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1 Introduction

1.1 Motivation and outline

Recent research on preference-based explanations of asset market dynamics focuses on the
minimum admissible (also known as subsistance, reference or bliss) consumption level.
Standard representations of preferences such as the widely-used Constant Relative Risk
Aversion (CRRA) utility, restrict the minimum consumption level to zero. Hyperbolic
Absolute Risk Aversion (HARA) utility is more general in allowing for a constant non-zero
bliss level. Conversely, the more recent habit literature allows for bliss to be determined
by conditional state variables, such as lagged idiosyncratic or aggregate consumption.

Focusing on minimum admissible consumption instead of curvature or impatience
indices is sensible. Indeed, bliss and attitudes toward risk are closely related. The closer
consumption is to bliss, the steeper is the marginal utility schedule. This implies that
small movements in consumption cause larger fluctuations in marginal utility. To the
extent that the agent selects his portfolio so as to hedge away these risks, in HARA
utility, the distance between consumption and bliss directly determines risk aversion and
portfolio. Moreover, the CRRA restriction of zero bliss is not innocuous. Under the more
general HARA utility, non-zero bliss implies that both consumption and asset holding
schedules have a state-independent non-zero intercept. This is important to the extent
that it allows consumption and portfolio shares of wealth to be time-varying, a feature
that is also found in the data (see Figure 3 in Appendix E).

Furthermore, allowing for time-varying instead of constant bliss is intuitively appeal-
ing. In both CRRA and HARA, this level is taken as a deep parameter. This restriction
appears excessive. Subsistance may be interpreted as a subjective, as well as physiolog-
ical, measure. It seems more realistic to allow for our basic needs to evolve with age,
habits or wealth levels. What is considered basic minimum when young or poor need not
be the same at an older age or when richer. If this is the case, bliss consumption should
be allowed to evolve with time and/or economic conditions.

Unfortunately, the empirical gains of habit preferences has been mitigated. On one
hand, the higher savings rate required to maintain habits helps to understand the low
observed returns on risk-less assets. However, ultimately, the only source of inter-temporal
marginal rates of substitution (IMRS) risk remains consumption. This risk is the only
determinant of excess returns in preference-based models of asset returns. Since aggregate
consumption is a despairingly smooth series, it is weakly correlated with returns. The
quantity of consumption risk is consequently too low to justify the high observed premia
on risky assets.

These elements suggest that bliss consumption level should be (i) nonzero, and (ii)
state-dependent. Since consumption was found to be inadequate, a natural alternative as
a determinant of bliss is wealth. Wealth, as primary state variable, is a good proxy for
economic conditions. Furthermore, direct preference for wealth can be explained through
a preference-for-status, ‘capitalistic spirit’, argument. We therefore introduce a wealth-
dependent utility (WDU) function in which the Bernoulli concave transform is applied
to an affine function of consumption and wealth. This utility simplifies to a HARA
class under wealth independence, otherwise bliss is a linear function of wealth. Our
application focuses on the inter-temporal consumption–portfolio problem. We have three
contributions: (i) we identify closed-form solutions for optimal consumption and portfolio
rules; (ii) we use the optimal rules to estimate the model using aggregate portfolio data,
and (iii) we derive and discuss the pricing implications of our results.
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When wealth enters negatively in the utility, increases in wealth cause clockwise rota-
tions in the marginal utility (MU) schedule. Higher wealth causes a ratchet effect whereby
the bliss level increases. Since bliss is the minimum admissible consumption level, this
also causes an increase in consumption risk aversion, i.e. risk aversion is pro-cyclical.
When wealth enters positively in the utility, increases in wealth cause a counter-clockwise
rotation in the MU schedule. A higher level of wealth causes a blasé effect whereby the
same level of consumption is valued less by the wealthier investor. Since the slope of the
MU schedule falls, this implies that consumption risk aversion is counter-cyclical.1

Contrary to habit models, bliss is only indirectly related to past consumption. Move-
ments in the reference point can be caused by factors that are independent of the agent’s
decisions, such as the realizations of individual returns that compose the total wealth
portfolio. Therefore, the agent has only partial control over movements in bliss through
his savings and portfolio decisions. We show that this will have important consequences
for the MU risk, and therefore the optimal rules and pricing implications.

Our first main contribution is that we derive closed-form expressions for optimal con-
sumption and portfolio rules. We find that the value function remains iso-morphic to the
instantaneous utility. Consequently, both consumption, and the value invested in assets
are affine functions of wealth. This implies that neither the average propensity to consume,
nor the portfolio shares are constant, but move depending on the wealth level. This result
is useful to the extent that it predicts cyclical movements in the value invested in assets
relative to one another. Moreover, time variation in the consumption-wealth ratio accords
with the findings of Lettau and Ludvigson (2001a,b) that this variable is counter-cyclical,
and has predictive power over returns.

Secondly, estimation of the model focuses on the closed-form consumption and portfo-
lio. More precisely, we estimate a multivariate system composed of instantaneous changes
in consumption, asset holdings, wealth, and asset returns. The first three elements in-
corporate the full theoretical restrictions, both on the conditional first, and conditional
second moments. Asset returns are unrestricted and included to correct inference for the
uncertainty regarding the distributional parameters used in the closed-form expressions.
We innovate from standard approaches which typically treat consumption growth as ex-
ogenous and estimate the model applying the theoretical restrictions on returns instead.

The resulting empirical model is a multivariate Brownian motion that presents esti-
mation challenges as both drifts and diffusions are affine functions of the state variable.
These functions do not admit closed-form expressions for the transition density. We
therefore resort to a homoscedasticity-inducing transformation which also stationarizes
the drift term. The transformed model can consequently be estimated using a discrete
time differencing approach without inducing any time discretization biases.

We estimate the model by maximum likelihood for three utility functions: CRRA,
HARA, and WDU. Our first step is to test the theoretical restrictions that guarantee
monotonicity. We next discuss the estimated parameters, inference, and derived variables
of interest, followed by formal specifications tests. Under a suitable identification strategy,
we find that our estimates are (i) theoretically acceptable, (ii) intuitively realistic. In
particular, both the curvature parameter and risk aversion index are within reasonable
bounds when the subjective discount rate is calibrated to a realistic value. Our results
are also indicative of a blasé behavior in portfolio choices. Moreover, risk aversion is
found to be counter-cyclical, increasing in downturns and falling during recoveries. This

1A positive effect of wealth can also be related to durability. Since total wealth includes durable goods,
positive cross effects on nondurables consumption utility would be captured by our model.
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result is consistent with findings in returns space that allow for time-varying risk aversion
(Gordon and St-Amour, 2000; Melino and Yiang, in press; Gordon and St-Amour, in
press). Finally we find that the null of CRRA preferences is strongly rejected when tested
against HARA or WDU utility. However, we do not reject the null of HARA when the
alternative is taken to be WDU.

Our third contribution is a derivation of the corresponding expressions for the assets’
returns. Our model generates a linear multi-factor premia in which both consumption,
and total wealth (i.e. market) risks are theoretically valued by investors. Moreover,
the price of consumption risk remains the Arrow-Pratt coefficient of relative consumption
risk aversion, whereas the price of market risk has the intuitive interpretation of being the
Arrow-Pratt coefficient, evaluated over relative wealth risk aversion. Hence, our pricing
kernel can be interpreted as a weighted average between a standard, wealth-independent
C-CAPM, and a static CAPM, where the weights are given by the relative importance of
consumption, versus wealth risk aversion. Two-factor pricing kernels can also be obtained
using non-expected utility. In contrast, our approach is derived under Von Neumann–
Morgenstern (VNM) preferences; a test that the market risk is valued simplifies to a test
of wealth dependence, rather than a joint test of state- and time- non-separability.

Our framework has the potential to explain the three main empirical anomalies of the
C-CAPM. First, the additional risk contributed by covariances of individual returns with
total wealth is likely to help explain the high observed premia on risky assets. Secondly,
since both consumption and wealth risk aversion follow cyclical movements, this model
can address the predictability found in excess returns. Finally, we show that our model
may explain the low rate of return on a risk-free asset through the effect on the mean and
variance of the inter-temporal marginal rate of substitution.

The rest of this paper is organized as follows. After discussing the relevant literature
in Section 1.2, we outline the model in Section 2 and the closed-form solutions. Next, we
introduce the empirical methods in Section 3, and present the estimation results in Sec-
tion 4. We discuss the pricing implications of these results in Section 5, before concluding
in Section 6. All proofs and most figures are regrouped in the Appendix.

1.2 Relevant literature

Preferences Our modelling approach for preferences can be related to the literature
on state-dependent preferences. These preferences assume that the agent’s within-period
utility Ut = U(Ct, Zt) is a function of consumption Ct, as well as one (or many) state
variable(s) Zt. These variables are usually restricted to be conditional states, i.e. they do
not belong to the control set at the time of the decision. The models essentially differ in
(i) their choice of the state Zt, and (ii) the functional form for U(·, ·). Table 1 describes
a sample of state-dependent models.

Sundaresan (1989) as well as Ferson and Constantinides (1991) are both early exam-
ples of habit models. Specifically, the time-varying bliss factor −ηt is a function of past
consumption profiles which represent the state. If η′t < 0, then high current consumption
imply larger future bliss levels. Ferson and Constantinides (1991) find that habit prefer-
ences are able to explain the low risk-free rate, but not the high equity premia. Similarly,
Campbell and Cochrane (1999) allow for bliss to be related to consumption. However,
they restrict consumption to be aggregate consumption profile C̄t, i.e. both a conditional
and an unconditional state variable. Similar to Ferson and Constantinides (1991), they
find that this slow-moving habit model is unable to explain the equity premium puzzle
but can successfully address the low risk-free rate.
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Table 1: State-Dependent Preferences

Authors Ut = U(Ct, Zt)
Sundaresan (1989), Ferson and Constantinides (1991) [Ct + η(Ct−1)]

1−γ

Campbell and Cochrane (1999) [Ct + η(C̄t)]
1−γ

Bakshi and Chen (1996), Gong and Zou (2002) C1−γ
t g(Wt, W̄t)

Falato (2003) [h(Ct,Wt)]
1−γ

Barberis et al. (2001) C1−γ
t [1 + v(Xt+1, St, vt)/Ct]

Gordon and St-Amour (2000, in press), Danthine et al. (2002) C
1−γ(Zt)
t

St-Amour (2004) Ut = [Ct + η(Wt)]
1−γ .

The intuition for these mitigated results is straightforward. A habit investor needs
to save more in order to maintain his future habits. Consequently, he is willing to pay
a higher price for the risk-less asset. However, the only source of MU risk for habit
preferences remains consumption. Since this series is quite smooth, its covariance with
returns is too low to justify the high premia, unless risk aversion is excessive (see also
Barberis et al., 2001, for a discussion).

Our model is similar in terms of functional form, but differs in the choice of state
variable. We also focus on the bliss point but instead relate the state to the investor’s
total wealth. Because consumption risk is minimal, we resort to total wealth risk. This is
achieved by introducing wealth as the preference state variable. If this second source of
risk is large, and if this risk is positively valued by the market, then its presence should
help resolving the high equity premium puzzle. By keeping the habit perspective, we hope
to be able to preserve the model’s favorable results with respect to the predicted risk-free
rate.

Recent research also explores the implications of wealth-dependent utility for asset
prices. Bakshi and Chen (1996) incorporate direct preference for wealth to the standard
consumption utility. They rationalize wealth dependency through a preference-for-status
argument put forward by Robson (1992). Agents care about their social position, relative
to their reference group. As a result, the pricing kernel incorporates both consumption
and total wealth risk. They show that this increment in MU risk can successfully address
the main pricing anomalies. This is confirmed by Gong and Zou (2002) who extend the
analysis to a stochastic growth setting. They find that preference for wealth results in
a higher premia, more investment in risky assets, a lower consumption-wealth ratio and
consequently a larger growth rate. Similarly, Falato (2003) introduces direct preference
for wealth in the utility function. Imposing a pro-cyclical effect of wealth (‘happiness
maintenance’), he derives the pricing implications, and shows that mild pro-cyclicality
generates a larger volatility in the price-dividends ratio and consequently, a higher premia.

Our approach is qualitatively similar. In our discussion of results in Section 5, we
also derive pricing implications and closed-form solutions. However, our specification
for within-period utility bears closer resemblance to the habit literature. Our focus is
on the role of wealth in determining the bliss factor, rather than using a multiplicative
specification. As already mentioned, an advantage of our approach is on the intuitive
interpretation of the price of total wealth risk as the Arrow-Pratt level of relative risk
aversion. Moreover, contrary to Bakshi and Chen (1996) and Gong and Zou (2002), our
structure explicitly generates time-varying consumption risk aversion. Movements in bliss
cause rotations, rather than shifts, in the MU schedule and corresponding movements in
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risk aversion. Finally, contrary to Falato (2003), we do not impose any ex-ante pro- or
counter-cyclicality on attitudes toward risk, but let this issue be determined by the data.

Barberis et al. (2001) consider a model where utility is subject to (i) loss aversion,
and (ii) wealth dependence. Their framework uses the prospect theory of Kahneman and
Tversky (1979) to allow for an asymmetric utility effect from losses and gains, whether
current (Xt+1), or past (zt) in addition of consumption utility. Moreover, the level of
risky financial wealth St affects consumption utility. They find an additional financial
risk in the pricing equation which reduces the emphasis placed upon consumption risk,
and allows them to solve the main pricing anomalies.

Their framework raises a number of questions. First, it seems debatable that only
financial wealth should affect utility. As is well known, financial wealth, despite recent
increases, remains a relatively modest share of net worth (Canner et al., 1997; Heaton
and Lucas, 2000a). Recent research by Heaton and Lucas (2000a,b), as well as by Jagan-
nathan and Wang (1996) shows that other assets, such as residential assets, proprietary
entrepreneurial assets, and human capital are important in terms of shares of total wealth,
and asset pricing impacts. Second, their model requires a series of auxiliary assumptions
to be operational. In particular, four additional parameters for which theory offers little
guidance need to be calibrated. These parameters govern the relative importance of the
loss aversion versus wealth dependency, as well as the derivation of the benchmark used
to evaluate performance. Finally, and related to the last point, their results show that
loss aversion alone cannot solve the pricing puzzles; they do not consider the possibility
for financial wealth in solving the anomalies by itself.

Contrary to Barberis et al. (2001), our theoretical model does not restrict preference for
status to specific components of total wealth.2 Moreover, our framework does not require
a differential treatment of losses and gains, i.e. we abstract completely from loss aversion.
Our approach is therefore considerably simpler to implement; we require identification
of a single additional parameter. Importantly, this parameter is estimated, rather than
calibrated. Its reasonableness can be established by (i) formally testing the theoretical
restrictions and (ii) deriving the asset pricing implications of the model evaluated at its
estimated parameters to compare it with known facts characterizing returns.

Finally, Gordon and St-Amour (2000, in press), as well as Danthine et al. (2002)
remain agnostic about the conditioning preference state Zt, while treating the Arrow-
Pratt index γt as state-dependent. Gordon and St-Amour (2000) find that a two-state
Markov process can rationalize stock and bond prices, whereas Gordon and St-Amour (in
press) extend this analysis to a continuum of states. Both models generate considerable
counter-cyclicality in risk aversion indices which helps addressing the predictability puzzle.
Danthine et al. (2002) use a state-dependent utility approach in a Mehra-Prescott economy
where the state is correlated with consumption growth regimes. They show that whether
risk aversion is pro- or counter-cyclical has little impact on the theoretical mean premia
and risk-free rate, but do not discuss its implications for the predictability of the premia.

Our approach differs considerably. First our functional form imposes a constant cur-
vature index; fluctuations in risk aversion are caused by movements in and around bliss,
rather than by movements in γ. Second we select total wealth as the state variable. Fi-
nally, our focus is on predictions in goods rather than price space. Nonetheless, as will be
seen later, counter-cyclical risk aversion remains a salient feature of our empirical findings.

2Although, our empirical implementation relies on elements of financial wealth for practical reasons
which are discussed below.
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Other literature From a different perspective, observing that returns display consider-
able predictability, Lettau and Ludvigson (2001a,b) analyze the role of the consumption-
wealth ratio as a conditioning variable in assessing the performance of the conditional
CAPM and C-CAPM. The intuition is that changes in the consumption share reflects
changes in expected future returns on total wealth induced by changes in individual re-
turns. As such, it should have predictive power in explaining ex-post returns. Since human
wealth is unobservable, they assume that labor income is the annuity value accruing to
the holder of human capital. This procedure allows them to identify wealth based only
on observable non-human net worth, and labor income. They find that the consumption
share improves the performance of the CAPM and C-CAPM to a level comparable to the
Fama and French (1992, 1993) three-factor model.

We differ from Lettau and Ludvigson (2001a,b) in a number of important ways. First,
we do not focus on conditional version of the C-CAPM with time-varying loadings, but
rather explicitly derive pricing restrictions on the kernel. Importantly, we derive and focus
on closed-form solutions for optimal consumption and portfolio. As anticipated, all our
shares are explicitly time-varying, whereas Lettau and Ludvigson (2001a) need to assume
constant portfolio shares to derive the time-varying consumption-wealth ratio. This re-
striction is at odds with the evidence presented in Figure 3 in which both consumption
and portfolio are time-varying.

2 Model

2.1 Economic environment and preferences

Uncertainty We assume that the stochastic environment is described by a standard
Brownian motion Z t ∈ Rd on a complete probability space (Ω,F , Q), with filtration
F = {Ft : t ≥ 0} and infinite time horizon.

Securities The investment set consists of n + 1 securities, in positive net supply, with
prices P t ∈ Rn+1, which are assumed to be adapted Itô processes:

dP t

P t

= µp,tdt+ σp,tdZt, (1)

dP0,t

P0,t

= rtdt, (2)

where µp,t ∈ Rn and σp,t ∈ Rn×d are respectively a drift and diffusion term, and rt is the
rate of return on a risk-free asset indexed 0. All processes are Ft–measurable. The prices
P t include all associated payments, such as dividends.

Budget constraint A representative agent’s budget constraint is given by:

dWt = {[v
′
t(µp,t − rt) + rt]Wt − Ct}dt+Wtv

′
tσp,tdZt, (3)

where Wt is current-period wealth, vt ∈ Rn is a vector of portfolio weights and Ct is
consumption.
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Preferences The representative agent’s preferences are characterized by wealth-dependent
utility:

E0

∫ ∞

0

exp(−ρt)U(Ct,Wt)dt, (4)

where E0 is a conditional expectations operator, ρ > 0 is a subjective discount rate, and
U(·,Wt) is a monotone increasing and concave instantaneous utility function that will be
discussed shortly.

Objectives The agent’s objective will be to maximize expected utility (4) subject to
the budget constraint (3). Denote by Jt = J(Wt) the value function, and by Ji,t, and Jij,t
its first and cross derivatives with respect to argument i and ij. For this program, the
Bellman equation can be written as:

0 = max
{Ct,vt}

U (Ct,Wt)− ρJt + Jw,t{[(µp,t − rt)
′vt + rt]Wt − Ct}+ 0.5W 2

t Jww,tv
′
tΣpp,tvt

(5)

where Σij,t ≡ Et[σi,tdZtdZ
′
tσ
′
j,t] is positive semi-definite matrix of instantaneous covari-

ances for processes i, j.

Instantaneous utility The agent’s within-period utility is given by:

U(C,W ) =

{

(ηcC+η0+ηwW )1−γ

1−γ
, ifγ 6= 1;

log(ηcC + η0 + ηwW ), ifγ = 1
(6)

Utility (6) belongs to the HARA class advocated by Rubinstein (1974), modified to allow
for wealth dependence. Following Merton (1990, p. 137), the necessary HARA restrictions
are:

ηc > 0, ηcC + η0 + ηwW > 0, γ ≥ 0. (7)

These restrictions are required to guarantee monotonicity and concavity. To these, we
add a further theoretical restriction that bounds below and above the term ηw:

−1 < ηw/ηc < ρ. (8)

This restriction allows for negative or positive values of the loading of wealth in the utility
function, ηw, but limits the size of the effect.3

3The theoretical restriction (8) is suggested from the financial problem we are analyzing. Consider
the discrete-time analog of maximizing (4) subject to (3). First-order and Envelope conditions yield the
following:

Uc,t = exp(−ρ)Et{[Uc,t+1 + Uw,t+1]Ri,t+1},

or,

1 = exp(−ρ)(1 + ηw/ηc)Et

{

(

ηcCt+1 + η0 + ηwWt+1

ηcCt + η0 + ηwWt

)−γ

Ri,t+1

}

.

This Euler equation has a familiar representation, with the exception that the subjective discount factor
is now modified to allow for wealth dependence. It is reasonable to expect that the effective discount
factor, exp(−ρ)(1 + ηw/ηc) ∈ (0, 1). Restriction (8) follows immediately.

7



Subject to restrictions (7) and (8), the utility function (6) has interesting properties.
The expression Cbliss,t ≡ −(η0+ηwWt)/ηc has the interpretation of a reference (bliss) level
of consumption. More precisely, as consumption falls toward bliss, marginal utility goes to
infinity, such that Cbliss,t is the minimum admissible consumption level. In addition, under
WDU, the bliss level changes because of changes in wealth. In contrast, slow-moving
habit or durability models let the reference level be a function of past consumption,
whether idiosyncratic, or aggregate. Finally, CRRA utility and HARA utility fix the bliss
consumption to 0 and −η0/ηc respectively, both state-independent levels.

The marginal utility, cross effect and the Arrow-Pratt coefficient of absolute risk aver-
sion (calculated with respect to consumption and wealth) are respectively:

Ux =
ηx

(ηcC + η0 + ηwW )γ
, (9)

Uxy =
−γηxηy

(ηcC + η0 + ηwW )γ+1 , (10)

Rax ≡
−Uxx

Ux

=
γηx

(ηcC + η0 + ηwW )
, (11)

where Ux denotes the partial derivative with respect to argument x, y ∈ {c, w}, Rax is
the Arrow-Pratt absolute x−risk aversion index, and Rax

y is its derivative with respect to
argument y. We summarize the sign of these as well as other variables of interest in the
following Table 2.

Table 2: Sign of variables of interest

ηw < 0 ηw > 0
(ratchet) (blasé)

Uc positive positive
Uw negative positive
Ucw positive negative
Rac positive positive
Raw negative positive
Rac

w positive negative
Rac

c negative negative
Raw

w negative negative
Raw

c positive negative

A first observation is that wealth-dependent utility is monotone increasing in con-
sumption, and monotone increasing or decreasing in wealth depending on the sign of ηw.
Second, utility is always concave in consumption and in wealth, regardless of the sign of
ηw. It follows that the sign of ηw also determines the sign of the Arrow-Pratt absolute
risk aversion index; an agent can simultaneously be risk averse over consumption and risk
lover over wealth. Note also that the ratio of marginal utilities of consumption and of
wealth is constant and equal to the ratio of the consumption and wealth risk aversion:

Uw

Uc

=
Raw

Rac
=

ηw
ηc
. (12)

This last result will have important implications for both returns and optimal rules, as
will be discussed later.
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Third, the sign of ηw can be associated to the presence of ‘visceral factors’ identified
by Loewenstein (2000). These are taken to represent emotions that affect an individual’s
behavior. For example, a negative visceral factor such as hunger increases the marginal
utility of food, but reduces the overall utility level if left unaddressed. A similar effect is
obtained when ηw < 0 (i.e. Ucw > 0, Uw < 0), whereas positive visceral factors are derived
for ηw > 0. Loewenstein (2000) argues that visceral factors have important implications
for decision making. In particular, he maintains that effective time discounting and the
divergence between cognitive and objective evaluations of risk are altered. We will show
later that this is effectively the case in our setting.

Fourth, note that, as for other quasi-homothetic preferences, relative risk aversion is
not constant. However, contrary to standard HARA utility, such movements are caused
by movements in wealth, in addition to changes in consumption. To see this, consider
the effect on marginal utility of consumption following an increase in wealth. As shown

−(ηwW0)
−(ηwW1)

ηcC0 + η0

Uc = ηc(ηcC + η0 + ηwW )−γ

a

b
Uc,1

Uc,0

Figure 1: Effects of increase in wealth on marginal utility, Ratchet Investors (ηw < 0)

in Figure 1, when ηw < 0, as wealth increases, so does the minimum level of consump-
tion required for marginal utility to be well defined, from −ηwW0, to −ηwW1. Hence, a
negative wealth dependence involves a ratchet effect whereby the bliss consumption level
increases in wealth. This leads to a clockwise rotation in the marginal utility schedule
from Uc,0 to Uc,1, and increases marginal utility from a to b. Put differently, as wealth in-
creases, the agent approaches his reference consumption, and becomes more averse toward
consumption risk.

Next, these movements in marginal utility and risk aversion are reversed for ηw > 0, as
shown in Figure 2. An increase in wealth now reduces minimum admissible consumption
from −ηwW0, to −ηwW1. This causes a counter-clockwise rotation in the marginal utility
schedule from Uc,0 to Uc,1, and a reduction in the marginal utility of consuming the same
level of nondurable good falls from a to b. This effect could be related to blasé behavior;
as the investor becomes richer, for a given level of consumption, both marginal utility and
consumption risk aversion fall.

Finally, Table 2 establishes that the decreasing absolute risk aversion (DARA) prop-
erty is maintained in all cases for blasé utility. Ratchet preferences on the other hand
maintains DARA only in the case of the own effect, i.e. absolute consumption (wealth)
risk aversion is decreasing in consumption (wealth), but not for cross effects. DARA is
widely considered as desirable in the specification of preferences (e.g. Gollier, 2002; Dionne
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−(ηwW1)
−(ηwW0)

ηcC0 + η0

Uc = ηc(ηcC + η0 + ηwW )−γ

b

a

Uc,0

Uc,1

Figure 2: Effects of increase in wealth on marginal utility, Blasé Investors (ηw > 0)

and Ingabire, 2001). However it is usually understood in the sense of own, rather than
cross effects.

Optimum Returning to the agent’s problem, the n + 1 first-order conditions for an
interior optimum are:

Uc,t − Jw,t = 0, (13)

Jw,t(µp,t − rt)Wt + Jww,tΣpp,tvtW
2
t = 0. (14)

Equations (13) and (14) can be solved either (i) from a goods space perspective, i.e.
solving for optimal consumption and portfolio, given an exogenous forcing process for
excess returns, or (ii) from a price space perspective, i.e. solving for the risk premium
µp,t − rt, given an exogenous process for consumption and portfolio shares. In what
follows, we focus on the goods space analysis and postpone our discussion of asset returns
until Section 5.

2.2 Optimal Consumption and Portfolio Rules

Up to now, our economic environment is general in the sense that it allows for a time-
varying investment set. In order to derive closed-form solutions however, it is more
convenient to start with a constant set assumption. We relax this restriction later when
we discuss the asset pricing implications of our results. As usual, a constant set requires
constant drift and diffusion terms.

Definition 1 (CIOS) A constant investment opportunity set (CIOS) obtains when:

µp,t − rt = µp − r; rt = r; σi,t = σi, ∀i, t. (15)

The following intermediate result will be useful for the derivation of the optimal rules.

Lemma 1 Under CIOS, the indirect utility function is:

J(Wt) =
(G+ FWt)

1−γ

1− γ
, (16)
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where G and F are constants that depend only on the model’s primitives:

F = ηc

{(

γ − 1

γ

)(

r +
ηw
ηc

+
ρ

γ − 1
+ 0.5Q/γ

)}γ/(γ−1)

, (17)

G =
η0

ηc

{

(

γ

γ − 1

)

1

ηc

(

F

ηc

)−1/γ

−
ρ

F (γ − 1)
−

0.5Q

γF

}−1

, (18)

Proof. See Appendix A.
Lemma 1 reveals interesting characteristics of the value function. First, we find that

J(Wt) is iso-morphic to the instantaneous utility function U(Ct,Wt) in (6). The particular
form of wealth dependence that we are considering supposes that the Bernoulli transform
is applied to an affine function of wealth. This functional has the property that the value
function is also in the HARA class. Note in particular that η0 = 0 implies G = 0, such
that the value function becomes iso-elastic despite the wealth dependence.

Second, following our previous analysis, we can analyze risk aversion using the marginal
utility of wealth schedule, Jw,t = J ′(Wt), and the distance of an arbitrary wealth level Wt

from minimum admissible bliss level. In particular, straightforward manipulations reveal
that:

Wbliss ≡
−G

F
=

−η0

ηcr + ηw
, (19)

−WtJww,t
Jw,t

=
γWt

Wt −Wbliss

. (20)

The bliss level of wealth (19) can take on negative or positive values depending on the
parameters ηi, i = 0, c, w and on the interest rate r. In particular, since ηc, r > 0, ηw < 0
pushes the bliss level away from zero, ηw > 0 pushes it toward zero. For Wbliss < 0, a
positive ηw (blasé) moves the bliss asymptote to the right. Given any wealth level, the
agent is closer to bliss, and therefore characterized by a higher degree of absolute risk
aversion. A negative ηw (ratchet) decreases absolute risk aversion for the opposite reason.
When Wbliss > 0, movements in bliss are reversed, and we find that a blasé investor has
lower absolute risk aversion than a ratchet investor. With respect to relative risk aversion
(20), a (negative) positive bliss implies that risk aversion is (pro-) counter-cyclical. These
elements will have important implications for the optimal consumption and portfolio rules,
an issue to which we now turn.

Proposition 1 Under CIOS, the optimal consumption and value invested in assets are:

Ct =
η0

ηc

{(

γ − 1

γ

)(

ρ/(γ − 1) + 0.5Q/γ

r + ηw/ηc

)

−
1

γ

}

+

{(

γ − 1

γ

)

(r + ρ/(γ − 1) + 0.5Q/γ)−
ηw
ηcγ

}

Wt, (21)

Vt =

(

η0/ηc
r + ηw/ηc

)

Σ−1
pp (µp − r)

γ
+
Σ−1

pp (µp − r)

γ
Wt, (22)

where Q ≡ (µp − r)′Σ−1
pp (µp − r) ≥ 0, and where V t ≡ vtWt.

Proof. See Appendix B.
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Proposition 1 shows that the optimal rules are affine in wealth. As for the standard
HARA utility, imposing η0 = 0 results in the iso-elastic case of both rules being propor-
tional to net worth. Otherwise, wealth dependence affects both the intercept (Ct,V t) and
the slope (Ct) of the closed-form solutions. To isolate these effects, it is useful to resort to
our previous analysis of the value function. Note that we can indeed rewrite the optimal
rules as:

Ct = −

{(

γ − 1

γ

)

Wbliss [ρ/(γ − 1) + 0.5Q/γ] +
η0

γηc

}

+

{(

γ − 1

γ

)

[r + ρ/(γ − 1) + 0.5Q/γ]−
ηw
γηc

}

Wt, (23)

(µp − r)′V t =
Q

γ
{−Wbliss +Wt}, (24)

where Wbliss is given by (19). For the rest of this section’s analysis, assume that the
investor is at least moderately risk averse, i.e γ > 1.

First, turning to consumption, we obtain the intuitive result that for positive Wbliss,
minimum consumption, i.e the intercept in (23), is negative (or less positive), and positive
(or less negative) otherwise. Ceteris paribus, a positive bliss implies a steeper marginal
utility of wealth at the optimum, and consequently, greater IMRS risk. The risk-averse
investor reacts to this by increasing wealth away from bliss. This is achieved by decreasing
consumption and increasing savings. Secondly, regardless of bliss, it is straightforward
to show that a blasé investor always has a higher minimum consumption, and a lower
marginal propensity to consume out of wealth than a ratchet investor. This result is again
intuitively appealing. Because higher wealth reduces his marginal utility of consumption
more rapidly, a blasé investor always consumes less at the margin. At very low wealth
levels however, from the cross effects in Table 2, marginal utility of consumption is higher
and the blasé agent consumes more.

Third, (24) expresses the expected excess return (in $ terms) on the optimal total
wealth portfolio. As usual, higher curvature γ results in more conservative positions.
Again, bliss levels of wealth influence the intercept terms. A positive Wbliss implies more
MU risk at any wealth levels. The risk-averse agent hedges away these risks by select-
ing more conservative portfolios. Negative bliss values however reduce risk aversion and
increase the asset values held in risky assets. Fourth, for reasons discussed earlier, when
bliss is negative, ηw < 0 shifts bliss to the left and decreases risk aversion; the ratchet
investor therefore selects a more risky portfolio, the blasé a more conservative one. These
positions are reversed for Wbliss > 0; the blasé investor’s portfolio is more risky compared
to the ratchet’s.

Clearly linearity for the optimal rules (21), and (22) implies that the change in con-
sumption and portfolio are dCt = cwdWt, and dV t = vwdWt, where cw,vw are constants
defined by Proposition 1. We can also substitute the solutions in the budget constraint (3)
to obtain the closed-form expression for instantaneous changes in wealth. Consequently
the following results are obtained:
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Corollary 1 The instantaneous changes in consumption, the value invested in assets,
and wealth are:

dCt =

{(

γ − 1

γ

)

(r + ρ/(γ − 1) + 0.5Q/γ)−
1

γ

ηw
ηc

}

dWt, (25)

dV t =
Σ−1

pp (µp − r)

γ
dWt, (26)

dWt =

[

η0/ηc + (r + ηw/ηc)Wt

γ(r + ηw/ηc)

]{[(

γ + 1

γ

)

0.5Q+ r + ηw/ηc − ρ

]

dt

+(µp − r)′Σ−1
pp σpdZt

}

. (27)

3 Estimation

3.1 Econometric Model

Estimation focuses on the multivariate Brownian motion given by Corollary 1, which can
be written as:

dCt = cwdWt, (28)

dV t = vwdWt, (29)

dWt = [µ0 + µwWt]dt+ [σ0 + σwWt]dZt, (30)

where cw,vw, µ0, µw, σ0, σw are constant loadings that depend only on the deep parameters.
In principle, estimation of the model could be undertaken in price space or in quantity

space (i.e. imposing the restrictions implied by Proposition 1). We select the second ap-
proach for a number of reasons. First, the quantity space results impose considerably more
theoretical restrictions on the moments of interest. These restrictions are summarized in
Table 3.

Table 3: Comparisons of Moments Restrictions

Price space analysis Quantity space analysis
Proposition 1

Conditional means
– quantities unrestricted restricted
– returns restricted unrestricted
Conditional variances
– quantities unrestricted restricted
– returns unrestricted unrestricted
Conditional covariances
– quantities–quantities unrestricted restricted
– quantities–returns unrestricted restricted
– returns–returns unrestricted unrestricted

Standard analyses in price space treat the equilibrium quantities in the pricing kernels
as exogenous; the theoretical restrictions are imposed on the prices of risk exclusively,
with conditional second moments left unrestricted. In comparison, the quantity space
analysis produces theoretical restrictions on both first and second moments of changes
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in consumption, asset holdings and wealth, while returns are treated as exogenous. In
the absence of prior information on ηw in particular, these additional restrictions will be
useful in identifying the preference parameters of interest.

Second, empirical studies of aggregate optimal consumption and asset holdings are
much less frequent than asset pricing studies. We believe that focusing on quantities rather
than on returns thus provides another perspective that complements existing results. We
also elect to study instantaneous changes in quantities rather than levels. The motivation
behind this choice is that aggregate consumption, asset holdings and wealth are likely
to be non-stationary. To avoid well-known inference problems associated with integrated
data, we prefer to estimate the model using time-differenced data.

Transformation One major problem in estimating (28)–(30) is that there exists no
closed-form transition density for multi-variate Brownian motions with affine drifts and
diffusions. Indeed, analytical expressions for the likelihood function exist only for a limited
class of Itô processes (Melino, 1996). Unfortunately, our multi-variate process does not
belong to this class. Alternative solutions include discrete (Euler) approximations, and
simulating the continuous-time paths between the discretely-sampled data, either through
classical (Durham and Gallant, 2002) or through Bayesian (Eraker, 2001) approaches.

Our solution to this problem is different and considerably simpler to implement. It
is based on a homoscedasticity-inducing transformation for general Brownian motions.
It will be shown that this approach also stationarizes the drift term. Consequently, a
standard discretized approximation is appropriate, efficient, and unbiased. In particular,
a straightforward application of Itô’s lemma reveals the following.

Lemma 2 Let Xt ∈ {Ct,V t} be defined as follows:

Xt = x0 + xwWt, (31)

dWt = (µ0 + µwWt)dt+ (σ0 + σwWt)dZt, (32)

where x,µ,σ are constants defined in Proposition 1, and in Corolloray 1, and consider
the following transformation:

X̃t =
log[xwσ0 + σw(Xt − x0)]

σw
, (33)

Then, X̃t has constant drift and diffusion given by:

dX̃t =

[

µw

σw
− 0.5σw

]

dt+ dZt. (34)

Proof. See Appendix C.
The transformation (33) requires that its first derivative with respect to the Itô process

Xt is the inverse of the diffusion. It is usually introduced in order to stationarize the
diffusion (Shoji and Ozaki, 1998; Ait-Sahalia, 2002; Durham and Gallant, 2002). In our
case, both drift and diffusion are affine and have intercept and slope coefficients that are
closely inter-related. Consequently the theoretical restrictions implied by the model result
imply that the transformation also stationarizes the drift term. This is fortunate since the
resulting transformed model is easily estimated by maximum likelihood. In particular,
the discretization of (34):

∆X̃t =

[

µw

σw
− 0.5σw

]

+ εt (35)

where εt is a standard Gaussian term, can be consistently and efficiently estimated by
MLE (e.g. Gourieroux and Jasiak, 2001, pp. 287–288).
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Likelihood function The optimal rules in Proposition 1 take the moments of the
returns’ distribution µp,Σpp, as well as the risk-free rate r as given. These moments
could be estimated in an external round, using a two-step procedure, and substituted
back into the optimal rules to obtain the predicted rules. Instead, we perform a single-
step procedure and incorporate the risky returns into the calculation of the likelihood
function.4 This approach has the advantage of incorporating the parametric uncertainty
concerning µp,Σpp into the calculation of the standard errors of the deep parameters.

Specifically, denote by X̃ t ≡ [C̃t, Ṽ t, W̃t]
′ the n + 2 vector of transformed variables, the

model to be estimated is the following:
(

∆X̃ t

∆P t/P t−1

)

=

(

µx

µp

)

+

(

εx
εp

)

,

(

εx
εp

)

,∼ N.I.D.

((

0x
0p

)

,

(

Ix 0
0 Σpp

))

, (36)

where µx is given by (35), and Ix is an n+ 2 identity matrix.
First, in accordance with the maintained assumption of the model, all the innovations

are Gaussian. Second, as mentioned earlier, the transformation in Lemma 2 implies that
the quantities innovations are standardized white noise. Third, consistent with the model,
the covariance matrix is block diagonal, i.e. we impose the absence of cross-correlations
between innovations in quantities and returns. Any potential covariance between the two
is fully taken into account in the closed-form solutions; allowing for additional correlations
is not justified.

With these elements in mind, the contributions to the likelihood function (with con-
stant term omitted) are given by:

ft = −0.5 log[det (Σ)] + log[det(K t)]− 0.5ε′tΣ
−1εt (37)

where Σ is defined implicitly in (36), while K t ≡ Diag([Kc,t,Kv,t, Kw,t, 1, . . . 1]) and
Kx,t = 1/[xwσ0 + σw(Xt − x0)] is a Jacobian correction term associated with the trans-
formation (35). The parameter vector is then θ ≡ {γ, ρ, η0, ηc, ηw,µp,Qpp}, where Qpp ≡
Chol(Σpp) is the n-dimensional triangular Cholesky root of the returns covariance matrix.

Hypothesis tests It will be recalled that theoretical restrictions for HARA and WDU
utility are necessary to guarantee that marginal utility is non-negative. In particular,
for both models, restriction (7) is required for monotone preferences, whereas for WDU
utility, (8) verifies that the agent has a positive effective discount rate.

We also consider two benchmarks in assessing the performance of the WDU model.
As mentioned earlier, CRRA utility is obtained by imposing that η0, ηw = 0, whereas
HARA utility imposes ηw = 0. To the extent that it has been studied extensively in asset
pricing models, CRRA utility constitutes a natural benchmark. HARA utility, although
less popular, has the advantage of optimal rules which are not proportional to wealth (see
the previous discussion). Both the theoretical restrictions and the model selection tests
will be performed and discussed below.

3.2 Data

Our data set consists of post-war U.S. quarterly observations on aggregate consumption,
asset holdings and corresponding returns indices. The time period covered ranges from
1952:II to 2000:IV, for a total of 195 observations. All quantities are expressed in real,
per-capita terms, where the aggregate price index is taken to be the implicit GDP deflator.
Similarly, all returns are converted in real terms by subtracting the inflation index.

4Following standard practices, the risk-free rate r is calibrated to its mean value.
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Consumption The consumption series is the aggregate expenditure on Non-Durables
and Services. The source of the data is the Bureau of Economic Analysis NIPA series.
This series has been used in most asset pricing studies.

Assets The aggregate portfolio holdings are defined as follows:

V t = [V0,t, V1,t, V2,t]

= [Deposits, Bonds, Stocks].

Each asset holdings are obtained from the Flow of Funds Accounts made available by the
Board of Governors of the Federal Reserve (Table L.100). They correspond to the level
values of asset holdings by households and non-profit organizations (see also Lettau and
Ludvigson, 2003). More precisely the individual assets (mnemonic) are:

• Deposits (FL1540005): Includes foreign, checkable, time, savings deposits and money
market fund shares.

• Bonds (FL153061005): U.S. government securities (Treasury and Agency).

• Stocks (FL153064105) Corporate equities directly held by households.

Deposits will thus be taken to represent the risk-free asset, whereas both long-term gov-
ernment bonds and corporate equity are proxies for the risky assets.

The choice of specific portfolio holdings was dictated by a number of practical elements.
First, these assets correspond to some of the largest asset holdings for U.S. households, and
their returns have been studied extensively in the asset pricing literature, thus providing
useful benchmarks for our analysis. In particular, we are interested in verifying whether
the pricing anomalies are also observable in the quantity space. Second and related,
these assets have corresponding returns series. Those returns are required to evaluate the
distributional parameters µp,Σpp that are used to compute the theoretical asset holdings.
Other assets such as home equity or pension and life insurance reserves are also important
in relative size. However, no clear returns indices are available for these assets.5

Wealth Our empirical implementation defines wealth as the sum of the individual asset
holdings previously defined:

Wt = V0,t + V1,t + V2,t.

This definition has been used in theoretical models of portfolio choice (e.g. Campbell et al.,
2003). Its main advantage is that wealth is thus observable and the definition provides
more structure on the econometric model since one of the theoretical asset holding is the
defined residually.6 However, the definition is narrow in the sense that it abstracts from

5For example, pension reserves are typically invested differently by fund managers whether they are
defined benefit or defined contribution. Finding a unique pricing index for this series in the absence of
detailed information on the funds’ composition is impractical.

6In particular, (22) reveals that, for the risk-free asset:

V0,t = v00 + vw,0Wt (38)

where,

v00 = −v10 − v20, vw0 = 1− v1w − v2w. (39)
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tangible (real) and human wealth. Unfortunately, real returns indices on housing and
durable goods are difficult to evaluate, and these assets were omitted from our selected
holdings series V t. Moreover, human wealth is not observable, whether in levels or in
rates of returns and thus also eliminated.

Table 4 reports the sample moments for the consumption and asset holdings in per-
centage of wealth. Figure 3 in Appendix E plots these shares. A first observation is
that consumption, deposits and stocks are roughly of the same order of magnitude, and
similarly volatile. Bonds on the other hand represent a much lower share of wealth and
are smoother.

Table 4: Sample moments: Shares of wealth

mean std correlation
Consumption 0.525 0.096 1.000 0.907 -0.233 -0.947
Deposits 0.473 0.123 1.000 -0.519 -0.970
Bonds 0.088 0.031 1.000 0.295
Stocks 0.440 0.110 1.000

Secondly, shares experience considerable time variation. In particular, cash and con-
sumption display a strong positive correlation, particularly between the 1970’s and 90’s.
Apparently, households were keeping cash balances closely-aligned with consumption
needs during a high interest rate period. Conversely, stocks exhibit a strong negative
correlation with cash and consumption. Equity holdings appear particularly pro-cyclical:
decreasing during downturns, and picking up during recoveries. Finally, we find that bond
holdings are declining until the 80’s, and pretty much stagnant afterwards.

In summary, consumption and portfolio shares are clearly time varying, and subject
to cyclical movements. This suggests that preference specifications that yield constant
shares, such as CRRA utility, are clearly at odds with the data. Both HARA and WDU
on the other hand generate time variation in shares as long as η0 6= 0.

Returns We follow Campbell et al. (2003) in constructing the returns series that cor-
respond to our assets definition. The return on cash is taken to be the real return on
3-months Treasury Bills. The return on bonds is proxied by the real return on 5-years
T-Bills. Finally, stock returns are evaluated as the value-weighted returns on the NYSE,
NASDAQ and AMEX markets. Bond and stock returns were obtained from the CRSP
data file. Again, the inflation series is computed from the GDP deflator.

Table 5 presents sample moments of the real returns. These series have been widely
discussed in the asset pricing literature, so we only briefly outline their main features.
First, we observe that both bonds and stocks warrant a positive premia. Equity returns
however are clearly larger, and much more volatile. Next, we find that both cash and
bonds as well as bonds and stocks are positively, and similarly correlated. Cash and stocks
on the other hand display no covariance.

Table 5: Sample moments: Real Returns

mean std correlation
Deposits 0.017 0.022 1.000 0.236 0.005
Bonds 0.036 0.130 1.000 0.212
Stocks 0.137 0.342 1.000
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4 Results

4.1 Estimation details

Identifiability The theoretical model in Corollary 1 presents important challenges for
identification. Indeed, the parameters are often expressed as ratios of one another which
usually results in poor identifiability. These problems affect both the HARA and WDU
models, but not the CRRA model. As is well known, utility is defined only up to an
affine transformation such that the parameter ηc plays no role in the optimal rules when
η0, ηw = 0. In preliminary estimation rounds, we experimented with numerous identifica-
tion strategies which we briefly discuss.7

A first approach was to fix the subjective discount rate ρ to a realistic value, and
to let ηc be flexible. We found that both HARA and WDU models were then poorly
identifiable; results were highly dependent on starting values, and convergence problems
were noticed. Second, we let ρ be flexible, and fixed ηc. Whereas HARA utility was well
identified and yielded realistic ρ estimates, the WDU model was not. In particular, we
found that we could not identify ρ and ηw separately. Nonetheless, the effective discount
rate ρ − ηw/ηc was uniquely identifiable, and realistic. Finally, we fixed both ρ, ηc, and
found this approach to be the most satisfactory. Both models were then clearly identified,
with robustness to starting values and rapid convergence. We found that the curvature
parameter γ was completely independent from the choice of calibration for ηc. Moreover,
changing ηc resulted in changing the estimated η0, ηw in the same proportions, such that
the T-statistics were always unaffected by ηc. This again suggests that although the
ratios η0/ηc, ηw/ηc are well identified, the separate parameters are not. We therefore fix
ρ = (1+0.035)1/4−1, a realistic value, and arbitrarily impose ηc = 1 to estimate γ, η0, ηw.
The vector of free parameters is then {γ, η0, ηw,µp,Qpp}.

4.2 Parameter estimates

Table 6 presents the estimated parameters for model (36). Panel A imposes the CRRA
restrictions that η0 = ηw = 0; Panel B imposes the HARA restriction that ηw = 0.
Panel C relaxes these restrictions altogether for the WDU model.

Theoretical restrictions First, regarding the monotonicity restriction, CRRA utility
trivially respects non-negative marginal utility. In the case of HARA and WDU, this con-
dition needs to be verified. We test that monotonicity is always maintained by evaluating
(7) at the minimum consumption and wealth levels:

ηcmin(Ct) + η0 + ηw min(Wt) > 0

Since ηc ≡ 1 and ηw is estimated positive, this approach is sufficient to guarantee mono-
tonicity throughout our sample. For HARA utility, the statistic (standard error) is 6,474
(0.35); for WDU, it is 6,6157 (87.95). We thus conclude that monotonicity condition (7)
is verified for both HARA and WDU.

Second, we verify that the effective discount rate for WDU preferences is positive as
in (8). Since ηc ≡ 1, this is obtained by testing

H0 : ρ− ηw > 0.

7The full results can be obtained upon request.
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Table 6: Parameter Estimates
Param. Estim. T-stat. Estim. T-stat. Estim. T-stat.

A. CRRA B. HARA C. WDU
γ 6.187 4.822 5.799 2.747 5.340 4.059
η0 0.000 0.000 -17.319 -49.462 -93.809 -1.876
ηw 0.000 0.000 0.000 0.000 0.019 1.530
µ1 0.007 3.329 0.007 2.395 0.008 3.471
µ2 0.026 7.602 0.028 6.129 0.023 5.575
Q(1, 1) 0.031 19.369 0.031 19.685 0.030 19.519
Q(1, 2) 0.017 2.573 0.017 3.008 0.016 2.504
Q(2, 2) 0.080 19.073 0.079 19.914 0.080 19.303
LLF 6490.541 6382.977 6382.266

Note: Estimated model (36). Fixed parameters ρ = (1 + 0.035)1/4 − 1, and
ηc = 1. µp are the drift parameters, Qpp ≡ Chol(Σpp) is the Cholesky root of
the covariance matrix of the returns process.

Evaluated at our parameter estimates in Panel C, the effective discount rate is -0.0099
(0.0121), a negative but low value that is not statistically significant. A test of the null
hypothesis yields a p-value of 0.282, such that the null is not rejected. We therefore
conclude that all three models satisfy the theoretical restrictions and proceed with the
analysis of the point estimates.

Individual estimates The estimates for the curvature parameter γ in Table 6 are
positive, significant and realistic for all three preference specifications. Indeed, it is widely
accepted that this parameter should be positive, but less than 10 for iso-elastic utility (e.g.
Mehra and Prescott, 1985). Moreover, the point estimates are lower for WDU. Whether or
not this translates into a lower level of risk aversion for these functionals will be addressed
below.

Next, we find that the bliss parameter η0 is negative and very significant for HARA
utility, and even more negative, but less significant under WDU. This suggests that the
reference consumption level is positive under HARA preferences. Under WDU, the min-
imum admissible consumption level ranges between -100 and -800 and remains negative
throughout. Third, the wealth dependence parameter ηw is positive, although weakly
significant. This would be consistent with blasé investors.

The other parameters are the drift and diffusion parameters of the returns process.
These elements are only instrumental to our analysis and need not be discussed. Note
that, as expected, they are almost completely unaffected by our preference specifications.

Hypothesis tests We next perform Likelihood Ratio (LR) tests of the parametric
restrictions associated with the three preference specifications. Table 7 reports the test
statistics with the associated P-values.

When the alternative is taken to be either HARA or WDU, the null of CRRA utility
is strongly rejected. This suggests that the standard practice of focusing on iso-elastic
preferences in empirical pricing studies could fruitfully be revised. Consistent with our
earlier results, we see however that the null of HARA utility is rejected only at the 25%
level when tested against the alternative of WDU.
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Table 7: LR Tests
Null Alternative Statistic P-Value
CRRA HARA 215.13 0
CRRA WDU 216.55 0
HARA WDU 1.42 0.23

4.3 Risk Aversion Estimates

Figure 4 in Appendix E plots Rrc
t for the three utility functions. We find that CRRA

utility generates the highest, and WDU the lowest level of consumption risk aversion.
Moreover, consumption risk aversion under HARA is almost flat compared to that ob-
tained under WDU, i.e. HARA generates no perceptible cyclical variation in attitudes
towards consumption risk. Figure 5 plots the wealth risk aversion Rrw

t . Clearly, this index
is zero for both CRRA and HARA. The level for WDU is positive, generally lower, and
less volatile compared to consumption risk aversion.

A more definitive interpretation of the representative agent’s risk aversion can be
obtained from the indirect utility function Jt, and its corresponding relative risk aversion
index −WtJww,t/Jw,t in (20). This variable is plotted in Figure 6. Because the indirect
utility is iso-morphic to the instantaneous utility, the CRRA function has a constant index
equal to γ. For most of our sample, this level is lower than that obtained under HARA
and WDU. Note finally that the risk aversion under WDU is lower than that obtained
under HARA, with parallel time paths.

We can explore the issue of cyclical movements of attitudes toward risk by comparing
risk aversion series with indices of the state of the economy. For that purpose, we use the
University of Michigan Consumer Confidence Index, a subjective measure, which we plot
against the various measures of risk aversion obtained under WDU. Figure 7 plots the
consumption risk aversion against the confidence index. Clear counter-cyclical patterns
emerge. Risk aversion is initially decreasing until the late 60’s, when the confidence
index is stable. Then, risk aversion increases as the index falls in the early and mid
70’s. The gradual recovery in consumer sentiment is associated with a smooth decline in
consumption risk aversion.

The correspondence between attitudes toward risk and consumer confidence is even
more striking for wealth risk aversion in Figure 8. Pro-cyclical movements in wealth risk
aversion mimic almost exactly those in confidence, particularly up until the mid 70’s.
After that period, the gradual increase in confidence is associated with a smooth increase
in wealth risk aversion.

We therefore find strong counter-cyclical movements in consumption risk aversion,
and strong pro-cyclical movements in wealth risk aversion. To verify which one of those
two conflicting influences dominates, we plot the indirect risk aversion (20) against the
confidence index in Figure 9. Again, a counter-cyclical movement clearly emerges. To
understand this result, our estimates reveal that the bliss level of wealth (19) is Wbliss =
4126.1, a positive value, whereas wealth in our sample ranges between 11 thousand and 48
thousand $. As wealth increases above bliss, movements in marginal utility are reduced
and risk aversion falls. This accords with our previous discussion of the value function
in Lemma 1 that for positive bliss, a blasé investor has lower and counter-cyclical risk
aversion.
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5 Discussion: Implications for Asset Returns

Our empirical results obtained from the estimation of optimal consumption and portfolio
rules can be summarized as follows:

1. The intercept parameter η0 is negative.

2. The wealth-dependence term ηw is positive.

3. The curvature parameter γ is positive, realistic, and lower under WDU.

4. Risk aversion is counter-cyclical.

Because there is a relative paucity of empirical results in goods space for these models,
it is difficult to establish whether or not our findings make sense on a comparative basis.
Nonetheless, we can use the price space results to obtain further perspective.

We consequently consider the implications of our model and of our results for asset
returns. For that purpose, we take the more standard approach used in the empirical
asset pricing literature of solving the first-order conditions for mean excess and risk-free
returns. In a pure exchange economy, equilibrium is straightforward to characterize:
identical agents hold their asset endowments and consume the associated dividends flow.
Note that the constant investment set assumption (15) is no longer necessary so that the
following results are derived under the more general time-varying investment opportunity
set.8

Proposition 2 The vector of risk premia on risky assets is given by:

µp,t − rt = Rrc
t Covt

(

dCt

Ct

,
dP t

P t

)

+Rrw
t Covt

(

dWt

Wt

,
dP t

P t

)

. (40)

The risk-free rate is given by:

rt = ρ− ηw/ηc +Rrc
t Et

(

dCt

Ct

)

+Rrw
t Et

(

dWt

Wt

)

−0.5

(

γ + 1

γ

)

×

[

(Rrc
t )

2Vart

(

dCt

Ct

)

+2Rrc
t R

rw
t Covt

(

dCt

Ct

,
dWt

Wt

)

+(Rrw
t )2Vart

(

dWt

Wt

)

]

(41)

where:

Rrx
t ≡

−XtUxx,t

Ux,t

=

(

γηxXt

ηcCt + η0 + ηwWt

)

Proof. See Appendix D.

8Note that the rules in Proposition 1, which were obtained under a CIOS assumption, do not contradict
the premia and risk-free rate in Proposition 2. In particular, the optimal rules (21), (22) as well as
Corollary 1 can be used to compute closed-form expressions for risk aversion, conditional means, variances,
and covariances. Substituting the resulting expressions in (40) and (41) readily verifies that µp,t − rt =
µp − r, and rt = r as initially postulated in Proposition 1.

21



Risk premia The premia (40) is a two-factor pricing model, with the C-CAPM con-
sumption beta supplemented by the CAPM total wealth return beta. In particular, (11)
reveals that the price of consumption risk is the Arrow-Pratt risk aversion level, measured
with respect to consumption, and that the price of the market risk is the corresponding
Arrow-Pratt risk aversion, measured with respect to wealth. The model can be interpreted
as a weighted average of a static CAPM (ηc = 0), and a standard C-CAPM (ηw = 0),
where the weights depend on the relative contributions of consumption and wealth to the
agent’s utility. Epstein and Zin (1991) also obtain a two-factor model, although their
model is derived under non-expected utility, rather than VNM preferences. In addition,
the relative weights depend on the distance between risk aversion, and the inverse of the
elasticity of intertemporal substitution. In contrast, our measure assumes that the agent
is an expected-utility maximizer. Moreover, the relative weights under WDU reflect the
importance of consumption versus wealth risk aversion.

Our estimates indicate that optimal consumption is not proportional to wealth (find-
ing 1). This has important consequences for the pricing equations. To see this consider
the case where η0 = 0 in (21). Then, the consumption/wealth ratio is constant, and the
growth rates on consumption and wealth are equal: dCt/Ct = dWt/Wt. Consequently, so
are the covariance terms. Substitute in the premium (40) to obtain that:

µp,t − rt|η0=0 =

(

γηcCt

ηcCt + ηwWt

+
γηwWt

ηcCt + ηwWt

)

Covt

(

dCt

Ct

,
dP t

P t

)

,

= γCovt

(

dCt

Ct

,
dP t

P t

)

,

which is simply the standard C-CAPM with CRRA preferences, in which wealth depen-
dence plays no role. Hence, our finding 1 that η0 6= 0 is important to allow for wealth
dependence to impact asset returns. Furthermore, our unequivocal rejection of the CRRA
model can be interpreted as the dual in goods space of its empirical anomalies in price
space.

Second, the presence of a second source of IMRS risk is a welcomed addition in finding
a solution for the equity risk premium puzzle. Finding 2 establishes that ηw > 0 such
that the price of the market risk, Rrw

t , is positive. This result is consistent with the
multi-factor empirical literature which finds that market risk is positively valued by the
market (Chen et al., 1986; Ferson and Harvey, 1991). If the quantity of market risk is
also positive, then a high equity premia need not be explained by consumption risk alone.
This is also confirmed in our data set. Table 8 establishes that the total wealth risk of
corporate stocks is much larger (by a ratio of 91:1) than consumption risk. A consequence

Table 8: Sample moments: Consumption, wealth growth and stock returns

mean std covariances
Consumption growth 0.02356 0.02079 0.00043 0.00051 0.00051
Wealth growth 0.03658 0.16291 0.02654 0.04701
Stock returns 0.13811 0.34218 0.11709

of estimating ηw > 0 is that this larger market risk can justify the high observed premia
at a lower level of risk aversion. This is consistent with our finding 3 that the curvature
parameter γ, and the risk aversion estimates in general, are lower under WDU.

Third, note that the prices of both risks will in general be time-varying. Our results in-
dicate that relative risk aversion with respect to consumption (wealth) was counter- (pro-)
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cyclical, with the overall indirect utility risk aversion being counter-cyclical (finding 4).
This result would be consistent with the predictability puzzle whereby the conditional
premia are observed to fall during booms, and pick up during recessions (Cochrane, 1997;
Guvenen, 2003). In the absence of strong conditional heteroscedasticity effects in the
quantities of consumption or market risks, predictability would be explained in our model
by cyclical movements in risk aversion.

Risk-free rate As is well known, the risk-free rate puzzle is a by-product of the equity
premium puzzle (Weil, 1989; Kocherlakota, 1996). A high risk aversion implies a low elas-
ticity of inter-temporal substitution, and a high risk-free rate to induce savings. We have
already mentioned that wealth dependence result in lower curvature indices (finding 3),
thereby potentially addressing the risk-free rate puzzle.

Nonetheless, it is interesting to study the impact of WDU for the predicted risk-free
rate. As in the standard case, the risk-free rate (41) captures a first-order and a second-
order effect reflecting the mean and the variance of the IMRS. In our case, however,
marginal utility depends on movements in both consumption and in wealth.

Our empirical findings would be consistent with a low risk-free for a number of reasons.
First, the effective discount rate in (41) is now ρ−ηw/ηc; a positive ηw consistent with blasé
behavior (finding 2) reduces it and consequently helps in reproducing the low observed rt.
Second, a low rt is achieved if the second-order effect on IMRS is stronger than the first-
order one. More precisely, allowing for wealth dependence affects both the mean (through
the conditional mean terms for consumption and wealth growth) and the variance of the
IMRS (through their conditional variance and covariance terms).

In particular, regardless of the sign of ηw, the variance of innovations in wealth enters
negatively and reduces the risk-free rate. Table 8 shows that the volatility of wealth growth
is much larger than that of consumption growth (by a ratio of 61:1; Lettau and Ludvigson,
2003, p. 2 also find that measured wealth growth is much more volatile than consumption
growth over short horizons). This effect should therefore be important towards reducing
the predicted rates. Moreover, the sample moments indicate that consumption growth
is positively correlated with wealth growth. Since ηw was estimated to be positive this
covariance in (41) tends to reduce further the predicted rate. Note however that ηw > 0
implies that the mean growth rate of wealth affects positively the predicted risk-free rate.
Since the empirical moments in Table 8 indicate that mean consumption and wealth
growth rates are roughly equal, this first-order effect could be important in increasing the
predicted rate.

To conclude, our wealth-dependent framework has the theoretical potential to success-
fully address the three main pricing anomalies of the C-CAPM. Our empirical findings in
goods space are consistent with a WDU explanation of empirical asset returns puzzles.
Whether or not similar estimation results in price space are obtained will require further
analysis which we leave on the research agenda.

6 Conclusion

Summary This paper proposes a new instantaneous utility function in which the bliss
level of consumption is an affine function of wealth. The specification is related to pref-
erence for status, as well as wealth-dependent habit formation and durability.

The empirical implementation focuses on the closed-form expressions in the quantity
space. The structural econometric model imposes the full theoretical restrictions on the
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conditional drifts and diffusions of a multi-variate Brownian motion composed of changes
in consumption, asset holdings and wealth. We estimate the model using aggregate data
for these variables. We fully control for any discretization bias in evaluating the transition
density. Our main results show the presence of a blasé effect whereby higher wealth
reduces the marginal utility of consumption. Moreover, we find that the implied risk
aversion is realistic, and counter-cyclical. This is consistent with heuristic arguments
and other findings in price space that also relax constant risk aversion. Importantly,
we strongly reject the null of CRRA preferences. Our discussion of results focuses on
their asset pricing implications. We show that wealth-dependent utility generates a larger
IMRS risk. This risk justifies a larger premium on risky assets and a lower risk-free rate.

Future research Future research should study the pricing kernels of WDU preferences.
In particular, it would be useful to test whether our findings are confirmed when the
empirical implementation is taken in price, rather than quantity space. Moreover, our
estimation relies on a narrow definition of wealth (cash + bonds + stocks). Future research
should allow for a more comprehensive measure of total wealth for estimation purposes.
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A Lemma 1

Proof. Solve for Ct in (13), and vt in (14), and substitute both in the Bellman equation
(5). The indirect utility must satisfy:

0 =
γ

(1− γ)ηc

(

Jw,t
ηc

)−1/γ

−
ρJt
Jw,t

+

(

rWt +
η0

ηc
+
ηw
ηc
Wt

)

− 0.5
Jw,t
Jww,t

Q, (42)

where Q ≡ (µp− r)′Σ−1
pp (µp− r) > 0. Consider the candidate solution for indirect utility

as:

J(Wt) =
(G+ FWt)

1−γ

1− γ
.

Substitute in (42) to obtain that:

0 =

{

γ

(1− γ)ηc

(

F

ηc

)−1/γ

G−
ρG

(1− γ)F
+
η0

ηc
+ 0.5Q

G

γF

}

+

{

γ

1− γ

(

F

ηc

)(γ−1)/γ

−
ρ

1− γ
+ r +

ηw
ηc

+
0.5Q

γ

}

Wt (43)

The unique solution in which F,G are at most functions of time is when both elements
in curly brackets are zero. Starting with the second term uniquely identifies F as in (17).
Substitute in the first term to solve for G as in (18).

B Proposition 1

Proof. Using (13), and (14) reveals that the optimal rules are:

Ct =
1

ηc

(

Jw,t
ηc

)−1/γ

−
η0

ηc
−
ηw
ηc
Wt, (44)

vtWt =
−Jw,t
Jww,t

Σ−1
pp (µp − r). (45)

Use the indirect function (16) in Lemma 1 to obtain that the optimal rules are:

Ct =

[

1

ηc

(

F

ηc

)−1/γ

G−
η0

ηc

]

+

[

(

F

ηc

)(γ−1)/γ

−
ηw
ηc

]

Wt, (46)

vtWt =
GΣ−1

pp (µp − r)

γF
+
Σ−1

pp (µp − r)

γ
Wt. (47)

Use (17) and (18) to substitute for F and G.

C Lemma 2

Proof. First, (31) and (32) reveal that:

dXt = [xwµ0 + µw(Xt − x0)]dt+ [xwσ0 + σw(Xt − x0)]dZt (48)

= µ(Xt)dt+ σ(Xt)dZt. (49)

Next, by Itô’s lemma, we have for X̃t = X̃(Xt):

dX̃j,t =
[

µ(Xt)X̃
′(Xt) + 0.5σ(Xt)

2X̃ ′′(Xt)
]

dt+ σ(Xt)X̃
′(Xt)dZt (50)

Observe that µ0/µw = σ0/σw to substitute in (50) to obtain (34).
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D Proposition 2

Proof.

Risk premia Using (13) and (14) reveals that:

µp,t − rt =
−Jww,t
Jw,t

WtΣpp,tvt,

= −
Ucc,t

Uc,t

Cw,tWtΣpp,tvt −
Ucw,t

Uc,t

WtΣpp,tvt (51)

Following Breeden (1979), it is straightforward to show that:

Covt

(

dWt,
dP t

P t

)

= WtΣpp,tvt

Covt

(

dCt,
dP t

P t

)

= Cw,tCovt

(

dWt,
dP t

P t

)

.

Substitute in (51) to obtain:

µp,t − rt =

(

−Ucc,t

Uc,t

)

Covt

(

dCt,
dP t

P t

)

+

(

−Ucw,t

Uc,t

)

Covt

(

dWt,
dP t

P t

)

, (52)

and use the utility function (6) to obtain (40).

Risk-free rate We follow Cox et al. (1985) by first establishing the relation between
the interest rate and the expected rate of growth of the marginal utility of wealth. First,
pre-multiply first-order condition (14) by v ′t and divide by Wt to obtain that:

Jw,tv
′
t(µp,t − rt) + Jww,tv

′
tΣpp,tvtWt = 0. (53)

Next, by Itô’s lemma, we have for Jw,t = Jw(Wt):

dJw,t = Jww,tdWt + 0.5Jwww,tdW
2
t , (54)

such that,

Et(dJw,t) = Jww,tEt(dWt) + 0.5Jwww,tVart(dWt), (55)

Returning to the Bellman equation (5), use Envelope theorem and take derivatives
with respect to W to obtain:

0 = Uw,t − ρJw,t + Jww,t
{[

v′t(µp,t − rt) + rt
]

Wt − Ct

}

+ Jw,t
[

v′t(µp,t − rt) + rt
]

+Jww,tWtv
′
tΣpp,tvt + 0.5Jwww,tW

2
t v

′
tΣpp,tvt. (56)

Use (53) and (55) to simplify this expression to:

0 = Uw,t − ρJw,t + rtJw,t + Et(dJw,t) (57)

But, note from (12) and first-order condition (13) that:

Uw,t = Uc,t (ηw/ηc) = Jw,t (ηw/ηc) .
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Substitute into (57) to obtain that:

rt = ρ− ηw/ηc − Et

(

dJw,t
Jw,t

)

. (58)

Next, use again Itô’s lemma in first-order condition (13) to obtain that:

Et

(

−dJw,t
Jw,t

)

=
−Ucc,t

Uc,t

Et(dCt) +
−Ucw,t

Uc,t

Et(dWt)

−0.5

{

Uccc,t

Uct

Vart(dCt) + 2
Uccw,t

Uc,t

Covt(dCt, dWt) +
Ucww,t

Uc,t

Vart(dWt)

}

. (59)

Use utility (6) to substitute the expressions for the first, second, third and cross derivatives
in order to obtain (41).
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Figure 7: Consumption Risk Aversion, −CtUcc,t/Uc,t, and Consumer Confidence Index
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Figure 8: Wealth Risk Aversion, −WtUww,t/Uw,t, and Consumer Confidence Index
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Figure 9: Risk Aversion, −WtJww,t/Jw,t, and Consumer Confidence Index

37


	2004s-11pagetitre.pdf
	Les organisations-partenaires / The Partner Organizations
	Pascal St-Amour




