

\[y_t^{no} = \Gamma(y_t^d)^\sigma (y_t^m)^{1-\sigma}, \] \hspace{1cm} (18)

where \(\Gamma \equiv \sigma^{-\sigma} (1 - \sigma)^{\sigma-1} \) is a positive parameter; \(y_t^d \equiv \int_0^1 y_t^d(i)^{(\theta-1)/\theta} \, di \) and \(y_t^m \equiv \int_0^1 y_t^m(i)^{(\vartheta-1)/\vartheta} \, di \) are aggregates of domestic and imported intermediate goods, respectively; and \(\theta \ (\vartheta) > 1 \) is the elasticity of substitution between domestic (foreign) intermediate goods. Define \(P_t^d \equiv \left(\int_0^1 P_t^d(i)^{1-\theta} \, di \right)^{\frac{1}{1-\theta}} \) and \(P_t^m \equiv \left(\int_0^1 P_t^m(i)^{1-\vartheta} \, di \right)^{\frac{1}{1-\vartheta}} \) as the price indexes associated with the aggregators \(y_t^d \) and \(y_t^m \), respectively. Then, demands for individual domestic and imported intermediate goods are, respectively, given by

\[y_t^d(i) = \left(\frac{P_t^d(i)}{P_t^{no}} \right)^{-\theta} y_t^d, \quad i \in (0, 1), \] \hspace{1cm} (19)

and

\[y_t^m(i) = \left(\frac{P_t^m(i)}{P_t^{no}} \right)^{-\vartheta} y_t^m, \quad i \in (0, 1), \] \hspace{1cm} (20)

where \(y_t^d, y_t^m, \) and \(P_t^{no} \) are given by, respectively

\[y_t^d = \sigma \left(\frac{P_t^{d}}{P_t^{no}} \right)^{-1} y_t^{no}, \] \hspace{1cm} (21)

\[y_t^m = (1 - \sigma) \left(\frac{P_t^{m}}{P_t^{no}} \right)^{-1} y_t^{no}, \] \hspace{1cm} (22)

and

\[P_t^{no} = (P_t^{d})^\sigma (P_t^{m})^{1-\sigma}. \] \hspace{1cm} (23)
3.3.3 Domestic intermediate goods

Domestic intermediate-good producers have identical Cobb-Douglas production functions given by

\[z_t(i) = y_t^d(i) + y_t^x(i) = k_t(i)^\alpha h_t(i)^{1-\alpha}, \tag{24} \]

where \(\alpha \in (0, 1) \) and \(k_t(i) \) and \(h_t(i) \) are capital and labor inputs used by firm \(i \).

Let \(P_t^d(i) \) denote the price that firm \(i \) chooses for its sales in the domestic market. Changing the domestic price entails quadratic adjustment costs à la Rotemberg (1982):

\[\frac{\psi_d}{2} \left(\frac{P_t^d(i)}{\pi_d P_{t-1}^d(i)} - 1 \right)^2, \]

where \(\psi_d \geq 0 \) and \(\pi_d \) is the steady-state value of domestic-price inflation. On the other hand, the domestic-currency export price, \(P_t^x(i) \), once converted to foreign currency, is equal to the world price, \(P_t^* \). That is,

\[P_t^x(i) = e_t P_t^*. \tag{25} \]

This assumption reflects the fact that the small open economy has no control over the world price of exported goods. In turn, it implies that the law of one price holds for these goods. Under these assumptions, firm \(i \) solves the following dynamic problem:

\[\max_{\{h_t(i), k_t(i), P_t^d(i), y_t^d(i)\}} E_t \sum_{s=0}^{\infty} \beta^s \frac{D_t^d(i) + \psi_d}{\pi_d P_{t+s}^d(i)} - \theta \xi_t(i) \frac{z_t(i)}{h_t(i)}, \tag{26} \]

where

\[D_t^d(i) \equiv P_t^d(i)y_t^d(i) + P_t^x(i)y_t^x(i) - W_t h_t(i) - Q_t k_t(i) - \frac{\psi_d}{2} \left(\frac{P_t^d(i)}{\pi_d P_{t-1}^d(i)} - 1 \right)^2 P_t^d(i)y_t^d(i). \]

Given the demand function (19), the first-order conditions for firm \(i \) are

\[w_t = (1 - \alpha) \xi_t(i) \frac{z_t(i)}{h_t(i)}, \tag{27} \]

\[q_t = \alpha \xi_t(i) \frac{z_t(i)}{k_t(i)}, \tag{28} \]

\[-\theta \xi_t(i) \frac{z_t(i)}{P_t^d(i)} = (1 - \theta) \left[1 - \frac{\psi_d}{2} \left(\frac{\pi_d(i)}{\pi_d} - 1 \right)^2 \right] \]

\[-\psi_d \left[\frac{\pi_d(i)}{\pi_d} \left(\frac{\pi_d(i)}{\pi_d} - 1 \right) - \beta E_t \frac{\lambda_{t+1}}{\lambda_t} \pi_{t+1} \pi_d \left(\frac{\pi_d(i)}{\pi_d} - 1 \right) \frac{y_{t+1}^d(i)}{y_t^d(i)} \right], \tag{29} \]

\[p_t^x(i) = \xi_t(i), \tag{30} \]
where $\xi_t(i)$ is the Lagrange multiplier associated with equation (24) and is equal to the real marginal cost of firm i; $p^d_t(i) \equiv P^d_t(i)/P_t$; $p^x_t(i) \equiv P^x_t(i)/P_t$, $\pi^d_t(i) \equiv P^d_t(i)/P^d_{t-1}(i)$; and $\pi^* = P^*_t/P^*_{t-1}$ is the inflation rate in the rest of the world, which is normalized to 1.

Equations (25) and (30) imply that the marginal cost of the domestic intermediate-good producer is tied down by the exchange rate, both in nominal and real terms. This result will be important for understanding the intuition behind the paper’s main findings.

3.3.4 Imported intermediate goods

Foreign intermediate goods are imported by monopolistically competitive firms at the world price, P^*_t. Importing firms then sell those goods in domestic currency to final-good producers. Resale prices, $P^m_t(i)$, are also subject to quadratic adjustment costs:

$$\frac{\psi_m}{2} \left(\frac{P^m_t(i)}{\pi^m P^m_{t-1}(i)} - 1 \right)^2,$$

where $\psi_m \geq 0$ and π^m is the steady-state value of import-price inflation. The importing firm i solves the following problem:

$$\max_{\{P^m_t(i)\}} E^t \sum_{s=0}^{\infty} \beta^s \left(\frac{\lambda_{t+s}}{\lambda_t} \right) \frac{D^m_{t+s}(i)}{P_{t+s}},$$

where

$$D^m_t(i) = (P^m_t(i) - e_t P^*_t) y^m_t(i) - \frac{\psi_m}{2} \left(\frac{P^m_t(i)}{\pi^m P^m_{t-1}(i)} - 1 \right)^2 P^m_t(i) y^m_t(i).$$

The first-order condition for this problem is

$$\frac{\partial}{\partial P^m_t(i)} \left[(1 - \vartheta) \left[1 - \frac{\psi_m}{2} \left(\frac{\pi^m_t(i)}{\pi^m} - 1 \right) \right] - \psi_m \frac{\pi^m_t(i)}{\pi^m} \left(\frac{\pi^m_t(i)}{\pi^m} - 1 \right) - \beta E_t \frac{\lambda_{t+1}}{\lambda_t} \left(\frac{\pi^m_{t+1}(i)}{\pi^m} - 1 \right) \frac{y^m_{t+1}(i)}{y^m_t(i)} \right],$$

where $p^m_t(i) \equiv P^m_t(i)/P_t$ and $\pi^m_t(i) \equiv P^m_t(i)/P^m_{t-1}(i)$.

3.4 The government

It is assumed that the government sets the domestic price of oil in a given period as a convex combination of the current world price expressed in local currency and last period’s domestic price. Formally,

$$P^o_t = (1 - \chi) P^o_{t-1} + \chi e_t P^o_t.$$
Thus, if $\chi = 1$, there is complete pass-through from the world price of oil to the domestic price; if $\chi = 0$, there is zero pass-through. The pricing rule (34) is admittedly arbitrary inasmuch as it is not derived from an explicit optimization problem of the government. However, it is intended to capture in a parsimonious way the fact that, in many developing and emerging market economies, domestic fuel prices are determined according to ad hoc pricing formulae aimed at smoothing oil-price changes (see Section 2). An advantage of this representation is that it allows to express the degree of pass-through of oil prices in terms of a single policy parameter, χ, which can take any value between 0 and 1. Importantly, it is assumed that the government can pre-commit to the pricing rule above and that agents are aware of both the rule and the pre-commitment.

The government’s revenues include receipts from selling oil to domestic firms and taxes, while its expenditures include the cost of acquiring oil. Hence, the government’s budget constraint is given by

$$e_t P^*_o y_t^o = P^*_o y_t^o + \tau_t W_t h_t + T_t.$$

For simplicity, it is assumed that the government resorts to either lump-sum or labor-income taxes to finance any wedge between the world price of oil and its domestic counterpart. The real world price of oil, $p^*_o \equiv \frac{P^*_o}{P^*}$, is exogenous to the small open economy and evolves according to the following autoregressive process:

$$\log p^*_o = (1 - \rho_o) \log (p^*_o - 1) + \epsilon_{ot},$$

(35)

where ρ_o is strictly bounded between -1 and 1 and ϵ_{ot} is an independently and identically distributed (i.i.d.) disturbance with zero mean.

3.5 The monetary authority

It is assumed that the monetary authority manages the short-term nominal interest rate according to the following Taylor-type policy rule:

$$\log (R_t/R) = \varrho_\pi \log (\pi_t/\pi) + \varrho_e \log (e_t/e).$$

This rule encompasses two polar monetary-policy/exchange-rate regimes. When $\varrho_\pi \to \infty$ and $\varrho_e = 0$, we obtain a strict CPI inflation targeting regime; alternatively, when $\varrho_e \to \infty$ and $\varrho_\pi = 0$, the rule above represents a fixed exchange rate regime.

3.6 Symmetric equilibrium

In a symmetric equilibrium, all households and all intermediate-good producers make identical decisions. Hence, a symmetric equilibrium for this economy is a collection of 31 sequences $(e_t, h_t,$
\(i_t, k_{t+1}, y_t, y^d_t, y^n_t, y^m_t, y^w_t, z_t, w_t, q_t, \xi_t, \lambda_t, \pi_t, \pi^d_t, \pi^n_t, \pi^m_t, \rho_t, s_t, e_t, b^*_t, P^d_t, P^m_t, P^n_t, P^w_t, P_t \) and \(T_t\) satisfying the private agents' first-order conditions, the oil pricing rule, the monetary policy rule, market-clearing conditions, the government's budget constraint, the definition of the real exchange rate and the different inflation rates, and a balance of payments equation (the model equations are listed in the appendix).\(^9\) The model is solved up to a second-order approximation around a deterministic steady state in which all variables are constant.

3.7 Calibration

To study the behavior of the economy under different degrees of pass-through of oil prices, we need to assign values to the model parameters and to steady-state values of the variables. We start by calibrating a baseline version of the model in which (i) only domestic-intermediate-good prices, \(P^d_t\), are sticky and (ii) the government resorts to lump-sum taxes to finance oil-price subsidies. Under these assumptions, the non-oil terms of trade are always constant (since both import and export prices are proportional to \(e_t P^*_t\)) and the flexible-price allocation, which is obtained when all prices and wages are fully flexible and when there is complete pass-through of oil prices, is efficient.\(^10\) This baseline case therefore provides an exact benchmark for evaluating and comparing alternative pass-through policies.

The baseline model is calibrated at a quarterly frequency. The subjective discount factor, \(\beta\), is set to 0.99, which implies that the annual real interest rate is equal to 4 percent in the deterministic steady state. The elasticity of intertemporal substitution, \(\gamma\), is set to 0.5. The preference parameter \(\pi\) is chosen so that the fraction of hours worked in the deterministic steady state is equal to 0.3. The capital’s share in production, \(\alpha\), is set to 0.36, while the depreciation rate, \(\delta\), is chosen to be 0.025. These values, which have become quite standard in the literature, were used, for example, by Backus and Crucini (2000). Following Bouakez and Rebei (2008), we set the capital adjustment cost parameter, \(\psi_k\), to 25, which implies an elasticity of investment with respect to the price of capital of 1.6. The parameter governing portfolio-adjustment costs is set to 0.0007, the value suggested by Schmitt-Grohé and Uribe (2004). The share of domestic intermediate goods in the non-oil composite good, \(\sigma\), is chosen to be 0.65. The elasticity of substitution between domestic intermediate goods, \(\theta\), and its analogous for imported goods, \(\vartheta\), are set to 10, implying a markup of 11 percent in the deterministic steady state. The elasticity of substitution between different types of labor, \(\eta\), is also set to 10. The price-adjustment-cost parameter \(\psi_d\) is calibrated so that,

\(^9\)The variable \(b^*_t\) denotes \(B^*_t/P^*_t\). The variable \(T_t\) denotes \(T_t/P_t\) if the government relies on lump-sum taxes to finance the oil-price subsidy and \(\tau_w h_t\) if it resorts to labor-income taxes.

\(^10\)Strictly speaking, the flexible-price allocation is constrained-efficient (rather than Pareto efficient) because the existence of monopolistic competition among households and among intermediate-good producers leads to an inefficiently low level of output.
up to a first-order approximation, the resulting nominal rigidity is equivalent to that implied by a Calvo-type staggered price setting with an average duration of price contracts of 4 quarters.

The parameters that describe the way in which the production technology depends on oil are crucially important to our analysis. We set the price-elasticity of oil demand (which is also the elasticity of substitution between oil and non-oil inputs), ν, to 0.05. This value is consistent with the evidence that oil demand is highly insensitive to price changes. For example, Gately and Huntington (2002) estimate the short-run elasticity of demand for crude oil to be 0.05 for OECD countries and between 0.02 and 0.03 for a group of non-OECD countries. Cooper (2003) provides individual estimates for 23 countries that range between 0 and 0.11. These studies indicate, however, that the short-run price elasticity of oil demand is significantly lower than the long-run elasticity.\(^{11}\) Given that the specification of the production function (13) does not allow us to distinguish between the short-run and the long-run elasticity of oil demand, our calibration reflects the fact that we mainly focus on the short-run rather than the secular effects of oil-price shocks.

The steady-state oil share in production is given by the parameter ϕ. Because the model economy does not produce oil, ϕ is also the steady-state ratio of oil imports to output. In the data, this ratio differs substantially across countries, but it is generally much lower in industrialized countries than in developing and emerging market economies. Since the end of 2001, however, there has been a widespread increase in the oil import bill as a result of rising oil prices and the inelastic demand for oil. For example, the average ratio of oil imports to GDP in African countries rose from about 4 percent in 2001 to roughly 6 percent by the end of 2004. A similar pattern has also been observed in a number of Asian and Latin American countries: In 2003, the share of oil imports in GDP reached 3.8 percent in India, 5 percent or more in Singapore, Korea, Thailand, Taiwan and the Philippines, and 4.9 percent on average for Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama.\(^{12}\) These numbers are likely to have increased since then given that oil prices continued to rise. Based on these considerations, we set the parameter ϕ to 0.04.

To obtain values for the parameters ρ_o and σ_{ϵ_o}, we estimate an AR(1) process using data on the real price of oil over the period 1974Q1–2006Q4. The real price of oil is measured by the average spot price of West Texas Intermediate crude oil, divided by the U.S. GDP deflator and expressed in logarithm. Both series are taken from the Federal Reserve Bank of Saint-Louis database. Our estimation yields $\rho_o = 0.962$ and $\sigma_{\epsilon_o} = 0.137$.

Table 2 summarizes our baseline calibration. In Section 5, we consider alternative values of the elasticity of oil demand and the share of oil in production, as well as the cases with distortionary

\(^{11}\)Gately and Huntington (2002) estimate the long-run elasticity to be 0.64 for OECD countries and 0.18 for the non-OECD group, while Cooper (2003) report estimates ranging between 0 and 0.57.

taxation \((\tau_l \neq 0)\), sticky import prices \((\psi_m \neq 0)\), and sticky wages \((\psi_w \neq 0)\).

4. Impulse Response Analysis

The purpose of this section is to contrast the dynamic response of the economy to an oil-price increase under complete and zero pass-through. The comparison is made under two different scenarios about monetary policy: strict CPI inflation targeting and a fixed exchange rate regime. We focus on these two particular cases because they represent the stance of monetary policy in a wide range of oil-importing small open economies. As a benchmark, we also compute the efficient response of the economy, which can be achieved when the following two conditions are met: (i) domestic prices are completely stabilized and (ii) there is complete pass-through of oil prices. Under these conditions, the equilibrium allocation coincides with the flexible-price allocation, which, as argued in Section 3.7, is efficient.

4.1 Strict CPI inflation targeting

Figure 1 depicts the impulse response of output, consumption, investment, domestic-price inflation and CPI inflation, the nominal and real interest rate, and the nominal and real exchange rate to a standard-deviation (0.137) increase in the world price of oil under CPI inflation targeting. Consider first the case with complete pass-through \((\chi = 1)\). The shock triggers a persistent decline in output, consumption and investment, which then converge to their steady-state levels from below. This outcome is attributed to a combination of two effects of the higher oil price: a direct income effect, through the balance of payments, and an indirect effect on production, through higher costs of inputs. The former decreases consumption and increases labor supply. The latter decreases demand for non-oil inputs and, by extension, demand for labor and capital. The fall in labor demand, however, is larger than the increase in labor supply, which leads to a reduction in employment and a sharp decline in the real wage. The fall in employment lowers the marginal productivity of capital (and thus the return to capital) and leads households to cut investment. The lower demand for imported intermediate goods, on the other hand, reduces the real price of foreign intermediate goods, which, under the baseline assumption that import prices are flexible \((\psi_m \neq 0)\), is proportional to the real exchange rate (see equation 33). This implies that the domestic currency appreciates following the oil price increase both in real and nominal terms.\(^{13}\) This appreciation is needed to (partially) offset the increase in the world price of oil, i.e., to limit the degree of pass-through of the oil-price increase to CPI inflation. To completely eliminate the upward pressure on

\(^{13}\)The nominal and the real exchange rate exhibit identical responses because the latter is computed using the CPI, which is completely stabilized under strict CPI inflation targeting.
CPI inflation in current and subsequent periods, the monetary authority raises the nominal interest rate substantially. Given that expected inflation is zero, the real interest rate rises by the same amount.

Figure 1 shows that the initial fall in output is significantly larger under strict inflation targeting than under the efficient allocation of resources (0.8 versus 0.4 percent), and that the wedge persists for more than four quarters. This discrepancy is due to the inability of the monetary authority to stabilize the economy under CPI inflation targeting. Indeed, in the baseline version of the model, only domestic-intermediate-good prices are rigid. The optimal policy, therefore, involves targeting domestic-price inflation. As explained above, such a policy sustains the flexible-price allocation. A regime that targets CPI inflation, on the other hand, stabilizes a combination of domestic and import prices. As Figure 1 shows, however, domestic prices are not completely stabilized under this policy, which in turn causes output to depart from its efficient response. The reason for this departure is the exaggerated (and hence inefficient) response of the real exchange rate, which appreciates by more than it would have under the efficient allocation.

Next, consider the case with zero pass-through of the oil-price increase ($\chi = 0$). Following the shock, output and consumption decrease for several periods before returning to their pre-shock levels, whereas investment rises on impact and converges to its steady-state level from above. In all cases, the magnitude of the response is substantially smaller than under complete pass-through. The reason is obvious: a zero-pass-through policy implies that the firms' cost of acquiring oil is unaffected by the oil-price increase. As a result, input demand and production fall only slightly in the short run relative to the case with complete pass-through case. The nominal (and the real) interest rate need not increase by as much as in the complete-pass-through case. In fact, the nominal interest rate remains virtually unchanged in this case, leading to roughly constant nominal and real exchange rates.

The figure shows that the zero-pass-through policy goes a long way toward stabilizing domestic prices. Yet, the response of output deviates markedly from the efficient one. In other words, targeting CPI inflation stabilizes domestic prices but destabilizes output. The reason for this result is that the flexible-price allocation is not attainable when there is incomplete pass-through of oil prices, due to the distortionary effects of the subsidy involved. Higher degrees of pass-through (that is, higher values of χ) have two offsetting effects on output. On the one hand, higher pass-

14 It is worth emphasizing, however, that the effects of an oil-price increase are not permanently smaller (in absolute value) under zero than under complete pass-through. Because the government must raise taxes to finance any oil-price subsidy given to firms, deviating from complete pass-through amounts to transferring the higher cost of oil from firms to households. The muted effects under zero pass-through therefore simply reflect the households’ ability to smooth consumption over time via borrowing and lending. Eventually, for sufficiently long horizons, the effects of the oil-price shock will be larger under incomplete than under complete pass-through.
through entails smaller distortions to the economy, and this effect tends to bring output closer to its efficient level. On the other hand, when pass-through is high, targeting CPI inflation leads to inefficiently large swings in the real exchange rate, which tend to destabilize output. This discussion suggests that to determine the optimal degree of pass-through, the stabilizing benefits of the government’s intervention have to be weighed against the distortionary costs of the implied subsidy. Given that, under CPI inflation targeting, both zero and complete pass-through lead to significant departures from the efficient allocation, the optimal pricing rule should involve a partial stabilization of domestic oil prices in this case. This conjecture will be formally verified in Section 5.

4.2 Fixed exchange rate regime

Figure 2 shows the dynamic responses to an oil-price shock under a fixed exchange rate regime. Under complete pass-through, the economy’s response coincide with the efficient allocation. In order to understand this result, it is useful to recall that the efficient allocation requires that the markup of domestic-intermediate-good producers be constant in each period. To achieve this outcome, the monetary authority needs to completely stabilize domestic prices, or alternatively, the nominal marginal cost of domestic-intermediate-good producers. Because those firms also sell abroad and take export prices as given, their marginal cost is tied down by the nominal exchange rate. Hence, the efficient allocation involves stabilizing the nominal exchange rate.\footnote{This discussion suggests that, from a welfare standpoint, a fixed exchange rate regime dominates strict CPI inflation targeting. This result seems to conflict the conclusion reached by Devereux, Lane, and Xu (2006) who show that fixing the nominal exchange rate greatly destabilizes the economy in response to external shocks. This different conclusion stems from differences in the modelling assumptions. In the model developed by Devereux, Lane and Xu, there is a traded and a non-traded good, which are produced by distinct production units. A crucial assumption in their setting is that the traded good is not sold on the domestic market, which implies that the nominal marginal cost (and therefore the price of the non-traded good) is not pinned down by the nominal exchange rate. Under these conditions, a peg prevents the real exchange rate from playing its role of a shock absorber, so that the full impact of the shocks is passed through to domestic output.}

Under zero pass-through, both domestic prices and the CPI are stabilized. Domestic prices are stabilized because the monetary authority fixes the nominal exchange rate and thus the nominal marginal cost of domestic-intermediate-good producers. The stabilization of the CPI originates from two sources: the zero-pass-through of the oil-price increase and the fixity of the nominal exchange rate, which implies that both components of the price of the non-oil input are stabilized. The constancy of the CPI in turn implies that the real exchange rate inherits the fixity of the
nominal exchange rate. As is apparent in Figure 2, the lack of flexibility of the real exchange rate leads output to deviate substantially from its efficient response. Given that the equilibrium allocation under a fixed exchange rate regime and complete pass-through replicates the efficient allocation, any policy that seeks to limit the degree of pass-through of oil prices will necessarily be welfare deteriorating. Formal welfare evaluation, performed in Section 5, will confirm this intuition.

5. Welfare Analysis

In this section, we study the welfare implications of the government’s intervention to limit the degree of pass-through of oil prices. That is, we seek to (i) determine whether, and under which circumstances, such a policy is optimal, and (ii) evaluate the welfare gain associated with the optimal pricing policy relative to full pass-through. The optimal policy will be defined as the one that maximizes welfare within the class of pricing rules given by (34). Finding the optimal policy, therefore, amounts to selecting the value of χ that maximizes the mean of the representative household’s lifetime utility. Formally, this problem is written as follows:

$$\max_{\chi} \mathbb{E} \{ u(c_t, h_t) \}.$$ \hfill (36)

To solve this problem, we compute a second-order approximation of the model’s equilibrium conditions and the utility function. Figure 3 depicts our welfare metric for different values of χ under CPI inflation targeting and a fixed exchange rate regime.

First, consider the case with CPI inflation targeting. The upper panel of Figure 3 shows that welfare is a non-monotonic function of pass-through, reaching its maximum when $\chi = 0.17$. Hence, both complete and zero pass-through are sub-optimal. Instead, the welfare-maximizing policy involves partially stabilizing the domestic price of oil. By assigning a relatively large weight to the lagged domestic price of oil, the optimal pricing rule implies a significant amount of inertia in domestic oil prices.

How large is the welfare gain associated with the optimal pricing rule relative to a complete-pass-through policy? As is standard in the literature, we measure the welfare gain by means of the compensating variation in consumption, that is, the percentage change in consumption under complete pass-through that would give households the same unconditional expected utility as under the optimal pricing rule. The compensating variation is defined as follows:

$$\mathbb{E} \{ u(c_t(1 + \zeta), h_t) \} = \mathbb{E}\{u(\hat{c}_t, \hat{h}_t)\},$$ \hfill (37)

where variables without tildes are computed under complete pass-through, and those with tildes are computed under the optimal pricing rule.
The fourth column of Table 3 shows that the fraction of permanent consumption that must be offered to households to make them as well off under complete pass-through as under the optimal pass-through policy is roughly 0.01 percent. This gain is clearly very small by any conventional standard. Therefore, opting for complete pass-through of oil prices, albeit sub-optimal, does not entail important welfare costs in the baseline model.

The bottom panel of Figure 3 shows that under a peg, welfare increases unambiguously with χ, although it flattens significantly for large values of χ. That is, the higher the degree of pass-through, the better off the economy. Hence, the optimal policy is to let changes in the world price of oil be fully passed through to domestic prices. This result should not come as a surprise: the impulse-response analysis in Section 4.2 shows that, at least in the baseline model, the fixed exchange rate regime replicates the efficient allocation under complete pass-through. Therefore, any attempt to limit the degree of pass-through must be welfare deteriorating in this case. Because complete pass-through is optimal, the compensating variation in consumption is obviously nil, as shown in the last column of Table 3.

In sum, our analysis suggests that, to the extent that monetary policy is capable of stabilizing the economy, government intervention in the oil market must be avoided. On the other hand, when complete stabilization is not attainable, as is the case under CPI inflation targeting in our case, the government can improve social welfare by limiting the degree of pass-through of oil prices. We find, however, that the welfare gain from pursuing such a policy is negligible.

6. Sensitivity Analysis

We now discuss the sensitivity of our results to changes in the assumptions underlying the baseline model. More specifically, we consider (i) alternative values of the price-elasticity of oil demand, (ii) alternative shares of oil in production, (iii) the case in which oil-price subsidies are financed through distortionary taxes, (iv) the case with sticky import prices, and (v) the case with sticky wages.

6.1 Price-elasticity of oil demand

We begin our sensitivity analysis by studying the effect of varying the price-elasticity of oil demand, ν. Figure 4 depicts welfare as a function of the degree of pass-through for different values of ν. The top panel of the figure shows that, under strict CPI inflation targeting, the optimal degree of pass-through increases with the elasticity of demand for oil. This result is quite intuitive: higher values of ν imply a larger drop in the quantity of imported oil following the oil-price increase,
inducing firms to substitute non-oil inputs for oil.16 Greater substitutability tends to mitigate the adverse effects of the oil-price shock. At the same time, it implies that, everything else being equal, the welfare cost of a given subsidy is larger, which in turn weakens the argument for a price-based stabilization policy.

The top panel of Figure 4 shows that as the elasticity of demand approaches 0.5, the optimal degree of pass-through tends towards 100 percent. Such a high elasticity, however, is more in line with the long-run estimates reported by existing empirical studies. Values of ν that fall in the range of available short-run estimates imply that the welfare-maximizing extent of pass-through is less than 30 percent. The welfare gain associated with such a policy, however, is even smaller than in the baseline case, as indicated by the value of the compensating variation in consumption of 0.006 percent (see Table 3).

The bottom panel of Figure 4 shows that, under a fixed exchange rate regime, complete pass-through of oil prices is always optimal regardless of the degree of responsiveness of oil demand to oil-price increases. This is because the fixed exchange regime allows to replicate the efficient allocation for any value of the elasticity of demand. As a result, the compensating variation in consumption associated with the complete-pass-through policy is always zero, as shown in Table 3.

6.2 Share of oil in production

Next, consider the impact of varying the share of oil in production. As stated above, in net oil-importing industrialized countries, oil imports represent a smaller percentage of GDP than in the median developing or emerging market economy. Indeed, the average share of oil imports in GDP in major industrialized countries was less than 2 percent in 2004, although it is likely to have increased lately. On the other hand, several developing countries are heavily dependent on oil, with an oil-import bill that was already above 6 percent of GDP in 2004 (e.g., Kenya, Seychelles, and Sierra Leone). In order to account for this heterogeneity across countries, we consider values of ϕ ranging from 0.02 to 0.06.

Obviously, the more oil-intensive the production process, the larger the impact of an oil-price increase on economic activity. This statement does not imply, however, that there is greater scope for stabilization. Such would be the case only if the economy deviates further from the efficient allocation as the share of oil in production becomes larger. Figure 5 shows that this is indeed the case under strict CPI inflation targeting. The top panel of the figure indicates that the optimal degree of pass-through of oil prices is a decreasing function of the oil share. The model implies, however, that the optimal pass-through falls by only 10 percentage points as the oil share increases.

16Note that ν is also the elasticity of substitution between oil and non-oil inputs.
from 0.02 to 0.06. More importantly, the welfare gain associated with the optimal pricing rule is still tiny regardless of the oil share in production: Even when this share is as high as 0.06, consumption would have to permanently increase by less than 0.03 percent in an economy with complete pass-through in order for consumers to be as well off as with the optimal pricing rule (see Table 3).

Again, under a fixed exchange rate regime, the ability of the monetary authority to replicate the efficient allocation is independent of the weight of oil in production. Therefore, complete pass-through continues to be optimal under alternative values of the oil share, as illustrated in the bottom Panel of Figure 5, while the corresponding compensating variation in consumption continues to be zero.

6.3 Distortionary taxes

In the baseline model, we have assumed that the government resorts to lump-sum taxes to finance oil-price subsidies. We now consider an alternative scenario in which the subsidies are financed through labor-income taxes. In this case, the tax rate, \(\tau_t \), varies endogenously so that the government tax receipt, \(\tau_t w_t h_t \), makes up for any wedge between the real world price of oil and its domestic counterpart. Labor-income taxes induce households to supply an inefficiently low level of labor. The distortion created by this tax should therefore lead to a reduction in welfare relative to the baseline model for any given level of pass-through that is less than 1, under a given monetary policy regime. However, the welfare loss (relative to the baseline model) resulting from the use of distortionary taxes should be smaller the higher the degree of pass-through. Figure 6 confirms this conjecture. A corollary is that the optimal degree of pass-through must be larger when the government levies labor-income taxes to finance oil-price subsidies than when it relies on lump-sum taxes. The upper panel of Figure 6 shows that, under CPI inflation targeting, the optimal degree of pass-through under distortionary taxation is roughly 35 percent, that is, twice as large as in the baseline case. The associated welfare gain is less than 0.006 percent of permanent consumption, as shown in Table 3. On the other hand, under a fixed exchange rate regime, complete pass-through was already optimal under the lump-sum-tax financing scheme, so it continues to be so with distortionary taxation, as illustrated in the bottom panel of Figure 6.

6.4 Sticky import prices

When import prices are sluggish (that is, when \(\psi_m \) is strictly positive), exchange rate pass-through to import prices becomes incomplete and, as a result, the law of one price no longer holds for
imported goods.17 Import-price stickiness also means that the non-oil terms of trade vary endogenously in response to oil-price shocks. This in turn implies that, except in special cases, the flexible-price allocation is no longer optimal, because the monetary authority can strategically affect the terms of trade in a way that improves social welfare.18

To introduce stickiness in import prices, we set $\psi_m = 100$. Figure 7 shows welfare as a function of pass-through in this case. The results indicate that under strict CPI inflation targeting, the optimal degree of pass-through is about 10 percent. Hence, with sticky import prices, the optimal pricing rule involves a higher degree of stabilization of the domestic price of oil compared with the case of flexible import prices. As the top panel of Figure 7 shows, welfare decreases rapidly as pass-through increases. This is reflected in the size of the variation in consumption required to leave agents indifferent between complete pass-through and the optimal pricing rule, which is more than 12 times as large as in the baseline case (see Table 3). These results can be explained as follows. Under sticky import prices, the appreciation of the real exchange rate does not translate into cheaper foreign intermediate goods for domestic producers (as would be the case under flexible import prices). As a result, the negative impact of the oil-price increase becomes increasingly larger than in the baseline model as pass-through increases. However, despite the fact that the welfare gain associated with the optimal degree of pass-through is an order of magnitude larger than in the baseline case, it remains small in absolute terms.

In the case of a fixed exchange rate regime, on the other hand, welfare under sticky import prices is exactly identical, at any value of χ, to what is obtained under flexible import prices. This result emanates from the fact that under fixed exchange rates, the nominal marginal cost of the importing firms is constant, which also means that nominal import prices are constant. Therefore, the magnitude of the price-adjustment-cost parameter, ψ_m, is irrelevant to the dynamics of the economy. In turn, this implies that our results regarding the optimal degree of pass-through and the associated welfare gain are identical to those pertaining to the baseline model.

6.5 Sticky wages

In the final sensitivity experiment, we introduce nominal wage rigidity by setting $\psi_w = 100$. Wage rigidity raises the real reallocation cost of oil-price shocks because the households’ unwillingness to accept wage cuts leads to a larger drop in employment and production following an oil-price increase. At the same time, it implies that, under complete pass-through of oil prices, monetary policy faces a trade-off in stabilizing price inflation, wage inflation, and the output gap (see Erceg, 17 When $\psi_m = 0$, the law of one price holds for imported goods up to a first-order approximation due the presence of a constant markup. 18 See, for example, Corsetti and Pesenti (2001), Benigno and Benigno (2003) and Monacelli (2005).
Henderson, and Levin 2000), which is absent from the baseline model. This trade-off implies that the efficient allocation is not attainable. But more importantly, it may increase the potential benefits from government intervention in the oil market.

Welfare results for this case, shown in Figure 8, are very similar to those obtained under sticky import prices. In particular, under strict CPI inflation targeting, welfare is maximized at a fairly low value of χ (0.09) and falls rapidly as χ increases. The compensating variation in consumption is larger than in the baseline model, but is still tiny in absolute terms (0.08 percent of permanent consumption). In the case of a fixed exchange rate regime, welfare is virtually identical under sticky and fully flexible wages. This suggests that although stabilizing the nominal marginal cost does not achieve the efficient allocation when wages are sticky, this policy goes a long way towards removing the distortions arising from wage rigidity. As a result, complete pass-through of oil prices continues to be optimal in this case.

7. Concluding Remarks

This paper has studied the welfare implications of government intervention to limit the pass-through of oil prices in an oil-importing economy with nominal rigidities in the goods and labor markets. We find that, to the extent that the monetary authority is able to stabilize the economy in the wake of an oil-price shock, full pass-through of oil prices is the optimal policy. On the other hand, when monetary policy is sub-optimal, the government may find it beneficial to subsidize domestic oil prices. We find, however, that the welfare gains from pursuing such a policy are negligibly small. But even these small gains require that the government has perfect knowledge about the structure of the economy and households’ preferences, which is unlikely to be the case in reality. From this perspective, our results can be viewed as an argument against government intervention in the oil market.

Our framework lends itself to a number of potentially interesting extensions. One would be to depart from the Ricardian environment assumed in this paper, and to allow for the possibility that the government relies on debt rather than taxes to finance fuel subsidies. This assumption is certainly more realistic in countries where the tax base is narrow. Escalating oil prices would in this case require increasingly large subsidies, leading to potentially unsustainable fiscal imbalances and increasing the likelihood that the government’s borrowing constraint becomes binding. A second possible extension would be to allow for heterogeneity across agents in terms of wealth and/or liquidity constraints. This setup would enable one to study the distributional effects of government intervention.
References

Appendix

The model equations are:

\[
\lambda_t = \frac{c_t}{\gamma},
\]

\[
\lambda_t = \beta R_t E_t \left(\frac{\lambda_{t+1}}{\pi_{t+1}} \right),
\]

\[
\lambda_t = \beta R^*_t (1 + \psi_b (b^*_t - b^*))^{-1} E_t \left(\frac{\lambda_{t+1} c_{t+1}}{\pi_{t+1} e_t} \right),
\]

\[
\lambda_t = \frac{\beta E_t \{ \lambda_{t+1} [1 + q_{t+1} - \delta + \psi_k k_{t+1} - \delta] + \frac{\psi_k}{2} (k_{t+1} - \delta)^2 \} \}}{1 + \psi \left(\frac{b^*_t}{k^*_t} - \delta \right)},
\]

\[
w_t = \eta \left\{ \lambda_t (1 - h_t) \left[1 - \tau_t - \frac{\psi_w}{2} \left(\frac{\pi^w_t}{\pi^w} - 1 \right) \right] \right\}^{-1}
\]

\[
k_{t+1} = (1 - \delta) k_t + i_t,
\]

\[
y_t = \left[\phi \frac{1}{\nu} \left(y_t^d \right)^{\frac{1}{\nu}} + (1 - \phi) \frac{1}{\nu} \left(y_t^o \right)^{\frac{1}{\nu}} \right]^{\nu - 1};
\]

\[
y_t^{n_o} = \Gamma(y_t^d)^{\sigma} (y_t^m)^{1-\sigma},
\]

\[
y_t^o = \phi \left(p_t^o \right)^{-\nu} y_t,
\]

\[
y_t^{n_o} = (1 - \phi) \left(p_t^{n_o} \right)^{-\nu} y_t,
\]

\[
y_t^d = \sigma \left(\frac{p_t^d}{p_t^{n_o}} \right)^{-1} y_t^{n_o},
\]

\[
y_t^m = (1 - \sigma) \left(\frac{p_t^m}{p_t^{n_o}} \right)^{-1} y_t^{n_o},
\]

\[
y_t = c_t + i_t + all\ adjustment\ costs,
\]

\[
z_t = y_t^d + y_t^x,
\]

\[
z_t = k_t^{\alpha} h_t^{1-\alpha},
\]

\[
\xi_t = p_t^x,
\]

\[
w_t = (1 - \alpha) \xi_t z_t h_t
\]

\[
q_t = \alpha \xi_t \frac{z_t}{h_t},
\]

\[
b^*_t = R_{t-1} b_{t-1}^* + p_t^x y_t^x - p_t^o y_t^o - y_t^m,
\]

\[
\log(R_t/R) = \varrho_\pi \log(\pi_t/\pi) + \varrho_e \log(\epsilon_t/e),
\]
\[-\theta \frac{x_t}{p^d_t} = (1 - \theta) \left[1 - \psi_d \left(\frac{\pi^d_t}{\pi^d} - 1 \right)^2 \right] \]
\[-\psi_d \left[\frac{\pi^d_t}{\pi^d} \left(\frac{\pi^d_t}{\pi^d} - 1 \right) - \beta \lambda_{t+1} \left(\frac{\pi^d_{t+1}}{\pi^d_t} \right)^2 \left(\frac{\pi^d_t}{\pi^d} - 1 \right) \frac{y^d_{t+1}}{y^d_t} \right], \]
\[\psi \frac{s_t}{p^m_t} = (1 - \psi) \left[1 - \psi_m \left(\frac{\pi^m_t}{\pi^m} - 1 \right)^2 \right] \]
\[-\psi_m \left[\frac{\pi^m_t}{\pi^m} \left(\frac{\pi^m_t}{\pi^m} - 1 \right) - \beta E_t \left(\frac{\pi^m_{t+1}}{\pi^m_t} \right)^2 \left(\frac{\pi^m_t}{\pi^m} - 1 \right) \frac{y^m_{t+1}}{y^m_t} \right], \]

\[p^* = s_t, \]
\[p^o = (1 - \chi) \left(\frac{p^*_t}{\pi_t} \right) + \chi s_t p^*_t, \]
\[T_t = e_t P^w_t y^o_t - P^o_t y^o_t, \]
\[\pi_t = \frac{P_t}{P^*_t}, \]
\[\pi^m_t = \frac{p^m_t}{\pi^m_t}, \]
\[\pi^d_t = \frac{p^d_t}{\pi^d_t}, \]
\[\pi^x_t = \frac{p^x_t}{\pi^x_t}, \]
\[\pi^{no}_t = \left(\frac{\pi^d_t}{\pi^m_t} \right)^{1 - \sigma}, \]
\[s_t = \frac{e_t P^*_t}{P^*_t}, \]
<table>
<thead>
<tr>
<th>Country</th>
<th>World Bank</th>
<th>Baig et al.</th>
<th>World Bank</th>
<th>Baig et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>–</td>
<td>0.23</td>
<td>–</td>
<td>0.82</td>
</tr>
<tr>
<td>Albania</td>
<td>–</td>
<td>1.28</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Argentina</td>
<td>0.02</td>
<td>0.09</td>
<td>–</td>
<td>0.83</td>
</tr>
<tr>
<td>Armenia</td>
<td>–</td>
<td>0.88</td>
<td>–</td>
<td>1.09</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>–</td>
<td>0.20</td>
<td>–</td>
<td>1.01</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>0.79</td>
<td>0.09</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.64</td>
<td>1.14</td>
<td>0.84</td>
<td>2.92</td>
</tr>
<tr>
<td>Bolivia</td>
<td>–</td>
<td>0.21</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cambodia</td>
<td>1.06</td>
<td>1.36</td>
<td>0.93</td>
<td>1.08</td>
</tr>
<tr>
<td>Cameroon</td>
<td>0.91</td>
<td>0.83</td>
<td>0.98</td>
<td>–</td>
</tr>
<tr>
<td>Chile</td>
<td>1.15</td>
<td>–</td>
<td>1.11</td>
<td>–</td>
</tr>
<tr>
<td>China</td>
<td>0.71</td>
<td>–</td>
<td>0.53</td>
<td>–</td>
</tr>
<tr>
<td>Colombia</td>
<td>–</td>
<td>0.74</td>
<td>–</td>
<td>0.65</td>
</tr>
<tr>
<td>Congo, D. R. of</td>
<td>–</td>
<td>1.34</td>
<td>–</td>
<td>1.35</td>
</tr>
<tr>
<td>Congo, R. of</td>
<td>–</td>
<td>0.43</td>
<td>–</td>
<td>0.39</td>
</tr>
<tr>
<td>Dominican R.</td>
<td>–</td>
<td>1.78</td>
<td>–</td>
<td>1.29</td>
</tr>
<tr>
<td>Egypt</td>
<td>0.00</td>
<td>0.17</td>
<td>0.00</td>
<td>0.21</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>0.48</td>
<td>0.77</td>
<td>0.64</td>
<td>0.75</td>
</tr>
<tr>
<td>Gabon</td>
<td>–</td>
<td>0.21</td>
<td>–</td>
<td>0.21</td>
</tr>
<tr>
<td>Georgia</td>
<td>–</td>
<td>1.05</td>
<td>–</td>
<td>1.28</td>
</tr>
<tr>
<td>Ghana</td>
<td>1.33</td>
<td>1.45</td>
<td>1.21</td>
<td>1.35</td>
</tr>
<tr>
<td>Guatemala</td>
<td>0.93</td>
<td>–</td>
<td>0.99</td>
<td>–</td>
</tr>
<tr>
<td>Honduras</td>
<td>0.60</td>
<td>–</td>
<td>0.87</td>
<td>–</td>
</tr>
<tr>
<td>India</td>
<td>1.25</td>
<td>1.08</td>
<td>0.66</td>
<td>0.72</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1.20</td>
<td>0.95</td>
<td>1.02</td>
<td>0.82</td>
</tr>
<tr>
<td>Jordan</td>
<td>–</td>
<td>1.03</td>
<td>–</td>
<td>0.79</td>
</tr>
<tr>
<td>Kenya</td>
<td>0.97</td>
<td>1.03</td>
<td>0.79</td>
<td>1.06</td>
</tr>
<tr>
<td>Kosovo</td>
<td>–</td>
<td>0.90</td>
<td>–</td>
<td>0.93</td>
</tr>
<tr>
<td>Kyrgyz R.</td>
<td>0.19</td>
<td>0.48</td>
<td>2.35</td>
<td>0.69</td>
</tr>
<tr>
<td>Lao PDR</td>
<td>1.86</td>
<td>1.41</td>
<td>1.35</td>
<td>1.10</td>
</tr>
<tr>
<td>Lebanon</td>
<td>–</td>
<td>–0.17</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Madagascar</td>
<td>1.46</td>
<td>–</td>
<td>1.55</td>
<td>–</td>
</tr>
<tr>
<td>Malawi</td>
<td>1.14</td>
<td>1.26</td>
<td>1.22</td>
<td>1.53</td>
</tr>
<tr>
<td>Malaysia</td>
<td>0.75</td>
<td>–</td>
<td>0.84</td>
<td>–</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.15</td>
<td>–</td>
<td>0.11</td>
<td>–</td>
</tr>
<tr>
<td>Mozambique</td>
<td>1.10</td>
<td>–</td>
<td>1.01</td>
<td>–</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>0.95</td>
<td>–</td>
<td>0.88</td>
<td>–</td>
</tr>
<tr>
<td>Nigeria</td>
<td>0.84</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 1 (Cont.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakistan</td>
<td>1.98</td>
<td>1.24</td>
<td>0.78</td>
<td>0.75</td>
</tr>
<tr>
<td>Peru</td>
<td></td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>1.29</td>
<td>1.32</td>
<td>1.30</td>
<td>1.16</td>
</tr>
<tr>
<td>Russia</td>
<td></td>
<td>0.89</td>
<td></td>
<td>1.17</td>
</tr>
<tr>
<td>Rwanda</td>
<td>0.98</td>
<td></td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Senegal</td>
<td></td>
<td>0.98</td>
<td></td>
<td>1.53</td>
</tr>
<tr>
<td>Serbia</td>
<td></td>
<td>1.41</td>
<td></td>
<td>1.45</td>
</tr>
<tr>
<td>South Africa</td>
<td></td>
<td>1.58</td>
<td></td>
<td>1.65</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>1.80</td>
<td>1.17</td>
<td>0.83</td>
<td>0.52</td>
</tr>
<tr>
<td>Tanzania</td>
<td>1.57</td>
<td>1.23</td>
<td>1.52</td>
<td>1.10</td>
</tr>
<tr>
<td>Thailand</td>
<td>1.37</td>
<td></td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>Tunisia</td>
<td>0.53</td>
<td></td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td>2.30</td>
<td></td>
<td>2.78</td>
</tr>
<tr>
<td>Uganda</td>
<td>1.23</td>
<td>1.41</td>
<td>1.14</td>
<td>1.05</td>
</tr>
<tr>
<td>Ukraine</td>
<td></td>
<td>0.74</td>
<td></td>
<td>1.37</td>
</tr>
<tr>
<td>Uruguay</td>
<td></td>
<td>1.40</td>
<td></td>
<td>1.14</td>
</tr>
<tr>
<td>Venezuela</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>1.03</td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Yemen</td>
<td></td>
<td>0.47</td>
<td></td>
<td>0.34</td>
</tr>
<tr>
<td>Zambia</td>
<td>2.20</td>
<td>1.53</td>
<td>1.93</td>
<td>1.30</td>
</tr>
</tbody>
</table>

Industrialized countries

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>1.06</td>
<td></td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>1.30</td>
<td></td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>1.20</td>
<td></td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>0.85</td>
<td></td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1.25</td>
<td></td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>1.02</td>
<td>0.89</td>
<td>1.05</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Pass-through is computed as the ratio of the (absolute) change in domestic retail prices (measured in local currency) to the (absolute) change in the international price (converted to local currency). Estimates reported by the World Bank (2006) are for the period 2004:1 – 2006:04. Those reported by Baig et al. (2007) are for the period end-2003 – 2006:06.

Sources: World Bank (2006) and Baig et al. (2007).
Table 2. Baseline Calibration

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discount factor</td>
<td>β</td>
<td>0.99</td>
</tr>
<tr>
<td>Elasticity of intertemporal substitution</td>
<td>γ</td>
<td>0.5</td>
</tr>
<tr>
<td>Elasticity of output with respect to capital</td>
<td>α</td>
<td>0.36</td>
</tr>
<tr>
<td>Depreciation rate of capital</td>
<td>δ</td>
<td>0.025</td>
</tr>
<tr>
<td>Elasticity of substitution between domestic intermediate goods</td>
<td>θ</td>
<td>10</td>
</tr>
<tr>
<td>Elasticity of substitution between imported intermediate goods</td>
<td>ϑ</td>
<td>10</td>
</tr>
<tr>
<td>Elasticity of substitution between different types of labor</td>
<td>η</td>
<td>10</td>
</tr>
<tr>
<td>Price-adjustment-cost parameter for domestic intermediate goods</td>
<td>ψ_d</td>
<td>100</td>
</tr>
<tr>
<td>Price-adjustment-cost parameter for imported intermediate goods</td>
<td>ψ_m</td>
<td>0</td>
</tr>
<tr>
<td>Wage-adjustment-cost parameter</td>
<td>ψ_w</td>
<td>0</td>
</tr>
<tr>
<td>Capital-adjustment-cost parameter</td>
<td>ψ_k</td>
<td>25</td>
</tr>
<tr>
<td>Portfolio-adjustment-cost parameter</td>
<td>ψ_b</td>
<td>0.0007</td>
</tr>
<tr>
<td>Share of oil in production</td>
<td>ϕ</td>
<td>0.04</td>
</tr>
<tr>
<td>Price elasticity of oil demand</td>
<td>ν</td>
<td>0.05</td>
</tr>
<tr>
<td>Share of domestic intermediate goods in the non-oil composite good</td>
<td>σ</td>
<td>0.65</td>
</tr>
<tr>
<td>Inflation coefficient in the Taylor rule</td>
<td>ϱ_π</td>
<td>∞, 0</td>
</tr>
<tr>
<td>Nominal-exchange-rate coefficient in the Taylor rule</td>
<td>ϱ_e</td>
<td>0, ∞</td>
</tr>
<tr>
<td>Steady-state values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours worked</td>
<td>h</td>
<td>0.3</td>
</tr>
<tr>
<td>Foreign interest rate</td>
<td>R^*</td>
<td>1.008</td>
</tr>
<tr>
<td>Ratio of foreign debt to output in the steady state</td>
<td>κ</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Table 3. Welfare Results

<table>
<thead>
<tr>
<th></th>
<th>CPI Inflation Targeting</th>
<th>Fixed Exchange Rate Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$x_{optimal}$</td>
<td>Welfare</td>
</tr>
<tr>
<td>Baseline model</td>
<td>0.1740</td>
<td>-195.3189</td>
</tr>
<tr>
<td>Sensitivity analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price-elasticity of oil demand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 0.1$</td>
<td>0.2598</td>
<td>-195.0750</td>
</tr>
<tr>
<td>$\nu = 0.2$</td>
<td>0.4349</td>
<td>-195.0363</td>
</tr>
<tr>
<td>$\nu = 0.3$</td>
<td>0.6061</td>
<td>-195.9953</td>
</tr>
<tr>
<td>$\nu = 0.4$</td>
<td>0.7396</td>
<td>-195.9532</td>
</tr>
<tr>
<td>$\nu = 0.5$</td>
<td>0.8305</td>
<td>-195.9107</td>
</tr>
<tr>
<td>Share of oil in production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi = 0.02$</td>
<td>0.2508</td>
<td>-195.0844</td>
</tr>
<tr>
<td>$\phi = 0.03$</td>
<td>0.2009</td>
<td>-195.2019</td>
</tr>
<tr>
<td>$\phi = 0.05$</td>
<td>0.1572</td>
<td>-195.4354</td>
</tr>
<tr>
<td>$\phi = 0.06$</td>
<td>0.1457</td>
<td>-195.5514</td>
</tr>
<tr>
<td>Distortionary taxes</td>
<td>0.3548</td>
<td>-195.3260</td>
</tr>
<tr>
<td>Sticky import prices</td>
<td>0.1010</td>
<td>-195.3228</td>
</tr>
<tr>
<td>Sticky wages</td>
<td>0.0901</td>
<td>-195.3254</td>
</tr>
</tbody>
</table>

Note: C.V. denotes the compensating variation in consumption, ζ, in percentage.
Figure 1: Impulse responses to a 13.7 percent oil-price increase under strict CPI inflation targeting.
Figure 2: Impulse responses to a 13.7 percent oil-price increase under a fixed exchange rate regime.
Figure 3: Welfare for different degrees of pass-through.
Figure 4: Sensitivity analysis: Alternative values of the price-elasticity of oil demand, ν.

- Strict CPI inflation targeting
- Fixed exchange rate regime
Figure 5: Sensitivity analysis: Alternative values of the share of oil in production, ϕ.
Figure 6: Sensitivity analysis: Distortionary taxes.
Figure 7: Sensitivity analysis: Sticky import prices.
Figure 8: Sensitivity analysis: Sticky wages.