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Iterated Strict Dominance in General Games 
 

Yi-Chun Chen*, Ngo Van Long†, Xiao Luo ‡ 
 
 

Résumé / Abstract 
 
Nous donnons une définition de l’élimination itérative des stratégies qui sont strictement 
donimées (EISSD) pour les jeux avec un nombre fini (ou infini) de joueurs , des ensembles de 
stratégies compactes (ou non-compactes), et des fonctions de gains continues (ou non-
continues). Le processus EISSD est bien défini et indépendant de l’ordre d’élimination. Nous 
donnons une caractérisation du processus EISSD en utilisant un critère de stabilité et offrons 
une condition épistémologique. Nous démontrons que le processus EISSD peut produire des 
équilibres faux dans la classe des jeux de meilleures réponses sécuritaires de Reny. Nous 
donnons des conditions nécessaires et suffisantes pour que le processus EISSD conserve 
l’ensemble des équilibre de Nash . 
 

Mots clés : théorie des jeux, dominance stricte, élimination itérative, 
équilibre de Nash, jeux de meilleures réponses sécuritaires de Reny 
 
 
 

We offer a definition of iterated elimination of strictly dominated strategies (IESDS) for 
games with (in)finite players, (non)compact strategy sets, and (dis)continuous payoff 
functions. IESDS is always a well-defined order independent procedure that can be used to 
solve Nash equilibrium in dominance-solvable games. We characterize IESDS by means of a 
"stability" criterion, and offer a sufficient and necessary epistemic condition for IESDS. We 
show by an example that IESDS may generate spurious Nash equilibria in the class of Reny's 
better-reply secure games. We provide sufficient/necessary conditions under which IESDS 
preserves the set of Nash equilibria. 
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1 Introduction

Iterated strict dominance is perhaps one of the most basic principles in game

theory. The concept of iterated strict dominance rests on the following sim-

ple idea: no player would play strategies for which some alternative strategy

can yield him/her a greater payo regardless of what the other players play

and this fact is common knowledge. This concept has been used to ex-

pound the fundamental conflict between individual and collective rationality

as illustrated by the Prisoner’s Dilemma, and is closely related to the global

stability of the Cournot-tatonnement process in terms of dominance solvabil-

ity of games (cf. Moulin 1984; Milgrom and Roberts 1990). In particular, it

has fruitful applications in Carlsson and van Damme’s (1993) global games

(see Morris and Shin 2003 for a survey). One paramount advantage of using

iterated strict dominance is its extreme simplicity in applications, because it

does not entail a probabilistic apparatus.

A variety of elimination procedures has been studied by game theorists.1

Among the most interesting questions that have been explored are: Does

the order of elimination matter? Is it possible that the iterated elimination

process fails to converge to a maximal reduction of a game? What are the

su cient conditions for existence and uniqueness of maximal reduction? Can

a maximal reduction generate spurious Nash equilibria?

In the most general setting (where the number of players can be infinite,

strategy sets can be in general topological spaces, and payo functions can

be discontinuous) Dufwenberg and Stegeman (2002) (henceforth DS) investi-

gated the properties of a definition of iterated elimination of (strictly) dom-

inated strategies (IESDS). Among others, DS demonstrated that (i) IESDS

1See in particular Moulin (1984), Gilboa, Kalai, and Zemel (1990), Stegeman (1990),
Milgrom and Roberts (1990), Borgers (1993), Lipman (1994), Osborne and Rubinstein
(1994), among others. (See also Jackson (1992) and Marx and Swinkels (1997) for iterated
weak dominance.)
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is in general an order dependent procedure, (ii) a maximal reduction may

fail to exist, and (iii) IESDS can generate spurious Nash equilibria even

in “dominance-solvable” games.2 As DS pointed out, these anomalies and

pathologies appear to be rather surprising and somewhat counterintuitive. In

particular, outside the class of games with finite players, compact strategy

sets, and continuous payo functions, DS’s IESDS procedure is not well de-

fined because of the lack of the existence of a maximal reduction. DS (2002,

p. 2022) concluded that:

The proper definition and role of iterated strict dominance is unclear

for games that are not compact and continuous. ... The identification

of general classes of games for which IESDS is an attractive procedure,

outside of the compact and continuous class, remains an open problem.

The main purpose of this paper is to o er a new definition of IESDS that is

suitable for all games, possibly with an arbitrary number of players, arbitrary

strategy sets, and arbitrary payo functions. This definition of IESDS will be

denoted by IESDS (the asterisk is used to distinguish it from other forms

of IESDS). We will show that IESDS is a well-defined order independent

procedure: it yields a unique maximal reduction (see Theorem 1). This

nice property is completely topology-free. For games that are compact and

continuous, our IESDS yields the same maximal reduction as DS’s definition

of IESDS (see Theorem 2). We provide a characterization of IESDS in

terms of a “stability” criterion (see Theorem 3). We also provide within

the semantic framework of knowledge, a su cient and necessary epistemic

condition for the concept of IESDS (see Theorem 4).

The IESDS proposed in this paper is based mainly upon Milgrom and

Roberts’s (1990, pp. 1264-1265) definition of IESDS in a general class of

2DS also provided su cient conditions for positive results. In particular, if strategy
spaces are compact Hausdor spaces and payo functions are continuous, then DS’s defi-
nition of IESDS yields a unique maximal reduction.
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supermodular games, and has two major features: (1) IESDS allows for

an uncountable number of rounds of elimination, and is thus more general

than DS’s IESDS procedure, and (2) in each round of elimination, IESDS

allows for eliminating dominated strategies (possibly by using strategies that

have previously been eliminated), rather than eliminating only those strate-

gies that are dominated by some uneliminated strategy. Thus, the e ect of

successive rounds of elimination is only to narrow the set of beliefs about

one’s opponents, not to narrow the range of choices available to the player.

Consequently, these two features endow the IESDS procedure with greater

elimination power than DS’s IESDS procedure.

The rationale behind the two features of IESDS is as follows. Recall that

a prominent justification for IESDS is “common knowledge of rationality”;

see, e.g., Bernheim (1984), Osborne and Rubinstein (1994, Chapter 4), Pearce

(1984), and Tan and Werlang (1988). While the equivalence between IESDS

and the strategic implication of “common knowledge of rationality” has been

established for games with compact strategy spaces and continuous payo

functions (see Bernheim 1984, Proposition 3.1), Lipman (1994) demonstrated

that, for a more general class of games, there is a non-equivalence between

countably infinite iterated elimination of never-best replies and the strategic

implication of “common knowledge of rationality”. Lipman (1994, Theorem

2) showed that the equivalence can be restored by “removing never best

replies as often as necessary” (p. 122), i.e., by allowing for an uncountably

infinite iterated elimination of never-best replies.3 Therefore, it seems fairly

natural and desirable to define IESDS for general games by allowing for an

uncountably infinite iterated elimination. Example 1 in Section 2 shows

that IESDS is necessarily defined by an uncountably infinite number of

3However, in general games with noncompact strategy sets or discontinuous payo func-
tions, a never-best strategy might fail to be a strictly dominated strategy; see Bergemann
and Morris (2005, Footnote 8) for such an example. We thank Stephen Morris for drawing
our attention to this point.

4



elimination rounds.

The second feature of IESDS is in the same spirit as Milgrom and

Roberts’s (1990, pp. 1264-1265) definition of IESDS.4 That is, in each round

of elimination, IESDS allows for eliminating dominated strategies, rather

than eliminating only those strategies that are dominated by some unelimi-

nated strategy in that round. For games where strategy spaces are compact

and payo functions are uppersemicontinuous in own strategies, this fea-

ture does not imply giving IESDS more elimination power than DS’s IESDS

procedure, because it can be shown that, in this class of games, for any domi-

nated strategy, there is some remaining uneliminated strategy that dominates

it (see DS’s Lemma, p. 2012).5 However, for more general games, the second

feature of IESDS gives it more elimination power than DS’s IESDS pro-

cedure; examples can be easily found to show that our IESDS procedure

converges much faster than DS’s IESDS procedure.6

To illustrate our basic points, consider a simple one-person game where

the strategy space is (0 1) and the payo function is ( ) = for every strat-

egy . (This game is also described in DS’s Example 5, p. 2011.) Clearly,

every strategy is a never-best reply and is dominated only by a dominated

4Formally, given any product subset b of strategy profiles, Milgrom and Roberts (1990,
p. 1265) defined the set of player ’s undominated responses to b as including strategies
of that are undominated by not only uneliminated strategies, but also by previously
eliminated strategies. From the viewpoint of learning theory, the second feature of IESDS
can be “justified” by Milgrom and Roberts’s (1990, p. 1269) adaptive learning process,
where each player will never play a strategy for which there is another strategy, from the
player’s strategy space, that would have done better against every combination of the
other players’ strategies in the recent past plays. Ritzberger (2002, Section 5.1) also
considered a similar definition of IESDS for compact and continuous games that allows
for eliminating strategies that are dominated by an uneliminated or eliminated strategy.
We are grateful to Martin Dufwenberg for drawing our attention to this.

5Milgrom and Roberts (1996, Lemma 1, p. 117) showed an analogous result which
allows for dominance by mixed strategy. Chen and Luo (2003, Lemma 5) proved a similar
result by using Zorn’s Lemma.

6The study of computable algorithms to determine the limit outcome of IESDS is
certainly an interesting problem worthy of further investigation, but beyond the scope of
this paper.
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strategy. Eliminate in round one all strategies except a particular strategy

in (0 1). In particular, under DS’s IESDS procedure, survives DS’s

IESDS and is thus a “spurious Nash equilibrium” — i.e. a Nash equilib-

rium of the reduced game after iterated elimination of strictly dominated

strategies, which is not a Nash equilibrium of the original game. Under our

IESDS , in round two, is further eliminated, and thus our maximal reduc-

tion yields an empty set of strategies, indicating (correctly) that the game

has no Nash equilibrium. This makes sense since cannot be justified as a

best reply (and hence cannot be justified by any higher order knowledge of

“rationality”). Consequently, this example shows that eliminating dominated

strategies, rather than eliminating only those strategies that are dominated

by some uneliminated strategy or by some undominated strategy, is a very

natural and desirable requirement for a definition of IESDS in general games;

see also our Example 2 in Section 2.7

We also study the relationship between Nash equilibria and IESDS . Ex-

ample 4 in Section 4 demonstrates that, even with its strong elimination

power, our IESDS can generate spurious Nash equilibria. In particular, the

game in Example 4 is in the class of Reny’s (1999) better-reply secure games,

which have regular properties such as compact and convex strategy spaces,

as well as quasi-concave and bounded payo functions. We o er a su cient

7The conventional notion of rationality requires that an individual’s choice be opti-
mal within the feasible choice set given his information; see Aumann (1987), Aumann
and Brandenburger (1995), Bernheim (1984), Brandenburger and Dekel (1987), Epstein
(1997), and Tan and Werlang (1988). In the case of finite games, it is easy to see that
-level justifiable strategy (meaning a player’s choice is optimal in the player’s feasible
strategy set for some belief about the opponents’ ( 1)-level justifiable strategies) coin-
cides with -level justifiable strategy (meaning a player’s choice is optimal in the player’s
( 1)-level justifiable strategy set for some belief about the opponents’ ( 1)-level jus-
tifiable strategies); see Pearce (1984, Proposition 2) and Osborne and Rubinstein (1994,
Proposition 61.2). This coincidence makes it possible to define an alternative iteration
for finite games by gradually reduced subgames. However, Osborne and Rubinstein (1994,
Definitions 54.1 and 55.1) define rationalizability by the standard “best responses” over
the set of all feasible strategies.
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and necessary condition of no spurious Nash equilibria. In particular, no spu-

rious Nash equilibria appear in one-person or “dominance solvable” games

(see Theorem 5). In addition, no spurious Nash equilibria appear in many

games that arise in economic applications (see Corollary 4).

The remainder of this paper is organized as follows. Section 2 o ers

the definition of IESDS and investigates its properties. Section 3 provides

epistemic foundations for IESDS . Section 4 studies the relationship between

IESDS and Nash equilibria. Section 5 o ers some concluding remarks.

2 IESDS

Throughout this paper, we consider a strategic game G ¡ { } { } ¢
,

where is an arbitrary set of players, for each , is an arbitrary set

of player ’s strategies, and : × < is ’s arbitrary payo function.

is the joint strategy set. A strategy profile is said to be

a Nash equilibrium if for every , maximizes ( ).

A strategy is said to be dominated given if for some

strategy 0 ,8 ( 0 ) ( ) for all , where { |
( ) }.

The following example illustrates that for some games, our IESDS (a

formal definition of which will be given below) yields a maximal reduction

containing all Nash equilibria (in this case, a singleton) only after an uncount-

ably infinite number of rounds. This is unlike Lipman’s (1994) Example and

8In the literature, especially in the case of finite games, a dominated (pure) strategy
is normally defined by the existence of a mixed strategy that generates a higher expected
payo against any strategy profile of the opponents. In this paper, we follow DS in defining,
rather conservatively, a dominated (pure) strategy by the existence of a (pure) strategy
that generates a higher payo against any strategy profile of the opponents. The two
definitions of dominance are equivalent for games where strategy spaces are convex; for
instance, mixed extensions of finite games. Borgers (1993) provided an interesting justi-
fication for “pure strategy dominance” by viewing players’ payo functions as preference
orderings over the pure strategy outcomes of the game.
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DS’s Examples 3 and 6, which can be remedied to yield a maximal reduction

by performing a second countable elimination after a first countable elimi-

nation. To the best of our knowledge, this example is the first one to show

that a sensible maximal reduction should not only go beyond a countable

elimination, but also must go to an uncountable elimination.

Example 1. Consider a two-person symmetric game: G ¡ { } { } ¢
,

where = {1 2} 1 = 2 = [0 1] and for all [0 1], = 1 2, and

6=

( ) =
1, if = 1
2, if Â and 6= 1
0, if or = 6= 1

,

where 4 is a linear order on [0 1] satisfying (i) 1 is the greatest element; and
(ii) [0 1] is well ordered by the linear order 4.9

In this example only the least element 0 in [0 1] (w.r.t. 4) is strictly
dominated by 1. After eliminating 0 from [0 1], only the least element 1 in

[0 1]\ { 0} is strictly dominated by 1 given [0 1]\ { 0}. It is easy to see that
every strategy is eliminated whenever every smaller strategy is eliminated

and only one element in [0 1] is eliminated at each round. Thus, IESDS

leads to a unique uncountable elimination, which leaves only the greatest

element 1 for each player.10

9A linear order is a complete, reflexive, transitive, and antisymmetric binary relation.
A set is said to be well ordered by a linear order if each of its nonempty subsets has a
least or first element. By the well-ordering principle – i.e., every nonempty set can be
well ordered (see, e.g., Aliprantis and Border 1999, Section 1.12), [0 1] can be well ordered
by a linear order 4 with the great element of 1. Note that the linear order 4 used in our
Example 1 is not the “natural” order on [0 1]. (One can construct such an example by
using the fact that there exists an uncountable well-ordered set without referring to the
choice axiom or the well-ordering principle. We thank Kim-Sau Chung for pointing this
out to us.)
10Example 1 also illustrates that DS’s IESDS procedure may fail to yield a maximal

reduction. DS’s Theorem 1 on existence and uniqueness of maximal reduction relies on
the game G being a compact and continuous game, which is not the case in our example
(because it is impossible to find a topology on [0 1] such that G is a compact and continuous
game).
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Let us proceed to a formal definition of our IESDS . For any subsets
0 where 0 , we use the notation 0 (read: is reduced

to 0) to signify that for any \ 0, some is dominated given . Let
0 denote the first element in an ordinal , and let +1 denote the successor

to in .11

Definition. An iterated elimination of strictly dominated strategies (IESDS )

is defined as a finite, countably infinite, or uncountably infinite family
n
D
o

such that D 0
= , D D +1 (and D = 0 D 0

for a limit ordinal ),

and D D D0 only for D0 = D. The set D is called a “maximal

reduction.”

The above definition of IESDS does not require the elimination of all

dominated strategies in each round of elimination. That is, we do not require

that for every , D +1 = D \
n

D | s.t. is dominated given D
o
.

This flexibility raises an important question: does the IESDS procedure

yield a unique maximal reduction? Without imposing any topological con-

dition on the games, we show that IESDS is always a well-defined order

independent procedure and D is nonempty if a Nash equilibrium exists. For-
mally, we have:

Theorem 1 D exists and is unique. Moreover, D is nonempty if the game

G has a Nash equilibrium.

To prove Theorem 1, we need the following two lemmas. These lemmas

are mainly consequences of the feature of IESDS that the procedure allows

for eliminating dominated strategies possibly by using strategies that have

previously been eliminated.

11An ordinal is a well-ordered set in the order-isomorphic sense (see, e.g., Suppes
1972, p. 131). In particular, the well-ordered set of natural numbers is called the first
infinite ordinal. A limit ordinal is an element in which is not a successor. As usual, we
use 0 to mean that “ 0 precedes .”

9



Lemma 1 For every D and every , is not dominated given D.

Proof. Assume, in negation, that for some D and some , is dominated

given D. Thus, D D\{ } 6= D, which is a contradiction.

Lemma 2 For any 0, a strategy is dominated given if it is domi-

nated given 0.

Proof. Let be a strategy that is dominated given 0. That is, ( )

( ) for some and all 0 . Since 0, ( )

( ) for all . Therefore, is dominated given .

We now turn to the proof of Theorem 1.

Proof of Theorem 1. For any we define the “next elimination”

operation by

[ ] { | s.t. is dominated given } .

By the well-ordering principle, the power set of can be well ordered by a

linear order; cf. e.g. Aliprantis and Border (1999, Chapter 1). The existence

of a maximal reduction using IESDS is assured by the following prominent

“fast” IESDS : D D satisfying D 0
= , D +1 = D \

h
D
i
,

and D = 0 D 0
for a limit ordinal , where is an ordinal that is

order-isomorphic to the power set of . Note that
h
D
i
= impliesh

D 0i
= for all 0 . By using the fact that a set is never isomorphic

to its power set (cf. e.g. Suppes 1972, Theorem 23), it is easily verified that

D D0 only for D = D0.
Now suppose that D and D0 are two maximal reductions obtained by

applying IESDS procedure. Since D D0 D 0
, by Lemmas 1 and 2,

D D0 D for all . Therefore, D D0 D. Similarly, D D0 D0.
Thus, D = D0. Let be a Nash equilibrium. Since for every , is not

dominated given { }, by Lemma 2, D for all .

10



An immediate corollary of the proof of Theorem 1 is as follows:

Corollary 1. Every Nash equilibrium survives both IESDS procedure and

DS’s IESDS procedure (if exists).

Proof. Let H be the maximal reduction resulting from an IESDS procedure

in the DS sense. Since every strategy that is dominated by an uneliminated

strategy is a dominated strategy, by Theorem 1, the unique D H. By the
proof of Theorem 1, every Nash equilibrium survives D and hence, survives
H.

In contrast to DS’s IESDS, our IESDS does not require that, in each

round of elimination, the dominator of an eliminated strategy be some une-

liminated strategy. However, the following result asserts that, for the class of

games where strategy spaces are compact (Hausdor ) and payo functions

are own-uppersemicontinuous (i.e. uppersemicontinuous in own strategies),

any maximal reduction of G using DS’s IESDS procedure yields a joint strat-
egy set identical to ourD. Thus, our IESDS extends DS’s IESDS to arbitrary

games. Let H denote a maximal reduction of G in the DS sense, i.e., a set of
strategy profiles resulting from using DS’s IESDS procedure. Formally, we

have:

Theorem 2 For any compact and own-uppersemicontinuous game, H = D
if H exists. Moreover, for any compact (Hausdor ) and continuous game,

H = D.

Proof. Suppose that H is the maximal reduction resulting from an IESDS

procedure in the DS sense. Clearly, D = ifH = . By DS’s Lemma, for any

and any H 6= , is not dominated given H. According to Definition
in this paper, H = D. Moreover, by DS’s Theorem 1(b), H exists if the game
is compact and continuous. The last part of Theorem 2 follows immediately

from the first part and from DS’s Theorem 1.

11



The following example demonstrates that outside the class of compact and

own-uppersemicontinuous games, D could be very di erent from a unique H
that results from a well-defined “fast” IESDS procedure in the DS sense.

Example 2. Consider a two-person symmetric game: G = ¡ { } { } ¢
,

where = {1 2}, 1 = 2 = [0 1], and for all [0 1], = 1 2, and

6= (cf. Fig. 1)

( ) =
, if 1

2
or = 1

2
1
2
min { }, if 1

2
and 1

2

0, if 1
2
and 1

2

.

xj

1/2

1/2

1

1

xi

xi

xj /2

xi /2

0

xi

Fig. 1. Payo function ( ).

In this game it is easy to see that any strategy in [0 1 2) is dominated

by = 1
4
+

2
for 1

2
. After eliminating all these dominated

strategies, 1 2 is dominated by 1 since (i) (1 1 2) = 1 1 2 = (1 2 1 2)

12



if = 1 2, and (ii) (1 ) = 2 1 4 = (1 2 ) if 1 2. After

eliminating the strategy 1 2, no (1 2 1] is strictly dominated by some

strategy 0 (1 2 1], because in the joint strategy set (1 2 1] × (1 2 1],
setting = , we have ( ) = 2 ( 0 ) for all 0 (1 2 1].

Thus, H (1 2 1] × (1 2 1] is the unique maximal reduction under the
“fast” IESDS procedure in the DS sense.

However, any (1 2 1) is dominated by the previously eliminated

strategy = (1 + ) 4 [0 1 2) since, for all (1 2 1], ( )

2 (1 + ) 4 = ( ). Thus, D = {(1 1)} 6= H. In fact, (1 1) is the
unique Nash Equilibrium, which could also be obtained with the “iterated

elimination of never-best replies” (cf., e.g., Bernheim 1984; Lipman 1994).

In this game, the payo function ( ) is not uppersemicontinuous since

lim sup 1 2 ( ) = 1 2 0 = (1 2 ) for all 1 2.

We next turn to providing a characterization of IESDS by means of a

“stability” criterion. A subsetK is said to be a stable set ifK = { |
is not dominated given K}; cf. Luo (2001, Definition 3). Clearly, a stable

set must be in Cartesian product form.

Theorem 3 D is the largest stable set.

Proof. By Lemma 1, for all D, each player ’s strategy is undominated

given D. By Lemma 2, for all \D, some player ’s strategy is

dominated given D. Consequently, D is a stable set. However, by Lemma 2,
every stable set K D for all . Hence, D D is the largest stable

set.

The following result is an immediate corollary of Theorem 3.

Corollary 2. DS’s IESDS is order independent if every H is a stable set.

Proof. Let H be a maximal reduction resulting from an IESDS procedure

in the DS sense. It su ces to show that H = D. Since H is a stable set,

13



by Theorem 3, H D. By the proof of Corollary 1, D H. Therefore,
H = D.

Corollary 2 does not require the game G to have compact strategy sets
or uppersemicontinuous payo functions. Of course, if strategy spaces are

compact (Hausdor ) and payo functions are uppersemicontinuous in own

strategies, then by DS’s Lemma, every dominated strategy has an undomi-

nated dominator. Under these conditions, every maximal DS’s reduction H
is a stable set. Corollary 2 therefore generalizes DS’s Theorem 1(a). The

following example illustrates this point.

Example 3. Consider a two-person game: G = ¡ { } { } ¢
, where

= {1 2}, 1 = 2 = [0 1], and for all 1 2 [0 1], 1( 1 2) = 1 and

2( 1 2) =
2, if 2 1
1, if 1 = 1 and 2 = 1
0, if 1 1 and 2 = 1

.

In this example it is easy to see that {(1 1)} is the unique maximal reduc-
tion under DS’s IESDS procedure, and that it is a stable set. Thus, DS’s

IESDS procedure is order independent in this game. However, 2 ( 1 ) is

not uppersemicontinuous in 2 at 2 = 1 if 1 6= 1 and hence DS’s Theorem
1(a) does not apply.

Gilboa, Kalai, and Zemel (1990) (GKZ) considered a variety of elimina-

tion procedures. GKZ’s definition of IESDS requires that in each round of

elimination, any eliminated strategy is dominated by a strategy which is not

eliminated in that round of elimination (see DS 2002, pp. 2018-2019). An

immediate corollary of Theorems 1 and 3 is as follows.

Corollary 3. (i) GKZ’s IESDS procedure is order independent if every

maximal reduction under GKZ’s IESDS procedure is a stable set. (ii) For
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any compact and (own-uppersemi)continuous game, GKZ’s IESDS procedure

(if exists) yields the same D.
Proof. The proof of the first part is totally similar to the proof of Corollary 2.

Now suppose that the game is compact and (own-uppersemi)continuous, and

suppose thatH is a maximal reduction resulting from an IESDS procedure in
the GKZ sense. Clearly, D = ifH = . By DS’s Lemma and DS’s Theorem

3, GKZ’s definition of IESDS coincides with DS’s definition of IESDS. By

Theorem 2, H = D.

3 Epistemic Foundations of IESDS

In this section we present an epistemic characterization for IESDS . Our ap-

proach here is in the same spirit as Lipman’s (1994) epistemic characteriza-

tion for the iterated elimination of “never-best” strategies. More specifically,

we o er a su cient and necessary condition for the concept of iterated strict

dominance: no player would play strategies for which some alternative strat-

egy can yield him/her a greater payo regardless of what the other players

play and this fact is common knowledge.

Note that every strictly dominated strategy must be a never-best re-

sponse, although a never-best response might fail to be a strictly dominated

strategy (see Footnote 3). That is, Bayesian rationality implies that no player

uses a strictly dominated strategy. This implication is also true for other

notions of rationality other than subjective expected utility maximization,

e.g. probabilistically sophisticated preferences, the multi-priors model, and

monotonic preferences; see Epstein (1997) for extensive discussions. Thus, we

may take the requirement of using no strictly dominated strategy as a more

primitive notion of rationality. Following Aumann (1976, 1987, 1995, and

1999), we establish below, within the standard semantic framework, some

epistemic foundation for IESDS by using this notion of rationality in terms

15



of payo dominance.

Consider a model of knowledge for a game G:12 M (G) ¡ { } { }¢,
where is the space of states with typical element , ( ) is

player ’s information structure at , and ( ) is ’s strategy at .

Let ( )
¡
( ) ( )

¢
. For event , knows at if ( ) .

Let { | knows at }. Say is rational* at if /

such that
¡

( 0)
¢ ¡

( ) ( 0)
¢
for all 0 ( ), i.e., ’s

strategy ( ) is not strictly dominated given { ( 0) | 0 ( )}. Let

{ | is rational* at }, and . Let denote an

arbitrary self-evident event in , i.e.,
³ ´

. It is

by now well-known that i rationality* is common knowledge at .

The following Theorem 4 states that IESDS is the strategic implication of

common knowledge of rationality*.

Theorem 4 There is a model of knowledge such that D i = ( )

for some . Moreover, for any model of knowledge, ( ) D for all
.

Proof. Define D. For any = ( ) in , define ( ) = and

( ) = { 0 | ( 0) = ( )} . Clearly,
©

( 0) | 0 ( )
ª
=

D . Since by Theorem 3, D is a stable set in Cartesian product form,

every strategy ( ) is not strictly dominated given { ( 0) | 0 ( )},
and hence, is rational* at every . Therefore, is a self-evident event

in , i.e. = .

Now, consider a self-evident event in any given model of knowledge

M (G). Let
n
( 0) | 0

o
. By rationality*, we know that for any

0 the strategy ( 0) is not strictly dominated given { ( 0) | 0 ( )}.
Since is self-evident we have ( ) , and thus, by Lemma 2, ( 0)

12See, e.g., Aumann (1999) and Osborne and Rubinstein (1994, Chapter 5).
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is not strictly dominated given . Again by Lemma 2, D for all .

Hence D.

Remark. Contrary to the notion of Bayesian rationality, rationality* relies

on the simpler and more elementary decision rule of “payo undominance.”13

One remarkable feature of rationality* is that it does not require a proba-

bilistic apparatus. This approach can be also supported by Mariotti et al.’s

(2005) work on the construction of Harsanyi’s type where a player has a

“belief” represented by a non-probabilistic set of states. To characterize the

point-rationalizability concept, Mariotti (2003) o ered a similar type notion

of “rationality” without using a probabilistic apparatus — i.e., is point-

rational at i 0 ( ) such that
¡
( ) ( 0)

¢
>

¡
( 0)

¢
for all .

4 IESDS and Nash Equilibrium

As Nash (1950, p. 292) pointed out, “no equilibrium point can involve a

dominated strategy”. Nash equilibrium is clearly related to the notion of

dominance. In this section we study the relationship between Nash equilib-

rium and IESDS .

We have shown in Corollary 1 that every Nash equilibrium survives

IESDS and hence remains a Nash equilibrium in the reduced game after

the iterated elimination procedure. However, a Nash equilibrium in the re-

duced game after the iterated elimination procedure may fail to be a Nash

equilibrium in the original game. DS showed by examples (see their Exam-

13From a decision-theoretic point of view, although subjective expected utility is un-
doubtedly the dominant model in economics, many economists would probably view ax-
ioms such as “transitivity” or “monotonicity” as more basic tenets of rationality than the
Sure-Thing-Principle and other components of the Savage (1954) model. The notion of
rationality proposed here is based solely upon such a more basic axiom of “monotonic-
ity” on preferences. See Luce and Rai a (1957, Chapter 13) and Epstein (1997) for more
discussions.
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ples 1, 4, 5, and 8) that their IESDS procedure can generate spurious Nash

equilibria. Since our IESDS has more elimination power, it can be easily

verified that if we apply our IESDS to DS’s examples, there are no spurious

Nash equilibria. Despite this happy outcome, the following example shows

that IESDS can generate spurious Nash equilibria.

Example 4. Consider a two-person symmetric game: G ¡ { } { } ¢
,

where = {1 2}, 1 = 2 = [0 1], and for all [0 1], = 1 2, and

6= (cf. Fig. 2)

( ) =
1, if [1 2 1] and [1 2 1]
1 + , if [0 1 2) and (2 3 5 6)
, otherwise

.

xj

1/2

1/2

1

1

1+xi

xi

xi

1

xi

2/3

5/6

.

.

Fig. 2. Payo function ( ).

It is easily verified that D = [1 2 1]× [1 2 1] since any [0 1 2) is domi-

nated. That is, IESDS leaves the reduced game G|D
¡ {D } { |D}

¢
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that cannot be further reduced, where |D is the payo function restricted

on D. Clearly, D is the set of Nash equilibria in the reduced game G|D since
|D is a constant function. However, it is easy to see that the set of Nash

equilibria in game G is { D| 1 2 (2 3 5 6)}. Thus, IESDS generates

spurious Nash equilibria D where some (2 3 5 6).

Remark. Example 4 belongs to Reny’s (1999) class of games for which a

Nash equilibrium exists (in this class of games, the player set is finite, the

strategy sets are compact and convex, payo functions are quasi-concave in

own strategies, and a condition called “better-reply security” holds). To see

that game G in Example 4 belongs to Reny’s class of games, let us check the
better-reply secure property. Recall that better-reply security means that “for

every non equilibrium strategy and every payo vector limit resulting

from strategies approaching , some player has a strategy yielding a payo

strictly above even if the others deviate slightly from (Reny 1999, p.

1030)”. Let 0 be su ciently small. We consider the following two cases:

(1) If D, then some 1 2. Thus, can secure payo + =

(if (2 3 5 6)) or + 1 + = + 1 (if (2 3 5 6))

by choosing a strategy + .

(2) If D, then some (2 3 5 6) and 1 2. We distinguish

two subcases: (2.1) 1 2. As lies in an open interval (2 3 5 6),

can secure payo 1 + 1 by choosing a strategy (0 1 2).

(2.2) = 1 2. In this subcase, the limiting vector depends on

how approaches . We must distinguish two subsubcases. (2.2.1)

= (1 1). Similarly to (2.1), can secure payo 1 + 1 by

choosing a strategy (0 1 2). (2.2.2) The limiting payo vector is

= ( 3 2) even though the actual payo vector at D is (1 1)
Thus, can secure payo + = by choosing a strategy + ,
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since for any that deviates slightly from 1 2,

( + ) =

½
+ , if 1 2

1, if 1 2
.

Moreover, the player set is finite, strategy set = [0 1] is compact and

convex, and payo function (· ) is quasi-concave and bounded. This

example shows that IESDS can generate spurious Nash equilibria in the class

of Reny’s better-reply secure games. Observe that in Example 4, ( )

has no maximizer for (2 3 5 6).

We next provide a su cient and necessary condition under which IESDS

preserves Nash equilibria. Consider a game G ¡ { } { } ¢
. For

a given subset , we say that G has “well-defined best replies on ”

if for every and for every , there is that maxi-

mizes ( ). We say that G is “dominance-solvable” if IESDS leads to a

unique strategy choice for each player.14 The following Theorem 5 states that

IESDS generates no spurious Nash equilibria if, and only if, best replies are

well defined on the set of Nash equilibria in the reduced game after perform-

ing the IESDS procedure. Moreover, in one-person games and dominance-

solvable games, Nash equilibria can be solved by our IESDS procedure. For-

mally, letNE denote the set of Nash equilibria in G, and letNE|D denote the
set of Nash equilibria in the reduced game G|D

¡ {D } { |D}
¢
,

where |D is the payo function restricted on D.

Theorem 5 NE = NE|D i G has well-defined best replies on NE|D. More-
over, NE = D if G is a one-person or dominance-solvable game.

Proof. By Corollary 1, it su ces to show NE|D NE if, and only if, G has
well-defined best replies on NE|D. Suppose G has well-defined best replies
14For example, the standard Cournot game (Moulin, 1984), Bertrand oligopoly with

di erentiated products, the arms-race games (Milgrom and Roberts, 1990), and global
games (Carlsson and van Damme, 1993).
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on NE|D. Let NE|D. Then, for every ,
¡ ¢ ¡ ¢

for some and all and, hence, is not dominated given

D. Since D, by Theorem 3,
¡ ¢ D. Since NE|D, it

follows that
¡ ¢ ¡ ¢ ¡ ¢

for all . That is,

NE . Thus, NE|D NE . Conversely, suppose NE|D NE . Therefore,
for every and for every NE|D,

¡ ¢ ¡ ¢
for all

. That is, G has well-defined best replies on NE|D.
By Theorem 3, D is a stable set. Therefore, for every and for

every D, ( )
¡ ¢

for all if G is a one-person or
dominance-solvable game. Thus, every D is a Nash equilibrium. By

Corollary 1, NE = D.

Remark. The first part of Theorem 5 o ers a su cient and necessary con-

dition of a spurious Nash equilibrium, which asserts that a spurious Nash

equilibrium appears if, and only if, the best reply for some player at that

spurious Nash equilibrium is not well defined. It is easy to see the first part

result of Theorem 5 is true also for DS’s IESDS procedure — i.e., DS’s (2002)

Theorem 2 can be improved in the same manner. It is worthy of note that

the weak condition of “well-defined best replies” is only for the set of Nash

equilibria in the reduced game. We would also like to emphasize that the

second part of Theorem 5 is not true for DS’s IESDS procedure. To see this,

consider again the one-person game in the Introduction. Clearly, no Nash

equilibrium exists in the example. Because a single strategy (0 1) can

survive DS’s IESDS procedure, H = { } 6= NE . This demonstrates that
DS’s IESDS procedure can generate spurious Nash equilibria in the simplest

class of one-person games.15

Many important economic applications such as the Cournot game are
15DS’s (2002) Example 1 shows that their IESDS procedure can generate spurious Nash

equilibria in a “dominance-solvable” game. In particular, that example satisfies the weak
condition of “well-defined best replies” in Theorem 5.
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dominance-solvable. As DS’s Examples 3 and 8 illustrate, their IESDS pro-

cedure may fail to yield a maximal reduction and may produce spurious Nash

equilibria in the Cournot game. By our Theorem 5, Nash equilibrium can

be solved by our IESDS in the class of dominance-solvable games. The

following example, taken from DS’s Example 3, illustrates this point.

Example 5 (Cournot competition with outside wager). Consider a three-

person game G ¡ { } { } ¢
, where = {1 2 3}, 1 = 2 =

[0 1], 3 = { }, and for all 1 2 and 3, 1( 1 2 3) = 1(1 1 2),

2( 1 2 3) = 2(1 1 2), and

½
3( 1 2 ) 3( 1 2 ), if ( 1 2) = (1 3 1 3)

3( 1 2 ) 3( 1 2 ), otherwise
.

This game is dominance-solvable since our IESDS yields (1 3 1 3 ), which

is the unique Nash equilibrium. By contrast, DS’s IESDS procedure fails

to give a maximal reduction since, within the first infinite ordinal (natural

numbers), no sequence of elimination can eliminate the strategy for player

3.

We close this section by listing the “preserving Nash equilibria” results for

our IESDS in some classes of games commonly discussed in the literature.

These results follow immediately from Theorem 5.

Corollary 4. D preserves the (nonempty) set of Nash equilibria in the

following classes of games G ¡ { } { } ¢
:

(i) (Debreu 1952; Fan 1966; Glicksberg 1952). is a nonempty,

convex, and compact Hausdor topological vector space; is quasi-

concave on and continuous on × .

(ii) (Dasgupta and Maskin 1986). is a finite set; is a nonempty,

convex, and compact space in a finite-dimensional Euclidian space;
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is quasi-concave on , uppersemicontinuous on × , and graph

continuous.

(iii) (Topkis 1979; Vives 1990; Milgrom and Roberts 1990). G is a
supermodular game such that is a complete lattice; and is order

upper-semi-continuous on and is bounded above.

Proof. By the Generalized Weierstrass Theorem (see, e.g., Aliprantis and

Border 1999, 2.40 Theorem), the best replies are well-defined for the com-

pact and own-uppersemicontinuous games. ByMilgrom and Roberts’s (1990)

Theorem 1, the best replies are well-defined for the supermodular games in

which strategy spaces are complete lattices. By Theorem 5, IESDS preserves

the (nonempty) set of Nash equilibria for these classes of games in Corollary

4.

5 Concluding Remarks

We have presented a new notion of IESDS that can be used in general games.

As Milgrom and Roberts (1990, p. 1269) showed, the concept of IESDS can

be supported by an appealing adaptive learning process. We have shown that

IESDS is always a well-defined order independent procedure, and that it can

be used to identify Nash equilibrium in dominance-solvable games; e.g., the

Cournot competition, Bertrand oligopoly with di erentiated products, and

the arms-race games. In addition, we have characterized IESDS as the

largest stable set, which suggests itself an interesting alternative definition of

IESDS , and we have also provided an epistemic characterization for IESDS

by the notion of rationality* in terms of payo -dominance.

Our IESDS procedure avoids many of the problems that arise when using

DS’s IESDS procedure in general games, which are noted by DS (2002). Some

comparisons between IESDS and DS’s IESDS are summarized in Table 1.
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CC games ¬CC games

IESDS
· well-defined
· nonempty & order-independent
· no spurious Nash

· ¬well-defined
· ¬nonempty or ¬order-independent (if well defined)
· spurious Nash e.g. in Reny’s better-reply secure games,
and even in 1-person/dominance-solvable games

· no spurious Nash if best replies are well defined

IESDS · IESDS = IESDS

· well-defined
· nonempty (if Nash exists) & order-independent
· spurious Nash e.g. in Reny’s better-reply secure games,
but not in 1-person/dominance-solvable games

· no spurious Nash i best replies are well defined on NE|D
Table 1: DS’s IESDS vs. IESDS (CC = Compact & Continuous; ¬ = logical negation)

Many game theorists do not recommend iterated elimination of weakly

dominated strategies (IEWDS) as a solution concept, and one important

reason is that order matters for that procedure in some games (see, e.g.,

Marx and Swinkels 1997). This criticism can also be applied to DS’s IESDS

procedure, but not to our IESDS procedure. More importantly perhaps,

IEWDS is troublesome in being interpreted as an implication of common

knowledge of “cautious” rationality; see, e.g., Borgers and Samuelson (1992),

Brandenburger et al.’s (2004), and Samuelson (1992, 2004). In contrast, we

can establish a su cient and necessary epistemic condition for IESDS . Our

IESDS procedure can be interpreted as an implication of common knowledge

of rationality* that is based upon a more elementary behavioral assumption.

We would like to point out that the problem of “spurious Nash equilib-

ria” for our IESDS procedure appears to be less severe than that for DS’s

IESDS procedure. In all the examples provided by DS (2002) to illustrate

that their procedure creates spurious Nash equilibria, the use of our IESDS

procedure does not generate any spurious Nash equilibria. Indeed, we have

shown that in our IESDS procedure, this problem never arises both in one-

person games and in dominance-solvable games. We have demonstrated by

Example 4 that IESDS can generate spurious Nash equilibria in general
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games. One major feature of Example 4 is that there is no best reply at

each of spurious Nash equilibria in the reduced game (and thus IESDS cre-

ates spurious Nash equilibria). The creation of spurious Nash equilibria by

IESDS seems to be a generic property of games that are not compact and

own-uppersemicontinuous.

Finally, we would like to mention that in a related paper, Apt (2005)

investigated the problem of order independence for “(possibly transfinite)

iterated elimination of never-best replies.” Apt (2005, Theorem 4.2) also

showed a similar type of order-independent result and demonstrated that

the result fails to hold for some di erent iteration procedures.
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