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The Behavior of the Maximum Likelihood Estimator
of Dynamic Panel Data Sample Selection Models”

Wladimir Raymond', Pierre Mohnen*, Franz Palm®,
Sybrand Schim van der Loeff™

Résumé / Abstract

Cette étude propose une facon d’utiliser I’estimateur du maximum de vraisemblance pour des
données panel et des modeles dynamiques de type tobit 2 ou tobit 3. La fonction de
vraisemblance inclut une intégrale double qui est évaluée en utilisant une quadrature Gauss-
Hermite a deux étapes. Une étude de Monte Carlo montre que la quadrature donne de bons
résultats dans un échantillon fini méme avec uniquement deux points d’évaluation. Si on
ignore les effets individuels ou la dépendance entre ceux-ci et les conditions initiales, on
obtient une estimation biaisée vers le haut des coefficients des variables endogénes retardées.
Une application a I’étude des innovations de produit radicales et incrémentales avec des
données panel d’entreprises néerlandaises illustre la méthode proposée.

Mots clés : données panel, maximum de vraisemblance, modéles dynamiques
avec sélection

This paper proposes a method to implement maximum likelihood estimation of the dynamic
panel data type 2 and 3 tobit models. The likelihood function involves a two-dimensional
indefinite integral evaluated using “two-step” Gauss-Hermite quadrature. A Monte Carlo
study shows that the quadrature works well infinite sample for a number of evaluation points
as small as two. Incorrectly ignoring the individual effects, or the dependence between the
initial conditions and the individual effects results in an overestimation of the coefficients of
the lagged dependent variables. An application to incremental and radical product
innovations by Dutch business firms illustrates the method.

Keywords: panel data, maximum likelihood estimator, dynamic models,
sample selection
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1 Introduction

The ongoing development of the relevant econometric methodology for panel data has increased the
choice for the applied researcher as to which model to choose in any given situation. Whereas this
choice should be driven by the question which underlying assumptions are appropriate in the case
at hand, optimality properties of the estimators are typically known only for large sample sizes. In
order to have some guidance in the choice process it is important to know the implications, in terms
of ease of computation, finite sample properties and the robustness to deviations of the assumptions,
of employing a particular method. In this paper the behavior of the maximum likelihood (ML)
estimator is investigated by means of Monte Carlo simulations in a general model that encompasses
a wide set of models that have been considered in the literature. The generic form of the model
consists of a regression equation, henceforth referred to as the equation of interest, and a selection
equation. Both equations contain a lagged dependent variable and unobserved individual effects
possibly correlated with the explanatory variables. The selection rule may be of the binary type
or of the censoring type.! In terms of the Amemiya (1984) typology, the models considered in this
paper are the dynamic panel data extensions of the type 2 and type 3 tobit models.? Variants of
these types of models have been widely used, mostly in labor economics but also in other areas,
but only in a static or “partial” dynamic framework (see Table 1).

This study contributes to the existing literature in a number of ways. Firstly, a practical
method is provided to implement maximum likelihood estimation of the parameters of a panel
sample selection model in which random individual effects and the lagged dependent variable
are included in the equation of interest as well as in the selection equation. The selection rule
may be either of the binary or of the censoring type.?> To handle the initial conditions problem,
Wooldridge’s (2005) solution to this problem in single equation dynamic nonlinear panel data
models is extended to models containing more than one equation. Gaussian quadrature is used
to evaluate the resulting two-dimensional indefinite integral. Secondly, the paper reports on a
Monte Carlo investigation into the behavior in finite samples of the proposed method. It is shown
that using Wooldridge’s solution to deal with the dependence between the initial conditions and
the individual effects is successful in recovering the parameters of a process that generates the

data according to a stationary process. For the likelihood functions generated in the Monte Carlo

IFollowing the literature the term censoring model will be used throughout the paper although it would, in
line with Wooldridge (2005), be preferable to speak of corner solution models since the lagged dependent variable
considered in this paper is the observed - rather than the latent - variable.

2The type 3 tobit differs from the type 2 tobit in that the selection into the sample is made through a censored
(partially continuous) variable instead of a binary variable. The former model uses more information to estimate
the equation of interest than the latter. Hence, we should expect the estimation of the equation of interest to be
more accurate in the former model than in the latter.

3These are the types of selection rule that are mostly considered in the literature (see Table 1). Other types of
selection rule are ordered, multinomial, and those based on multiple indices (Vella, 1998).



experiments, Gaussian quadrature, implemented as two successive Gauss-Hermite approximations,
works well for a number of evaluation points as small as two.* Evidently, when using real data
more than two evaluation points may be necessary to attain the required numerical accuracy.
Nevertheless, the Monte Carlo results indicate that ML estimation of the parameters in a random-
effects dynamic sample selection model is feasible and could conceivably be incorporated as a
command in a general use software package such as Stata. Thirdly, the sensitivity of the ML
estimator to misspecification is also investigated. It is shown that incorrectly ignoring the individual
effects, or the dependence between the initial conditions and the individual effects results in an
overestimation of the coefficients of the lagged dependent variable in both equations. Fourthly,
the paper deals with the estimation of type 2 and type 3 tobit in a “full” dynamic framework,
and provides for the first time an application of the dynamic type 3 tobit to the economics of
innovation.

The remainder of the paper is organized as follows. We discuss the most cited studies on panel
data sample selection models in Section 2. Section 3 describes the model and Section 4 describes
its maximum likelihood estimation. The small sample behavior of the estimator is studied in a
Monte Carlo study in Section 5, an application is provided in Section 6, and Section 7 concludes.

The Gauss-Hermite quadrature is explained in Appendix A.

2 Literature

Most of the studies on panel data sample selection models are of the type 2 or type 3 tobit (see
Table 1), which are estimated by ML or two-step least squares (Heckman, 1979), or by variants of
the two-step Heckman type estimator.

For instance, Hausman and Wise (1979) describe a two-period model of attrition and estimate
by ML the impact of attrition on earnings. Attrition is defined as the inability to observe the
dependent variable of the equation of interest in the second period.® Ridder (1990) generalizes
the model of Hausman and Wise to allow for more than two periods and attrition to occur also
in the first period. Hence Ridder’s model can be used as a standard attrition or sample selection
model. Nijman and Verbeek (1992) apply this model to study the effect of nonresponse on Dutch
households’ consumption. Verbeek (1990) assumes random and fixed individual effects in the
selection and regression equations respectively, and estimates by ML a transformed model with

a selection equation written in levels and a within-transformed equation of interest. Verbeek’s

4The use of Gauss-Hermite quadrature, instead of simulated likelihood, is motivated by the finding of Guilkey
and Murphy (1993) that, for the same accuracy, the former method is 5 times as fast as the latter (see also Greene,
2004b).

5 Attrition in the first period is usually referred to as sample selection.



model is criticized by Zabel (1992) who considers random individual effects correlated with the
explanatory variables in both the selection equation and the equation of interest and estimates the
resulting model by ML. All these studies are of limited use to the applied researcher who wants to
implement the ML estimator as they present only the general expression of the likelihood function
which involves a multiple integral that is yet to be calculated. Our study makes a step in this
direction.

The two-step Heckman type estimator consists, in a first step, in estimating the selection
equation and constructing an estimate of a selection correction term that is included as a regressor
in the equation of interest which, in a second step, is estimated using ordinary least squares (OLS)
regression. Wooldridge (1995) estimates an augmented equation of interest written in levels by
pooled OLS where estimates of the selection correction terms are obtained, in a first step, using
a probit model for each period. Kyriazidou (1997) and Honoré and Kyriazidou (2000) propose to
estimate, by kernel-weighted least squares, a pairwise differenced equation of interest for individuals
that are selected into the sample and have “the same” selection equation index in two different
periods. Under a conditional exchangeability assumption, the sample selection is time-invariant
for such individuals so that differencing the equation of interest over time wipes out, not only the
individual effects, but also the sample selection effect. In order to construct the kernel weights,
the parameters of the selection equation are estimated, in a first step, using conditional logit
or smoothed conditional maximum score. Rochina-Barrachina (1999) applies OLS to a pairwise
differenced equation of interest augmented with two selection correction terms for individuals that
are selected into the sample in two different periods. Estimates of these selection correction terms
are obtained, in a first step, using a bivariate probit for each combination of time periods. The
studies cited so far consider sample selection models with a binary selection rule (type 2 tobit).

Heckman and MaCurdy (1980) estimate by ML a fixed-effects type 3 tobit and apply it to
a wage equation with a labor supply (the number of hours worked) equation as the selection
equation. Ai and Chen (1992) and Honoré and Kyriazidou (2000) estimate the same model using
symmetrically trimmed least squares (STLS), and Wooldridge (1995) uses the same estimator as
in his type 2 tobit case where estimates of the selection correction terms are now obtained, in a
first step, using a tobit model for each period. A Monte Carlo study comparing the estimators of
Wooldridge (1995), Honoré and Kyriazidou (2000) and a semiparametric first-difference estimator
is provided by Lee (2001).

The above-mentioned studies on panel data sample selection models all assume strict exogene-
ity of the explanatory variables in the equation of interest. Models with censored endogenous

explanatory variables are studied by Vella and Verbeek (1999) and Askildsen et al. (2003), while



Dustmann and Rochina-Barrachina (2000) and Semykina and Wooldridge (2005) study models
with continuous endogenous explanatory variables. Vella and Verbeek (1999) estimate by OLS
with selection bias correction (SBC) a wage equation where labor supply enters the set of explana-
tory variables, and where estimates of the selection correction terms are obtained, in a first step,
using a dynamic tobit model of labor supply. Askildsen et al. (2003) estimate the wage elasticity
of labor supply for Norwegian nurses using an instrumental variable (IV) version of the Kyriazidou
(1997) method. Dustmann and Rochina-Barrachina (2000) and Semykina and Wooldridge (2005)
estimate the effect of experience, which is assumed to be endogenous, on wages. The former study
extends the Wooldridge (1995), Kyriazidou (1997) and Rochina-Barrachina (1999) estimators in
order to account for endogeneity in the explanatory variables, while the latter uses a pooled and
a fixed-effects two-stage least squares estimator with SBC. Finally, sample selection models that
allow for dynamics in both the selection equation and the equation of interest are studied by Kyri-
azidou (2001) who uses a two-step kernel weighted general method of moments (GMM) estimator,
and Gayle and Viauroux (2007) who use a sieve instrumental variable (SIV) and a sieve minimum
distance (SMD) estimator.

As Table 1 clearly shows, sample selection models with panel data are hardly studied in a
“full” dynamic framework where both the selection equation and the equation of interest include
a lagged dependent variable. Two exceptions are Kyriazidou (2001) and Gayle and Viauroux
(2007) who use semiparametric estimators for a fixed-effects dynamic panel data type 2 tobit.
This paper takes another route using ML to estimate a random-effects dynamic panel data type
2 tobit. Furthermore, while the literature considers only a static or “partial” dynamic panel data
type 3 tobit, we consider the estimation by ML of the model in a “full” dynamic framework.
An application of the model to study the dynamics of innovation in Dutch manufacturing is also

provided for the first time.

3 The model

The dynamic panel data sample selection model studied in this paper consists of two latent de-

pendent variables d}, and y;, written as

diy = pdig—1 + 6'Wir + i + €1, (1)

Yie = VWie—1 + B'Xir + i + €2t (2)



with observed counterparts d;; and y;;, and ¢ = 1,...N; t = 1,...T. Equation (1) is the selection
equation that determines whether individual 7 is included in the sample on which the estimation
of the equation of interest (eq. (2)) is based at period ¢. It is a function of past selection outcome
(dit—1), strictly exogenous explanatory variables (w;), time-invariant unobserved individual effects
(n;) and other time-variant unobserved variables (e;;). The scalar p and the vector ¢’ capture
respectively the effects of past selection outcome and the explanatory variables on the current
selection process, and are to be estimated. The equation of interest depends on its past outcome
(yi,t—1), strictly exogenous explanatory variables (x;;), time-invariant unobserved individual effects
(a;) and other time-variant unobserved variables (ez;:), and is observed only when d, is positive,
ie.

yir = 1[d;; > Oly;;, (3)

where 1[...] is the indicator function with value one if the expression between square brackets is
true, and zero otherwise. The scalar v and the vector 3’ capture respectively the effects of past
outcome and explanatory variables on current outcome, and are to be estimated. Since a fully
parametric approach is considered in this study, there is no exclusion restriction in the vector of
strictly exogenous explanatory variables. In other words, w;; and x;; may be the same, totally
different or may have common explanatory variables.

Two types of selection rule are considered in this study, namely binary and censored. When the
selection rule is binary, only the sign of the current selection process is observed and the current
selection outcome is defined as

di = 1[d;; > 0], (4)
while in the censored case, not only the sign but also the actual value of the current selection
process is observed whenever it is positive and the current selection outcome is defined as

diy = 1[d}, > 0]d},. (5)

Amemiya (1984) refers to the model described in equations (1), (2), (3) and (4) as type 2 tobit, and
the one described in equations (1), (2), (3) and (5) as type 3 tobit. We now turn to the estimation

technique.



4 Maximum likelihood estimation

Two difficulties arise when estimating dynamic panel data sample selection models, namely the
presence of unobserved individual effects and the treatment of the initial observations.®

One way of handling the presence of unobserved individual effects is to create a dummy variable
for each individual ¢ and estimate the corresponding parameters 7; and «;, together with the
other parameters of the model, by maximum likelihood assuming a joint distribution for the error
terms €15+ and es;;. This approach is referred to as fixed-effects and has two shortcomings when
the considered panel consists of a large N and a small 7. The first one lies in the difficulty of
computing the maximum likelihood estimator of the coeflicients of possibly thousands of dummy
variables. This computational problem can be overcome, for instance, by a two-step “zigzag”
kind of likelihood maximization (Heckman and MaCurdy, 1980) or by “brute force” maximization
(Greene, 2004a). These two computational methods cannot, however, solve the second problem of
“incidental parameters” of the fixed-effects approach, namely the inconsistency of the maximum
likelihood estimator of n; and a; when the number of periods T is small (Neyman and Scott, 1948).
Unlike in the linear model, the inconsistency of the estimator of the individual effects carries over
to the estimator of the slope parameters. Hence, the individual effects have to be conditioned
out of the likelihood function so that the remaining parameters of the model can be consistently
estimated by maximum likelihood. The resulting estimator is known as the conditional maximum
likelihood estimator and is studied, for instance, by Chamberlain (1980) and Magnac (2004). The
conditional likelihood approach is, however, restrictive for two reasons. First, there are very few
nonlinear panel data models for which concentrating the likelihood with respect to the individual
effects is possible. They are surveyed in the study by Lancaster (2000). Secondly, the approach
works only under the assumption of strict exogeneity of the explanatory variables, which rules
out the inclusion of lagged dependent variables as explanatory variables. The above-mentioned
shortcomings of the fixed-effects approach may justify the use of a random-effects approach, where
n; and «a; are assumed to have a joint distribution.

A computational (and methodological) difficulty that arises in the random-effects approach is
the so-called initial conditions problem. Two assumptions are often made on the initial conditions
in the literature, namely they are exogenous or the process is in equilibrium. Neither assumption is
satisfactory Hsiao (2003). Two approaches of handling the initial conditions problem are proposed

by Heckman (1981b) and Wooldridge (2005) respectively. The first approach specifies a model for

6This study describes the difficulties that arise when estimating dynamic nonlinear panel data models and
suggests solutions to them in a fully parametric framework. Details on how to handle the presence of unobserved
individual effects and lagged dependent variables as regressors in a semiparametric framework are given in Arellano
and Honoré (2001).



the initial conditions given the individual effects and the strictly exogenous explanatory variables.
In empirical work, this model is often assumed to be similar to the model underlying the remain-
ing process. For instance, if the underlying model is a dynamic panel data probit, the model at
the initial period is assumed to be standard probit. A likelihood function which is marginal to
both the individual effects and the initial conditions can be derived and maximized using standard
numerical procedures. The second approach specifies a distribution for the individual effects con-
ditional on the initial conditions and the strictly exogenous explanatory variables. In this case, the
likelihood function is marginal to the individual effects but conditional on the initial conditions.
Both approaches are legitimate and yield consistent estimates of the parameters of the model under
the assumption of correct specification of the distribution of the errors. However, the Wooldridge
approach is easier to implement, which has made it more popular in applied econometrics recently,
and more flexible in the sense that it applies to a wide range of nonlinear dynamic panel data
models and allows, unlike the Heckman approach, for individual effects to be correlated with the
strictly exogenous explanatory variables (see Raymond, 2007). The likelihood function derived in
the Wooldridge approach has the same structure for both the dynamic and the static versions of
the nonlinear model. This study extends this approach to models that contain more than one
equation. The approach is described as follows.

The individual effects are assumed, in each period, to be linear in the strictly exogenous ex-

planatory variables and the initial conditions, i.e.

n; = by + b5dio + by w; + a4, (6)

o = bg + bqyzo + bIQTXz' + ag;, (7)

where W, = (W}, ..., Wip), X; = (X}1, ..., Xip), b5, b, b5, by, b] and by are to be estimated, and ay;
and ag; are independent of (d;o, w;) and (y;0, X;) respectively.” The scalars bj and b} capture the
dependence of the individual effects on the initial conditions. The vectors (€1, €2:¢)’ and (a1;, ag;)’
are assumed to be independent of each other, and independently and identically distributed over

time and across individuals following a normal distribution with mean zero and covariance matrices

2 2

a Per1e20¢,0¢ g Pai1a20a,0a
€1 162061 0¢z ay 10629a10az
96162 = and Qalaz = (8)
2 2
Per1e20¢10¢s Oe, Paiaz0a0as Oy

respectively. The parameters of the covariance matrices are also to be estimated. Hence, the

"The vectors of explanatory variables w; and x;, in order to be included in equations (6) and (7), must be
sufficiently time-variant, otherwise a collinearity problem will arise.



likelihood function of individual 4, starting from ¢ = 1 and conditional on the regressors and the
initial conditions, is written as
T

oo oo
L; = / / H Lit(dit, yir|dio, dijt—1, Wi, Yio, Yit—1,Xi, Q145 A2;) 9( @14, Gi)daridasg;, 9)
T T =1

T .
where [],_; Lit(dit, Yit|dio, di t—1, Wi, Yio, Yit—1, Xs, @14, @2;) and g(ais, az;) denote respectively the
likelihood function of individual 7 conditional on the individual effects, and the bivariate normal

density function of (a4, as;). Define

Aip = pdig—1 + 6'wi + 0§ + bidio + b5 wy, (10)

Bit = Yyi—1 + B'%it + by + bl yio + by x;, (11)

the individual likelihood function conditional on the individual effects is written as

H(I) [ <Ait +a1i>:| (1=dse) [ 1 & <yit — By — a2i>
P O Oey Oey

oc dit
Ait + a1i + peyer 5= (Yit — Bir — az;)
X = > , (12)
Oeq V 1- peleg
when the selection rule is binary and
Ay +a\1" T 1 Yit — Bit — ag;
o[- (*50)] e (o)
Ocy Ocy Ocy
t=1
1 s dip — Ajp — a1y — 95152%(2/“ — Byt — ag;) o (13)
X - b
Oeqy/ 1- pglEQ Oeq \Y4 1- leeQ

when the selection rule is censored.® In equations (12) and (13), ¢ and ® denote respectively the
univariate standard normal density and cumulative distribution functions, s;; is defined in the type
3 tobit as

sip = 1[d, > 0].° (14)

The double integral in equation (9) can be approximated, along the lines of Butler and Moffitt

(1982), by “two-step” Gauss-Hermite quadrature (see Appendix A) so that the random-effects

8The individual likelihood function conditional on the individual effects is the product over time of individual
cross-sectional likelihood functions. These latter functions are derived for the type 2 and 3 tobit models in Amemiya
(1984).

9n the type 2 tobit model, equations (4) and (14) are equivalent so that s;; = d;;, and oe, cannot be identified
and is set to 1 in equation (12).



individual likelihood functions of the type 2 and type 3 tobit models become respectively

P T dit
L~ V 1_pg1a2 pr H [ 1 p <yit—Bit_ ApOa, 2(1_p31a2)>]

O¢y

N

M , o T (1—d;¢)
x 3wy § erereatrtn TT@ (= (Aip+ amou 201 = 2,0,) )| (15)
m=1

t=1
dit

\/ ]‘ - 103162

Niy + p;l%(yit — Byt — a,04, 2(1— p(211a2))
x @ =

and

1—p2 P
L, ~ — d1d2 1wp

p=

ﬁ 1 (b Yit — Bit — Up0q, 2(]— - pglaz) o
O¢ Te,

t=1 2
(I—s4t)
. <A’Lt + amaal 2(]‘ - pg.ulg))‘| (16)

ag

M
X E Wiy 62”“1“2%““1_[@
m=1

t=1

X

Ny — peleg%(yit — By — apOay 2(1 - P%aﬂ))] .

1 diy —
¢
[061 \V 1- pgleg Oer/ 1- pglez

where wp,, wy, a, and a, are respectively the weights and abscissas of the first- and second-
step Gauss-Hermite quadrature with M and P being the first- and second-step total number of

integration points, and N;; is written as

Nit = Ait + AmOa, 2(1 - pglaz)' (17)

The product over 4 of the approximate likelihood functions (15) and (16) can be maximized using
standard numerical procedures to obtain estimates of the parameters of the dynamic type 2 and
type 3 tobit models.

Our approach handles the estimation, by maximum likelihood, of a wide range of linear and
nonlinear panel data models. Indeed, equations (15) and (16) encompass the likelihood functions
of the models which are obtained by restricting the values of certain parameters of the dynamic
sample selection models (see Table 2). For instance, if pg 0, = pPeye, = 0 and the remaining
parameters are unrestricted, the likelihood functions are the product of the likelihood functions of
a dynamic random-effects probit and a dynamic random-effects linear regression (eq. (15)), and
that of the likelihood functions of a dynamic random-effects type 1 tobit and a dynamic random-
effects linear regression (eq. (16)). In other words, when there is no selection bias, estimating a

dynamic type 2 (type 3) tobit amounts to estimating separately a dynamic probit (type 1 tobit)

10



and a dynamic linear regression. The parameter restrictions listed in Table 2 can be tested using
a standard likelihood ratio or Wald test.
We now present Monte Carlo simulations to study the small sample behavior of the maximum

likelihood estimator of the type 2 and type 3 tobit models.

5 Monte Carlo study

The data are generated according to the following “true” model

djy = pdit—1 + w4+ 1; + €1t (18)

Yir = VWit—1 + BTit + i + €24t (19)

where w;; and x;; are generated according to the standard normal distribution and are independent
of each other, (€14, €2¢) is generated according to the bivariate normal distribution with mean zero
and covariance matrix defined as in equation (8) (first matrix). The individual effects (n;,a;)
are generated independently of (€144, €25¢) according to the bivariate normal distribution with mean
(d;o0, ¥:0) and covariance matrix defined as in equation (8) (second matrix). The dependent variables
of the equation of interest and the selection rules are defined as in equations (3-5), i.e., both the type
2 and type 3 tobit are considered. The true parameter values are § = 8 =1, 04, = 04, = 0, = 0.5,
ey =1, pajay = 0.5, pee, = 0.8, and two sets of values are chosen for p and 7, namely p =~v =0
when the model is static, and p = 7 = 0.5 when the model is dynamic. All dynamic and static
data generating processes considered include individual effects.

Given these values of the parameters, sample selection is not constant over time, i.e. the
selection outcome d;; (or s;;) has a rather high within standard deviation (around 0.40) for the
(dynamic and static) type 2 and type 3 tobit. Furthermore, the censoring rate over the whole
period, for both models, is approximately 40% and 50% in the dynamic and the static settings
respectively. Finally, the correlation between the individual effects and the initial conditions for
the type 2 and type 3 tobit is 0.70 and 0.80 in the selection equation, and 0.80 for both models in
the equation of interest.

To summarize, the data generating process (DGP) at the initial period is standard type 2
(type 3) tobit while the remaining period DGP is dynamic type 2 (type 3) tobit with endogenous
initial conditions correlated with the individual effects, and accounting for selection bias correction
(SBC). The static DGP is obtained by setting the true values of p, v to 0.

The estimation results of p, 7, 6, 5, 0,y Tayy Paras 0N pPe, e, based on 200 replications are shown
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in Tables 3-8 for the following sample sizes: N = 500 and T'=4, N =500 and T' =7, and N = 800
and T = 4. We report the mean and standard deviation over the replications of these estimates.'’
In each replication, the estimation is based on T'— 1 periods, the first one being the initial period.
We study the small sample behavior of the maximum likelihood estimator (MLE) of the above-
mentioned parameters when the model is both correctly and incorrectly specified. More specifically,
when the DGP is dynamic, misspecification includes a dynamic model with no individual effects
but SBC; with individual effects, exogenous initial conditions and SBC; with individual effects,
endogenous initial conditions but no SBC; and a static model with individual effects and SBC.
When the DGP is static, misspecification includes a static model with no individual effects but
SBC; with individual effects but no SBC; and a dynamic model with no individual effects but SBC,
and with individual effects and endogenous initial conditions correlated with the individual effects
and SBC.

We now discuss the Monte Carlo results.

5.1 The MLE behavior when the model is correctly specified

The mean and standard deviation of the MLE of p, v, §, 8, 0a,, Tayss Para, a0d Pe,c,, When the
model is correctly specified, are reported in Table 3.

The MLE of § and 8 in both the dynamic and static type 2 and type 3 tobit is biased towards
zero. The bias does not exceed 2% and 0.7% for § and 3 in the type 2 tobit, and 3.5% and 0.8%
in the type 3 tobit. There is no clear pattern of bias reduction as either 7" or IV increases. In all
cases but the dynamic type 2 tobit with N = 800 and T = 4, the estimate of 3 is on average closer
to the true value than that of §. In both the type 2 and type 3 tobit, the estimates of § and 3 are
closer to the true values in the static case than in the dynamic case, except in the dynamic type
2 tobit with NV = 800 and T' = 4 where the pattern shows up the other way round in the estimate
of §. From this, we can conclude that it is more difficult to estimate accurately the coefficients
of the strictly exogenous explanatory variables in both the selection equation and the equation of
interest of dynamic panel data sample selection models than those of their static counterparts.

The MLE of p and +y is also biased towards zero in both the dynamic type 2 and type 3 tobit.
The bias does not exceed 2% and 4.7% for p and ~ in the type 2 tobit, and 3.5% and 4.2% in the
type 3 tobit. Like 6 and (3, there is no clear pattern of bias reduction as either T or IV increases,
and the MLE bias of p and -~y is overall larger than that of 6 and 8. As a result, we can state that

it is more difficult to estimate accurately the coefficients of the lagged dependent variables than

10We do not report the estimate results of oe, (for the type 3 tobit), oc,, and the additional parameters of
equations (6) and (7).
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those of the strictly exogenous variables in both the selection equation and the equation of interest
of dynamic panel data sample selection models.

In both models, 0,, and o,, are much less accurately estimated than p, v, 6 and 3, even though
their bias remains towards zero. For both models, the bias is smaller in the static case than in the
dynamic case. In all cases but, for o,, when N = 500 and 7" = 7, the bias is smaller in the type 2
tobit than in the type 3 tobit. The two models exhibit different patterns in the bias reduction as T'
increases. Indeed, the type 2 tobit shows an increase in the MLE bias of ¢,, and o,, which is more
pronounced for o,, than it is for o,,. The increase in the MLE bias of o,,, as T increases, confirms
the results by Rabe-Hesketh et al. (2005) that show that the MLE of the standard deviation of
the individual effects in random-effects probit models is biased away from zero for large cluster
size T, with a bias that ranges from 19% for T" as small as 10 to 178% for T as large as 500. The
type 3 tobit on the other hand shows a decrease in the bias of the MLE of ¢,, and o,, which is
more pronounced for o,, than it is for o,,. As N increases, the bias reduction pattern is not clear
cut, especially in the type 3 tobit.

Finally, in both models, the MLE of p,, 4, is biased away from zero with a bias of about 25%,
while that of pe,., is biased away from zero in the type 2 tobit and towards zero in the type 3
tobit. This bias decreases only slightly as T increases, while there is no clear pattern of reduction
as N increases.

To summarize, we can state that, when the model is correctly specified, the MLE bias of
the parameters of panel data sample selection models is very small for a sample size as large as
the one considered in the Monte Carlo study. The “two-step” Gauss-Hermite quadrature used
to approximate the likelihood function works very well, even for a number of integration points,
in each step, as small as 2. However, the standard deviations of the individual effects and the
sample selection terms are less accurately estimated than the remaining parameters of Table 3.
Accuracy in the estimates can be gained by either increasing the number of integration points or
using adaptive Gauss-Hermite quadrature in the spirit of Rabe-Hesketh et al. (2005).!

We now discuss the behavior of the MLE when the model is incorrectly specified.

5.2 The MLE behavior when the model is incorrectly specified

The mean and standard deviation of the MLE of p, v, 6, 8, 0ays Tays Paras a0d Pe,e,, When the

model is incorrectly specified, are reported in Tables 4-8. More specifically, we study the finite

111n the study by Rabe-Hesketh et al. (2005), adaptive Gauss-Hermite quadrature is shown to work better than
normal Gauss-Hermite quadrature in static random-effects probit models when 7' or the equicorrelation is very
large. The use of adaptive Gauss-Hermite quadrature can be generalized to sample selection models but is beyond
the scope of this study.
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sample bias of the MLE when we fail to account for individual effects, when we assume exogenous
initial conditions and when we fail to correct for selection bias. We also study the case where a
static model is estimated under a dynamic DGP and vice versa. All DGPs considered include

individual effects.

5.2.1 No individual effects

Table 4 reports the mean and standard deviation of the MLE of p, v, d, 5 and pc,e, when the
individual effects, while being present in the DGP, are ignored in the estimation of the model, i.e.,
Oays Oay a0d pg,qa, are all assumed to be zero.

The MLE of 8 remains biased towards zero in all cases. In other words, the MLE bias of the
coefficient of the strictly exogenous explanatory variable in the equation of interest is unaffected
if we fail to account for individual effects. This result holds regardless of the type of the selection
rule, and regardless of whether the model is dynamic or static. The MLE of § also remains biased
towards zero in the type 3 tobit and in the static type 2 tobit with a larger bias than that of 5.
In the dynamic type 2 tobit, however, the MLE of ¢ is biased away from zero with a bias that is
always larger than 15%. Hence, unlike 8, when we fail to account for individual effects, the MLE
behavior of the coefficient of the strictly exogenous explanatory variable in the selection equation
differs according to the type of the selection rule and according to whether the model is dynamic
or static.

In the dynamic version of the model, the MLE of p and -y is biased away from zero and upwards
in all cases, with a bias that gets as large as 61% in the type 2 tobit, and 55% in the type 3 tobit.
This bias is reduced fairly substantially (by about 9%) as T increases but remains very high, and
is unchanged as N increases. In other words, when estimating the dynamic version of the model
and failing to account for individual effects, the coefficients of the lagged dependent explanatory
variables, in both the selection equation and the equation of interest, are overestimated. In the
dynamic panel data discrete choice model, this phenomenon is known as spurious state dependence
(Heckman, 1981a), i.e. too much credit is attributed to past event as a determinant of current
event if intertemporal correlation in the unobservables is not accounted for.

Finally, the MLE of p,., is biased away from zero with a bias of about 25% in the static case,
and about 35% in the dynamic case. There is no clear pattern of bias reduction as either T or N

increases.
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5.2.2 Exogenous initial conditions

Table 5 reports the mean and standard deviation of the MLE of p, v, 6, 8, 04y, Tayss Paras DA Pe, ey
when the initial conditions, while being endogenous and correlated with the individual effects in
the DGP, are assumed to be exogenous, i.e., b{ and b} are assumed to be zero.

In both the type 2 and type 3 tobit, the MLE bias of § and 3 increases by about 6% with
respect to the case of the DGP but remains fairly small, less than 9% in the type 2 tobit, and less
than 11% in the type 3 tobit. As for the MLE of p and ~, their bias remains substantially large
compared to the case where the individual effects are ignored. Accounting for individual effects
but assuming exogenous initial conditions also results in a spurious state dependence situation.'?
Hence, we can state that, in order for the coefficients of the lagged dependent explanatory variables
to be accurately estimated, the correlation between the initial conditions and the individual effects
must be taken into account: controlling for individual effects only is not sufficient. As T increases,
the MLE bias of p and 7, in both the type 2 and type 3 tobit, decreases by about 10% but remains
substantially large, while, as N increases, the bias remains the same. Finally, the MLE bias of

Paias and pe, ., is higher than in the DGP case, and that of o,, and o,, is comparable to that of

the same parameters in the DGP case.

5.2.3 No selection bias correction

The mean and standard deviation of the MLE of p, v, 4, 8, 0,, and o,, are reported in Table 6
when we do not correct for the selection bias, i.e., we assume pg,q, and pe, e, to be zero.

In both the type 2 and type 3 tobit and regardless of whether the model is dynamic or static, the
MLE bias of the coefficients of the lagged dependent and strictly exogenous explanatory variables is
unaffected. This result always holds for § and § when the strictly exogenous explanatory variables
in the selection equation and in the equation of interest are not at all or only slightly correlated.
When they are highly correlated, Monte Carlo results not reported here show that the MLE of
the coefficients in the equation of interest are biased downwards while that of the coefficients in
the selection equation remains unaffected. The most notable change occurs in the MLE of o,
which, in all cases, becomes biased away from zero, while that of o,, remains, in all cases but in

the dynamic type 2 tobit, biased towards zero.

12 Although the term spurious state dependence was used in the context of discrete choice models, we use it in
our study to explain the overestimation of the coefficients of the lagged dependent explanatory variables in both
the selection equation and the equation of interest.



5.2.4 Static model estimated under a dynamic DGP

The MLE of 6, 8, 04, Cays Pajas, a0d pe, e, are reported in Table 7 when a static model is estimated
under a dynamic DGP, i.e., p and ~ are assumed to be zero.

In both the type 2 and type 3 tobit, the MLE of ¢ is biased away from zero, with a bias that
is no less than 30%, while the MLE of 3 remains biased towards zero but with a larger bias than
in the DGP case. Furthermore, the standard deviations of the individual effects are overestimated
and their MLE bias gets as large as 200% for o,,, and 100% for o,,. In other words, when past
event is a determinant of current event and is left out of the explanatory variables, too much
credit is attributed to the individual effects as a determinant of current event. This is the reverse
phenomenon of the spurious state dependence. Finally, pq,q, and p., e, are biased away from zero

with a bias of approximately 25% and 45% respectively.

5.2.5 Dynamic model estimated under a static DGP

We estimate two types of dynamic models under a static DGP. The first one ignores the individual
effects, and the second one accounts for individual effects that are correlated with endogenous
initial conditions. In other words, the first type assumes o,,, 04, and pg,q, to be all zero while
the second one makes no restriction assumptions on the parameters of the model. The mean and
standard deviation of the MLE of p, v, d, 3, 04, Tays Paras a0d pe,e, are reported in Table 8.

In both cases, the MLE of § and 3 are biased towards zero in the type 2 and type 3 tobit.
However, the bias for § is larger when we do not account for the individual effects than when we
account for them. The most notable difference between the two cases lies in the estimates of the
coefficients of the lagged dependent explanatory variables. They are positive, around 0.10 for p
and 0.15 for v, and significantly different from zero when we do not account for the individual
effects. In other words, ignoring the individual effects results in attributing credit to past event as
a determinant of current event while the former does not condition at all the latter. This is an
extreme case of the spurious state dependence mentioned earlier. When we account for individual
effects that are correlated with endogenous initial conditions, these estimates become very close to
zero, their true value, and the standard deviations of the individual effects are biased towards zero.
Hence, when estimating a dynamic panel data model, regardless of whether the DGP is dynamic or
static, the issues of properly accounting for the individual effects and treating the initial conditions
must be taken care of. As for p,,a,, it is biased away from zero in both the type 2 and type 3
tobit, while pe, e, is biased away from zero in the type 2 tobit, and in the type 3 tobit with no

individual effects. When individual effects that are correlated with endogenous initial conditions
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are accounted for, pe,., is biased towards zero in the type 3 tobit.

6 Application

To illustrate our method we proceed to estimate a dynamic type 3 tobit model that explains the
amount of product innovation. Innovation surveys distinguish two types of product innovations,
those new to the firm (incremental) and those new to the market (radical). The importance of
each type of product innovation is measured by the share in total sales of innovative sales. But
from the way the questionnaire of the survey is formulated, we only observe the latter if we observe
the former. Equation (1) determines whether enterprise 4 is an incremental product innovator at
period t (df > 0). In this case, the actual share of sales of incremental product innovations (eq.
(5)) is positive, and the share of sales of radical product innovations (eq. (3)) and the full set of
regressors included in the vector x;; are observed. When enterprise ¢ is not an incremental product
innovator, the shares of sales of incremental (d;;) and radical (y;;) product innovations are equal
to zero, and only the set of regressors included in the vector w;; is observed.

The dynamic type 3 tobit is implemented using the same data as in Raymond et al. (2006).
They are collected by the Centraal Bureau voor de Statistiek (CBS) and stem from three waves of
the Dutch Community Innovation Survey, CIS 2 (1994-1996), CIS 2.5 (1996-1998) and CIS 3 (1998-
2000), merged with data from the Production Survey (PS). The population of interest consists of
Dutch manufacturing enterprises with at least ten employees and positive sales at the end of the
period covered by the innovation survey. We consider enterprises that existed in 1994, survived
(at least) until 2000 and took part in the three innovation surveys, resulting in a balanced panel
of 861 enterprises.

Table 9 shows descriptive statistics and the description of the dependent and explanatory
variables of the model. For instance, the average share in total sales of products new to the firm
is rather small (29%), and that of products new to the market is even smaller (6.5%). These
two variables are logit-transformed in order to make them lie within the set of real numbers.
The specification of the model is as follows. The current share in total sales of products new
to the firm is explained by the lagged share in total sales of products new to the firm, lagged

size and relative size.!* Besides lagged size, the current share in total sales of products new to

13The share of sales of products new to the firm takes on the values 1 for innovators that are newly established.
They are replaced by 0.9999 in the logit transformation. Furthermore, the share of sales of products new to the
market takes on the value O for some incremental product innovators. They are replaced by 0.0001 in the logit
transformation.

141n the innovation survey, firms are asked whether they have product and/or process innovations, or incomplete
and abandoned innovation activities during the whole period under study, while size and sales are measured only at
the end of the period. Hence, all the cross-sectional studies on the determinants of innovation have this unsatisfactory
feature of explaining the probability of being an innovator (during the whole period) by size or relative size (at the
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the market is explained by the lagged share in total sales of products new to the market and
dummy variables capturing demand pull, proximity to science, innovation cooperation, non-R&D
performers, subsidies, and a continuous R&D intensity variable.

Table 10 presents the estimation results of four versions of the type 3 tobit, namely a static
model with unobserved individual effects, a dynamic model with no unobserved individual effects, a
dynamic model with individual effects and endogenous initial conditions but ignoring the selection
bias, and a dynamic model with individual effects and endogenous initial conditions correcting

for selection bias.!®

The hypotheses of the first three models are tested against those of the
fourth one, and rejected using a likelihood ratio test at 1% level of significance. Hence, the
preferred model is dynamic with individual effects and endogenous initial conditions correcting
for selection bias. The results suggest that, in all four versions of the model, lagged size affects
positively and significantly the current share of sales of incremental innovations. The current share
of sales of radical innovations is positively and significantly affected by R&D intensity, performing
R&D continuously, demand pull, innovation cooperation, subsidies while, ceteris paribus, non-R&D
performers are less successful than R&D performers in terms of generating innovative sales from
radical innovations. Sample selection operates through the individual effects and the idiosyncratic
errors in the static case, and only through the idiosyncratic errors in the dynamic case. In the static
case, too much of a role is attributed to the individual effects in that their standard deviations, as
well as the correlation between them, are overestimated. Finally, the coefficients associated with
the lagged dependent variables are positively and statistically significantly estimated in the three
dynamic cases. However, they are overestimated when the individual effects are not accounted for
or when the individual effects are accounted for but exogenous initial conditions are assumed.

A dynamic type 2 tobit was also estimated using information only from a binary variable,
indicating whether a firm is an incremental product innovator or not, for the selection equation
and using the same equation of interest. As expected, the results (not reported in the paper) show
that the parameters of the equation of interest are (slightly) less accurately estimated but similar

to those of the type 3 tobit.

7 Conclusion

We have proposed a simple method to implement the maximum likelihood estimator of dynamic

panel data sample selection models. The method consists in writing the likelihood function condi-

end of the period). Taking lagged size or relative size as an explanatory variable in the panel data context overcomes
this problem.

15 A dynamic model with unobserved individual effects and exogenous initial conditions was also estimated. The
results, not reported in the paper, are similar to those of the dynamic model with no individual effects.
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tional on the individual effects which are then “integrated out” with respect to their joint normal
distribution. We have handled the two-dimensional indefinite integral involved in the likelihood
function using “two-step” Gauss-Hermite quadrature, and solved the initial conditions problem
using the approach of Wooldridge (2005). The resulting likelihood function encompasses a wide
range of likelihood functions of panel data models whose estimation can be achieved by simply
making restriction assumptions on the parameters of the dynamic panel data sample selection
model. These assumptions can be tested using a standard likelihood ratio or Wald test.

In order to assess the quality of the Gauss-Hermite quadrature, and hence that of the maximum
likelihood estimator, we have conducted a Monte Carlo study and obtained the following results.
First, under the data generating process, the maximum likelihood estimator works very well, even
for a number of integration points, in each step of the Gauss-Hermite quadrature, as small as 2.
The estimator bias of the coefficients of the lagged dependent and strictly exogenous explanatory
variables, as well as that of the standard deviations of the individual effects is very small for
a sample size as large as the one considered in the Monte Carlo study. The sample selection
terms, however, are less accurately estimated when the number of integration points is very small.
Secondly, too much of a role is attributed to the lagged dependent variables as a determinant
of the current dependent variables when either the individual effects or the correlation between
the initial outcome and the individual effects are not taken into account. Thirdly, the selection
bias really matters when the explanatory variables in the selection equation and in the equation
of interest are highly correlated, otherwise it can be safely ignored. Fourthly, when the lagged
dependent variables condition the current dependent variables and are left out of the explanatory
variables, too much of a role is attributed to the individual effects as a determinant of the current
dependent variables. Finally, when estimating a dynamic panel data model, regardless of whether
the true model is dynamic or static, the individual effects and the correlation between the initial
outcome and the individual effects must be taken into account, otherwise a situation of spurious
state dependence will arise even under its extreme form. In this latter case, credit is attributed
to the lagged dependent variables as a determinant of the current dependent variables while the
former do not condition at all the latter.

We have applied the method to estimate a dynamic type 3 tobit model of incremental and
radical product innovations. The estimation results confirm those of the Monte Carlo study. More
specifically, the effect of past incremental and radical product innovations on current incremental
and radical product innovations is overestimated when either the individual effects or the correla-
tion between the initial conditions and the individual effects are not accounted for. We also find

that too much importance is attributed to the individual effects as a determinant of current in-
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cremental and radical product innovations when past incremental and radical product innovations
do not enter the set of explanatory variables. Finally, the estimation results of the model with no
selection bias correction are similar to those of the model with a selection bias correction, even
though the latter model is shown, using a likelihood ratio test, to be the preferred one.

Our approach can be, in a straightforward manner, extended to estimate by maximum likelihood
panel data sample selection models with more than two equations, that include a lagged dependent
explanatory variable and individual effects in each equation. For instance, our approach can handle

the estimation of dynamic panel data type 4 and type 5 tobit models with individual effects.
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Appendix A “Two-step” (Gauss-Hermite quadrature

Consider the dynamic panel data type 2 tobit model defined by equations (1-4) and (6-7), and
consider expressions (10) and (11). Assume that the vectors (€14, €2;1)" and (a1, ag;)” are indepen-
dent of each other, and independently and identically distributed over time and across individuals
following a normal distribution with mean zero and covariance matrix given in equation (8). The
likelihood function of individual 4, starting from ¢ = 1 and conditional on the regressors and the
initial conditions, is obtained by “integrating out” the individual effects (equation (9)). The like-
lihood function of individual ¢ conditional on the individual effects is written in equation (12)
with o, being normalized to 1 for identification reasons. The expression of the bivariate normal

distribution of a1; and as; is written as
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Equation (21) can be approximated using “two-step” Gauss-Hermite quadrature which states that

o M
/ e_zzf(z)dz ~ Z W f (am), (23)
-0 m=1

where w,, and a,, are respectively the weights and abscissas of the Gauss-Hermite quadrature, the
tables of which are formulated in mathematical textbooks (e.g. Abramovitz and Stegun, 1964),
and M is the total number of integration points. The larger M, the more accurate the Gauss-
Hermite quadrature. The “two-step” Gauss-Hermite quadrature consists, in the first step, in
approximating equation (22) using equation (23). In the second step, a second approximation is
applied to equation (21) where H(as;) is replaced by its first-step Gauss-Hermite approximation.

The approach is described as follows.
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and can be approximated using equation (23) by
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where w,, and a,, are the weights and abscissas of the first-step Gauss-Hermite quadrature with
M being the total number of integration points.
Consider the second variable change z9; = ———=2:—— so that dag; = d22i04,+/2(1 — p2,,,)-
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Replacing equation (25) into equation (21) yields
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where w, and a, are the weights and abscissas of the second-order Gauss-Hermite quadrature with
P being the total number of integration points.
Using equations (9), (13), (14) and (20), the random-effects individual likelihood function of

the type 3 tobit can be derived similarly to yield equation (16).
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Table 2: Panel data models encompassed in the dynamic type 2 and type 3 tobit models

Restricted model Parameter restrictions

*

Individual effects™ Initial conditions™ Sample selection

The general model is dynamic type 2 (type 3) tobit

Dynamic”type 2 (type3) tobit 04, 7 0;04, # 0; T =b]=0; Peres 7 05paray # 0;
present exogenous selection bias correction

Dynamic type 2 (type3) tobit Oq, = 0q, = 0; =b] =0; Peres Z 05 Payas 7 05
absent exogenous selection bias correction

Dynamic probit (type 1 tobit) 0oy #0; 00, #0; b7 #0; 0] # 0; Peres = Parar = 0;

+ dynamic linear regression present endogenous no selection bias correction

Dynamic probit (type 1 tobit) 04, # 0; 04, 7 0; 0 = b] = 0; Peres = Paras = 0;

+ dynamic linear regression present exogenous no selection bias correction

Dynamic probit (type 1 tobit) Oq, = 0q, = 0; ;= b{ = 0; Peres = Pajar = 05

+ dynamic linear regression absent exogenous no selection bias correction

Staticﬁtype 2 (type 3) tobit Oay #0; 04, #0;  na. Peres Z 05 Payay 7# 05
present selection bias correction

Static type 2 (type 3) tobit Cay = Oay = 0; n.a. Peres 05 Payas 7# 05
absent selection bias correction

Static probit (type 1 tobit) Oay # 05 04, #0;  na. Peres = Pajar = 0;

+ static linear regression present no selection bias correction

Static probit (type 1 tobit) Oay = 0qy, = 0; n.a. Peres = Pajar = 05

+ static linear regression absent no selection bias correction

*The individual effects, when present, may be correlated (b/QS 7& 0; bg 7& 0) or uncorrelated (b/S = b/ZT

= 0) with the explanatory variables. **When the model is static (p =7 = 0) the initial conditions prob-
lem is not an issue, so b“lg = { =0. "The general model contains individual effects and the initial conditions
are endogenous and correlated with the individual effects. Tt “Hybrid” models with a static selection and a

dynamic equation of interest (and vice versa) can also be estimated using our approach.
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Table 5: ML estimates based on 200 replications and 2-point Gauss-Hermite quadrature:
Ezxogenous initial conditions
(True value)* Estimate Mean Std. Dev. Mean Std. Dev.

Estimated model

Dynamic type 2 tobit Dynamic type 3 tobit
N=500; T=4
(p=0.5) R 1.115 (0.069) 0.924 (0.020)
(v =0.5) ~ 0.967 (0.026) 0.973 (0.024)
(6 =1.0) 5 0.923 (0.051) 1.086 (0.035)
(6 =1.0) B 1.062 (0.030) 1.071 (0.025)
(0a, =0.5) Cay 0.571 (0.080) 0.583 (0.078)
(0a, = 0.5) Oas 0.458 (0.175) 0.482 (0.177)
(Pajas = 0.5) Paras 0.229 (0.088) 0.214 (0.080)
(Peres = 0.8) Dereo 0.411 (0.095) 0.560 (0.034)
N=500; T=7
(p=0.5) 0 1.030 (0.045) 0.829 (0.017)
(v =10.5) oY 0.863 (0.016) 0.869 (0.019)
(6 =1.0) 5 0.915 (0.040) 1.102 (0.024)
(6 =1.0) 3 1.048 (0.017) 1.051 (0.016)
(04, =0.5) Oy 0.632 (0.058) 0.718 (0.075)
(04, =0.5) Cay 0.532 (0.076) 0.538 (0.159)
(Paja, = 0.5) Dayas 0.266 (0.041) 0.240 (0.073)
(Peye, = 0.8) Deyes 0.403 (0.080) 0.586 (0.027)
N=800; T=4
(p=10.5) n 1.113 (0.480) 0.924 (0.017)
(v =10.5) ¥ 0.968 (0.019) 0.974 (0.020)
(6 =1.0) 5 0.914 (0.039) 1.085 (0.029)
(6=1.0) B 1.060 (0.020) 1.071 (0.019)
(04, =0.5) Cay 0.563 (0.057) 0.587 (0.058)
(04, = 0.5) Cas 0.487 (0.027) 0.503 (0.102)
(Payas = 0.5) Paras 0.247 (0.012) 0.224 (0.046)
(Peyes = 0.8) Peses 0.406 (0.069) 0.557 (0.025)

*The initial conditions are endogenous and correlated with the individual effects in
the data generating process, but assumed to be exogenous in the estimation of the

model.
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Table 7: ML estimates based on 200 replications and 2-point Gauss-Hermite quadrature: Static
model estimated under a dynamic data generating process

(True value)* Estimate Mean  Std. Dev. Mean Std. Dev.
Estimated model
Static type 2 tobit Static type 3 tobit
N=500; T=4
(6 =1.0) ) 0.682 (0.047) 1.338 (0.072)
(8=1.0) B 0.909  (0.057) 0.919 (0.060)
(0a, =0.5) Cay 0.762  (0.102) 2.075 (0.193)
(04, =0.5) Cay 1.408  (0.075) 1.410 (0.079)
(paya, = 0.5) Dayas 0.248  (0.016) 0.237 (0.018)
(Peye, = 0.8) Deyes 0.345  (0.115) 0.365 (0.077)
N=500; T=7
(6 =1.0) 1) 0.688 (0.041) 1.381 (0.057)
(B =1.0) E 0.921 (0.038) 0.931 (0.041)
(0a, =0.5) Ca, 0.865  (0.077) 2.509 (0.196)
(04, =0.5) Cay 1.541  (0.068) 1.583 (0.078)
(Para, = 0.5) Paras 0.279 (0.019) 0.266 (0.018)
(peye, = 0.8) Deyes 0.389  (0.133) 0.423 (0.073)
N=800; T=4
(6 =1.0) 1) 0.679 (0.034) 1.347 (0.054)
(B =1.0) B 0.908 (0.044) 0.915 (0.047)
(0q, =0.5) Cay 0.752  (0.086) 2.079 (0.142)
(04, =0.5) Cas 1.402  (0.057) 1.403 (0.056)
(Paja, = 0.5) Paras 0.249  (0.013) 0.236 (0.015)
(Pere, = 0.8) Peres 0.338 (0.105) 0.365 (0.063)

p =y = 0.5 in the data generating process but are assumed to be 0 in the estim-

ation of the model.
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Table 9: Descriptive statistics

Variable Description Overall  Overall Between Within
Mean Std. Dev.  Std. Dev. Std. Dev.
Dependent variables
Intensity of incre- innovative sales (of products 0.290 0.258 0.218 0.147
mental innovation™  new to the firm)/total sales
(for product innovators)
Intensity of radical  innovative sales (of products 0.065 0.136 0.101 0.092
innovation™ new to the market)/total sales
(for product innovators)
Explanatory variables
Demand pull 1 if product-oriented innovation 0.640 0.480 0.370 0.337
objectives are very important
(for product innovators)
Technology push 1 if innovation sources are from 0.213 0.410 0.298 0.271
universities or other institutes
(for product innovators)
Innovation 1 if there is any type of coope- 0.349 0.477 0.379 0.293
cooperation ration (for product innovators)
Non-R&D 1 if not performing R&D 0.196 0.397 0.380 0.214
performers (for product innovators)
Continuous R&D 1 if performing continuous 0.754 0.431 0.399 0.247
performers R&D (for R&D performers)
Subsidies 1 if being subsidized at least 0.577 0.494 0.424 0.284
once (for product innovators)
R&D intensity™* R&D expenditures/total sales 0.046 0.078 0.064 0.037
(for R&Dperformers)
SizeT number of employees 209.962  539.248 534.722 71.292
Relative sizeTT total sales/sales of industry 0.006 0.020 0.020 0.004
# of observations 2583

T

T
*A logit transformation; “*In(R&D/total sales); In(number of employees); In(total sales/sales of indus-

try) are used in the estimation.

35



T kx %G % %0T =L : speae[ eoueoyIUSIg

670 706" 100°016S- 6L6°GT6S- GGT'8L6S- pooyeyI[-807]
NNN@ SUOT}RAISSO JO IoqUUNN
(L£0°0) «x10T°0 - - (620°0) +xL0T0 (0%0°0) 162070 @b
(L£€°0) LET0 - - - - (g11°0) LLET0 e tng
(ev10) AN (e¥1°0) w5 18T°€ (0L0°0) WAl (960°0) 1 766°C )
(860°0) £+88C°€ (860°0) +x0LTE (€£0°0) 5 807°€ (¥80°0) L0TT'E o
(189°0) L6S°0 (269°0) £6S°0 - - (081°0) +x0SPT o
(e¥2°0) 40T’ T (1%2°0) 68T T - - (ge1°0) x6LLT o
(050°0) L8210 (050°0) LCTT0 - - - - (0%7) sees "Aouur [EITPERI JO SIBYS [RIU]
(0£0°0) 8810 (1£0°0) wlTT0 - - - - (0p) seres -aouul [ejULWISIOUT JO BIRYS [RIHIU]
mp@u@EﬁMdQ BIIXH
(92L°0) Lk GOT°G" (12L°0) «x8L677- (¢69°0) 68876 (1€L£°0) +x9L6°9" 9deoI9u]
(Le2°0) ,85G°0 (8¢2°0) £C€S°0 (9¢2°0) £895°0 (evz0) +L69°0 saIpisqng
(€2z0) L0€G°0 (¥2z0) L78S°0 (€2z0) +6€S°0 (0€2°0) +ELG°0 uorpesouur ur uoreradooy)
(L¥Z°0) 70T 0" (8¥2°0) L2070~ (9%2°0) z91°0- (¥52°0) £60°0- ysnd ASoouypda],
(612°0) #+889°0 (612°0) ++EGL°0 (612°0) +xC0L°0 (222 0) 7990 [nd puewoq
(862°0) 4w LBL0 (00€°0) +918°0 (v62°0) +x98L°0 (10€°0) 08670 stourtojred (29 snonunuoy
(€9¢°0) 1010°T~ (v9g0) 1670°T- (84¢°0) LTI (08¢°0) LTV T- stouttojrad (294-UON
(L80°0) LE6T°0 (L80°0) LLTT0 (980°0) L661°0 (160°0) ++67C°0 (8of ur) Aysuogur Y
(g01°0) L8070 (g01°0) 1£0°0 (vo1°0) 890°0 (¥11°0) 6£1°0 (8o ur) ezis paBser]
(090°0) L0210 (£90°0) PIT0 (620°0) WAL - - (T—#fi) sores "Aouut [JIPEI JO OIBYS ISE]
Aﬁmoﬁ ut E\.Mv suorjeaouul 1onpoid [ROIPRI JO So[es JO oIRYS JUSLIN)
(g6e1) oLIG- (vor'1) 9e1°g- (veD) €6L°T- (6L7°1) 951°¢- 9deoI9u]
(L11°0) 990°0 (811°0) 0L0°0 (€11°0) 760°0 (¥e1°0) L7020 (8o ur) oz1s eaye[ar PaB3er]
(651°0) LVSE0 (091°0) L1660 (es1°0) LV0E°0 (691°0) LVLE0 (8o ur) ezis paBser]
(€£0°0) E1T°0 (€£0°0) ++60T°0 (020°0) ++98T°0 - - (T—#%p) soes "AouUI [BIUSWOIOUI JO DIBYS IS ]
Aﬁmoﬁ ut ﬁﬁv suorjeAouul 3oNpoid [RJUSWLIOUT JO SO[RS JO SIRYS JUDLIN,)
UOIO0II00 SRI(| UOIJO9[9S  UOIJI9LI0D SRI( UOIJI9[0S ON  SPI00JJ0 [RNPIAIPUL POAISSqOUN ON S709]J0 [RNPIAIPUL POAIOSHOU) uorpdwnsse
SUOI}IPUOD [RIJIUI SNOUSSOPUS PUR S$)09]J0 [RNPIATPUI POAISISCOU[) uoryewr)sy
U3 [opoUt dIureu(] )L [opour dIyels
(1 pIs) juogeo) (Y PIS)  HULDIROD (1 pIg) JUIIIIO0)) (g pIs) JUIOIFOO)) o[qeLrep

QUNIDUPDND 2PWAI [-SSNDE) JuLod-G 91903 & 2dfiy oyy fo sopwiiso T (0] 2190

36



	1 Introduction
	2 Literature
	3 The model
	4 Maximum likelihood estimation
	5 Monte Carlo study
	5.1 The MLE behavior when the model is correctly specified
	5.2 The MLE behavior when the model is incorrectly specified
	5.2.1 No individual effects
	5.2.2 Exogenous initial conditions
	5.2.3 No selection bias correction
	5.2.4 Static model estimated under a dynamic DGP
	5.2.5 Dynamic model estimated under a static DGP


	6 Application
	7 Conclusion
	Appendix A “Two-step” Gauss-Hermite quadrature



