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Abstract:

We investigate the efficiency of piece-rate contracts using data from a field
experiment, conducted within a tree-planting firm. During the experiment, the piece
rate paid to planters was exogenously increased. Regression methods vyield an
estimate of the elasticity of output with respect to changes in the piece rate of 0.39.
Regression methods are limited in their ability to predict the performance of
alternative contracts. Therefore, we apply structural methods to interpret the
experimental data. Our structural estimate of the elasticity is 0.37, very close to the
regression estimate. Importantly, our structural model is identified without imposing
profit maximization. This allows us to evaluate the optimality of the observed contract.
We simply measure the profit distance between the observed contract and the profit-
maximizing contract, evaluated at the structural parameter estimates. We estimate
this distance to be negligible, suggesting that the observed contract closely
approximates the expected-profit maximizing contract under asymmetric information.
Under complete information, expected profits would increase by approximately
fourteen percent, holding expected utility constant.
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1. Introduction and Motivation

Worker performance under different contracts plays a central role in the modern
theory of the firm. Economic theorists have modelled the ability of contracts to align
the interests of workers and firms; see, for example, Hart and Holmstrom (1987),
Holmstrém and Milgrom (1990), Milgrom and Roberts (1992), and Baker (1992). In
the related and recently-developed field of personnel economics — see, for example,
Lazear (1998)  compensation systems are considered policy instruments of the firm
which can be used to improve the performance of workers and the profits of firms.
Recently, researchers have used data from payroll records to estimate the effects of
contracts on worker and firm performance. The observed variation in contracts is
related to observed measures of performance in order to estimate incentive effects
and to measure the importance of asymmetric information; examples include Ferrall
and Shearer (1999), Paarsch and Shearer (1999, 2000), Lazear (2000), Haley (2003),
Copeland and Monnet (2003), Shearer (2004), as well as Bandiera, Barankay, and
Rasul (2004).!

Despite the growing number of data sets available for analyzing incentive models,
little is known of the efficiency of observed contracts within firms. Do observed con-
tracts maximize profits? At one level, the answer is obviously no. Optimal contracts
take into account all relevant information and are typically complicated, nonlinear
functions; see Holmstrom (1979). Observed contracts, on the other hand, are often
simple, linear functions of output; see Stiglitz (1991). Explanations of these differ-
ences typically involve the added costs of implementing complicated contracts; see, for
example, Holmstrom and Milgrom (1990) as well as Ferrall and Shearer (1999). The
relevant empirical question is perhaps: Do observed contracts maximize profits within
a subset of easily-implemented  local  alternatives? However, even this question
can be difficult to answer. Reduced-form econometric methods cannot recover the

structural parameters that would permit one to compare the profit performance of

L For reviews of this literature, see Prendergast (1999) and Chiappori and Salanié (2003).
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different contracts, while structural econometric methods typically impose profit max-
imization to obtain identification of technological and preference parameters. While
imposing the hypothesis of profit maximization allows one to compare profits across
contracts, the optimality of the observed contract is maintained, so cannot be tested.

Evaluating the local optimality of observed contracts requires identifying struc-
tural parameters without imposing profit maximization. One strategy is to obtain
econometric identification using only a subset of the constraints implied by a com-
plete economic model. In economic models of contracts, researchers typically impose
multiple constraints on the firm’s choice of a contract. For example, in the standard
principal-agent model, the firm chooses a contract to maximize expected profits sub-
ject to incentive compatibility as well as a participation constraint. Below, we show
that it is possible to identify the parameters of an empirical principal-agent model
using a subset of these constraints, excluding expected-profit maximization on the
part of the firm. This strategy allows us to calculate expected profits conditional on
the estimated parameters and to compare the profits of the observed contracts with
other, local alternatives.

Our data come from a field experiment conducted within a tree-planting firm
operating in British Columbia, Canada. Workers in this firm are typically paid piece
rates: A worker’s daily earnings are strictly proportional to the number of trees he or
she planted during a given day. Planting is performed on large tracts of land called
blocks. Under non-experimental conditions, the piece rate for a particular block is
chosen by the firm as a function of planting conditions — the slope of the terrain to
be planted, the softness of the soil, and so forth. When conditions render planting
difficult, reducing the number of trees that can be planted on a given day, the firm
increases the piece rate in order to satisfy a labour-supply constraint. Since planting
conditions are unobserved by the econometrician, the correlation between planting
conditions and piece rates induces endogeneity. In fact, a regression of observed
productivity on piece rates using non-experimental data yields a negative relationship.

Previous work by Paarsch and Shearer (1999 and 2000) has used structural econo-

2



metric methods to solve for endogeneity problems in non-experimental contractual
data. Here, we exploit experiments. Experiments provide a simple, yet powerful way
to solve endogeneity problems (Burtless, 1995). As in Shearer (2004) we apply both
unrestricted and structural econometric methods to the experimental data. However,
whereas Shearer (2004) was primarily concerned with comparing productivity under
piece rates and fixed wages, exploiting his structural model to generalize experimen-
tal results to nonexperimental settings, here we seek to test the profit-maximization
hypothesis.

Our experiment took place on three different blocks during the 2003 planting
season. During the experiment, each homogeneous block was divided into two parts,
one part to be planted at the regular piece rate (as determined by conditions), while
the other to be planted at an experimental (treatment) piece rate. The treatment
piece rate represented an increase of up to twenty percent over the regular piece
rate. Participants in the experiment were observed under both the regular and
the treatment piece rate for a given block. In total, the experiment generated 197
observations on daily productivity, 109 at regular piece rates and 88 at treatment
piece rates.

We begin our analysis of these data using regression methods. These methods
provide an unrestricted estimate of the treatment effect of increasing the piece rate.
We estimate the elasticity of worker productivity with respect to experimental changes
in the piece rate to be 0.39. We also investigated the importance of potentially
confounding factors, such as weather, fatigue, and endogenous participation, but
found them to be unimportant, both economically and statistically.

The regression estimates have no direct interpretation in terms of economic fun-
damentals. What is more, they are limited in their ability to predict behaviour under
alternative contracts, not observed in the experiment; see Wolpin (1995). To un-
dertake such a comparison, we turned to structural methods. We used information
gathered during extensive discussions with firm managers to guide our modelling of

worker and firm decision-rules over effort and the contract. We model the choice of
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contract as satisfying a worker’s participation constraint, subject to optimal effort
choices on the part of workers. This allows us to capture the correlation between
planting conditions and the piece rate, without imposing expected-profit maximiza-
tion. Incorporating these decision rules into the estimation strategy admits iden-
tification of the model’s parameters and estimation via the methods of maximum
likelihood. The maximum-likelihood estimate of the elasticity of output with respect
to the piece rate is 0.37, very close to the unrestricted regression estimate.

We evaluated contractual performance at the maximum-likelihood estimates
of the structural model, comparing expected profits realized under the observed
contract with those attainable under alternative contracts. The observed contract
is a constrained, linear contract; the base wage is set to zero. To test the hypothesis
that this contract maximizes expected profits, we derived the optimal, unconstrained,
linear contract, consisting of a piece rate and a base wage. We found that this contract
would have a negligible effect on firm expected profits. This suggests that the observed
contract is a close approximation to the expected-profit maximizing contract, at least
among a local set of alternative contracts.

Our results also suggest that the firm foregoes large gains by failing to tailor its
contracts to individual abilities, pointing to the likely importance of intertemporal
commitment, once worker types are revealed. In particular, introducing an individual-
specific base wage into the contract would increase the firm’s expected profits by
approximately fourteen percent, leaving workers indifferent between the base-wage
contract and the observed contract. Expected profits would increase by approximately
forty-five percent were the firm to use the base-wage contract to capture rents from
the workers.

Our paper is organized as follows: In the next section, we describe the tree-
planting industry in British Columbia as well as the compensation system in the
firm. In section 3, we describe our experiment’s design, while in section 4 we describe
the sample data and present the ANOVA results. In section 5, we consider the

potential confounding effects of fatigue and weather, while in section 6 we consider
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experimental and structural identification of effort-elasticity parameters. In section

7, we perform policy analysis and, in section 8, we conclude.



2. Institutional Details
2.1. Tree Planting in British Columbia

While timber is a renewable resource, active reforestation can increase the speed
at which forests regenerate and also allows one to control for species composition,
something that is difficult to do in the case of natural regeneration. Reforestation
is central to a steady supply of timber to the North American market. In British
Columbia, extensive reforestation is undertaken by both the Ministry of Forests and
the major timber-harvesting firms.

Prior to the harvest of any tract of coniferous timber, random samples of cones
are taken from the trees on the tract, and seedlings are grown from the seeds contained
in these cones. This ensures that the seedlings to be replanted are compatible with the
local micro-climates and soil, and representative of the historical species composition.

Tree planting is a simple, yet physically exhausting, task. It involves digging a
hole with a special shovel, placing a seedling in this hole, and then covering its roots
with soil, ensuring that the tree is upright and that the roots are fully covered. A
worker’s productivity depends on his/her effort level as well as the terrain on which
he/she is planting. In general, the terrain can vary a great deal from site to site.
In some cases, after a tract has been harvested, the land is prepared for planting by
removing the natural build-up of organic matter on the forest floor so that the soil is
exposed, also known as screefing. Because seedlings must be planted directly in the
soil, screefing simplifies planting. Sites that are relatively flat, that are free of rocks,
or that have been screefed are much easier to plant than sites that are very steep or
have not been screefed. The typical density of seedlings is between 1200 and 1800
stems per hectare, an inter-tree spacing of about 2.4 to 2.8 metres.? Depending on
the conditions and effort, an average planter can plant between 700 and 1100 trees

per day, about half an hectare.

2 One hectare is an area 100 metres square, or 10,000 square metres. Thus, one hectare is
approximately 2.4711 acres.



Typically, tree-planting firms are chosen to plant seedlings on harvested tracts
through a process of competitive bidding. Depending on the land-tenure arrangement,
either a timber-harvesting firm or the Ministry of Forests will call for sealed-bid
tenders concerning the cost per tree planted, with the lowest bidder’s being selected
to perform the work. The price received by the firm per tree planted is called the
bid price. Bidding on contracts takes place in the late autumn of the year preceding
the planting season, which runs from early spring through late summer. Before the
bidding, the principals of the tree-planting firms typically view the land to be planted
and estimate the cost at which they can complete the contract. This estimated cost
depends on the expected number of trees that a worker will be able to plant in a day
which, in turn, depends on the general conditions of the area to be planted.

Planters are predominantly paid using piece-rate contracts, although fixed-wage
contracts are sometimes used instead. Under piece-rate contracts, planters are paid in
proportion to their output. Generally, no explicit base wage or production standard
exists, although firms are governed by minimum-wage laws. Output is typically
measured as the number of trees planted per day, although area-based schemes are
used, albeit infrequently. An area-based scheme is one under which workers are paid
in proportion to the area of land they plant in a given day, assuming a particular

seedling density.
2.2. Experimental Firm

Our data were collected at a medium-sized, tree-planting company. This company
is divided into four contracting units, each under the control of a separate manager.
Each manager is responsible for bidding on contracts, hiring workers, and setting
piece rates. Essentially, each manager runs an independent firm. Our data are from
one of these firms.

At any time, each manager employs between ten and twenty planters. The
planters work under the supervision of foremen, approximately one foreman per ten

planters. The foremen are responsible for supplying trees to the planters as well as
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monitoring the quality of planting. Trees that are poorly planted have a lower survival
rate than those that are planted well. Depending on the land tenure arrangement,
the quality of planting is evaluated by either the government or a timber-harvesting
firm, once the contract is completed. Lower-than-acceptable quality subjects the firm
to fines. Therefore, the firm monitors its planters closely; poorly-planted trees must
be replanted at the planter’s expense.3

Workers in this firm are typically paid piece rates. Daily earnings are strictly
proportional to the number of trees planted on a particular day; no base wage is
included in the contract. Blocks to be planted are divided into plots, each allocated
to an individual worker for planting. For each block, the firm decides on a piece rate.
This rate takes into account the expected number of trees that a worker can plant in
a day and the expected wage the firm wants to pay. Steep, rocky, unprepared terrain
slows the planter down, rendering planting more difficult. Consequently, for a given
piece rate workers prefer to plant in easy terrain since they can earn more money for
less effort. To induce workers to plant trees in difficult terrain the firm increases the
piece rate, satisfying a participation constraint.

It is important to note that under non-experimental conditions the piece rate
is the same for all plots in an entire block. No systematic matching of workers to
planting conditions occurs in this firm so, even though planters may be heterogeneous,

the piece rate received is independent of planter characteristics.
3. Experimental Design

The experiment took place on three separate blocks, over a three-month period.
During the experiment, each homogeneous block was divided into two parts. One
of these parts was then randomly chosen to be planted under the regular piece rate,
the other to be planted under the treatment piece rate. The treatment piece rate
represented an increase of between eight and twenty percent above the regular piece

rate.

3 Problems concerning quality are relatively rare; none is present in our experimental data.
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Two limitations in the design of the experiment warrant discussion. First, in
order to avoid any possible Hawthorne effects, the experimental change in the piece
rate was presented to the workers within the context of the normal daily operations
of the firm.* To accomplish this, the firm presented the treatment blocks as separate
blocks on which planting conditions had changed since the original bid.> While this
was convincing to the workers, it required spatial separation of the plots to be planted
under each piece rate. As such, individual plots could not be randomly assigned to
regular and treatment piece rates, but rather half of the block was randomly assigned
to regular and half to treatment piece rates.

The need to present the experiment within the natural workings of the firm
also restricted the temporal design of the experiment. Blocks, large enough to
accommodate all workers at once, are typically planted sequentially. This ensures
that all workers are planting under similar conditions on the same day. Consequently,
the planting under the regular piece rate was completed before the planting under the

higher treatment piece rate.
4. Sample Data and Endogeneity Problems

Our data set contains information on the regular piece rate set for each block, which
we shall denote by r, and the piece rate received by each planter, which we shall

denote by

. | p>r for treatment-group observations
r for control group observations,

as well as that planter’s daily productivity, which we shall denote by Y.
In Table 1, we present summary statistics concerning all 197 observations from

the experiment. A total of 21 workers were observed during the experiment, planting

4 Workers who know they are taking part in an experiment may alter their behaviour, inde-
pendent of the experimental treatment. In a series of experiments designed to investigate
the effects of lighting on productivity at the Hawthorne plant of General Electric, researchers
allegedly found such results. It is noteworthy, however, that, in a re-examination of data from
the Hawthorne plant, Jones (1992) found no evidence of such effects.

9 This sometimes happens when the block has been unexpectedly prepared, screefed.
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Table 1
Summary Statistics: Full Sample, 197 Observations

Variable Mean St.Deyv. Minimum Maximum
Number of Trees 944.03 341.92 375 1965

Regular Piece Rate 0.21 0.02 0.18 0.23
Piece Rate Paid 0.23 0.03 0.18 0.28
Daily Earnings ($CAD)  214.77 69.25 89.70 451.95

on three different blocks, over a three-month period in the spring and summer of 2003,
109 on control plots and 88 on treatment plots. The piece rates paid to planters during
the experiment ranged from 18 to 28 cents per seedling, with an average of 23 cents.
The regular (or control) piece rates ranged from 18 to 23 cents per seedling, with an
average of 21 cents. On average, workers planted 944 seedlings per day and earned
$215 (Canadian) per day.

To highlight the endogeneity problem in “non-experimental” data, we regressed
the logarithm of trees planted each day on the logarithm of the regular piece rate
paid using the 109 control-group observations. In Table 2, we present the results

from estimating the following regression model:
logYi; = ag,; + a1 logr; + Ujj (4.1)

where Yj; represents trees planted by individual ¢ on block j, r; represents the piece
rate received per tree planted on block j, and ag; is a, possibly individual-specific,
intercept. When individual-specific heterogeneity is ignored, the estimates in column
(a) of Table 2 suggest that increasing the piece rate decreases average productivity;
the estimated elasticity of productivity with respect to the piece rate is —2.46 and
statistically significant. Admitting individual-specific heterogeneity in the intercept

column (b) of Table 2 results in an increased estimated elasticity, but it is still
negative, —1.77, and statistically significant.

The negative coefficient estimate on the logarithm of the piece rate paid to
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Table 2

Simple Regression Results

Dependent Variable: Logarithm of Daily Production
Sample Size = 109

Independent Variable (a) (b)
Constant 2.901 3.842
(0.290) (0.394)

Logarithm of Piece Rate Paid —2.461 —1.774
(0.186) (0.265)

Maximum Individual Effect 0.572
(0.137)

Minimum Individual Effect —0.281
(0.081)

R? 0.620 0.863

planters is troubling from the perspective of incentive theory. Taken literally, it
suggests that when the piece rate is high planters work less intensively than when
the piece rate is low. An alternative explanation is that the piece rate is endogenous
to the statistical model. In particular, if piece rates are correlated with unobserved
factors that also affect planter productivity, then the observed piece rate will be
correlated with the error term U;; in equation (4.1).6 This correlation will result
in biased and inconsistent estimates of the elasticity of productivity with respect to
piece rates because one of the maintained assumptions of least-squares estimation has
been violated.

Having experimental data avoids the endogeneity problem by providing exoge-
nous variation in the piece rate for a given set of planting conditions. In Tables 3
and 4, we present the summary statistics for the regular (or control) and treatment
data sets which contain 109 and 88 observations, respectively. The average piece rate

received by planters in the control group was about 21 cents per tree, while in the

6 The way in which the firm chooses the piece rate as a function of planting conditions generates
this correlation; see Section 2.2.
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Table 3
Summary Statistics: Control Sample, 109 Observations

Variable Mean St.Deyv. Minimum Maximum
Number of Trees 888.85 325.46 390 1765
Piece Rate 0.21 0.03 0.18 0.23
Daily Earnings 182.65 50.40 89.70 317.70
Maximum Daily 13.76 4.40 8.00 21.10
Temperature (Celsius)

Daily Precipitation 5.23 7.54 0.00 26.40
(Millimetres)

Cumulative-Days-Worked 0.99 0.98 0 3
Table 4

Summary Statistics: Treatment Sample, 88 Observations

Variable Mean St.Deyv. Minimum Maximum
Number of Trees 1012.385 351.23 375 1965
Piece Rate Paid 0.26 0.02 0.23 0.28
Daily Earnings 254.56 68.98 105.00 451.95
Maximum Daily 16.11 7.08 8.40 25.60
Temperature (Celsius)

Daily Precipitation 3.09 4.31 0.00 13.40
(Millimetres)

Cumulative-Days-Worked 1.52 1.03 0 3

treatment group it was about 26 cents per tree. On average, the control group planted
888 seedlings per day, while the treatment group planted 1012 seedlings.

To consider the statistical significance of our results further, we augmented
equation (4.1) to incorporate experimental variation in the data. In particular, we

considered the following regression:

log Yij = Bo,ij + b1 logp; + Uij (4.2)
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Table 5

Treatment/Control Regression Results

Dependent Variable: Logarithm of Daily Production
Sample Size = 197

Independent Variable

Constant 7.577
(0.153)
Logarithm of p 0.393
(0.089)
Maximum Individual Effect 0.527
(0.083)
Minimum Individual Effect —0.314
(0.056)
Maximum Site Effect —0.413
(0.046)
Minimum Site Effect —0.545
(0.048)
R? 0.881

where p; represents the piece rate paid on a particular block; i.e.,

- )P for treatment group observations
Pi=r; for control group observations,

and fp;; represents a constant term that is individual and block specific. Note
that the exogenous variation in the piece rate directly identifies the elasticity of
productivity with respect to piece rates. The results from estimating equation (4.2)
are presented in Table 5.

The estimated elasticity is positive, 0.39, and statistically significant, but smaller
than previous estimates. Paarsch and Shearer (1999) estimated a lower bound to the

elasticity to be over 0.77, while Haley (2003) estimated it to be over 0.41.7

7 The point estimate of the elasticity calculated by Paarsch and Shearer was over 2, while

Haley’s was 1.5. We discuss reasons for the differences in estimates in section 6. Note too
that, while the estimates of Paarsch and Shearer (1999) and Haley (2003) are estimates of
the effort elasticity, the comparison is still valid because their models imply equality between
effort and productivity elasticities.
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5. Controlling for Confounding Effects

Given the before-after nature of the experiment, it is important to account for the
effects of other factors which could be changing at the same time as the experimental
treatment and which could possibly affect productivity. We concentrated on two,

weather and fatigue.
5.1. Role of Weather

To control for weather, we collected data on daily rainfall as well as the maximum
daily-temperature for the days and the regions in which the experiment took place.
We augmented the experimental regression to include these variables, considering the

following regression:
logYij = Boij + B1log pj + BoTemp;j + B3 Precipij + Uy (5.1)

The results from (5.1) are presented in Table 6. We present three sets of results. In the
first column, we give least-squares (OLS) coefficient estimates. In the second column,
we present OLS standard errors and, in the third and fourth columns, we present,
respectively, heteroscedastic-consistent standard errors, and robust heteroscedastic-
consistent standard errors that admit for non-independent observations due to com-
mon, unobserved, daily shocks. The associated p-values are given in parentheses.
The rainfall and temperature coefficients are statistically insignificant and their
inclusion has little effect on the production elasticity estimate.® This suggests that

macro-weather shocks are not playing a major role.
5.2. The Role of Fatigue

Another, potentially confounding, element that could influence the ANOVA results is

worker fatigue. Since the piece rate was increased only after planting was completed

8 A joint test of the hypothesis that the coefficients on rainfall and temperature are zero produces
p-values of 0.56 (OLS standard errors), 0.54 (heteroscedastic-robust standard errors), and 0.12
(robust heteroscedastic standard errors with non-independent observations).
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Table 6

Treatment/Control Regression Results
Dependent Variable: Logarithm of Daily Production

Sample Size = 197

Independent Variable Coefficient OLS Robust Robust
Estimate Std Error Std Error Std Error
(Independence) (Clustering)
Constant 7.554 0.229 0.275 0.225
(0.000) (0.000) (0.000)
Logarithm of p 0.398 0.100 0.113 0.117
(0.000) (.001) (0.003)
Maximum Individual 0.525 0.083 0.052 0.046
Effect (0.000) (0.000) (0.000)
Minimum Individual —0.315 0.056 0.058 0.057
Effect (0.000) (0.000) (0.000)
Maximum Site —0.402 0.073 0.079 0.050
Effect (0.000) (0.000) (0.000)
Minimum Site —0.547 0.083 0.093 0.064
Effect (0.000) (0.000) (0.000)
Maximum Daily 0.001 0.005 0.005 0.004
Temperature (0.307) (0.778) (0.731)
Total Daily 0.002 0.002 0.002 0.001
Precipitation (0.760) (0.297) (0.068)
R? 0.881

at the regular rate, workers may, in general, be more tired on treatment-rate days

than on control-rate days. We chose to proxy fatigue by cumulative days worked since

the last day of rest. From Tables 3 and 4, average cumulative-days-worked are higher

on treatment-rate days (1.52) than on control-rate days (0.99). A Poisson regression

of days worked on a dummy variable indicating treatment-rate days suggests that the

difference is statistically significant; the p-value for the equality of means is 0.001.

To control for fatigue, we included cumulative-days-worked directly into the

conditional mean function for productivity and used regression analysis. These results
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Table 7
Regression Results: Fatigue

Dependent Variable: Logarithm of Daily Production

Sample Size = 197

Independent Variable Coefficient OLS Robust Robust
Estimate Std Error Std Error Std Error
(Independence) (Clustering)
Constant 7.541 0.160 0.157 0.177
(0.000) (0.000) (0.000)
Logarithm of p 0.376 0.092 0.091 0.108
(0.000) (.000) (0.003)
Maximum Individual 0.530 0.083 0.052 0.047
Effect (0.000) (0.000) (0.000)
Minimum Individual —0.312 0.056 0.058 0.054
Effect (0.000) (0.000) (0.000)
Maximum Site —0.409 0.049 0.041 0.034
Effect (0.000) (0.000) (0.000)
Minimum Site —0.543 0.048 0.042 0.041
Effect (0.000) (0.000) (0.000)
Cumulative-Days- 0.007 0.010 0.011 0.012
Worked (0.453) (0.660) (0.602)
R? 0.881

are presented in Table 7.

Cumulative-days-worked have no statistically significant effect on productivity in

the sample. What is more, the estimate of the elasticity of productivity with respect

to the piece rate changes very little with its inclusion.

5.3. The Role of Participation

If unobservable factors also affect fatigue levels, then optimal participation decisions

may truncate the error term of observed productivity. Participation decisions can lead

to two, possibly opposing, effects. First, workers who participate on treatment-rate

days are likely to have lower-than-average levels of fatigue, giving rise to a standard
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Table 8
Cumulative-Days- Worked and Participation

Participation
Cumulative-Days-Worked 0 1 Total
0 2 58 60
1 0 66 66
2 1 43 44
3 1 30 31
Total 4 197 201

sample-selection problem. Counteracting this, the experimental increase in the piece
rate can directly affect worker participation; the higher rents under the treatment
piece rate could induce workers to show up to work at fatigue levels that would

normally cause them to stay home.

In this subsection, we exploit the fact that absences were recorded during the
experiment. Since these absences occurred on days for which the experiment took
place, they were voluntary absences on the part of the planters. Furthermore, since
everyone involved in the experiment received the same piece rate on a given day, we

know what piece rate a planter forwent by her or his absence.

To investigate the importance of participation decisions in our sample, we doc-
ument, in Table 8, participation and cumulative-days-worked during the experiment.
The participation rate during the experiment was extremely high, around 98 per-
cent; workers decided not to work on only 4 days during the experiment. What is
more, there is little to suggest that fatigue caused these decisions. Two of the non-
participation days occurred at the beginning of the week, before any planting had

taken place. This suggests that selection is of minor importance.

In Table 9, we document that participation decisions are almost identical between
treatment and control groups. The participation rates are 97.8 percent and 98.2

percent, respectively, suggesting that the experimental variation in the piece rate had
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Table 9
Participation in Treatment and Control Groups

Participation
0 1 Total
Treatment 2 88 90
Control 2 109 111
Total 4 197 201

a negligible effect on participation.

As a final indication of the importance of participation in our results, we esti-
mated a Probit model linking participation to cumulative-days-worked and experi-
mental rents. This allowed us to examine whether experimental variation in the piece
rate affected participation, for a given number of days worked. In particular, we

considered the following model:
P} = 00 + 01Days;t + d2(logp — logr) + Uy, (5.2)

estimated using the experimental sample. Here, §; captures the effect of cumulative-
days-worked Days;; on participation decisions, while do captures the effect of ex-
perimental rents (logp — logr). Since we observe the individual absences in this
sample and since we know the piece rate that was paid on any given day, the term
(logp—1logr) is defined for every individual in the experimental sample, even on days
they did not work.

The estimation results are presented in Table 10. No evidence exists suggesting
that cumulative-days-worked or variation in the piece rate had any affect on partici-
pation during the experiment.

Given these high participation rates, and their similarities between the control
and treatment groups, we ignored endogenous participation decisions as an important

factor affecting our ANOVA results.?

9 We have also estimated a complete structural model incorporating participation decisions and
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Table 10
Mazimum-Likelihood Estimates: Probit Model
Dependent Variable: Participation

Independent Variable Coefficient Std. Error p-Value
Constant 2.102 0.354 0.000
Cumulative-Days-Worked —0.001 0.191 0.995
(logp — logr) —0.440 1.870 0.814
Log. Likelihood Function —19.600

6. A Structural Model

Above, we have provided estimates of the response of worker output to experimental
changes in the piece rate. Yet it may be of interest to consider the profit performance
of the observed contract wis-a-vis alternative contracts. This presents two potential
problems. First, behaviour may change when contracts change. Effort levels are sensi-
tive to contracts and must be predicted as contracts change. Second, any comparison
must consider contracts that are acceptable to both the firm and the workers; i.e., a
proposed contract must satisty expected-utility constraints. Taking these factors into
account requires estimating a structural model in which the parameters determining
worker utility and productivity are identified.

In this section, we develop and estimate a simple structural model of worker and
firm behaviour under the observed piece-rate contract. We exploit the experimental
variation in the piece rate to identify the parameters of the model. These parameters
are then used, in section 7, to consider the relative performance of the observed con-
tract, concentrating on the marginal benefit of introducing a base wage. Importantly,
we estimate the structural model without imposing the assumption of expected-profit

maximization: To wit, contracts are only chosen to ensure the marginal worker’s par-

productivity decisions based on observable and unobservable factors. The results were very
similar to those presented. Given participation does not seem to be playing a significant role
in the experiment, we have omitted these results from the paper.
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ticipation.!! We then “test” for the optimality of the observed contract by solving
for the optimal base-wage contract (given the estimated structural parameters) and

comparing would-be expected profits to those earned under the observed contract.
6.1. Productivity

To begin, we assume that daily productivity Y is determined by
Y =FES

where E represents the worker’s effort level, S is a productivity shock represent-
ing planting conditions beyond the worker’s control, such as the hardness of the
ground. We assume that S follows a lognormal distribution with parameters p and
o2. Planters have a utility function U defined over earnings I and effort E. For a
given piece rate r, earnings I equal 7Y or rES. We assume that the cost of effort

function for planter ¢ has the following form:

Y (v+1)
"(v+1)

Bl ki >0,vy>0

C(E)=k

where k; denotes the planter-specific component of costs and v characterizes the
curvature of C(-). We assume further a utility function separable in I and E having

the following form:

ol (y+1)
E . 6.1
CESV o1

U(I,E)=[I - C(E)] = |rES — &

10 This is consistent with the manner in which the firm chooses the piece rate; see section 2.
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Timing
For each block of land, j, to be planted, the timing of events in the model is as follows:

1. Nature chooses (15, 0]2-) for block j.

2. The firm observes (u;, UJQ-) and then selects a piece rate 7.

3. The worker observes (15, 0]2-) for block 7, and is offered the contract r; for planting
on that block; the planter either accepts or rejects the contract.

4. Conditional on accepting the contract the worker is randomly assigned to plant
on a particular plot of block j (i.e., the planter draws a particular value of 5).
The planter then chooses an effort level E and produces Y.

5. The firm observes Y and pays earnings I.
6.2. Control-Group Observations

Letting e; denote the optimal level of effort chosen by worker 7, then conditional on

s, a particular value of S, a worker’s optimal effort is given by

rs "
€; = —
Ky

which then yields the following observed-productivity equation:

rY

13

In order for a worker to accept the contract offered, it must satisfy his expected-
utility constraint. Given the contract has only one instrument and workers are
heterogeneous, some workers will earn rents. We assume that the piece rate is chosen
to satisfy the alternative utility constraint of the lowest-ability (or marginal) worker
in the firm. The worker with the lowest ability level has the highest cost parameter
Kp; 1.€.,

Kp = max (K1, K2, ..., Kp)-
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As such, r solves the marginal worker’s expected-utility constraint
rOD exp((y + Dp +05(y +1)%0%
- =
(v + 1)k,
Taking logarithms and substituting from equation (6.3) into equation (6.2) yields the

I

(6.3)

following empirical specification in terms of random variables:
logY;; = log(y + 1) + logu — logr; + 7vlog <%> —0.5(y+ 1)2012- + Vij (6.4)
1

where V;; equals (v + 1)(log S;j — pj) is distributed normally with mean zero and

2 2

variance (v + 1)%07.

6.3. Treatment-Group Observations

Under our experiment, the piece rate on block j is exogenously increased from r;
to p; for part of the block, chosen at random and comprising the treatment plots.
Worker productivity on the treatment plots is then given by the following observed-

productivity equation:

p
Yij = —‘Zysﬁ"'l (6.5)
K:'L

Given that conditions have not changed, r; still satisfies equation (6.3), yielding the

following empirical specification in terms of random variables:

K
log Yi; = log(y + 1)+ logu — logr; + vlog </<;_h> _
(A

0.5(y +1)%0 —I-'ylog (—J> + Vij.
7

6.4. Identification Results

To identify the parameters of the model, we combine equations (6.4) and (6.6) to

yield

log V3 —log('y—l-l)—i-logulogr,—l—vlog( ) —0.5(y+1)? 0; +'ylog< )—I—Vz, (6.7)

i T

or

log Y;; = ag +log(y + 1) — logrj + vay; — 0.5(y +1)%0 —|— v log < ) + Vij. (6.8)
T
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Theorem 1: Identification

Part a)

If the marginal individual h is in the experimental sample, then maximum-
likelihood estimation of (6.8) on the experimental sample identifies the parame-

ters:

i) v

ii) o Vj;

iii) [log(kp) — log(ki)];

iv) loga.

Part b)

If the marginal individual h is not in the experimental sample, then maximum-
likelihood estimation of (6.8) on the experimental sample identifies the parame-

ters:
i)
i) o; Vj;
iii) [log(k1) — log(ri)];
iv) loga + 7y[log(kp) — log(k1)].

Proof of Theorem 1
Part a)

The experimental difference between p; and r; directly identifies v. Given v, the
variance of logy on a given plot identifies 072-. Given individual A is in the sample the
individual specific term, ay;, identifies [log(kp) — log(k;)] and the constant term then

identifies log u.
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Part b)

When individual A is not in the experimental sample, the constant term identifies
logu + y[log(kp) — log(x1)], where k1 is the effort cost of the normalized individual

1. The individual-specific parameter, a1;, identifies [log(k1) — log(k;)].

The marginal benefit of experimental data wvis-a-vis non-experimental data for
estimating the structural model is now clear. Experimental variation in the piece rate
directly identifies the elasticity of effort.1! In the absence of such variation, when Dj
equals r;, identifying v requires a measure of alternative utility, o and the estimated

value of v will be sensitive to any such measure. 12

6.5. Empirical Results

We estimated equation (6.7) using the experimental data. The results are presented
in Table 11, column (a). The estimate of the elasticity of effort with respect to the
piece rate vy is 0.33 and its estimated standard error is 0.09. The value of the logarithm
of the likelihood function is 29.25.

The experimental estimate of v is statistically significant, though substantially
smaller than that of Paarsch and Shearer (1999) or Haley (2003). What is more, from
the estimate of ag and v, we can recover an estimate of u under the hypothesis that
the marginal individual was in the experimental sample. This yields an estimate of
u of $85.31, considerably larger than that imposed by Paarsch and Shearer (1999) or
Haley (2003). Given the identification results, this suggests that the values of @ used

by Paarsch and Shearer as well as Haley to identify v were too low.
6.6. Correlated Weather Shocks and Perception Errors

Increased flexibility can be obtained in the structural model by introducing daily

11 Note that the restrictions embodied in equation (6.7) permit the interpretation of 7 as the
elasticity of effort with respect to the piece rate. In the absence of these restrictions, the
parameter on the experimental variation in the piece rate identifies the output elasticity.

12 Thig was the identification strategy followed by Paarsch and Shearer (1999) as well as Haley
(2003).
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Table 11

Mazimum-Likelihood Estimates: Structural Model
Dependent Variable: Logarithm of Daily Production
Sample Size = 197

Standard Errors are in parentheses.

Parameter (a) (b) (c) (d)
0 0.330 0.443 0.336 0.366
(0.091) (0.167) (0.043) (0.108)

ag 4.732 4.728 4.771 4.764
(0.051) (0.054) (0.029) (0.072)

o1 0.074 0.036 0.040 0.014
(0.008) (0.110) (0.071) (0.131)

o) 0.081 0.057 0.042 0.014
(0.016) (0.112) (0.063) (0.131)

03 0.138 0.104 0.103 0.100
(0.015) (0.109) (0.072) (0.164)

ow 0.045 0.024
(0.034) (0.036)

o 0.059 0.058
(0.046)

Logarithm of Likelihood Function 29.246 37.675 41.069 44.370

weather-shocks W and perception errors v. Perception errors capture the possibility
that the firm may misjudge actual planting conditions on a given block. Let daily
output be given by

Y =FESW

where S and W are independent random variables, with log S being distributed
normally having mean p; and variance UJQ- and logW being distributed normally
having mean py; and variance O%V.lg’ Furthermore, we assume that the value of W

13 we place a subscript on average weather-shocks W; to denote the fact that the firm’s expecta-
tions of weather shocks may differ across contracts because they take place at different times
of the year. We do not allow these expectations to change daily since expected weather will
affect the setting of the piece rate and the piece rate is constant for a given contract.
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is observed after participation decisions are made, but before effort is chosen. To
account for perception errors on a given block, we assume that at the beginning of
the contract both the firm and the worker observe /i;, an unbiased estimate of true

conditions y;; i.e.,

=g +vp v~ N00y).  E(vlig) =0.

Optimal effort is

rsw "
€; = .
Ky

Substituting into productivity and taking logarithms yields
log; = vlogr —ylogk; + (v +1)log S + (v + 1) log W. (6.9)

The piece rate is chosen to satisfy

r) " expl(y + 1)ji; + 0.5(y + 1)*(0F + 07)] expl(y + Dy + 050y + 1?07 ]
CE =u. (6.10)
Substituting equation (6.10) into equation (6.9) yields
log Yt =logu +log(y + 1) —logr; + v(log kp, — log ki) —
(6.11)

0.5(y + 1)2(012- + U%V + 03) + y(logpj — logrj) + €ijt
where

ijt = (v+1)(log Wy — pwj) + (v + 1)(log Sij — p5) + (v + 1)v;.
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The error structure is given by
E(eijt) =0

E(eijeits) = (v +1)*(0F + opy + 07)

E(eijieirjre) = (7 + 1)2012/V

E(eijteinjp) = (v + 1)203
6.12
E(Eijtﬁij/t/) =0 ( )

E(ijteirje) = (7 + 1)%(ofy +02)

E(eijigijn) = (v +1)%0;

E(Eijeeipn) = (v +1) 0y,
Estimates of different versions of equation (6.11) are presented in Table 11 — columns
(b), (¢), and (d). In column (b), we admit weather shocks, but no perception errors;
i.e., oy is positive, while o, is zero. The estimate of v is 0.44 and the value of the
logarithm of the likelihood function increases to 37.68. In column (c¢), we present
estimates of the model without weather shocks, but admitting perception errors; i.e.,
ow is zero, while o, is positive. The estimate of 7 is 0.34 and the value of the
logarithm of the likelihood is 41.07. Finally, in column (d), we present estimates of
the model admitting both perception errors and weather shocks; i.e., oy and o, are
both positive. Here, the estimate of v is 0.37 and the value of the logarithm of the
likelihood function increases to 44.37.14
In general, the individual variance-parameters are not precisely estimated, al-

though the value of the logarithm of the likelihood function increases substantially

14 Strictly speaking, we cannot compare models with variances set to zero using the standard
likelihood-ratio test as the variance parameters, when set to zero, are on the boundary of
the parameter space, so standard, first-order asymptotic methods are invalid. Here, we do
so simply to provide the reader with some feeling for how much better the models fit when
perception errors and daily weather-shocks are included.
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by their inclusion. At the same time, the estimated effort elasticity is reasonably

stable, ranging from 0.33 to 0.44.

6.7. Goodness-of-Fit

In order to evaluate the performance of the structural model, we calculated 95-percent
confidence intervals for the predicted values of the logarithm of daily productivity.
We concentrated on the version of the model with perception errors and random daily
shocks. In Figure 1, we present these confidence intervals, along with the actual obser-
vations, by individual employee. To avoid clutter, we placed the observation number
on the horizontal axis. The confidence interval corresponding to each observation
is marked by a “C” to denote control observations and a “T” to denote treatment
observations. The actual observation is symbolized by the regular piece rate for the
plot on which the observation occurred. The logarithm of daily productivity is given

on the vertical axis.

The model fits the data quite well, although, in strict terms, the model is rejected
by the data. In all, ninety percent of the observations fall within the 95-percent
confidence intervals. What is more, since the output and effort elasticities coincide in
our model, we can compare the estimated output elasticity from the structural model
to that from the ANOVA model. We note that these parameters are very close,
0.37 for the structural model and 0.39 for the ANOVA model; any mis-specification
does not affect the estimate of worker reaction to incentives. This is not surprising
since identification of this parameter comes mainly through the exogenous change in
the piece rate. This highlights the benefits of small-scale experiments. As always,
however, there is a trade-off in the application of structural models to data. Invariably,
structural models do not fit the data as well as their unrestricted counterparts.
However, structural models allow one to make behavioural interpretations of the
results and to investigate alternative policies unobserved during the experiment. We

develop this latter point in the next section.
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7. Policy Analysis: Alternative Contracts and Firm Profits

Estimating the structural model allows us to predict the performance of alternative
contracts, not observed during the experiment. It is noteworthy that the observed
contract has only one instrument, the piece rate. Given changing planting conditions,
the piece rate must accomplish two tasks  provide incentives for effort and guarantee
labour supply. A contract that includes a base wage allows the firm to separate
the tasks of two instruments, the piece rate providing incentives and the base wage
satisfying labour supply. In this section, we consider how introducing a base wage into
the contract would affect firm profits. Initially, we restrict the alternative contract to
be independent of worker type (as is the observed contract), extending this later to

allow the firm to condition on worker ability.

Information Assumption 1.

The firm can write contracts on the set {u, 0%, kn, frc(ki), 7},

where fg(k;) is the distribution of ability levels in the firm. Throughout, we assume
that individual type is independent of productivity and daily weather-shocks.

The base-wage contract includes a base wage B and a piece rate R and, for block
j, takes the following form:

I = Bj +R]‘Y.

As with the observed piece-rate contract, the base-wage contract is independent of
worker type. This is consistent with two scenarios: First, the firm cannot observe
worker type k;; second, the firm can observe worker type, but cannot write (or refrains

from writing) a contract on it. To compare contracts, we denote

v
rSw
Ky
the effort level under the observed piece-rate contract, and

E(B,R) = <st>7

Kj
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the effort level under the alternative base-wage contract.

We solve for the base-wage contract that would ensure the marginal worker
continues to participate in this firm. This ensures that the distribution of types will
not change under the new contract. From equation (6.1), expected utility is given by

1 ~
7 expl(y + 1jij +0.5(7 + 1)%(07 + 02)]

T
k) (v + 1) exp[— (v + )uw; — 0.5(y + 1)203,]

EUL) =

From equation (6.10),

~7+1

T expl(y+1)jij+0.5(v+1)(0] +0p)] exp[(y+1) pw; +0.5(y+1)%07] = a(y+1)s).

Substitution yields

Under the base-wage contract, expected utility is given by

ot (y+1)

B R
ey =€ {Bj R E(By, B)WS = ki B(Bj, By)

R;.’Hl) exp[(y+ 1)@ + 0.5(y + 1)2(0]2' +0y)]

k] (v +1)exp[—(y + Dpwj — 0.5(y + 1)20124,]

(v+1)
J T](-’7+1) Ki

=Bj+

Solving for a B that guarantees participation of the marginal worker yields

R("Y"'l)

Bj(Rj) = U[l - (7.1)

Given B(R) and R, we can write expected profits per worker under any base-wage

(PR)mug[(’Z_’;)q (ZLU u[1(§>7+1} (7.2)

Maximizing equation (7.2) with respect to R yields the following solution:

contract as

R= e 1 57 (7.3)
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where

@) &) o

given kp, equals max{k1, ko, ..., /{n}.lf’

Two special cases of the optimal contract imply that incentives are independent
of the distribution of worker type fx (k). First, if workers are homogeneous (k; is the
same for all 7), then A is zero and R equals P. Under these circumstances, the firm’s
marginal return to increasing the piece rate is independent of worker type and the firm
can use the base wage to recover the surplus generated by high-powered incentives.
This is the standard solution with risk-neutral agents. Second, if the participation
constraint does not bind (so kp — oc), then A is one and the firm maximizes profits by
setting R equal to [P x v/(7+1)], equating the firm’s marginal revenue of increasing

the piece rate to its marginal cost.'60 In the presence of heterogeneous workers, a

15 1f the firm can observe individual ability, but cannot write a contract on k;, then the firm’s

expected profits are
n el y+1
(PfR)R”’ﬁ(V-Fll) <ﬂ> —na {1<§> .
rvt <\ Ki

r

i=

The optimal piece rate is then given by

where

zn(E) ()
= (%)

More generally, this solution satisfies the condition

16

P-R 1
p-R_1 (7.5)
R ¥

which is a variant of the monopolist’s price-markup equation. Here, the firm controls the piece
rate and sets the markup to be equal to the inverse elasticity of effort.
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common base wage and a binding participation constraint, the firm’s marginal return
to increasing the piece rate is type-dependent; the optimal contract must balance
incentives across types.

The optimal base-wage is given by substituting R into equation (7.1), yielding
expected profits per worker under the base-wage contract

BB = (p_ R)%u(’y +1)E [(%ﬂ — [1 - <§>7+1] . (7.6)

{2

Under the piece-rate contract, expected profits per worker are given by

oo e [<@>qu(’y+ 1). (7.7)

r Ky

We calculated expected profits under the assumption that the marginal individual
is in the experiment. This assumption is reasonable given the structure of the firm.
Recall that the piece rate on a given contract is chosen by the manager responsible for
that contract. In effect, each manager operates his own independent firm within the
company, setting piece rates and hiring workers. Since the experiment was completed

9

on one such “firm,” it is not unreasonable to assume that the marginal worker is
plresent.17

In Table 12 (a), we present a summary of contractual performance on each
experimental block, evaluated at the estimates from Table 11 (d); i.e., admitting
daily weather-shocks and perception errors. In the first column, we present the piece
rate paid under the actual contract, while in the second column we present the price
per tree planted received by the firm. In the third column we present the optimal
piece rate under the base-wage contract. In the fourth column, we present the base-

wage paid under the base-wage contract; in the fifth column, we present expected

profits under the actual piece-rate contract; in the sixth column, we present expected

17 1 the marginal individual were not in the data set, then the analysis would still go through,

with a slight change in interpretation; viz., by redefining the base wage to satisfy the expected
utility of the highest-cost individual in the sample, we can calculate the profits accruing from
rendering that individual indifferent between contracts.
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profits under the base-wage contract; and, in the seventh column, we present the
percent increase in expected profit by switching to the base-wage contract.

We estimate the increase in expected profits to be less than one percent in
all three cases. This suggests that the actual contract, which sets the base wage
to zero on all blocks, is very close to being the optimal linear contract; to a first
approximation, the firm’s choice of contracts is maximizing expected profits. We now
turn to evaluating the importance of information over worker type on contracts and

profits.
7.1. Information over Worker Type

To consider the importance of information to firm profits, we relax the restriction

prohibiting the firm to condition the contract on worker type.

Information Assumption 2.

The firm can write contracts on the set {u, o2, kp, ki, 7},

If the firm can condition on worker type, then the optimal contract is to sell the
rights to plant trees on a particular block of land to each worker. Since workers earn
rents under the current contract, a base-wage contract will have two effects: First, it
will allow the firm to tailor the contract to each individual; second, it will allow the
firm to capture rents. To decompose the importance of each element in the contract,
we distinguish two cases: First, we impose that the base-wage contract ensures each

worker obtains her or his current level of utility, equal to

Kh 7 _
— | u.
Kq

We call these contracts constant-utility contracts. Any increase in expected profits
from the base-wage contract under these conditions is attributed to conditioning on
individual type; second, we allow the firm to reduce the base wage to capture all of
the rent from each worker, ensuring that each worker earns the alternative utility

level, u. We call these contracts alternative-utility contracts.
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Table 12 (a)
Base-Wage Contract Ezxpected Profits

Block Rate Price  Optimal Base " 7(B:E)  Percent
Paid Rate Wage Increase

I 0.18 0.33 0.16 14.45 166.84 168.09 0.7%

IT 0.23 0.43 0.20 13.35 170.95 172.01 0.6%

11 0.23 0.47 0.22 3.23 207.88 207.94 0.0%

Table 12 (b)

Constant-Utility Base-Wage Contract Expected Profits

Block Rate  Optimal Base " m(B.R) Percent
Paid Rate Wage Increase

I 0.18 0.33  —189.15 166.84 189.15 13.4%

IT 0.23 043  —194.23 170.95 194.23 13.6%

11 0.23 047  —241.54 207.88 241.54 16.2%

Table 12 (c)

Alternative- Utility Base- Wage Contract Expected Profits

Block Rate  Optimal Base " 7(B.R) Percent
Paid Rate Wage Increase

| 0.18 0.33  —248.00 166.84 248.00 48.6%

I1 0.23 043  —253.15 170.95 253.15 48.1%

11 0.23 0.47  —300.39 207.88 300.39 44.5%
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Case A: Constant-Utility Contracts

The base wage that keeps worker ¢ indifferent between the piece-rate contract and
the base-wage contract is given by

Y (v+1)
o —aff) K
Bij(R) = u< ) [1 )

Ky

. (7.8)

Therefore, expected profits per worker are given by

(PR)RVU<%>V(Z;3) %Z—Z’)Wl(%)ﬁl}. (7.9)

Maximizing expected profits over R yields the standard solution

Rj=1P;

p 7_ +1 (7.10)
() )]

The firm sells the rights to plant on block j to the workers. Each worker pays a fee
that depends on her or his cost of effort. Since the piece rate is equal to the price the
firm receives per tree planted, profits per worker are equal to —B;;.

The relative performance of the constant-utility base-wage contract is presented
in Table 12 (b). By introducing a base wage, expected profits would increase by

approximately fourteen percent.

Case B: Alternative-Utility Contracts

The firm can capture all of the rent that each worker earns by setting the base wage

equal to ()
Y py+1
o Kp RYY
Bij(R) = u {1 (m- ) Newsy (7.11)
The optimal contract is then given by
Rj =P
(7.12)

7/ p\TH
e () ()]
Ki T
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We calculated the expected profits associated with each of these contracts in Table
12 (c¢). If the firm were to capture all of the rents workers earn, then expected profits

would increase by between forty-four and forty-nine percent.
8. Discussion and Conclusions

Economists are increasingly turning to experiments to gather data concerning in-
dividual behaviour. Experiments allow for the exogenous allocation of treatments,
simplifying identification and estimation. Field experiments extend the benefits of ex-
ogenous variation in treatments to real-world data, facilitating the generalization of
statistical results; see, for example, French (1953). Field experiments provide a sim-
ple, yet powerful, tool for analyzing the effects of different personnel policies within
the firm.

We have analyzed data from one such field experiment which was designed to
measure the reaction of workers to changes in piece-rate incentives. Experimental
variation in the piece rate allows for the direct measurement of reactions within an
unrestricted framework. Our results suggest that workers do react to incentives. We
estimate an output elasticity with respect to changes in the piece rate of 0.39. This
accords with previous results obtained by Paarsch and Shearer (1999) as well as
Haley (2003): Piece-rate payment systems do affect worker behaviour. On a broader
scale, our results are also consistent with the literature investigating incentive effects.
Specifically, as Paarsch and Shearer (2000), Lazear (2000), and Shearer (2004) have
also found, incentives do matter.

We have also considered the relative benefits of estimating structural and econo-
metric models using experimental data. In general, the ability to generalize exper-
imental results to evaluate policies unobserved within the experimental setting rep-
resents the major advantage of structural estimation. In fact, experiments are also
beneficial to structural estimation methods, providing exogenous variation which re-
duces the sensitivity of the results to functional-form assumptions.

Our results point to the importance of worker heterogeneity within the firm as a
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determinant of contractual performance. Indeed, if heterogeneity is ignored, then the
observed contract is locally optimal adding a base wage would have a negligible effect
on expected profits. In contrast, conditioning the base wage on worker type would
increase expected profits substantially. This raises the question of why contracts are
independent of worker type. One possible explanation is that the firm does not know
worker type. However, given the nature of the work and the fact that the firm gathers
worker productivity records for payroll purposes, this does not seem to be plausible.
An alternative explanation deals with contracting costs. In particular, whereas the
piece-rate contract is only plot specific, the base-wage contract is individual and
plot specific. The costs of negotiating such a contract may outweigh the benefits
of its implementation. We find that the firm forgoes a fourteen percent increase in
expected profits by ignoring heterogeneity. One interpretation is that these results
provide a lower bound to the cost of implementing such a contract. Further benefits
are predicted were the firm to use the base wage to extract rents from each worker.
However, under such circumstances, workers would have an incentive to mis-represent
their abilities. This points to intertemporal commitment as an important determinant
of observed contracts: The firm commits to refrain from using information over worker
type in order to induce high-ability workers to reveal their type.

Our results also suggest a number of directions for future research. Income
effects may affect effort elasticities as they do other labour-supply decisions. Indeed,
to the extent that income effects are important, our results on the introduction of
a base wage may be overstated. In general, it is difficult to identify an income and
a substitution effect from changes in the piece rate alone. Experimental methods
are an obvious remedy, allowing researchers to vary both the piece rate and a base
wage independently. Dickens (1999) has provided an example within a laboratory
setting; field experiments would provide the opportunity to confirm his results within
the labour market. Dynamic elements are also highlighted within the contracting
environment. We have identified the firm’s commitment to ignore worker type as

important in implementing the observed contract. The firm may also have incentive
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to change the contract as information concerning planting conditions are revealed.
Extending empirical models to explicitly incorporate learning over conditions and

commitment will provide insight into the empirical importance of these issues.

38



Figure 1

Ninety-Five Percent Confidence Intervals: By Employee

6.41649

5.92693

Iny

7.26389

6.49856

employee== employee==2
_LM/\ o.77817 _T\LL_E/\C/\C/\C/\C
.23 23 .23
- -] .23
23 ,, 28 23 23 .23 23
] |23 23 23
3 .23 53 .23
T\“_\/\/\/\/\
.23 23
. 23 6.18396 -
I | | | I I | | | |
1 11 12 23
employee==3 employee==4
] = 18 7.36841 _T\E—K/JTNE
| m | : .18
18 18 .18
18
_M _TM
- 6.50259
| | | | | I | | | |
24 29 30 34
Observation

Graphs by employee

39



cil

Iny

6.97458

6.10925

7.47348

6.47202

Figure 1 (continued)

employee==5
C_f/_r_[/.;a\c_/\ﬁ—-m

23 23 .23 .23
23 .23 .23

.23

T’ NN

.23

T T T T
35 45

employee==7

—{18 .18

.18

clu

7.16145

6.19455

6.8977

6.20456

obs

employee==6

I
46
employee==8

n .23
23 .23

.23 23

.23
.23

%

Graphs by employee

40



Figure 1 (continued)
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Figure 1 (continued)
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Figure 1 (continued)
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