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Résumé / Abstract 
 
Un phénomène bien documenté en économie du développement est le nombre peu élevé d’agriculteurs 
qui décident d’adopter de nouvelles technologies en agriculture, malgré leurs avantages connus. En 
plus des nombreuses contraintes imposées par le marché, l’aversion au risque prédomine la discussion 
sur les déterminants de l’adoption de nouvelles technologies. Nous émettons l’hypothèse que 
l’aversion à l’ambiguïté pourrait aussi être un déterminant puisqu’il est possible que les agriculteurs 
aient moins d’information sur la distribution du rendement des nouvelles technologies que sur celle 
des technologies traditionnelles. Nous testons la validité de cette hypothèse avec une expérience en 
laboratoire sur le terrain où nous mesurons les préférences vis-à-vis du risque et de l’ambiguïté. Nous 
combinons notre expérience à un sondage portant sur les décisions prises en matière d’agriculture et 
identifiant les contraintes du marché.  Nous constatons qu’effectivement, l’aversion à l’ambiguïté dicte 
les choix technologiques réels relatifs à la ferme. 
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ambiguity aversion may also be a determinant, since farmers may have less information about the 
distribution of yield outcomes from new technologies compared with traditional technologies. We test 
this hypothesis with a laboratory experiment in the field in which we measure risk and ambiguity 
preferences. We combine our experiment with a survey in which we collect information on farm 
decisions and identify market constraints. We find that ambiguity aversion does indeed predict actual 
technology choices on the farm. 
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1 Introduction

The adoption of new technologies among subsistence farmers in developing countries is a

predominant issue in policy and academic debates in economic development, and has been

receiving an increasing amount of attention in recent years. Farmers make decisions re-

garding new technology adoption, for equipment, for seeds, and possibly for transport. Yet

development economists have often observed a lack of innovation in farming, which some

authors have linked to the persistence of rural poverty in developing countries. Understand-

ing how farmers make decisions would help in understanding why they do or do not adopt

new technology. The di�culty is that many factors a�ecting the decision process are not

observable to outsiders. For example, individual preferences toward risk and ambiguity are

typically not known and some individual decisions might appear to not square well with

models of rationality.

This study is the �rst to attempt to distinguish empirically between risk aversion and

ambiguity aversion in farmers' technology choices in developing countries. It combines a

new survey with new data using behavioral tests developed from economics experiments to

dig deeper into farmers' decision processes in adopting new technology in rural Peru. Our

study di�ers methodologically from others in that it contains both a laboratory experiment

in the �eld and a socioeconomic survey, and it includes both risk and ambiguity preference

measures.

In the experiment we measure farmers' predispositions toward risk, toward ambiguity,

and toward making individual choices that do not �t the model of rationality. In the survey

we collect information about households and farming choices. We use the experiment to

provide additional variables to explain the choice of technology use on the farms.

We make two main contributions. First, we �nd evidence of a correlation between am-

biguity aversion, but not risk aversion, and technology choice. This �nding contrasts with

the long-held notion that risk aversion prevents the adoption of new technology. Our �nding



is complementary to others who compare preferences with decision making in developing

countries (see Feder, Just and Zilberman (1985) and Knight, Weir and Woldehanna (2003)).

In addition, like Du
o, Kremer, and Robinson (2006), who present an experimental design

that reveals a time inconsistency feature of farmers' choices to buy fertilizer, we explore

features of farmers' preferences that do not appear to be rational in the traditional sense of

economic theory, and that a�ect their choices. Our approach di�ers from theirs because it

is a laboratory study, not an intervention: we measure preferences in a �eld laboratory and

then correlate our measures with survey data on technology choices. A goal of our approach

is to guide future interventions.

Second, we contribute to the literature on using incentive-compatible instruments to ex-

plain and predict behavior. This literature takes two main tacks. First, many researchers

now use risk and time preferences to help explain real-life decisions (e.g., see the laboratory

experiments combined with the Mexican Family Life Survey in Eckel, Hotz, Johnson, Rubal-

cava, Teruel, Thomas, Conroy, and Hamoudi, (2006)). Second, research is being conducted

to determine more precisely what the instruments measure (e.g., Eckel, Engle-Warnick, and

Johnson (2005)). Our study and �eld work advances knowledge regarding the instruments

by searching for correlations between the laboratory decisions and real-life decisions with the

same subject.

2 Technology Choice

To illustrate a technology choice, imagine that a farmer has been growing a traditional variety

of a particular crop, say potato. In the case of Peru, this might be a variety that her family

has been planting for generations, possibly dating back to Inca times. This traditional variety

of potato might have a low expected yield, but the farmer knows reasonably well how much it

will yield in a good year and how much it will yield in a bad year. Furthermore, even in a bad
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year, this particular variety will yield enough potatoes to make it likely that she will be able

to feed her family. New and modern varieties of potato appear from time to time, however,

such as the Papa Capiro, that perform reasonably well in the farmer's region, and has shown

to provide substantial yield improvements at relatively low cost (e.g. technical know-how) of

adoption. In fact, there might even be a number of non-pro�t technical assistance programs

in the area to bring such costs of adoption to a strict minimum. Yet, it is still possible that

this farmer will continue to choose to grow the traditional variety.

It is a well established fact that, despite presumed yield improvements, farmers in de-

veloping countries do not always adopt new technologies, whether these are high yielding

varieties (HYV) or modern complementary inputs such as chemical fertilizers. The literature

has put forward several possible hypotheses for what might determine a farmer's propensity

to adopt. Among the many hypotheses, one that stands out is that subsistence farmers

do not adopt new technologies because they are risk averse. Since subsistence farmers are

typically poor, they prefer not to undertake risky projects: they are not willing to take the

chance, however remote, that the new technology will not meet the minimum yield to ensure

a subsistence existence.

Suppose that the farmer must choose between a traditional, but safe, technology and a

modern one with potentially high expected yield. The modern technology may have a larger

yield variance, or perhaps she might perceive it this way. She will view the new technology

to be riskier. Poor individuals might have a stronger aversion towards risky technologies

because they are poor. Put another way, poor farmers are more averse than rich farmers

to the probability that the new technology will have a low yield, because in a bad year

the poor farmer may fall below subsistence. Therefore, we would expect that technology

adoption is less likely among relatively risk averse farmers. Several in
uential studies have

documented the important role that farmers' risk preferences has on the adoption of new

farming technologies (Feder, 1980; Feder, Just and Zilberman, 1985; Antle and Crissman,

3



1990; Knight, Weir and Woldehanna, 2003).

Hypothesis 1 (Risk preferences) Technology adoption is decreasing in risk aversion.

The e�ect of risk preferences on technology adoption addresses one form of uncertainty -

the farmer knows (or has subjective beliefs about) the distribution of outcomes, but does not

know the realization of the outcome until it occurs. However, it is possible that the farmer

simply does not know the distribution of outcomes. In other words, the farmer does not

know the probability of high and low yields with the modern technology. This second type of

uncertainty, known as Knightian uncertainty (Knight, 1921), implies that ambiguity aversion

may matter in the choice of technologies. It pertains to the aversion towards the uncertainty

about the probability distribution over outcomes. The technology choice problem can be

expressed quite appropriately in the context of ambiguity: traditional farming technologies

tend to have known yield distributions, whereas modern farming technologies tend to have

unknown yield distributions (at least to the farmer who is deciding which technology to

choose). Therefore, in addition to risk aversion, one might expect ambiguity aversion to be

at least equally important in determining which technology to choose.

Hypothesis 2 (Ambiguity preferences) Technology adoption is decreasing in ambiguity

aversion.

In thinking about behavioral determinants of technology choice, the literature has mostly

focused on the role of the farmers' attitudes towards risk. In this paper, we suggest that

due to the ambiguous nature of the yield distribution of modern seed varieties, ambiguity

aversion should matter at least as much as risk aversion in determining whether farmers

adopt new technologies. To the best of our knowledge, this paper is the �rst to attempt

to empirically distinguish between risk and ambiguity aversion's e�ect on technology choice

among farmers in developing countries.1

1 For a recent theoretical discussion of the relationship between ambiguity aversion and innovation, see
Rigotti, Ryan and Vaithianathan (2003).
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Neoclassical approaches to decision-making among the poor assume among other things

that agents are rational. However, there is growing evidence that this is not a universal

rule among the poor and several papers have documented important examples where the

assumption of bounded rationality has failed (e.g. the time inconsistency problem noted

by Du
o et al. (2006)). For example, in a previous study where subsistence farmers in

the Peruvian Costa were given the task to choose among di�erent lotteries, we found that

farmers revealed a non-negligible preference for payo� dominated gambles (Engle-Warnick,

Escobal and Laszlo, 2006). The e�ect of non-rational choice on technology adoption should

work against pro�t maximization. Thus if we assume that adoption of new technology is

pro�table, we would expect people who exhibit this type of behavior to be slow to adopt.

Hypothesis 3 (Non-rational behavior) Technology adoption is decreasing in non-rational

behavior.

It is also important to mention other, non-behavioral, hypotheses that shed light on

the lack of technology adoption among farmers in developing countries. First, poverty (or

inversely wealth) may slow or prevent technology adoption. Poor farmers who are liquid-

ity constrained are not able to undertake the investment into the new alternative because

they are unable to cover the cost of the investment (purchase of the new seeds or fertiliz-

ers). Second, in an environment with perfect credit markets, poverty should not prevent

the investment because the farmer would be able to borrow against future crop yield (this

argument is made in Besley and Case (1993) and elsewhere). However, if credit markets are

imperfect, as they tend to be in most rural areas of developing countries (especially in rural

Peru), then farmers face a binding borrowing constraint. In such a scenario, poor farmers

who would want to plant the new seed or spread new fertilizer would not be able to do so

because they cannot borrow to cover their cost. Du
o et al. (2006) �nd evidence of liquidity

constraints among Kenyan maize farmers.
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Third, learning of various kinds are also important determinants of technology adoption.

In particular, Foster and Rosenzweig (1995) and Du
o et al. (2006) �nd evidence of the

e�ect of learning by doing on adoption in India and Kenya, respectively.2 If learning by

doing is an important determinant of adoption, then we would expect that more experienced

farmers are more likely to choose a new technology. More experienced farmers are more

familiar with the how inputs interact. Because the learning models assume that as one uses

a technology, one noisily learns about other technologies, past experience with new varieties

should also be correlated to a higher propensity to adopt.

Fourth, the recent literature has focused a great deal on the social learning (or learning

from others) hypothesis. The idea is simple. Suppose one farmer in the community is willing

to undertake the investment into a new technology. Call her the `leader'. Other farmers

in the community may wait to see what happens on her plots before deciding whether

they too should undertake this investment. Similarly, they might watch what she is doing

and how she is doing it before jumping in themselves. Eventually, they may choose to

follow her example and also choose the new technology. They are the `followers'. In other

words, the probability that a farmer will adopt a new seed or a new fertilizer will depend on

whether others in her community have also adopted it. However straightforward, identifying

empirically this social learning hypothesis is di�cult to do because of the re
ection problem

noted in Manski (1993). The correlation between the adoption by other community members

and the farmer's adoption might be driven by a third, perhaps unobserved, factor, thus

causing an endogeneity bias. Several studies have nonetheless found convincing approaches

to identifying social learning and technology choice among farmers: Foster and Rosenzweig

(1995) and Munshi (2004) found evidence of social learning among maize farmers in India,

Conley and Udry (2006) among pineapple farmers in Ghana and Du
o et al. (2006) among

maize farmers in Kenya.

2 See Jovanovic and Nyarko (1996) for the theoretical discussion of learning by doing and technology
adoption using a target input model, used in Foster and Rosenzweig (1995).
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Hypothesis 4 (Non-behavioral hypotheses) The following summarizes some of the main

non-behavioral determinants of technology adoption:

1. Income positively a�ects a farmer's decision to adopt a new technology. Conversely, poverty will
reduce the probability that the farmer adopts.

2. Poor farmers who face a borrowing constraint are less likely to adopt a new technology than farmers
who can draw from their own savings or who have access to credit.

3. Learning by doing is an important determinant of technology adoption. More educated and more
experienced farmers are thus more likely to adopt a new technology.

4. Farmers are more likely to adopt a new variety if their neighbors have already adopted it themselves.

With these hypotheses in mind, we now turn to the case of Peru, where we visited

rural communities in two areas, the Central Costa and Central Sierra. There we ran a socio-

economic survey with questions pertaining to agricultural technology choices, and laboratory

experiments in the �eld to elicit farmers' preferences under uncertainty.

3 Experimental Design

Our experimental design consists of measures of risk preferences, measures of ambiguity

preferences, and tests for preferences for payo� dominated alternatives as a test of `irrational'

preferences. The design is as simple as we could make it. The goal of our design is to provide

a set of explanatory variables that complement those that we generate in our socioeconomic

survey, re�ning our ability to understand technology choice.3

3.1 Risk Preference Measure

Figure 1 shows the instrument, inspired by Eckel and Grossman (2003) and denoted `�ve

options' (FO), which we use to derive our preference measure. Our subjects are instructed to

select exactly one of the �ve options. Each option is represented by a circle which contains

3 This design is identical to the one used in Engle-Warnick and Laszlo (2006), where we run the sessions
in a traditional laboratory environment.
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two payo�s, each with a 50% probability of occurring. To illustrate, the top option pays

26 Nuevos Soles (S/.) with certainty, while the option to its right has a low payo� of 2 S/.

(with 50% probability) and a high payo� of 62 S/. (with 50% probability).4 The variance

in the payo�s increases as we move counter clockwise from the top option.

Our measure of risk preferences, denoted `risk measure' (RM), is derived by decomposing

FO into a set of four binary choices. This decomposition resembles the instrument in Holt

and Laury (2000). Figure 2 presents this decomposition. Each row in the �gure corresponds

to a signle binary choice between two alternative gambles. Speci�cally, each row depicts a

choice between two alternatives that are contiguous in the FO instrument. Beginning with

the �rst row of choices and moving down, an expected utility maximizer will at some point

switch from the left-hand side gamble with lower variance to the right-hand side gamble with

a higher variance and slightly higher expected utility. The sooner the subject switches from

the left-hand side to the right-hand side, the less relatively risk averse she is.5

3.2 Ambiguity Preference Measure

Our measure of ambiguity preferences, denoted `ambiguity measure' (AM), is depicted in

Figure 3. Figure 3 presents �ve decisions, one in each row. In the �gure, the gamble on

the left displays the possible prizes, but not the probability of winning those prizes (this is

communicated by eliminating the vertical line in the center of the circle). The gamble on

the right contains the same prizes, but with a 50/50 chance of winning each one. However,

if a subject chooses the gamble on the right, she must pay 0.50 S/. of her �nal earnings back

to the experimenter for making this choice.6 Thus the left gamble is ambiguous in the sense

4 10 S/. are equal to approximately $3 US.
5 Our motivation for decomposing FO into RM was to use the relatively simple 50/50 choice gambles

within a framework within which we could study the e�ect of adding additional alternatives to the choice
set. The experimental design also consists of a set of questions that study the e�ect of additional choices.
For a description of this aspect of the design, see Engle-Warnick, Escobal, and Laszlo (2006).

6 In no case can this ever result in a negative payo� for choices in the experiment.
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that the subject does not know the probability distribution over outcomes, and the costly

right gamble provides the subject with an opportunity to reveal her preference to avoid this

ambiguity.7

Our measure of ambiguity aversion re
ects choices for simpli�cation that we had to make

to run our laboratory experiment in Peru. There are at least two other methods we could

have used. Perhaps the most standard way to measure ambiguity aversion in the laboratory

is to elicit subjects' willingness to pay for the ambiguous gamble and for the unambiguous

gamble separately, then take the di�erence between the two valuations as the measure. This

requires using the Becker, Degroot, Marschak (1964) procedure, in which subjects report

their valuation of the gamble, then they sell the gamble to the experimenter if a random

number comes up larger than their valuation, and play the gamble it if it comes up smaller.

We could also have varied the amount of money it cost to select the unambiguous gamble

across the �ve gambles we used for the measure, taking the minimum amount subjects were

willing to pay as our measure. This would have involved either choosing one of the gambles

and varying the price each time it was presented, or determining how to vary the price among

the �ve di�erent gambles presented.

We chose our simpler design with multiple gambles and a single price to avoid ambiguity

because it avoids the complicated Becker, DeGroot, and Marschak (1964) procedure of elic-

itation, because it is easy to derive a measure from, and because it enabled our ambiguity

test to mirror our risk preference and rationality tests as closely as possible. We believe

that it is important to follow up on these di�erent methods to determine if one is a better

measure than the others.
7 In this case, as in the Ellsberg Paradox, if the the distribution over possible distributions of outcomes in

the ambiguous gamble is uniform, an expected utility maximizer should be indi�erent between the two gam-
bles, and should not pay to avoid the ambiguous gamble. Ellsberg (1961) suggested the original experiments
which form the basis if literature on ambiguity preferences.
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3.3 Dominated Alternative Preference Measure

Our third test, which we denote `dominated choice' (DC) is designed to reveal preferences for

payo�-dominated alternatives. This measure can be thought of as a measure of the subjects'

ability to understand the decision-making problem, or a measure of a type of subject who

for some reason legitimately prefers to leave money on the table, or some other kind of non-

rational behavior. Figure 4 shows the �ve choices subjects faced with a payo�-dominated

gamble. Thus for each of the �ve base gambles, we test whether subjects would prefer a

gamble that is dominated in both possible payo�s.8

3.4 Explanatory Variables Generated by the Experiment

We constructed an explanatory variable for each one of the three behavioral measures in our

experiment. Embedded within the decisions our subjects made was a set of choices relevant

to each measure. We take those choices and construct three measures.

First, to measure risk preferences, we take the four decisions depicted in Figure 2, noting

that each decision is a choice between a relatively safe and a relatively risky gamble. For the

risk preference measure we simply count the number of risky choices made by the subject.

The fewer risky choices, which can take on integer values from zero to four, the less risk

averse a subject is. This measure is equivalent to the one used by Holt and Laury (2002).

Second, to measure ambiguity preferences, precisely as in our measure of risk preferences,

we count the number of times subjects pay to avoid an ambiguous gamble in each of the �ve

choice problems shown in Figure 3. This measure takes on integer values from zero to �ve.

For a simple model of decision making, one can think of a subject who has a predisposition

against ambiguity. The higher this predisposition, the more likely the subject is to pay to

8 We include these tests based on our �ndings in Engle-Warnick, Escobal and Laszlo (2006), where subjects
chose payo� dominated alternatives 25% of the time they were available among a set of three alternatives.
We wished to discover whether they would directly reveal their preferences for these gambles in a binary
choice. Hamoudi (2006) reports \gamble averse" subjects, who prefer a sure amount of money over a gamble,
where the lower of the two amounts that can be won in the gamble is equal to the sure amount.
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avoid it, thus the more often the subject will on average pay to avoid it.

Third, to measure a degree of rationality, we count the number of times subjects chose the

dominated alternative in each of the �ve choice problems depicted in Figure 4. This measure

takes on integer values from zero to �ve. The more subjects prefer dominated choices, the

higher this measure.

3.5 Experimental Procedures

3.5.1 Subject Pool

In February of 2006, we held two sessions in the district of Ca~nete (in the Costa) and �ve

sessions in the Mantaro river valley (in the Central Sierra). All seven communities are rural

communities, where agriculture is the main livelihood. These communities do not specialize

in a particular crop, yet maize and potato are the dominant ones. Forty two percent of

our sampled farmers plant potato as their main crop, while 31% plant maize as their main

crop. These crops are typical peruvian crops and are consumed locally and also sold in larger

domestic markets.

In Ca~nete, we held one session with 19 subjects in Unanue, a community with just over

200 dwellings, and the other with 25 subjects in La Pampilla, a community with 60 dwellings.

In the Mantaro river valley, we alternated sessions on either shore and each community was

located in a di�erent district.9 In the district of Paccha, we ran a session with 25 subjects

from the community Buenos Aires (which has a population of 40 dwellings). In the district

of Acolla, we ran another session with 25 subjects in Tambopaccha, a community with 80

dwellings. In the district of Matahuasi, we had 25 subjects from Yanamuclo (population:

300 dwellings). In the district of Orcotuna, we had 15 subjects from the community San

9 We did this to minimize potential contamination from one session to the other in this densely populated
region. Because kinship ties are strong in contiguous communities and weak across the river and non-
contiguous communties, it is unlikely that word would travel quicker than the experimenters and surveyors
from one �eld site to the other.
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Antonio (population: 35 dwellings). Finally, in the district of Sicaya, we had 25 subjects in

Anexo La Libertad, a community with 95 dwellings.10

We visited each of the seven communities several days in advance to recruit subjects

with the help of the community leaders, who also helped arrange the locales (schoolrooms or

community halls) in which to run the session. Subjects were recruited based on the following

criteria: they had to be of legal age (18 and above), be farmers, reside in the community

where the session was to be held, and had to have basic literacy and numeracy skills.

Since the community leaders played an important role in recruiting subjects for the

session, it is unlikely that we have a random sample.11 However, given the small sizes of

the communities that we visited, our subjects are representative of their communities. For

instance, since subjects did not come from the same households, a session with 25 subjects

would represent 25 di�erent households. Thus, in a community with 40 dwellings (such as

Buenos Aires, Paccha), our session involved subjects from more than 50% of households. At

the very least, in the case of Yanamuclo (Matahuasi), we sampled from just under 10% of

households.

3.5.2 Experimental Sessions

We ran our sessions as laboratory experiments in the �eld. Subjects were given a show up fee

of 10 S/. upon arrival to cover their transportation and opportunity cost, which is roughly

what an agricultural laborer earns in a day. Paying the show up fee immediately helps to

build trust in the incentivized part of the experiment. Two of our surveyors, each native

Spanish speakers, gave the instructions in all seven sessions reading from a script.12 The

subjects were given a booklet containing the forty-four decisions.13 Each page of the booklet

10 The population data are from the 1999 Peruvian pre-census.
11 It was necessary to involve the community leaders so as to ensure the community's cooperation.
12 The English instructions are provided in Appendix 1. The instructions, given in Spanish in Peru, are a

translation of the English instructions (available upon request).
13 These decisions consisted of the fourteen decisions in RM, AM, and DC plus the questions with additional

alternatives in the choice set, which we do not analyze here.
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contained one decision. For each decision, subjects indicated their choice by pen. After

subjects completed their booklets we veri�ed that each page had exactly one choice marked

on it. To control for the e�ects of order in presenting the choices, the order of the decisions

as well as the left/right presentation of the gambles was randomly determined separately for

each subject.

The gambles were implemented by drawing chips out of a bag. For this we used three

separate bags, one for each type of randomization required by the experiment. The �rst bag

contained forty-four numbered chips and determined which page of the booklet would be

selected for payment. The second bag contained �ve blue and �ve yellow chips and deter-

mined the outcome of a 50/50 gamble with known probabilities. The third bag contained a

number of blue and yellow chips which we determined randomly by drawing from a uniform

distribution from all possible combinations of yellow and blue chips just before the session.

When subjects played the gambles, they were �rst asked which color they chose, blue or yel-

low, to represent the higher of the two possible payo�s.14 They then pulled a chip from the

appropriate bag to determine their earnings. Subjects were permitted to see the composition

of the chips in the ambiguous bag if they desired after the draw. No subject ever asked to

do so. Subjects also pulled the chip that determined the choice that was played for pay.

The experiments were held in either a schoolroom or a public meeting room. Only the

subjects and experimenters were in the room at the time of the experiments, and outside

distractions were carefully minimized. Subjects with relatively poor vision or hearing were

seated at the front of the room to facilitate understanding of the instructions.

One-hundred and sixty subjects participated in the experiments, with session sizes of

approximately twenty.15 Subjects earned an average of 25 S/. in addition to the 10 S/.

show up fee. The experiments lasted approximately one hour, and the entire time spent

14 Charness and Gneezy (2003) used this experimental procedure.
15 Sample sizes in lab experiments in the �eld studying risk preferences in developing countries tend

to be quite small. Our study compares in sample size with Binswanger (1980) who had 240 farmers and
Shahbuddin et al. (1986) who had 202 farmers.
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on the experiments and the survey was approximately 4 hours per session. Subjects �rst

participated in the experiment, then individually completed the survey, and then were paid

their earnings from one randomly chosen gamble choice in private.

4 Survey & Construction of Variables of Interest

4.1 Survey

When the experiment ended, subjects were directed towards the surveyors where they orally

completed a socio-economic survey which lasted on average 30 to 45 minutes per subject. The

survey contained several modules designed to shed light on the determinants of technology

choice, as well as relevant socio-economic controls. Namely, the survey contained modules

on demographics and education, dwelling construction and materials, economic activity and

access to markets, infrastructure and services, agricultural production, history of family and

farm crises and so on. The survey also included questions pertaining to the experiment,

questions about lottery and gambling experiences.

4.2 Constructing the Dependent Variables

The agricultural module asked respondents questions about their agricultural experiences

over the last year. Speci�cally, subjects were asked questions pertaining the top three crops

planted in the last 12 months such as the years of experience with each crop and whether

they at any time received technical assistance. For the main crop, they were then asked

questions about the top three varieties that they've planted in the last 12 months, such as

the name of each variety, the years of experience with the particular variety and whether

they've received any technical assistance for each variety. In the empirical analysis below,

we will restrict our attention to the top three varieties of each farmer's main crop.

We had to depart from standard de�nitions of `adoption' because of the types of farming
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in our study communities.16 Since our study communities do not tend to specialize in one

crop, restricting our analysis to say potato or corn farmers would require that we lose a

majority of our observations. Furthermore, because we could only visit each community for

a half day, a more detailed survey of all seed choices was impractical.

The names of the crop varieties allow us to identify which variety is traditional and which

is modern. Thus, we construct one of our dependent variables as a binary variable which

takes the value `1' if the farmer has at least one modern variety in her top three varieties for

her main crop, and `0' otherwise. If a farmer has at least one modern variety then she can be

considered an `adopter'. According to this de�nition of adoption, our samples suggest that

64% of our subjects from the two Costa communities are adopters. Meanwhile, only 20% of

our subjects from the �ve Sierra communities are considered to be adopters according to this

de�nition. These di�erences are driven by the markedly di�erent economic and ecological

environments in these two very di�erent geographical regions.

It is possible that the labeling of seeds is prone to error. For instance \clover" could be

correctly labeled as a traditional variety, but it could also be a coding or reporting error if

the farmer meant \red clover", which instead would be a modern variety. This type of error

could understate the true adoption rate. We thus propose to use a second dependent variable

which would be less sensitive to such reporting errors: whether the farmer diversi�es across

varieties in the last 12 months. While this variable does not directly measure the adoption

of new varieties, it does indicate the degree to which the farmer is (or has been) willing to

try new or di�erent things. This variable is constructed as a binary variable which takes the

value of `1' if the farmer plants at least 2 or 3 varieties of the main crop, and `0' if the farmer

only plants 1 variety.

The extent of variety diversi�cation also varies across the two regions of our analysis:

16 For instance, Conley and Udry (2006) focus on pineapple, while Du
o et al. (2006) focus on chemical
fertilizers. In most other studies, the technology decision under analysis pertains to one particular new
technology.
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only 11% of the Costa sample diversi�es in this way, while 53% of the Sierra sample does.

Diversi�cation is typically thought of as a risk management strategy. This is certainly the

case for crop diversi�cation, as carefully chosen crops often face negatively co-variant risks.

While variety diversi�cation may share some element of risk management strategy (e.g. di

Falco, Chavas and Smale (2006)), it also says something about the farmer's propensity to try

something new or a di�erent technology for a particular crop, and thus technology adoption

by extension. In fact, our analysis allows us to evaluate whether variety diversi�cation is

driven by an adoption motive rather than a risk management motive. If it were purely risk

management, we would not expect ambiguity aversion to be a signi�cant predictor. However,

if ambiguity aversion happens to predict variety diversi�cation, then it is likely related to

new technology adoption. Farmers typically have accurate beliefs about yield distributions

of traditional varieties. If the portfolio of varieties includes only traditional varieties, then

ambiguity aversion should not matter for diversi�cation. However, since the farmer typically

does not know the yield distribution of modern varieties, then ambiguity aversion would

a�ect diversi�cation of varieties if the portfolio includes modern varieties.

4.3 Constructing the Main Explanatory Variables

To determine which variables to include as explanatory variables in the technology choice

regressions, we are driven by the hypotheses identi�ed by the literature and laid out in section

2 above. We take each in turn and describe which variables we use to test each hypothesis.

Hypothesis 1 addresses the potentially important role that risk preferences might have

in determining technology choice. Our risk preference measure, described in section 3.4., is

decreasing in risk aversion. Thus, according to Hypothesis 1, one would expect a positive

association between our risk preference measure and whether the farmer has planted a new

or modern variety.

According to Hypothesis 2, ambiguity averse individuals are less likely to choose new or
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modern varieties. Thus, given our ambiguity measure described in section 3.4, this hypothesis

would imply a negative association between ambiguity aversion and whether the farmer has

planted a new or modern variety.

According to Hypothesis 3, technology adoption is decreasing in non-rational behavior.

Our measure for non-rational behavior, described in section 3.4., is the number of times

that subjects chose a payo� dominated option. According to Neoclassical theory of expected

utility maximization, subjects should not choose such a dominated option. However, as

shown in Table 1, the average subject chose a dominated choice 1.756 times out of 5.17

Subjects who make such decisions would be slower to adopt new varieties and so we would

expect a negative e�ect of this measure on technology adoption.

Hypothesis 4 related to non-behavioral determinants of technology adoption. First, it

suggests that technology adoption is inversely related to poverty. While our survey does not

include information about income or consumption, we are able to construct an `Unmet Basic

Needs Index' (UBNI) to approximate a farmer's poverty status.18 We follow the Peruvian

Statistical Agency's formula for the UBNI which takes into account the materials used in the

construction of the dwelling walls, 
oors and roofs, and whether the dwelling has electricity,

running water and sanitation. The higher the UBNI, the poorer the farmer. We would

expect the UNBI to be negatively related to our dependent variables.

Second, Hypothesis 4 suggests that technology adoption is inversely related to borrowing

constraints and the ability to save. While our survey did not collect information about

savings or credit history, we do have information about how long it takes the farmer to

17 See also Engle-Warnick, Escobal and Laszlo (2006) for a similar e�ect.
18 Many argue that an Unmet Basic Needs Index does more to identify a chronically poor individual than

income or consumption because it is less sensitive to transitory income shocks. Furthermore, it is subject
to signi�cantly less measurement error because of the simplicity and veri�ability of the questions that are
asked in the survey. To adequately measure income or consumption in a survey would require a lengthy
questionnaire which would involve a very large number of questions pertaining to income from various sources
over a relatively long period of time (usually from a month to a year) or detailed consumption expenditures
data. To construct an Unmet Basic Needs Index, a simple one page questionnaire typically su�ces and is a
snapshot of current living conditions.
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reach the nearest credit branch, which is what we use to proxy for access to credit and thus

borrowing constraints. Thus, the further the farmer is from the branch, the more credit

constrained she is and thus the less likely she is to adopt a new technology.

Third, Hypothesis 4 suggests that learning by doing is an important determinant of

technology adoption. Years of experience proxies for learning by doing. Our data provides

us with several measures of experience: years of experience with each of the top 3 crops

and with each of the top three varieties of the main crop. We use two of these: years of

experience with the main crop and years of experience with the main variety of the main

crop. For learning by doing, the former measure should be the more appropriate one. If

learning by doing matters, then we would expect that the longer a farmer has been growing a

particular crop, the more likely she is to try a new variety. The years of experience with the

main variety of the main crop, however, is likely to be negatively correlated with technology

adoption, because adopters might have switched more frequently than non-adopters and so

would de facto have less experience with a given variety.

Finally, Hypothesis 4 suggests that social learning (learning from others) is an important

determinant of technology adoption. A farmer is more likely to adopt a new variety if others

in the community have already done so, because she can learn from their experience. We

construct a crude measure by taking the proportion of all other subjects who have also

planted a modern variety, planted a new variety or diversi�ed across varieties.19

The survey provides us with additional control variables, such as age, gender, and marital

status. In addition, we utilize information about the farm (if it is owned by the respondent,

the size of the land and if it is irrigated), how far the household resides from the closest

agricultural extension o�ce and how well respondents fared in a simple math test.20 From the

19 This proxy for social learning su�ers from the re
ection problem, because a positive association between
the social learning variable and the dependent variable might be explained by a third unobserved factor.
Unfortunately, the survey does not include any other information that could be used to proxy for social
learning.

20 Subjects were asked simple algebra questions: 7� 3� 4 =?; 12� 2� 0:5 =?; and 31� 2 =?. The math
index simply counts the number of correct answers.
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survey responses we are able to identify the farmer's educational attainment, and we include

in our regression whether the farmer has completed primary school but has attained less

than completed secondary school, whether she has completed secondary school, and whether

she has completed any post-secondary school. The omitted category in the regressions is

having attained less than completed primary school. Education would be positively related

to adoption.

4.4 Descriptive Statistics of the Explanatory Variables

Figures 5, 6 and 7 present the distributions of each of our behavioral measures. We measure

risk preferences by counting the number of times subjects chose the risky gamble. The his-

togram of this measure is presented in Figure 5. The distribution of responses is distributed

around a mode of 2. We measure ambiguity preferences by counting the number of times

subjects chose to pay to avoid the ambiguous gamble (Figure 6). We measure `irrationality'

by counting the number of times (out of 5) subjects chose the dominated gamble. The distri-

bution of responses, presented in Figure 7, is decreasing after 1. The degree of heterogeneity

in responses for all three measures is striking.

Table 1 presents the descriptive statistics of all of the explanatory variables. The average

participant in the experiment is survey is about 44 years old, most likely the head of the

household and married and is almost equally likely to be male or female. However, we

have a slightly higher proportion of women in the Costa sample than in the Sierra sample.

Educational attainment is very heterogeneous with almost one third of the sample having

attained less than completed primary school, almost one third having attained completed

primary but less than completed secondary, and 14% having some post-secondary schooling.

Math skills, as measured by the math index, are weak, with the average subject giving less

than one correct answer out of three.21 However, subjects fared somewhat better in the

21 The math index is nonetheless strongly correlated with educational attainment.
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math skills test in the Sierra sample than in the Costa sample.

On average, most participants own all or part of the land on which they work (except for

the Costa where just under half own), and in most cases this land, which measures an average

of 1.945 hectares, is irrigated. Average land size is greater in the Costa than in the Sierra,

re
ecting both the geographic and economic di�erences across the two regions. Subjects on

average have 12 years of experience with the main crop. This is mostly driven by the Sierra

sample where participants have about twice as much experience with the main crop than in

the Costa. A similar trend is true also for the years of experience with the main variety of

the main crop. Technical assistance is far more present among the Costa participants than

the Sierra participants, re
ecting again the economic di�erences between the regions. The

Costa is generally more developed than the Sierra, and access to markets and infrastructure

is generally better. This is also evident in the time it takes session participants to reach the

closest agricultural extension o�ce or credit o�ce. Given the di�erences between the Costa

and the Sierra, the regressions will include regional or session controls.

The behavioral parameters of interest have similar means across the two regional sub-

samples. However, it would appear that the Sierra participants are slightly more risk averse

and less ambiguity averse than their Costa counterparts. They are also more likely to choose

more dominated choices.

There is some evidence that the modern varieties of the major crops (e.g. potato and

corn) tend to have higher yields than traditional ones. For instance, according to UNALM

(2006), newly introduced potato varieties have a higher mean yield than older varieties, and

their variability is larger. Our discussions with local non-pro�t organizations involved in

agricultural extension corroborated this trend for potatoes.22 We have additional information

about yield pro�tability of new varieties from our survey. We asked our subjects why they

22 According to a representative of INIA (Instituto Nacional de Investigaci�on y Extensi�on Agraria, an
extension o�ce of the Ministry of Agriculture in the Mantaro river valley) local potato yield grew from 8
tons per hectare in 1993 to 12.5 tons in 2005. The representative attributes this growth to the introduction
of modern varieties.

20



adopted or didn't adopt a new variety in the last 12 months. For those that adopted a new

variety, 70% said they did so because they heard that the new variety has a higher yield.

For those that did not adopt a new variety, only 17% suggested that it was because they

believed new varieties have lower yield.

5 Results

5.1 Risk Preference, Dominance, and Ambiguity Measures

Before analyzing the e�ects of our behavioural measures on technology choice, we begin by

discussing how they correlate with the observable socio-economic characteristics. Speci�cally,

for each behavioral measure (RM, AM and DC), we estimate:

Yi = X0
i
�1 + Z0

i
�2 + �i (1)

where Yi is the behavioral measure of interest (RM, AM or DC), Xi is a vector of respondent

characteristics (demographics, education and marital status), Zi is a vector of household,

farm and regional controls, and �i is a stochastic disturbance term. All regressions were run

using ordered probits.23

Table 2 presents the determinants of risk preference, ambiguity aversion and dominance.

The �rst column presents the results for our measure of risk preference (recall the dependent

variable is decreasing in risk aversion). We �nd that individuals from larger households tend

to make riskier decisions, that poorer households are more risk averse and that farmers that

own all or part of their land are also more risk averse than farmers who rent their land. That

poverty is positively associated with risk aversion substantiates a claim made in Du
o (2004):

poverty may have a direct e�ect on decision-making by a�ecting the decision-making process.

That land-ownership is also positively associated with risk aversion could be re
ecting the

23 The regressions were also run using tobits and poisson regressions (results not shown here), but the
results are not qualitatively sensitive to the model used.
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notion that land owner-operators have an incentive to undertake safer decisions for fear of

jeopardizing future pro�tability of the land.24

The measure of ambiguity aversion, that is the number of times that subjects paid to avoid

the ambiguous gamble, seems to only be signi�cantly a�ected by household size (negatively)

and with residing in the Costa (positively) (see the second column of Table 2). The mildly

positive e�ect of being in the Costa might simply be picking up cultural di�erences between

the two sub-samples.

The determinants of the number of dominated choices are presented in the last column

of Table 2. Age is positively associated with making dominated choices, while how well

subjects performed in the math questions is inversely associated with making dominated

choices. Older individuals are less educated and are likely making irrational decisions here.

Restricting the sample to ages below 60 (results not shown here) eliminates the e�ect of age

on dominated choices. However, the e�ect of the math index on dominated choice is robust

to such a sample restriction. Clearly, numeracy (basic math skills) appears to matter in

making what appear to be irrational choices.

5.2 Regression Results

To analyze the e�ect of our behaviorial measures (RM, AM and DC), we estimate the

following regressions:

Di = �1RMi + �2AMi + �3DCi +X0
i

1 + Z0

i

2 + �i (2)

whereDi is either whether one of the top three varieties of the farmer's main crop is a modern

variety or whether the farmer diversi�es across varieties for the main crop, X0
i
is a vector of

variables including respondent characteristics (demographics, education and marital status),

24 One could argue that the e�ect is re
ecting reverse causality: more risk averse individuals are less likely
to hold land. However, land holdings in rural Peru are generally passed down from one generation to another
following a substantial land reform in the 1980s.
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Z0
i
includes household, farm and regional controls and �i is a stochastic disturbance term.

The variables in Z allow us to test Hypothesis 4 described above.25

Tables 3 and 4 analyze the study farmers' technology choice decisions. The dependent

variables, described above, are �rst whether one of the top three varieties of the farmer's

main crop is a modern variety (Table 3) and whether the farmer diversi�es across varieties

for the main crop (Table 4). Both tables include two speci�cations. The di�erence between

the two is which behavioral measures are included. In the �rst speci�cation, only the risk

and ambiguity preference measures are included, while in the second speci�cation, we also

add the preference for dominated alternatives.

We �rst discuss the e�ects of our behavioral parameters, which help us address Hypothesis

1 (risk preferences), Hypothesis 2 (ambiguity preferences), and Hypothesis 3 (irrationality).

Table 3 suggests that these parameters are not that important in whether one of the top three

varieties of the main crop is a modern variety. Even the preference for dominated choices

does not have any predictive power in this regression. As discussed above, this variable is

prone to measurement error: a variety might be incorrectly labeled traditional when it is

modern, or incorrectly labeled modern when it is traditional. So we turn our attention to

our alternate dependent variable, whether the farmer diversi�es across varieties, for further

evidence of the e�ect of risk and ambiguity preferences, as well as irrationality, on technology

choice.

The e�ect of these behavioral parameters in the decision to diversify across varieties is

presented in Table 4. As discussed above, diversifying across varieties may re
ect two decision

processes: it may pick up a farmer's risk management strategy or also the farmer's propensity

to try new things and thus her propensity to adopt a modern variety. Our behavioral

25 The speci�cations are slightly di�erent for the two di�erent dependent variables. Speci�cally, in the case
of the �rst dependent variable, we include the proportion of subjects in the session who also have a modern
variety as one of their top three varieties of the main crop to account for learning from others. However, a
similar variable is not included for the second dependent variable because of insu�cient variability the data.
Nonetheless, we include session controls in this case, which would control for session-level e�ects.
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measures can help distinguish between these two decision processes { if diversifying across

varieties simply re
ects a risk management strategy, then we would expect risk preferences to

matter, and not ambiguity aversion. On the other hand, if diversifying across varieties were

re
ecting the propensity to try new things and thus modern varieties, then we would expect

ambiguity aversion to matter. In other words, suppose that diversifying across varieties

meant that the farmer held a portfolio of traditional varieties. Then, since farmers tend

to know the yield distribution of traditional varieties, their aversion to ambiguity should be

irrelevant. Conversely, suppose that diversifying across varieties includes at least one modern

variety. In this case, since modern varieties tend to have an unknown yield distribution,

farmers who are ambiguity averse will be less likely to adopt a modern variety and thus less

likely to diversify across varieties.

This is exactly what we �nd in Table 4. The more ambiguity averse farmers are, the

less likely they are to diversify across varieties. Surprisingly, risk aversion does not in
uence

this decision, which we would have expected if diversi�cation were more a risk management

strategy.26 This result is robust to the inclusion of the dominance preference measure, which

is in itself insigni�cant. The result that risk aversion does not a�ect technology choice does

not necessarily invalidate the importance of this behavioral parameter in technology adoption

{ recall that our dependent variable, especially the one used in Table 4, is di�erent than

those used by the studies surveyed by Feder et al. (1985): it arrives at technology adoption

indirectly. However, the importance of the ambiguity aversion measure lends strong evidence

in favor of variety diversi�cation as adoption-like behavior for this sample of farmers.

Hypothesis 4 suggested that our unmet basic needs index would be negatively correlated

with the having planted a modern variety. However, results in Table 3 suggest this is not the

case { the coe�cient on the UBNI is statistically insigni�cant. Hypothesis 4 also suggested

that the time to reach the closest credit o�ce, to proxy for the ability to save or borrow,

26 The insigni�cance of the risk preference coe�cient is robust to the exclusion of the ambiguity aversion
coe�cient.
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would be negatively related to the dependent variable. Again, as can be seen in Table 3,

this hypothesis is rejected on the basis of the insigni�cance of the coe�cient on the time to

reach the closest credit o�ce. The learning by doing hypothesis would suggest that age and

experience with the main crop would positively predict the planting of a modern variety.

Age is strongly positively related to planting a modern variety - learning by doing seems to

be a determining factor in modern technology adoption in our sample. Years of experience

with the main crop is, however, statistically insigni�cant. It is interesting to note that the

years of experience with the main variety of the main crop is negatively related to planting

a modern variety. Though this might seem counter intuitive at �rst, it is actually entirely

consistent with technology adoption: adopters are more likely to switch from one variety to

another (consistent with the target learning by doing model of Jovanovic and Nyarko (1996),

see also Engle-Warnick and Laszlo (2006)), thus generating a negative association between

years of experience with a given variety and adoption.27 Learning from others would suggest

that farmers are more likely to adopt modern varieties if their neighbors have already done

so. We �nd, however, that the proportion of other subjects in the session who plant at least

one modern variety does not have an e�ect on the farmer's decision.28

Finally, the regressions in Table 4 present interesting results pertaining to the remaining

co-variates. In the case of diversi�cation, poverty is positively related to diversi�cation,

rejecting Hypothesis 4. Learning by doing also seems to be working in this case, as the

years of experience with the main crop is strongly positively and signi�cantly related to

diversi�cation. Also, the educational attainment of the farmer is statistically signi�cantly

positively related to diversi�cation, having completed primary or secondary causes the farmer

to diversify more than if she had attained less than primary schooling.

27 The argument can be seen also from its reciprocal, illustrated by the following idiom: \You can't teach
an dog new tricks".

28 Identifying the causal e�ect here is di�cult because of the re
ection problem. We reran our model
without this proxy for social learning in case the re
ection problem contaminated our other coe�cients. The
results, speci�cally pertaining to our variables of interest (RM, AM, and DC), are robust to this restriction.
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6 Discussion

This study is the �rst to attempt to distinguish empirically between risk aversion and am-

biguity aversion in farmers' technology choices in developing countries. Although much of

the literature focuses on the role of risk aversion as a possible behavioral explanation for the

lack of technology adoption among the rural poor, we �nd evidence that ambiguity matters

more in our sample of Peruvian farmers.

New or modern technologies are characterized by unknown yield distributions, while

traditional technologies are characterized by yield distributions over which the farmer has

relatively accurate beliefs. Thus, it seems reasonable that the adoption of modern technolo-

gies would depend more on farmers' aversion to ambiguity than their aversion to risk.

Our methodological contribution is to combine unique data from a lab experiment in the

�eld to measure behavioral parameters such as risk and ambiguity preferences, and survey

data on actual farm technology choices and socio-economic characteristics of the farmer, all

collected in the same experimental session. By doing so, we advance our understanding of

the experimental measures we use to explain the technology choices.
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Table 1 - Descriptive Statistics
Variable Total Costa Sierra
Age 43.870 43.205 44.130

(14.655) (12.791) (15.353)
Household Head 0.755 0.704 0.774
Male 0.553 0.409 0.609
Married 0.719 0.578 0.774
Separated 0.156 0.222 0.130
Single 0.119 0.178 0.096
Less than Primary 0.300 0.356 0.278
Primary, Less than secondary 0.350 0.333 0.357
Secondary Completed 0.206 0.200 0.209
Post- Secondary 0.144 0.111 0.157
Math Index 0.931 0.711 1.017

(1.023) (0.944) (1.043)
Household Size 5.377 6.023 5.130

(2.283) (2.698) (2.063)
Unmet Basic Needs Index 0.419 0.467 0.401

(0.213) (0.221) (0.207)
Landsize (Hectares) 1.945 2.590 1.731

(1.931) (1.699) (1.963)
Owns all or part of land 0.747 0.432 0.853
Land is irrigated 0.713 0.892 0.651
Years experience with main crop 12.127 6.597 13.936

(11.498) (6.373) (12.224)
Years experience with main variety 9.219 4.861 10.645

(9.330) (6.197) (9.753)
Received technical assistance for main variety 0.303 0.833 0.128
Time to reach closest agricultural extension office 43.150 20.209 52.118

(30.665) (15.064) (30.579)
Time to reach nearest credit office 46.647 19.698 57.182

(30.418) (9.412) (29.284)
Number of risky choices in binary gamble 1.925 2.222 1.809

(1.163) (1.166) (1.146)
Number of times paid to avoid ambiguity 2.350 2.756 2.191

(1.578) (1.653) (1.527)
Number of dominated choices 1.756 1.578 1.826

(1.418) (1.390) (1.428)
N(Max) 160 45 115
Standard deviation in brackets.  
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Table 2 - Ordered Probit Results

# of Risky Choices # of Times Paid to 
Avoid Ambiguity

# Dominated 
Choices

Age 0.012 0.013 0.026
 (0.009)  (0.008) (0.009)***

Respondent is household head 0.287 -0.008 0.092
 (0.317)  (0.266)  (0.287)

Male=1 -0.414 0.254 0.004
 (0.282)  (0.233)  (0.233)

Married or living with partner 0.341 0.102 -0.456
 (0.352)  (0.292)  (0.368)

Separated, Widowed, divorced 0.066 0.270 -0.064
 (0.477)  (0.399)  (0.484)

Primary completed and less than Secondary completed -0.351 0.349 -0.523
 (0.429)  (0.410)  (0.449)

Secondary  completed -0.289 -0.030 -0.522
 (0.472)  (0.478)  (0.497)

Post secondary -0.642 0.251 -0.329
 (0.563)  (0.605)  (0.646)

Math Index (0 --> 3) -0.114 -0.195 -0.282
 (0.118) (0.119) (0.114)**

hhsize 0.094 -0.140 0.108
(0.047)** (0.038)*** (0.050)**

Unmet Basic Needs Index - Aggregate -1.494 -0.310 0.126
(0.893)*  (0.970)  (0.935)

Landsize in hectares -0.025 -0.026 -0.058
 (0.043)  (0.062)  (0.055)

Owns all or part of agricultural land -0.624 -0.409 -0.154
(0.306)**  (0.285)  (0.235)

Land is irrigated 0.165 -0.057 -0.017
 (0.280)  (0.275)  (0.274)

Costa dummy 0.089 0.932  (0.351)
(0.499) (0.502)* (0.482)

Wald Chi-Squared 47.89*** 43.99*** 80.20***
Pseudo R-Squared 0.0875 0.0714 0.1123
Observations 141 141 141
Standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%. All regressions include 
session controls  
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Table 3 - Probit Marginal Effects

Number of risky choices in binary gamble 0.013 0.014
 (0.035)  (0.034)

Number of times chose to pay to avoid ambiguity in binary with ambiguous -0.023 -0.021
 (0.026)  (0.025)

Number of dominated choices in Binary Dominated gamble -0.016
 (0.030)

Age 0.012 0.012
(0.003)*** (0.003)***

Respondent is household head -0.220 -0.213
(0.151)  (0.150)

Male=1 0.082 0.078
 (0.102)  (0.101)

Married or living with partner -0.110 -0.125
 (0.149)  (0.147)

Separated, Widowed, divorced -0.229 -0.230
(0.061)* (0.060)**

Primary completed and less than Secondary completed -0.062 -0.062
 (0.170)  (0.169)

Secondary  completed 0.179 0.185
 (0.266)  (0.265)

Post secondary 0.058 0.065
 (0.276)  (0.278)

Math Index (0 --> 3) 0.018 0.013
 0.044  (0.045)

hhsize -0.019 -0.017
 (0.020)  (0.020)

Unmet Basic Needs Index - Aggregate -0.224 -0.203
 (0.408)  (0.405)

Landsize in hectares -0.060 -0.062
(0.029)** (0.029)**

Owns all or part of agricultural land -0.045 -0.043
 (0.122)  (0.121)

Land is irrigated 0.060 0.0633
 (0.087)  (0.088)

Proportion of other subjects in session who plant at least one modern variety  0.334  0.336
(0.359) (0.358)

Years experience with main crop -0.005 -0.005
(0.006) (0.006)

Years experience with main variety of main crop -0.012 -0.012
(0.007)* (0.007)*

Received technical assistance for main variety of main crop 0.080 0.079
 (0.138)  (0.137)

Time to reach closest agricultural extension office 0.000 0.000
 (0.002)  (0.002)

Time to reach closest credit office 0.000 -0.000
 (0.002)  (0.002)

Coast 0.412 0.407
(0.266)* (0.268)

Wald Chi-Squared 81.73*** 81.39***
Pseudo R-Squared 0.3849 0.3861
Observations 133 133
Robust standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%

At Least One of the Top Three 
Varieties of Main crop is A 

Modern Variety
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Table 4 - Probit Marginal Effects

Number of risky choices in binary gamble 0.047 0.049
 (0.052)  (0.052)

Number of times chose to pay to avoid ambiguity in binary with ambiguous -0.105 -0.092
(0.040)*** (0.040)***

Number of dominated choices in Binary Dominated gamble -0.065
(0.045)

Age -0.012 -0.010
(0.006)*  (0.006)

Respondent is household head 0.171 0.199
 (0.138)  (0.135)

Male=1 0.006 -0.002
 (0.138)  (0.139)

Married or living with partner 0.198 0.139
 (0.140)  (0.149)

Separated, Widowed, divorced -0.275 -0.273
(0.176) (0.180)

Primary completed and less than Secondary completed 0.528 0.468
(0.244)* (0.253)*

Secondary  completed 0.640 0.614
(0.184)** (0.195)**

Post secondary 0.584 0.543
 (0.256)  (0.278)

Math Index (0 --> 3) 0.093 0.066
 (0.068)  (0.070)

hhsize -0.010 0.003
 (0.026)  (0.027)

Unmet Basic Needs Index - Aggregate 1.747 1.670
(0.735)** (0.733)**

Landsize in hectares 0.189 0.181
(0.059)*** (0.058)***

Owns all or part of agricultural land -0.105 -0.077
 (0.171)  (0.170)

Land is irrigated -0.032 0.018
 (0.205)  (0.200)

Years experience with main crop 0.022 0.022
(0.008)*** (0.008)**

Years experience with main variety of main crop 0.002 0.002
(0.009)  (0.009)

Received technical assistance for main variety of main crop 0.146 0.104
 (0.190)  (0.185)

Time to reach closest agricultural extension office 0.001 0.000
 (0.003)  (0.003)

Time to reach closest credit office -0.003 -0.002
 (0.003)  (0.003)

Costa -0.587 -0.609
(0.134)** (0.127)**

Wald Chi-Squared 94.60*** 100.87***
Pseudo R-Squared 0.5226 0.5301
Observations 133 133

Diversifies across Varieties (Two 
or Three More Varieties of Main 

Crop)

Robust standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%. All regressions 
include session controls.  
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Figure 1: ‘Five Options’ Risk Preference Measurement Instrument 
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Figure 2: Decomposing the ‘Five Options’ Instrument into a Series of ‘Binary 

Options’ Instruments 
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Figure 3: Binary Choices to Reveal Preferences for Ambiguity 
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Figure 4: Binary Choices to Reveal Preferences for Dominated Alternatives 
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Figure 5: Risk Preference
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Figure 6: Ambiguity Aversion
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Figure 7: Dominance Preference
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