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Résumé / Abstract 
 
Nous étudions la politique optimale en R&D dans le secteur de ressources naturelles. On 
distingue deux cas : ressources non renouvelables, et ressources renouvelables. Dans le 
premier cas, nous montrons qu’il est utile de construire un indice de rareté, qui est le produit 
du niveau de connaissance scientifique et du stock de ressources. Pourvu que le taux 
d’escompte ne soit pas trop élevé, il existe un niveau critique de cet indice au-dessous duquel 
il faut maximiser le taux d’investissement en R&D. À partir de ce niveau critique, on peut 
atteindre un état stationnaire de consommation en substituant la ressource par la connaissance. 
Dans le cas de ressources renouvelables, la politique optimale est d’accorder la priorité à la 
production des biens de consommation, et les investissements en R&D sont déterminés 
comme résiduels.   
 

Mots clés : politique optimale en R&D, ressources naturelles, indice de 
rareté. 
 
 
 

We study the optimal policies of research and development in the context of a resource-
exploiting economy. We distinguish two cases: non-renewable resources and renewable 
resources. In the first case, we show that it is useful to construct an index of scarcity, which is 
the product of the level of technical know-how and the aggregate stock of resources. Provided 
that the rate of discount is not too high, there exists a critical level of this index, below which 
one must maximize the rate of investment in R&D. Starting from this critical level, it is 
possible to maintain a constant rate of consumption, by substituting knowledge for natural 
resources. In the case of renewable resources, we show that the optimal policy is to give 
priority to the production of consumption goods, and the rates of investments in R&D are 
determined residually. 
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1 Introduction

The industrial revolution has been characterized by some historians as an
energetic switch from the use of the diffuse energy of the sun via either bio-
logical transformations (wood, animals and humans) or thermo-mechanical
transformations (wind, hydro power), the so called organic societies accor-
ding to the Wrigley1 terminology, to the use of fossile energy resources (coal
initially), the mineral based energy economy (ibid).

Besides the advance of fundamental science there has been, and there
is, a lot of more applied and dedicated research aiming at improving the
productivity of the most scarce factors and particularly the energy factors.
But there is a big difference between improving the efficiency of the use
of a renewable resource and improving the efficiency of a non renewable
resource. In the first case this improvement generates a permanent flow of
gains, limited at each point of time by the available flow of the resource,
and, as far as energy is concerned2, by poor direct intertemporal transfers
of these gains. In the second case, the gain is proportional to the stock of
the non renewable resource, which is finite, but can be used at any point of
time.We examine in this study some implications of this difference for the
optimal dedicated R&D policies aiming at overcoming these natural resource
constraints.

There exist specific factor scarcities if and only if the inputs of the pro-
duction process are not perfect substitutes3. We assume here the extreme
case of a Leontief technology in which labor and resource are strictly com-
plementary in the production of some aggregate consumption good and we

1See Wrigley (1988). There exists an avalanche of books and studies about the history
of technology and science, and some encyclopedic monuments like the Oxford History of
Technology by Singer and al. (abridged in Derry and Williams, 1960), the French Histoire
générale des techniques under the editorship of Daumas, or the Forbes Studies in Ancient
Technology. More modest (by the size) though rich panoramas with strongly different
perspectives can be found in Basalla (1988), Kirby and al. (1956) , Mokyr (19990.a, 1990.b
and 1993), Usher (1954) and for the present times in Ruttan (2001). Admittedly, such a
selection is partly, some maybe would say totally, arbitrary.

2Although we have mainly in mind energy resources, there are many goods which can be
produced either from renewable resources or from non renewable resources. For example,
the houses can be build either from wood or from iron and stones, furniture either from
wood or iron and steel, plastic either from corn or coal and petrol, etc...

3As pointed out some time ago by Dasgupta and Heal (1979, p207, last para-
graph) :”The Cobb-Douglas economy merits special attention. The point to note is that it
is not possible to distinguish between capital, resource and labour augmenting technical
progress”.
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assume that the technical coefficient of the resource input can be increased
through a R&D investment. Such an extreme assumption about the produc-
tion function allows for the most contrasting view of the effects of a produc-
tivity improving R&D policy upon a renewable resource based economy or a
non renewable resource based economy. Voluntary disregarding the material
capital accumulation problems allows to exacerbate the difference between
the two resources concerning the easiness of intertemporal transfers of the
productivity gains generated by the R&D effort. However note that such
transfers are not totally forbidden even in the renewable resource economy
since there exists a dedicated knowledge capital through which such transfers
can be made.

Rather than studying how to switch from one type of economy to the
other one4, we determine the optimal policy in the both cases in which the
resource is a renewable resource and in which the resource is a non renewable
resource. As we shall see the optimal policies are strongly contrasted.

The paper is organized as follows. The model is developed in section
2. The non renewable resource economy is examined in section 3 and the
renewable resource economy in section 4. We briefly conclude in section 5.

2 The model

We consider two types of economies. In the first type some aggregate
consumption good can be produced from labor and some non renewable or
exhaustible resource whereas in the second one the natural resource is a
renewable resource. In both economies the population is stationary and the
labor supply is inelastic. Without loss of generality we may assume that the
constant labor supply is equal to 1.

In this study the both factors, labor and natural resource, are assumed to
be strictly complementary in the consumption good production sector. Let
�et and �rt be the instantaneous levels of the labor inputs in the economy
using the exhaustible and the renewable resources respectively, st and rt the
instantaneous levels of the non renewable and renewable resource inputs and
ct the corresponding instantaneous production level of the consumption good.
Then :

4See for example Bretschger and Smulders (2003), De Nooij and Smulders (2003),
Thavonen and Salo (2001) and Tsur and Zemel (2000, 2003).
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– in the exhaustible resource economy :

ct = min{Ae�et, Betst} , t ≥ 0 (2.1.e)

– in the renewable resource economy :

ct = min{Ar�rt, Brtrt} , t ≥ 0 (2.1.r)

In each type of economy the technical coefficients of labor, Ae and Ar,
are assumed to be fixed over time. On the contrary the technical coefficients
of the resources can be improved through a dedicated R&D effort. Let us
denote by net and nrt this part of the labor supply devoted to improving
Bet and Brt respectively. Bet and Brt may be seen as stocks of scientific and
technical knowledge, cumulatively increasing, the growth rates of which are
higher the higher are the labor inputs devoted to R&D, that is respectively5 :

Ḃet = benetBet, and Ḃrt = brnrtBrt.

This assumption about the possibility of an indefinitely growing effi-
ciency in the use of natural resources could seem very strong. But note
that, although the quantity of resource needed by unit of consumption good
tends asymptotically towards zero provided that net ∈ [ne, 1], n ∈ (0, 1] or
met ∈ [m, 1], m ∈ (0, 1], it is always strictly positive at any point of time
so that it is never possible to produce without resource. Another reason for
assuming such an efficient research sector is that it permits to simplify dras-
tically the analysis, like the assumption of a labor force growing at a constant
positive rate in the growth theory. The specification adopted here is the most
simple amongst those generating a stationary state in the non renewable re-
source economy. The crucial point to get a sustainable consumption path6

in the non renewable resource economy is that we could have Ḃet/Bet ≥ g
B
,

where g
B

is some strictly positive constant, for some research effort path
net = n ∈ (0, 1).

For the sake of simplicity we assume that the labor can be instantaneously
and freely transferred from the consumption good production sector to the
research sector and vice versa. Hence the only constraints on the uses of labor
are :

1 − �et − net ≥ 0 , �et ≥ 0, and net ≥ 0 , t ≥ 0

5It can be shown that this form of technological knowledge production function is the
only one generating a steady sustainable path in the non renewable economy.

6that is a consumption path C : {ct ≥ c > 0, t ≥ 0}.
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1 − �rt − nrt ≥ 0 , �rt ≥ 0, and nrt ≥ 0 , t ≥ 0

In the economy using the non renewable resource there exists initially
some stock S0 of the exhaustible resource. We assume that the extraction
cost is equal to 0. Equivalently (2.1.e) may be seen as the production function
of an integrated process the primary inputs of which are labor, resource and
technical knowledge capital. Thus the dynamics of the available resource
stock St is given by :

Ṡt = −st , St ≥ 0, and st ≥ 0 , t ≥ 0.

In the economy using the renewable resource there exists some instanta-
neous natural flow of resource denoted by r̄. The resource cannot be stored
or equivalently its storage cost is prohibitively high in the long run7, so that
this part of the flow which is not immediately used in the consumption good
production is definitively lost. As for the exhaustible resource we do not
distinguish pure extraction costs from the other costs, thus(2.1.r) may be
understood as the production function of an integrated process.

The constraints on rt are :

r̄ − rt ≥ 0, and rt ≥ 0.

The instantaneous utility of consumption u(ct) is proportional to the ins-
tantaneous rate of consumption ct. Without loss of generality we may assume
that the proportionality coefficient is equal to 1. The social welfare W (C)
generated by any consumption path C = {ct, t ≥ 0} is equal to the sum of
the discounted instantaneous utilities at some constant discount rate ρ > 0,
that is :

W (C) =

∫ ∞

0

cte
−ρtdt.

Since either ct ≤ Ae or ct ≤ Ar then this integral is well defined for any
feasible path C. In what follows, for any consumption path C, we shall denote
by Wt(C) the present value at time 0, of that tail of the consumption path
beginning at time t :

Wt(C) =

∫ ∞

t

cτe
−ρτdτ , t ≥ 0.

7Daily details are omitted.
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In each type of economy the benevolent social planner maximizes W (C)
under the constraints corresponding to the type of ressource used in the
economy. Noting that since any optimal program has to be efficient, we may
restrict the set of admissible paths to the set of efficient programs, that is :

– in the exhaustible resource economy, to those programs such that :

Ae�et = Betst ⇒ st = AeB
−1
et �et

– in the renewable resource economy, to those programs such that :

Ar�rt = Brtrt ⇒ rt = ArB
−1
rt �rt

Hence in the exhaustible resource economy the social planner program
may be formulated as the following problem (PE) :

(PE) max
{(�et,net),t≥0}

∫ ∞

0

Ae�et e−ρt dt (PE.0)

Ṡt = −AeB
−1
et �et, St ≥ 0, t ≥ 0, and S0 given (PE.1)

Ḃet = benetBet, t ≥ 0, Be0 given (PE.2)

1 − �et − net ≥ 0, �et ≥ 0, and net ≥ 0, t ≥ 0 (PE.3)

In the renewable resource economy the social planner program is the
following problem (PR) :

(PR) max
{(�rt,nrt),t≥0}

∫ ∞

0

Ar�rt e−ρt dt (PR.0)

r̄ − ArB
−1
rt �rt ≥ 0, t ≥ 0 (PR.1)

Ḃrt = brnrtBrt, t ≥ 0, and Br0 given (PR.2)

1 − �rt − nrt ≥ 0, �rt ≥ 0, and nrt ≥ 0 , t ≥ 0 (PR.3)

3 The non renewable resource economy

In the non renewable resource economy two cases have to be distinguished.
If first the productivity of the research effort be is higher than the social rate

6



of discount ρ, then there exists some critical locus L in the state variable
plane (Be, S), L = {(Be, S) : BeS = K̄} where K̄ is determined by the
structural coefficients of the model, from which the unique optimal stationary
consumption and sectoral employment path can start. Then, if Be0S0 �= K̄,
either Be0S0 > K̄, or Be0S0 < K̄. For Be0S0 > K̄ the optimal policy is to
consume at the maximum feasible rate and do not invest in research as long
as Be0St > K̄, and once Be0St = K̄ then switch to the optimal stationary
path along which the research effort and the consumption rate are constant
both at a strictly positive level. For Be0S0 < K̄ the optimal policy is to catch
up the L locus as soon as possible that is to allocate all the available labor
to the development of the scientific and technological knowledge basis in
order to enjoy the optimal stationary consumption rate as soon as possible.
But if the efficiency of the knowledge production process, be, is lower than
the social rate of discount, ρ, then the welfare balance sheet of any effort
aiming at boosting the resource productivity coefficient Be, would be in the
red. In those societies in which increasing the technical knowledge corpus
would require a too hard effort, the optimal policy shrinks down to solving
a classical pure cake eating problem.

3.1 General characteristics of the optimal policies

Let LEt be the Lagrangian of the program (PE)8 :

LEt = Ae�ete
−ρt−λtAeB

−1
et �et+µetbenetBet+ωet[1−�et−net]+γel,t�et+γen,tnet.

The first order conditions are :

∂LEt/∂�et = 0 ⇔ Aee
−ρt − λtAeB

−1
et − ωet + γe�,t = 0 (3.1)

∂LEt/∂net = 0 ⇔ µetbeBet − ωet + γen,t = 0 (3.2)

together with the complementary slackness conditions :

ωet ≥ 0, 1 − �et − net ≥ 0, and ωet[1 − �et − net] = 0 (3.3)

γel,t ≥ 0, �et ≥ 0, and γel,t�et = 0 (3.4)

8Since we shall restrict the investigation to the set of efficient programs for which
St ≥ 0, t ≥ 0, this constraint is deleted in the expression of the lagrangian, as usual in this
type of program.
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γen,t ≥ 0, net ≥ 0, and γen,tnet = 0 (3.5)

The dynamics of the costate variables λt and µet are given by :

λ̇t = −∂LEt/∂St ⇔ λ̇t = 0 ⇔ λt = λ = cte (3.6)

µ̇et = −∂LEt/∂Bet ⇔ µ̇et = −λAeB
−2
et �et − µetbenet. (3.7)

Last the transversality conditions at infinity are :

limt↑+∞λSt = 0, and limt↑+∞µetBet = 0. (3.8)

The above conditions imply that, at any point at time t, there exist two
ways to decompose the discounted value Wt(C) of an optimal consumption
plan C, and that the imputed value of the resource stock λSt must be equal
to the imputed value of the stock of knowledge µetBet.

The first way proceeds from the optimality condition (3.1), the com-
plementary slackness condition (3.4) and the transversality condition (3.8)
relative to the asymptotic value of St. Since, by (3.4), γe�,t�et = 0, then mul-
tiplying (3.1) by �et we get :

Ae�ete
−ρt − λAeB

−1
et �et − wet�et = 0,

that is :
cte

−ρt = λst + wet�et.

By the transversality condition either λ = 0, or λ > 0 and then limt↑∞St =
0 so that St =

∫ ∞
t

sτdτ , hence the first decomposition :

Wt(C) =

∫ ∞

t

cτe
−ρτdτ = λSt +

∫ ∞

t

weτ�eτdτ, t ≥ 0.

For the second way, let us start from (3.7), which, multiplied by Bet,
gives :

µ̇etBet = −λAeB
−1
et �et − µetbenetBet,

that is :9

(µet˙Bet) = −λst,
9For any time functions xt and yt, we denote by (xt˙yt) the time derivative of their

product, that is (xt˙yt) = ẋtyt + xtẏt.
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hence : ∫ ∞

t

(µeτ ˙Beτ )dτ = µe∞Be∞ − µetBet = −λ

∫ ∞

t

sτdτ = −λSt.

By the transversality condition µe∞Be∞ = 0, so that :

µetBet = λSt , t ≥ 0, (3.9)

and :

Wt(C) = µetBet +

∫ ∞

t

weτ�eτdτ , t ≥ 0.

Proposition 1 In the non renewable resource economy, along the optimal
path, at each point of time, the imputed value of the resource stock must
be equal to the imputed value of the technological knowledge stock, and the
discounted value of the optimal consumption plan C is given by :

Wt(C) = λSt +

∫ ∞

t

weτ�eτdτ = µetBet +

∫ ∞

t

weτ�eτdτ, t ≥ 0.

3.2 Optimal stationary paths

Let us consider the optimal paths, if any, along which both �et > 0 and
net > 0 so that γe�,t = γen,t = 0, and 1 − �et − net = 0 and let us show that
such paths are necessarily the unique optimal regular or stationary path along
which the consumption rate can be indefinitely maintained constant at some
positive level.

Multiplying the both sides of (3.7) by Bet, we obtain :

(µet˙Bet) = −λAeB
−1
et �et. (3.10)

On the other hand, from (3.1) and (3.2) with γe�,t = γen,t = 0, we get :

beµetBet = Aee
−ρt − λAeB

−1
et ,

hence :
be(µet˙Bet) = −ρAee

−ρt + λAeB
−2
et Ḃt.

Substituting for Ḃet its value given by (PE.2) and noting that net = 1− �et,
this last equation may be written as :

(µet˙Bet) = −ρb−1
e Aee

−ρt + λAeB
−1
et (1 − �et).

9



Last substituting for (µet˙Bet) its expression (3.10), we get the value of
Bet over any time interval during which �et > 0, net > 0 and 1−�et−net = 0 :

Bet = λbeρ
−1eρt. (3.11)

Time differentiating (3.11) and taking (PE.2) into account results in :

benetBet = λbee
ρt

and since λbee
ρt = ρBet according to (3.11), then :

net = ρb−1
e . (3.12)

Since we must have net < 1, then there exists an optimal path with
both �et > 0 and net > 0 and full employment of the labor supply, iff the
productivity of the research effort be is higher than the social rate of discount
ρ.

Let us assume that from T onwards net = ρb−1
e so that :

Bet = BeT eρ(t−T ) , t ≥ T. (3.13)

Since �et = 1 − net, then the instantaneous extraction rate of the resource
must be equal to :

st = AeB
−1
eT (be − ρ)b−1

e e−ρ(t−T ) , t ≥ 0. (3.14)

For any t ≥ T , let S̄Tt be the quantity of resource extracted over the time
interval [T, t) :

S̄Tt =

∫ t

T

sτdτ = AeB
−1
eT (be − ρ)(ρbe)

−1[1 − e−ρ(t−T )], (3.15)

so that :

S̄T∞ = limt↑+∞S̄Tt = AeB
−1
eT (be − ρ)(ρbe)

−1. (3.16)

We conclude that, in order to follow indefinitely the optimal stationary
path from T onwards, the product Kt ≡ BetSt must be equal to the critical
value K̄ at time T :

KT = BeT ST = Ae(be − ρ)(ρbe)
−1 ≡ K̄. (3.17)
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It will be noticed that Kt remains constant at the level K̄ along this
path10.

More generally Kt = BetSt may be seen as the amount of consumption
good which could be produced from the resource stock St, would the produc-
tivity of the resource remain fixed at its level Bet at time t. Thus Kt could
be understood as the consumption potential at time t. Along any stationary
path this consumption potential has to be held constant, and along the op-
timal stationary path the consumption potential has to be held constant at
the level K̄.

Let us complete the characterization of the optimal stationary path. The
instantaneous consumption rate is constant and given by (cf (3.13) and
(3.14)) :

ct = Betst = Ae(be − ρ)b−1
e . (3.18)

Last from (3.2) (or (3.1)), (3.9), (3.11) and (3.13)) we get, for t > T :

λ = ρb−1
e BeT e−ρT , µet = ρb−1

e ST e−ρ(2t−T ) and wet = ρK̄e−ρt (3.19)

where BeT and ST are such that BeT ST = K̄.

We conclude as follows.

Proposition 2 In the non renewable resource economy, along an optimal
trajectory, there may exist a time interval during which the employment is
positive in the both sectors of the economy iff the productivity in the research
sector be is higher than the social rate of discount ρ. In this case �et = (be −
ρ)b−1

e , net = ρb−1
e and ct = Ae(be − ρ)b−1

e . This optimal stationary path can
be indefinitely sustained from T onwards provided that KT ≡ BeT ST = K̄ ≡
Ae(be − ρ)(ρbe)

−1.

Note that the optimal constant consumption stream is an increasing func-
tion of the labor productivity index be in the research sector as it could have
been expected but a decreasing function of the social rate of discounts al-
though the employment in the research sector is increasing with ρ. We have

10For t ≥ T , we get : BetSt = Bet[ST − S̄Tt]. Substituting for Bet its value given by
(3.13) and for S̄Tt its value given by (3.15), we obtain :

BetSt = BeT ST eρ(t−T ) − Ae(be − ρ)(beρ)−1eρ(t−T ) + Ae(be − ρ)(beρ)−1

given that Ae(be − ρ)(ρbe)−1 = BeT ST by (3.17), we obtain :
BetSt = BeT ST eρ(t−T ) − BeT ST eρ(t−T ) + BeT ST = BeT ST .
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got the some result in a model in which the utility function is a constant inter-
temporal elasticity of substitution (CIES) function and both production and
research sides of the model are like the present ones (see Amigues-Grimaud-
Moreaux (2003-a)). We have got also the same result in a model in which
the utility function is a CIES function, the consumption good production
function is a CES function and the resource productivity research sector is
like the present one (see Amigues-Grimaud-Moreaux (2003-b)). Furthermore
if Ae can be improved too, by a dedicated research effort, then the consump-
tion growth rate along the optimal balanced path is a decreasing function of
the social rate of discount (see Amigues and Moreaux (2003)).

It must be pointed out that the research effort nt, hence the employment
in the consumption sector, does not depend upon the shape of the utility
function in an optimal stationary state. This is also the case for a CES pro-
duction function, as shown in Amigues-Grimaud-Moreaux (2003-b), provided
that the resource technical coefficient improving process be the same, that
is Ḃet = bnetBet. Then the optimal research effort is also the same, that is
net = ρb−1

e . If both Ae and Bet can be increased through dedicated research
efforts, then along a balanced growth path, the employment in the resource
productivity research sector does not depend upon the utility parameters
whereas the employment in the labor productivity research sector is an in-
creasing function of the elasticity of intertemporal substitution (see Amigues
and Moreaux (2003)). However, in all the above cases, the research effort in
the resource productivity sector along the optimal path towards the statio-
nary or balanced trajectory is sensitive to the type and parameters of the
utility function that the social planner maximizes.

Another characteristics of the present model which is worth to emphasize,
is that the so called Hartwick rule does not hold. In the present context
of strict factor complementarity between labor and a ”technical knowledge
and resource” aggregate factor, we may not use the original framework laid
down by Hartwick. So let as start form the following specification of the rule
given by Hartwick himself in Hartwick (1989)11 : ”..., if current net value of
resources used up at time t is used to purchase new reproductible capital
goods at current prices of date t, consumption can be maintained constant.
What the generation at date t uses up in terms of resources is passed one
dollar for dollar as additional buildings and machines”. There the only capital
is the dedicated technological knowledge, the shadow price of which is µet.
Thus the value of the capital gross investment is equal to µetḂet and the value
of the net investment is equal to µetḂet + µ̇etBet. The value of the resource

11cf Hartwick (1989)p101
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rent is given by λtset. Since λtSt = µetḂet according to (3.9) and λt = λ, a
constant, then −λtset = µetḂet + µ̇etBet, that is the value of the resource rent
is equal neither to the gross nor to net value of the capital investment.

3.3 Optimal policies

It remains to determine what are the optimal policies first if be > ρ but
K0 �= K̄ and second if be < ρ.

3.3.1 Case be > ρ and K0 �= K̄

If be > ρ and K0 > K̄ the consumption potential is initially high, that
is the resource stock and/or the technical knowledge capital are abundant.
The linearity of the instantaneous utility function together with a positive
social rate of discount both suggest that initially the research effort has to be
delayed. The optimal policy would be first to consume at the maximal rate,
�et = 1 and net = 0, as long as Kt > K̄. Since st = AeB

−1
e0 = cte during this

initial period, there exists some time T at which Be0ST = K̄. Then, from T
onwards, the economy can follow the optimal stationary path. We show in
Appendix (§6.1.1) that such a policy is indeed the optimal policy.

If be > ρ but K0 < K̄ a symmetrical argument leads to the conclusion
that the economy must first invest in technical knowledge at the maximal
rate, that is �et = 0 and net = 1, as long as Kt < K̄. During this initial phase
Bet = Be0e

bet and there exists some time T at which BeT S0 = K̄. Next the
economy can go along the optimal stationary path. We show in Appendix
(§6.1.2) that this policy is the true optimal policy.

Clearly this is a case of most rapid approach to the optimal stationary
state (see Spence and Starett (1975), and Tsur and Zemel (2001,2003)) and
we conclude as follows.

Proposition 3 In the non renewable economy, if the productivity in the
research sector be is higher than the social rate of discount ρ, then :

i- either K0 = K̄ and the optimal policy is to go immediately along the
optimal stationary path ;

ii- or K0 �= K̄ and the optimal policy is to rejoin as soon as possible
the optimal stationary path, that is if K0 > K̄, to consume at the maximal
rate (�et = 1), and if K0 < K̄ to expand the technical knowledge stock at the
maximal rate (net = 1), and next go along the optimal stationary path.
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The optimal path in the (c, K) - plane is illustrated in Figure 1 below12 .

0

Ae(
be−ρ

be
)

Ae

c

K̄
= Ae(

be−ρ
ρbe

)

K

•

Figure 1 - Optimal path in the non renewable resource economy.
Case be > ρ

3.3.2 Case be < ρ

Since the productivity of the resource effort is low, we mean lower than
the social rate of discount, one suspects it is never optimal to invest. Let us
show that it is the right policy.

For any knowledge capital Be and any stock of resource S, if the society
is consuming at the maximal rate c = Ae then s = AeB

−1
e so that the length

∆ of the consumption period is equal to :

∆ = A−1
e BeS

If t1 is the time at which the consumption period is beginning, the dis-
counted value of the consumption plan, Wt1 , is given by :

12Assuming that the instantaneous utility function is a CIES function would result in a
smooth convergence towards the same regular path (see Amigues, Grimaud and Moreaux,
2003.a). Furthermore the result of Proposition 3 and the result of the following Proposition
4 are robust to less extreme assumptions about the production function and still hold with
CES production functions (see Amigues, Grimaud and Moreaux, 2003.b).
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Wt1 =

∫ t1+∆

t1

Aee
−ρtdt = ρ−1Ae[1 − e−ρ∆]e−ρt1 .

We know from Proposition 1 that be < ρ implies that either �et = 1 or
net = 1 since �et = net = 0 cannot be optimal if St > 0. Let us assume that
over the initial period [0, t1) the society invests in knowledge capital, net = 1
and next the society consumes at the maximal rate as long as the resource is
not exhausted. At time t1, Bet1 = Be0e

bet1 and the length of the consumption
period is equal to ∆(t1) :

∆(t1) = A−1
e Be0S0e

bet1 ,

so that :
W (t1) = ρ−1Ae[1 − e−ρ∆(t1)]e−ρt1 .

Differentiating Wt1 with respect to t1 we get :

dWt1/dt1 = e−ρt1 [−Ae + Aee
−ρ∆(t1) + beBe0S0e

−ρ∆t1ebet1 ].

The sign of the derivative is given by the sign of the term in brackets,
denoted by M . For t1 = 0 :

M = −Ae + [Ae + beK0]e
−ρ(A−1

e K0).

Note that K0 = 0 implies that M = 0. Let N be the second term of the
right hand side of the above equality. Then :

dN/dK0 = [(be − ρ) − ρbeA
−1
e K0]e

−ρ(A−1
e K0).

From be < ρ, we conclude that dN/K0 < 0, so that :

K0 > 0 ⇒ M < 0 ⇒ dWt1

dt1
|t1=0 < 0.

Last since t1 = 0 and K0 > 0 are both arbitrary, it is never optimal to
invest. We show in Appendix (§6.1.3) that, for this policy, all the optimality
conditions (3.1)-(3.8) are satisfied.

Proposition 4 In the non renewable resource economy, if the productivity
in the research sector be is lower than the social rate of discount ρ, then the
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optimal policy is to consume at the maximal rate from the start as long as
the resource is not exhausted, and never invest.

The strong discounting in the optimal consumption path, from the constant
consumption path Ae abruptly down to o once the resource stock is exhaus-
ted, would be forbidden with a CIES utility function. This leads to a smooth
decreasing consumption path and a positive research effort from sometime t̃
(possibility t̃ = 0 onwards. The sketch of the argument runs as follows (see
Amigues-Grimaud-Moreaux (2003-a, section 6 and section 7) for the details).
Let t be the time at which the resource is exhausted in the present model
(t = A−1

e BeoSo). Assume that the employment in the consumption good
production sector is reduced from �et down to �̃et < 1 over some short time
interval (t̄−∆, t̄), with �̃et strictly decreasing, in order to lessen the consump-
tion discontinuity gap. A first effect is that at any time t, t ∈ (t̄ − ∆, t̄), a
quantity of resource AeB

−1
eo [1− �̃et] is saved, permitting a positive consump-

tion over some time interval (t̄, t̄ + Θ) (possibly Θ = +∞). But clearly the
idle labor time interval 1 − �̃et can be employed in the research sector over
the time interval (t̄ − ∆, t̄) in order to improve Be. Hence the amount of

resource which can be saved is higher than AeB
−1
eo

∫ t̄

t̄−∆
(1 − �̃et)dt. Also the

idle labor over the time interval (t̄, t̄ + Θ) can be employed in the research
sector too, to improve the efficient use of the saved resource. The argument
may used repeatedly as long as there exists a consumption discontinuity gap
at t̄. Thus, if the utility function is a CIES function, the consumption and
research effort optimal paths are :

- either first to consume at the maximal rate Ae, i.e. �et = 1 and net =
0, over some time interval [0,t ), and next decrease the employment in the
consumption good sector and increase the employment in the research sector
indefinitely, if either Beo or So, or both, are sufficiently high ; - or drop the
first phase during which �et = 1 and from the start implement an increasing
research effort policy, il either Beo or So, or both, are sufficiently low.

- or drop the first phase during which �et = 1 and from the start implement
an increasing research effort policy, if either Beo or So, or both, are sufficiently
low.
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4 The renewable resource economy

In the renewable resource economy there exists a critical level of scientific
and technical knowledge capital, B̄r = Arr̄

−1, allowing all the available labor
to be employed in the consumption good production sector. Thus if Br0 ≥ B̄r

either the knowledge capital or equivalently the flow r̄ of natural resource is
abundant forever, and �rt = 1 and nrt = 0, t ∈ [0, +∞), is trivially the
optimal policy. Hence what we have to determine is the optimal policy when
initially the knowledge capital is lower than this critical level, i.e. when Br0 <
B̄r. We show that in this case the optimal research policy is the passive or
residual policy, that is to employ in the research sector only this part of the
labor supply which cannot be employed in the consumption good production
sector,which part of the labor supply is positive as long as Brt < B̄r. For such
a policy the critical level B̄r is reached only at infinity13. This is the optimal
policy whatever the productivity br in the research sector and the social rate
of discount ρ > 0.

4.1 General characteristics of the optimal policies

Let LRt be the Lagrangian of the program(PR) :

LRt = Ar�rte
−ρt + νrt[r̄ − ArB

−1
rt �rt] + µrtbrnrtBrt

+ωrt[1 − �rt − nrt] + γr�,t�rt + γrn,tnrt.

The first order conditions are :

∂LRt/∂�rt = 0 ⇔ Are
−ρt − νrtArB

−1
rt − ωrt + γr�,t = 0 (4.1)

∂LRt/∂nrt = 0 ⇔ µrtbrBrt − ωrt + γrn,t = 0 (4.2)

together with the complementary slackness conditions :

ωrt ≥ 0, 1 − �rt − nrt ≥ 0, and ωrt[1 − �rt − nrt] = 0 (4.3)

γr�,t ≥ 0, �rt ≥ 0, and γr�,t�rt = 0 (4.4)

13With substitution possibilities between the inputs, it may be shown that there does not
exist an optimal regular path for the renewable resource economy with a strictly positive
R&D effort. Moreover in the long run the optimal R&D effort converges asymptotically
to zero (see Amigues, Long, Moreaux, 2003)
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γrn,t ≥ 0, nrt ≥ 0, and γrn,tnrt = 0 (4.5)

νrt ≥ 0, r̄ − ArB
−1
rt �rt ≥ 0, and νrt[r̄ − ArB

−1
rt �rt] = 0 (4.6)

The dynamics of the costate variable µrt is given by :

µ̇rt = −∂LRt/∂Brt ⇔ µ̇rt = −νrtArB
−2
rt �rt − µrtbrnrt (4.7)

Last the transversality condition at infinity is :

limt↑+∞µrtBrt = 0 (4.8)

As in the non renewable resource economy there exist two ways to decom-
pose the discounted value of an optimal consumption plan, and the imputed
value of the stock of knowledge µrtBrt must be equal here to the capital value
of the flow of the renewable resource r̄

∫ ∞
t

νrτdτ .

Since by (4.4) γr�,t�rt = 0, then multiplying (4.1) by �rt, we get :

Ar�rte
−ρt − νrtArB

−1
rt �rt − ωrt�rt = 0

that is :
cte

−ρt = νrtArB
−1
rt �rt + ωrt�rt

By (4.6) νrtArB
−1
rt �rt = νrtr̄, hence :

cte
−ρt = νrtr̄ + ωrt�rt,

and :

Wt(C) = r̄

∫ ∞

t

νrτdτ +

∫ ∞

t

ωrτ�rτdτ , t ≥ 0.

Now multiplying (4.7) by Brt and remembering that brnrtBrt = Ḃrt we
get, taking (4.6) into account :

(µrt˙Brt) = −νrtArtB
−1
rt = −νrtr̄.

Integrating from t up to +∞ and noting that µr∞Br∞ = 0 by (4.8), we
obtain :

µrtBrt = r̄

∫ ∞

t

νrτdτ , t ≥ 0, (4.9)
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hence :

Wt(C) = µrtBrt +

∫ ∞

t

ωrτ�rτdτ , t ≥ 0

Proposition 5 In the renewable resource economy, along the optimal path,
at each point of time, the capital value of the flow r̄ of the renewable resource
must be equal to the imputed value of the technological knowledge stock and
the discounted value of the optimal consumption plan C is given by :

Wt(C) = r̄

∫ ∞

t

νrτdτ +

∫ ∞

t

ωrτ�rτdτ = µrtBrt +

∫ ∞

t

ωrτ�rτdτ, t ≥ 0.

4.2 Optimal policy

Since the instantaneous utility is a linear function of the instantaneous
consumption rate one would perhaps be tempted to conclude that the optimal
policy is to go as fast as possible to the critical knowledge capital level B̄r,
provided that the productivity in the research sector be sufficiently high
relative to the social rate of discount. As we shall show, this is not the good
intuition.

Let us define an active research policy as any policy {(�rt, nrt), t ≥ 0}
implying that there exists some time interval (t1, t2), 0 ≤ t1, < t2, during
which Brt < B̄r and the employment in the research sector is so high that
the resource constraint (PR.1), r̄ −ArB

−1
rt (1− nrt) ≥ 0, is not binding. The

activist research policy is this policy consisting in going as soon as possible to
the critical level B̄r, that is nrt = 1 as long as Brt < B̄r. The passive research
policy is the policy consisting in first consuming, and searching iff all the
available labor cannot be employed in the consumption good production
sector, that is, if Brt < B̄r, then nrt = 1 − A−1

r Brtr̄.
14

Let us first show that any active policy is non optimal in the present
context.

14Note that such a clearcut distinction between an active and a passive research policy
is only meaningful under the Leontief technology assumption. With inputs substituability
it may be shown that it is always optimal to consume all the available resource flow. But
in this case, the use of labor in production is depending upon the ratio between the inputs
efficiencies. This ratio, which is equal to one in the Leontief case, will be endogeneously
determined along a optimal path (see Amigues, Long, Moreaux, 2003).
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4.2.1 Non optimality of the active research policies

Let us first consider the activist policy �rt = 0 and nrt = 1 as long as
Brt < B̄r, so that :

Brt < B̄r ⇒ Brt = Br0e
brt

The critical level B̄r is attained at this time T at which Brt = B̄r, that
is :

T = b−1
r [logB̄r − logBr0].

Now let us examine the following alternative policy. The society reduces
its research effort over the time interval [0, t1) by dn and next go back to
nrt = 1 up to this time at which Brt = B̄r.Brt is now given by :

Brt =




Br0e
br(1−dn)t , t ∈ [0, t1)

Br0e
br(1−dn)t1ebr(t−t1) , t ∈ [t1, T + dT )

B̄r , t ∈ [T + dT, +∞)

where dT = t1dn.

In terms of welfare, the balance sheet of the consumption variations in-
duced by this policy change can be drawn up as follows :

i - over the time interval [0, t1) the consumption rate is now higher, Ardn
instead of 0, thus the discounted gain is equal to :

∫ t1

0

Ardne−ρtdt = ρ−1Ardn[1 − e−ρt1 ];

ii - over the time interval [t1, T ) the consumption rate does not change,
that is ct = 0 ;

iii - over the time interval [T, T + dT ) the consumption rate shuts down
to 0 from the Ar level, hence the discounted loss is equal to :

∫ T+dT

T

Are
−ρtdt = ρ−1Are

−ρT [1 − e−ρdT ]dn;

iv - last over the time interval [T + dT, +∞) the consumption rate does
not change.

Summing up, the welfare variation ∆Wt1 is equal to :
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∆Wt1 = ρ−1Ardn{[1 − e−ρt1 ] − e−ρT [1 − e−ρt1dn]},
so that :

dWt1/dt1 = Ardn[e−ρt1 − dne−ρ[T+t1dn]]

and at t1 = 0 :
(dWt1/dt1) |t1=0= Ardn[1 − dne−ρT ]

Hence, for any dn ∈ (0, 1], we have :

(dWt1/dt1) |t1=0> 0

We conclude that over the time interval [0, t1) reducing the employ-
ment allocated to the research sector for increasing the employment in the
consumption good production sector, is better than not. Since Brt < B̄r, t ∈
[0, t1) there is a ceiling on the employment in the consumption good sector,
and we must have nrt = 1 − A−1

r Brtr̄.

Now let us remark that in the preceding argument the time t = 0 and
the value of Br0 < B̄r are both arbitrary. Thus it happens that not only the
activist policy cannot be optimal but also any active policy and we are left
with the passive policy as the only candidate. What has to be emphasized
is that the conclusion holds whatever the productivity of the research effort
and the social rate of discount.

4.2.2 The passive research policy

If the resource constraint (PR.1) is tight then :

r̄ = ArB
−1
rt �rt ⇒ �rt = A−1

r Brtr̄ and nrt = 1 − A−1
r Brtr̄,

hence :
Ḃrt = br[1 − A−1

r Brtr̄]Brt.

The solution of this differential equation is the following logistic function :

Brt = {r̄A−1
r + [B−1

r0 − r̄A−1
r ]e−brt}−1 = {B̄−1

r + [B−1
r0 − B̄−1

r ]e−brt}−1.
(4.10)

Thus :
Ḃrt = 0 ⇔ Brt = Arr̄

−1 = B̄r,

and since Br0 < B̄r, the critical level of the technical knowledge capital B̄r

is attained only asymptotically.
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The instantaneous consumption rate is always increasing towards its maxi-
mal level Ar :

ct = Brtr̄, ċt = Ḃrtr̄ > 0, t ∈ [0, +∞), and limt↑+∞ct = Ar.

We show in Appendix (§6.2.2) that this policy is truly the optimal one.

Proposition 6 In the renewable resource economy whatever the producti-
vity of the research effort be and the social rate of discount ρ, the passive
policy is the only optimal policy.

The time profile of the resource productivity index Bet is illustrated in
Figure 2 below. If Beo is low, lower than B̄r/2, Bet̂ = B̄1/2, and next increa-
sing at a decreasing rate. If then Brt is first increasing at an increasing rate
up to than time t̂ at which Beo is low, lower than B̄r/2, then Bet is always
increasing at a decreasing rate.

0

Ae

c

K = Be0S
•

Figure 2 - Optimal path in the non renewable
resource economy. Case be < ρ
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5 Conclusion

It appears that the optimal R& D policies are very different in the pure
renewable resource economy and in the pure non renewable resource economy.
Such a difference doesn’t arise from value repartition considerations. In both
cases, the standard accounting condition for multisectoral optimal growth
models applies, stating that along any optimal consumption path, welfare
has to be divided between the discounted sum of the productive labor value
flow and either the imputed value of the exhaustible resource stock in the non
renewable economy case, either the discounted sum of the renewable resource
value flow in the renewable economy case (see Propositions 1 and 5).

For the non renewable economy case, we have shown that an active re-
search policy is always optimal when the consumption potential of the eco-
nomy is initially below its sustainable long run level, provided that the pro-
ductivity of the research effort is higher than the social rate of impatience. In
our model framework, this implies that the interest of the society is to catch
up in finite time the sustainable long run optimum.

In the renewable resource economy, such an active research policy is never
optimal for any levels of the research productivity parameter and the social
discount rate. To the contrary the society has to consume all the available
renewable resource flow forever and to devote only the residual fraction of
its labor force not used in production in order to improve the productive
efficiency factor of the natural resource. As a consequence the sustainable
long run optimum is only reached asymptotically.

Hence the analysis suggests that the typically slow pattern of technical
progress observed in the so-called ”organic societies” may not only result
from the lack of technical skills or scientific knowledge in such societies but
also from the optimal conditions for their historical development.

A first question raised by our results is whether they are robust to the
introduction of substitution possibilities between the inputs. In a work in
progress (Amigues, Long, Moreaux, 2003) we have already shown that the
qualitative results obtained in the non renewable economy case translate in
an economy with a CIES utility function and a CES production technology.
Under the same set of assumptions, the renewable resource economy doesn’t
converge to some optimal regular path with a strictly positive R&D effort.
This effort must go to zero asymptotically.

Clearly a next step for this research is to determine what are the optimal
policies in economies in which both types of resources are available and, like
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in the present ones, the specific productivity of the different kinds of resources
can be improved through time15 .

6 Appendix

6.1 The non renewable resource economy

We show that for the policies defined in Propositions 3 and 4 there exist
non negative continuous time functions µet and ωet and non negative time
functions γe�,t and γen,t such that for some λ > 0 all the conditions (3.1) to
(3.8) are satisfied.

6.1.1 Case be > ρ and K0 > K̄

In this case �et = 1 and net = 0 over a first time interval [0, T ), so that
for t ∈ [0, T ) :

Bet = Be0, st = AeB
−1
e0 ≡ s, St = S0 − AeB

−1
e0 t, and Kt = Be0S0 − Aet.

(6.1)

From KT = K̄, we get :

T = A−1
e Be0S0 − (be − ρ)(ρbe)

−1, and ST = AeB
−1
e0 (be − ρ)(ρbe)

−1.

Note that St may equivalently be expressed as :

St = ST + s[T − t] = ST + AeB
−1
e0 [T − t]. (6.2)

Now from (3.19) for Bet = Be0, we obtain the value of λ :

λ = ρb−1
e Be0e

−ρT (6.3)

Next, (3.9) for St given by (6.2) and Bet = Be0, results in :

µet = λ[B−1
e0 ST + AeB

−2
e0 [T − t]], (6.4)

hence :
µ̇et = −λAeB

−2
e0 ,

15For a first attempt in characterizing the optimal consumption in economies in which
both resources are available and the technical progress affecting the productivity is exo-
geneous, see Amigues, Long and Moreaux (2002).
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that is the value of µ̇et given by (3.7) for �et = 1 and net = 0. Note also that,
for t = T , (6.3) ∪ (6.4) implies that :

µet = ρb−1
e ST e−ρT

that is µet as given by (3.19) for t = T .Thus µet is continuous at t = T .

Let us now consider (3.1) for Bet = Be0 and γe�,t = 0 :

Aee
−ρt − λAeB

−1
e0 = ωet.

Since γen,t ≥ 0, we get from (3.2) :

ωet ≥ beµetBet.

But µetBet = λSt by (3.9) and Bet = Be0 for t ∈ [0, T ], hence it is sufficient
to show that :

AeBe0e
−ρt ≥ λ[beBe0St + Ae]

Substituting for λ its value given by (6.3) and for St its value given by (6.2),
the above inequality results in :

(bee
ρ(T−t) − ρ)(ρbe)

−1 ≥ (be − ρ)(ρbe)
−1 + [T − t].

Clearly this weak inequality is satisfied as an equality for t = T and as a
strong inequality for t ∈ [0, T ) if be > ρ.

6.1.2 Case be > ρ and K0 < K̄

Here �et = 0 and net = 1 over a first time interval [0, T ) so that for
t ∈ [0, T ) :

Bet = Be0e
bet, St = S0, and Kt = Be0S0e

bet.

From KT = K̄, we get :

e−beT = ρbe[Ae(be − ρ)]−1Be0S0, (6.5)

that is :
T = b−1

e {log[Ae(be − ρ)] − log[ρbeBeS0]}.

The value of λ is obtained from (3.9) for Bet = Be0e
beT :

λ = ρb−1
e Be0e

(be−ρ)T
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Now, concerning µet, in (3.9) let us substitute for λ its above value, for
St, S0 and for Bet, Be0e

bet, so that (3.9) results in :

µet = ρb−1
e S0e

be(T−t)e−ρT ,

hence :
µ̇et = −beµet,

that is the value of µ̇et given by (3.7) for �et = 0 and net = 1. Furthermore
for t = T , we have :

µet = ρb−1
e S0e

−ρT ,

that is µet given by (3.19) for t = T and St = S0. Thus µet is continuous at
t = T .

Let us now consider (3.1) for γe�,t ≥ 0 :

Aee
−ρt − λAeB

−1
et ≤ ωet.

Since γen,t = 0, we get from (3.2) :

beµetBet = ωet

hence, remembering that µetBet = λSt, it is sufficient to show that :

Aee
−ρt − λAeb

−1
et ≤ λbeSet.

Multiplying the both sides of the above inequality by Bet and substituting
for λ, Bet and St their above expressions, we get :

(ρbe)
−1Ae[bee

−beT e−ρ(T−t) − ρe−bet] ≤ be0S0.

In the above inequality let us substitute for e−ρT its value given by (6.5).
We obtain :

Be0e
betS0 ≤ Ae(be − ρ){[be(e

ρ(t−T ) − 1) + ρ) − ebet}−1.

For t = T , the both sides of this weak inequality take the same value K̄.
Over the time interval [0, T ), the left hand side is increasing whereas the
right hand side is decreasing since be − ρ > 0. Hence for t ∈ [0, T ), the above
inequality is satisfied as a strong inequality.
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6.1.3 Case be < ρ.

We want to show that in this case the optimal policy is to consume at
the maximal rate up to this time T at which the resource stock is exhausted,
that is �et = 1 and net = 0, t ∈ [0, T ), so that st, St and Kt are given by (6.1).
Again St is equivalently given by (6.2).

From ST = 0 we get :
T = A−1

e Be0S0.

The value of λ is the marginal value of a small additional stock of resource.
The increase in consumption generated by an additional quantity of resource
dS, available at time t = T , is equal to Ae at each point of time over an
interval [T, T + dT ), dT = A−1

e Be0dS. Thus the increase in welfare is equal
to :

dW = Aee
−ρT dT = Be0e

−ρT dS,

so that :

dW/dS = Be0e
−ρT ⇒ λ = Be0e

−ρT (6.6)

Next from (3.9), for λ given by (6.6), St given by (6.2) with ST = 0, Bet =
Be0, t ∈ [0, T ), and St = 0, t ∈ [T, +∞), we get :

µet =

{
AeB

−1
e0 e−ρT [T − t) , t ∈ [0, T )

0 , t ∈ [T, +∞)

Clearly µet is continuous at t = T and :

µ̇et =

{ −AeB
−1
e0 e−ρT , t ∈ [0, T )

0 , t ∈ [T, +∞)

Hence, for t ∈ [0, T ), (3.7) is satisfied with �et = 1, net = 0 and λ given
by (6.6), whereas for t ∈ [T, +∞), (3.7) is also satisfied, with �et = 0 and
net = 0.

Equation(3.1) with γe�,t = 0 and λ given by (6.6) results in :

ωet = Ae[e
−ρt − e−ρT ]

and (3.2) with γen,t ≥ 0, in :

beµetBet ≤ ωet,
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that is, taking (3.9) into account with λ given by (6.6) :

beAee
−ρT [T − t] ≤ ωet.

Thus it is sufficient to show that :

bee
−ρT [T − t] ≤ e−ρt − e−ρT .

Clearly for t = T the above weak inequality is satisfied as an equality and
since be < ρ, as a strong inequality for t ∈ [0, T ).

Last for t ∈ [T, +∞), we have :

ωet = 0, γe�,t = −Ae[e
−ρt − e−ρT ], and γen,t = −beAee

−ρT [T − t].

6.2 The renewable resource economy

6.2.1 Preliminary remarks

For Brt given by (4.10) we have, for any t ≥ 0 and any τ ≥ t :

Brτ = B̄r{1 + [B̄rB
−1
rt − 1]e−br(τ−t)}−1. (6.7)

Differentiating this expression with respect to Brt, we get :

∂Brτ/∂Brt = B2
rτB

−2
rt e−br(τ−t). (6.8)

Now, let us differentiate (6.7) with respect to time t :

∂Brτ

∂t
= −B̄r[−B̄rḂrtB

−2
rt + br(B̄rB

−1
rt − 1)]e−br(τ−t)

[1 + [B̄rB
−1
rt − 1]e−br(τ−t)]2

Substituting for Ḃrt its value brnrtBrt, we get :

∂Brτ

∂t
= −brB̄r[B̄rB

−1
rt �rt − 1]e−br(τ−t)

[1 + [B̄rB
−1
rt − 1]e−br(τ−t)]2

and since �rt = B̄−1
r Brt the above expression results in :

∂Brτ/∂t = 0. (6.9)
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6.2.2 Proof of Proposition 6

Consider the value at time t of the objective function (PR.0) under the
passive investment policy, that is Wte

ρt, denoted by Vt :

Vt =

∫ ∞

t

r̄Brτe
−ρ(τ−t)dτ, (6.10)

where Brτ is given by (6.7).

If the passive investment is to be the optimal policy, we must have :

µrt = e−ρt ∂Vt

∂Brt

From (6.8) and (6.10), we get :

∂Vt

∂Brt

= r̄

∫ ∞

t

B2
rτB

−2
rt e−(br+ρ)(τ−t)dτ,

hence :

µrt = r̄e−ρt

∫ ∞

t

B2
rτB

−2
rt e−(br+ρ)(τ−t)dτ = r̄ebrtB−2

rt

∫ ∞

t

B2
rτe

−(br+ρ)τdτ

Since limt↑+∞Brt = B̄r, the transversality condition (4.8) is satisfied iff
limt↑+∞µrt = 0. Note that Br0 ≤ Brt ≤ Brτ < B̄r for any 0 ≤ t ≤ τ , so
that BrτB

−1
rt is bounded from above by B̄rB

−1
r0 > 1. Hence :∫ ∞

t

B2
rτB

−2
rt e−(br+ρ)(τ−t)dτ ≤ (br + ρ)−1(B̄rB

−1
r0 )2,

and :
limt↑+∞µrt ≤ r̄(br + ρ)−1(B̄rB

−1
r0 )2limt↑+∞e−ρt = 0.

Now since γrn,t = 0, (4.2) is satisfied iff wrt = brµrtBt which is positive
for any t ≥ 0.

Next let us turn to the condition (4.7). Multiplying the both sides by Brt,
we get :

(µrt˙Brt) = −νrtr̄

Let us introduce the following notation :

Jt ≡ B−1
rt ebrt

∫ ∞

t

B2
rτe

−(br+ρ)τdτ,
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so that :
µrtBrt = r̄Jt and νrt = −J̇t.

Since ∂Brτ/∂t = 0 and Ḃrt = brnrtBrt, then :

J̇t = −Brte
−ρt + [1 − nrt]brB

−1
rt ebrt

∫ ∞

t

B2
rτe

−(br+ρ)τdτ. (6.11)

Taking into account that 1 − nrt = �rt and Ar�rt = Brtr̄ ⇒ �rtB
−1
rt = B̄−1

r ,
we get finally :

νrt = −J̇t = Brte
−ρt − brB̄

−1
r ebrt

∫ ∞

t

B2
rτe

−(br+ρ)τdτ.

It remains to show that νrt ≥ 0, that is, using (6.11) and after some
simple manipulations, that :

Brt ≥ br

∫ ∞

t

Brτe
−(br+ρ)(τ−t)dτ −

∫ ∞

t

Ḃrτe
−(br+ρ)(τ−t)dτ.

Integrating by parts the second integral of the right hand side, we get :

−Brt + (br + ρ)

∫ ∞

t

Brτe
−(br+ρ)(τ−t)dτ.

Hence νrt ≥ 0 is equivalent to :

0 ≥ −ρ

∫ ∞

t

Brτe
−(br+ρ)(τ−t)dτ,

which is clearly satisfied.

By construction of the above values of µrt and νrt, (4.7) is satisfied.

Last we have to check that for the above values of ωrt and νrt and for
γr�,t = 0, (4.1) is satisfied. For these values the left hand side of (4.1) takes
the following value :

Are
−ρt − [Brte

−ρt − ωrt�rtr̄
−1]ArB

−1
rt − ωrt = ωrt�rtArB

−1
rt r̄−1 − ωrt.

Since Ar�rt = Brtr̄ the right hand side of the above equality is equal to 0 so
that (4.1) is satisfied.
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