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RÉSUMÉ 

 
Actuellement, les conditions assurant la validité des méthodes de bootstrap pour la 

moyenne d'échantillon des fonctions (possiblement hétérogènes) de dépendance d'époque 
proche (DEP) des processus de mixage sont inconnues. Un des objectifs principaux de cet 
article est d'établir la validité du bootstrap dans ce contexte, élargissant ainsi l'applicabilité 
des méthodes de bootstrap à une classe de processus largement adéquats pour les 
applications en économie et en finance. Les résultats s'appliquent au bootstrap de blocs 
mouvants de Künsch (1989) et Liu et Singh (1992), de même qu'au bootstrap stationnaire 
de Politis et Romano (1994). Plus particulièrement, nous démontrons que la convergence 
de l'estimateur de variance du bootstrap pour la moyenne d'échantillon est robuste à 
l'hétéroscédasticité et à la dépendance de forme inconnue. La validité asymptotique de 
premier ordre de l'approximation du bootstrap à la distribution asymptotique de la moyenne 
d'échantillon est également démontrée dans ce contexte DEP hétérogène. 

 
Mots clés :  bootstrap en bloc, dépendance d'époque proche, moyenne d'échantillon 
 
 

ABSTRACT 
 

Presently, conditions ensuring the validity of bootstrap methods for the sample mean 

of (possibly heterogeneous) near epoch dependent (NED) functions of mixing processes 

are unknown. Here we establish the validity of the bootstrap in this context, extending the 

applicability of bootstrap methods to a class of processes broadly relevant for applications 

in economics and finance. Our results apply to two block bootstrap methods: the moving 

blocks bootstrap of Künsch (1989) and Liu and Singh (1992), and the stationary bootstrap 

of Politis and Romano (1994). In particular, the consistency of the bootstrap variance 

estimator for the sample mean is shown to be robust against heteroskedasticity and 

dependence of unknown form. The first order asymptotic validity of the bootstrap 

approximation to the actual distribution of the sample mean is also established in this 

heterogeneous NED context. 

 
Key words :  block bootstrap, near epoch dependence, sample mean 
 

 

 



1. Introduction

Bootstrap methods have been most intensively studied for the case of independent identically distributed

(i.i.d.) observations (e.g., Bickel and Freedman (1981), Singh (1981)). However, the failure of the i.i.d.

resampling scheme to give a consistent approximation to the true limiting distribution of a statistic when

observations are not independent (e.g. as remarked in Singh (1981)) has motivated several attempts in

the literature to modify and extend Efron�s idea to dependent data. Most of the extensions so far apply

only to the stationary case. Bootstrap methods appropriate for stationary mixing processes have been

proposed and studied by Künsch (1989) and Liu and Singh (1992) (the �moving blocks� bootstrap)

and by Politis and Romano (1994a) (the �stationary bootstrap�), among others. As it turns out, the

moving blocks bootstrap is robust to heterogeneity. Lahiri (1992) gives conditions ensuring the second

order correctness of Künsch�s bootstrap for the normalized sample mean of observations that are not

necessarily stationary. More recently, Fitzenberger (1997) has shown that the moving blocks method

can be validly applied to heterogeneous mixing processes in the context of linear regressions and quantile

regressions. Similarly, Politis et al. (1997) have shown the validity of certain subsampling methods for

heterogeneous mixing processes.

For applications in economics, mixing is too strong a dependence condition to be broadly applicable.

Andrews (1984) gives an example of a simple AR(1) process that fails to be strong mixing. The need to

accommodate such time series motivates the use of functions of mixing processes, the so-called processes

near epoch dependent (NED) on an underlying mixing process (Billingsley, 1968; McLeish, 1975; Gallant

and White, 1988). NED processes allow for considerable heterogeneity as well as dependence and

include the mixing processes as a special case. An important example of the usefulness of near epoch

dependence in economics concerns the standard ARCH (Engle, 1982) and GARCH (Bollerslev, 1986)

processes widely used in economics and Þnance, for which the mixing properties are currently known

only under certain restrictive assumptions (Carrasco and Chen, 1999). As Hansen (1991a) and Sin and

White (1996) have shown, ARCH and GARCH processes are processes NED on an underlying mixing

process, under mild regularity conditions. The NED concept thus makes possible a convenient theory

of inference for these models that would otherwise be unavailable.
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Presently, conditions ensuring the validity of bootstrap methods for the sample mean of (possibly

heterogeneous) NED functions of mixing processes are unknown. Our goal here is thus to establish the

validity of the bootstrap in this context, extending the applicability of bootstrap methods to a class

of processes broadly relevant for applications in economics and Þnance. As is usual in the bootstrap

literature, establishing the validity of the bootstrap for the sample mean is an important step towards

establishing its validity for more complicated statistics. In Gonçalves and White (2000) we build on

the results given here to prove the validity of the bootstrap for general extremum estimators such as

quasi-maximum likelihood and generalized method of moments estimators.

Our results apply to block bootstrap methods. Not only do they apply to the moving blocks

bootstrap (MBB) scheme of Künsch (1989) and Liu and Singh (1992), which has not been studied

with the degree of dependence considered here, but also to the stationary bootstrap (SB) of Politis and

Romano (1994a), which has not yet been studied in a heterogeneous context. Our motivation here is

to show that what is important about the stationary bootstrap is not its stationarity but that it is a

bootstrap. In particular, we show the consistency of the bootstrap variance estimator for the sample

mean to be robust against heteroskedasticity and dependence of unknown form. We also establish the

Þrst order asymptotic validity of the bootstrap approximation to the actual distribution of the sample

mean in this heterogeneous, near epoch dependent context.

The main theoretical results are given in Section 2 and Section 3 concludes. An Appendix contains

mathematical proofs.

2. Main Results

Suppose {Xnt, n, t = 1, 2, ...} is a double array of not necessarily stationary (heterogeneous) random
d × 1 vectors deÞned on a given probability space (Ω,F , P ) . By assuming that {Xnt} is near epoch
dependent on a mixing process, we permit a considerable degree of dependence and heterogeneity and

include mixing processes as a special case. We deÞne {Xnt} to be NED on a mixing process {Vt}
provided kXntk2 <∞ and vk ≡ supn,t

°°°Xnt −Et+kt−k (Xnt)
°°°
2
tends to zero at an appropriate rate. Here

and in what follows, kXkq = (
P
iE |Xi|q)1/q for q ≥ 1 denotes the Lq-norm of a random matrix
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X. Similarly, we let Et+kt−k (·) ≡ E
³
·|F t+kt−k

´
, where F t+kt−k ≡ σ (Vt−k, . . . , Vt+k) is the σ-Þeld generated

by Vt−k, . . . , Vt+k. In particular, if vk = O
¡
k−a−δ

¢
for some δ > 0 we say {Xnt} is NED of size

−a. The sequence {Vt} is assumed to be strong mixing although analogous results could be derived
under the assumption of uniform mixing. We deÞne the strong or α-mixing coefficients as usual, i.e.

αk ≡ supm sup{A∈Fm−∞,B∈F∞m+k} |P (A ∩B)− P (A)P (B)| , and we require αk → 0 as k → ∞ at an

appropriate rate.

Let µnt ≡ E (Xnt) for t = 1, 2, . . . , n, n = 1, 2, . . . , and let µ̄n ≡ n−1
Pn
t=1 µnt be the vector of

parameters of interest to be estimated by the multivariate sample mean X̄n ≡ n−1
Pn
t=1Xnt. Related

studies such as Fitzenberger (1997) and Politis et al. (1997) have assumed common means across

observations, µnt = µ, in which case µ̄n is just µ. Instead, we will assume that the population means

µnt satisfy a less stringent homogeneity condition in order to establish our main consistency result.

Our goal is to conduct inference on µ̄n based on a realization of {Xnt}. Alternatively, we may be
interested in constructing a conÞdence region for µ̄n or in computing an estimate of the covariance

matrix of its estimator, the sample mean X̄n. The bootstrap can be used for these purposes.

We follow Lahiri (1999) in describing the block bootstrap methods of interest here. Let ` = `n ∈ N

(1 ≤ ` < n) denote the (expected) length of the blocks and let Bt,` = {Xnt,Xn,t+1, . . . ,Xn,t+`−1} be
the block of ` consecutive observations starting at Xnt; ` = 1 corresponds to the standard bootstrap.

Assume for simplicity that n = k`. The MBB resamples k = n/` blocks randomly with replacement from

the set of n− `+1 overlapping blocks {B1,`, . . . , Bn−`+1,`}. Thus, if we let In1, . . . , Ink be i.i.d. random
variables uniformly distributed on {0, . . . , n− `}, the MBB pseudo-time series

n
X
∗(1)
nt , t = 1, . . . , n

o
is

the result of arranging the elements of the k resampled blocks BIn1+1,`, . . . , BInk+1,` in a sequence:

X
∗(1)
n1 = Xn,In1+1,X

∗(1)
n2 = Xn,In1+2, . . . ,X

∗(1)
n` = Xn,In1+`

, X
∗(1)
n,`+1 = Xn,In2+1, . . . ,X

∗(1)
n,kl = Xn,Ink+`.

Here and throughout, we use the superscript (1) in X∗(1)
n,t to denote the bootstrap samples obtained by

the MBB. Similarly, we will use the superscript (2) to denote bootstrap samples obtained by the SB

resampling scheme.

Unlike the MBB, the stationary bootstrap resamples blocks of random size. Let p = `−1 be a given

number in (0, 1]; p = 1 corresponds to the standard bootstrap. Let Ln1, Ln2, . . . be conditionally i.i.d.
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random variables having the geometric distribution with parameter p so that the probability of the

event {Ln1 = k} is (1− p)k−1 p for k = 1, 2, . . . . Independent of {Xnt} and of {Lnt} , let In1, In2, . . .
be i.i.d. random variables having the uniform distribution on {1, . . . , n}. The SB pseudo-time se-

ries
n
X
∗(2)
nt

o
can be obtained by joining the resampled blocks BIn1,Ln1 , BIn2,Ln2 , . . . , BInK ,LnK , where

K = inf {k ≥ 1 : Ln1 + . . .+ Lnk ≥ n} . Thus, the stationary bootstrap amounts to resampling blocks
of observations of random length, where each block size has a geometric distribution with parameter p

and expected length equal to 1
p = `. We shall require ` = `n to tend to inÞnity at an appropriate rate,

which is equivalent to letting p = pn tend to zero. Hence, on average the lengths of the SB blocks tend

to inÞnity with n as happens with the (Þxed) MBB blocks lengths.

In contrast to the MBB resampling method, the stationary bootstrap resample is a strictly stationary

process (Politis and Romano, 1994a), conditional on the original data. As we show, this stationarity

does not adversely impact the broader applicability of the method.

Given the bootstrap resample {X∗(j)
n1 , . . . ,X

∗(j)
nn }, j = 1, 2, one can compute the bootstrap version of

the statistic of interest, X̄∗(j)
n ≡ n−1Pn

t=1X
∗(j)
nt . For stationary α-mixing processes, Künsch (1989) and

Politis and Romano (1994a) show that their block bootstrap �works�. As a consequence, by repeating

this procedure a large number B of times, one can approximate the true distribution of
√
n(X̄n− µ̄n) by

the approximate sampling distribution of
√
n(X̄

∗(j)
n −X̄n), conditional on the original data, given by the

empirical distribution of the B draws of
√
n(X̄

∗(j)
n −X̄n). Likewise, an estimate of the covariance matrix

of the scaled sample mean Σn ≡ var
¡√
nX̄n

¢
is easily obtained by using the bootstrap covariance matrix

�Σn,j = var∗
³√
nX̄

∗(j)
n

´
. (Here and in the following, a star appearing in E (var) denotes expectation

(variance) with respect toX∗(j)
n1 , . . . ,X

∗(j)
nn conditional on the dataXn1, . . . , Xnn. The goal of this section

is to extend these results to the heterogeneous NED case.

Our Þrst result establishes the consistency of the block bootstrap covariance matrix estimators for

the sample mean when the observations are near epoch dependent on a mixing process. As is well

known, neither of these bootstrap covariance estimators require resampling the observations. Indeed,

following Künsch (1989, Theorems 3.1 and 3.4), the following formula for �Σn,1 is available:

�Σn,1 = �Rn (0) +
`−1X
τ=1

³
1− τ

`

´³
�Rn (τ) + �R0n (τ)

´
, (2.1)
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where
�Rn (τ) =

n−τX
t=1

βn,t,τ
¡
Xnt − X̄γ,n

¢ ¡
Xn,t+τ − X̄γ,n

¢0
,

and X̄γ,n =
Pn
t=1 γntXnt. The weights γnt and βn,t,τ are given as follows (cf. Künsch, 1989, expressions

(3.2) and (3.7)):

γnt =


t

`(n−`+1) ,
1

n−`+1 ,
n−t+1
`(n−`+1) ,

if t ∈ {1, . . . , `− 1}
if t ∈ {`, . . . , n− `+ 1}
if t ∈ {n− `+ 2, . . . , n} ,

(2.2)

and

βn,t,τ =


t

(`−|τ |)(n−`+1) ,
1

n−`+1 ,
n−t−|τ |+1

(`−|τ |)(n−`+1) ,

if t ∈ {1, . . . , `− |τ |− 1}
if t ∈ {`− |τ | , . . . , n− `+ 1}
if t ∈ {n− `+ 2, . . . , n− |τ |} ,

(2.3)

where
Pn
t=1 γnt = 1 and

Pn−|τ |
t=1 βn,t,τ = 1.

Similarly, the SB covariance estimator can be calculated with the following formula (cf. Politis and

Romano, 1994a, Lemma 1):

�Σn,2 = �Rn (0) +
n−1X
τ=1

bnτ

³
�Rn (τ) + �R0n (τ)

´
, (2.4)

where �Rn (τ) is the usual cross covariance matrix estimator at lag τ , i.e. �Rn (τ) =

n−1
Pn−τ
t=1

¡
Xnt − X̄n

¢ ¡
Xn,t+τ − X̄n

¢0 and
bnτ =

³
1− τ

n

´
(1− p)τ + τ

n
(1− p)n−τ

is the Politis and Romano (1994a) weight, with smoothing parameter pn = p ≡ `−1.

As is evident from (2.1) and (2.4), the MBB and the SB covariance matrix estimators for the sample

mean are closely related to a lag window estimator of the spectral density matrix at frequency zero. In

particular, as remarked in the univariate context by Fitzenberger (1997) and by Politis and Romano

(1994a), the MBB variance estimator �Σn,1 is approximately equivalent to the Bartlett kernel variance

estimator considered by Newey and West (1987). Politis and Romano (1994a) also discuss the relation

between �Σn,1 and �Σn,2. They offer an interpretation for the SB variance estimator as a weighted average

over ` of MBB variance estimators with Þxed length `, which suggests that �Σn,2 should be less sensitive

to the choice of p than �Σn,1 is to the choice of `. See Hall et al. (1995), Politis et al. (1997), Fitzenberger

(1997), Horowitz (1999) and Politis and White (2001) for discussion of the important issue of blocksize

choice in the context of mixing observations. In a recent theoretical study, Lahiri (1999) compares
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several block bootstrap variance estimators, including the MBB and the SB. He concludes that while

(the univariate analogs of) �Σn,1 and �Σn,2 have the same asymptotic bias, the variance of �Σn,2 is larger

than that of �Σn,1, suggesting that the SB method is asymptotically less efficient than the MBB.

Assumption 2.1 is used to establish our main consistency theorem.

Assumption 2.1

2.1.a) For some r > 2, kXntk3r ≤ ∆ <∞ for all n, t = 1, 2, . . . .

2.1.b) {Xnt} is near epoch dependent (NED) on {Vt} with NED coefficients vk of size −2(r−1)
(r−2) ; {Vt}

is an α-mixing sequence with αk of size − 2r
r−2 .

Theorem 2.1. Assume {Xnt} satisÞes Assumption 2.1. Then, if `n → ∞ and `n = o
¡
n1/2

¢
, for

j = 1, 2, �Σn,j − (Σn + Un,j) P→ 0, where Un,j ≡ var∗
³
n−1/2

Pn
t=1 µ

∗(j)
nt

´
and µ∗(j)nt is the resampled

version of µnt.

Under arbitrary heterogeneity in {Xnt} the block bootstrap covariance estimators �Σn,j, j = 1, 2, are
not consistent for Σn, but for Σn+Un,j. The bias term Un,j is related to the heterogeneity in the means

{µnt} and can be interpreted as the block bootstrap covariance matrix of
√
nµ̄

∗(j)
n = n−1/2

Pn
t=1 µ

∗(j)
nt

that would result if we could resample the vector time series {µnt}. Theorem 2.1 makes clear that a

necessary condition for the consistency of �Σn,j for Σn is that Un,j → 0 as n→∞. A sufficient condition
for Un,j to vanish is Þrst order stationarity of {Xnt} : if µnt = µ for all n, t , then Un,j = 0. We have

the following lemma.

Lemma 2.1. If we let µ̄γ,n =
Pn
t=1 γntµnt, then

Un,1 =
nX
t=1

βn,t,0
¡
µnt − µ̄γ,n

¢ ¡
µnt − µ̄γ,n

¢0
+
`−1X
τ=1

³
1− τ

`

´ n−τX
t=1

βn,t,τ

h¡
µnt − µ̄γ,n

¢ ¡
µn,t+τ − µ̄γ,n

¢0
+
¡
µn,t+τ − µ̄γ,n

¢ ¡
µnt − µ̄γ,n

¢0i
,

and Un,2 = n−1
nX
t=1

(µnt − µ̄n) (µnt − µ̄n)0

+
n−1X
τ=1

bnτn
−1

n−τX
t=1

h
(µnt − µ̄n)

¡
µn,t+τ − µ̄n

¢0
+
¡
µn,t+τ − µ̄n

¢
(µnt − µ̄n)0

i
.
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Thus, the condition limn→∞Un,j = 0, j = 1, 2, can be interpreted as an homogeneity condition on

the means. The following assumption ensures limn→∞Un,j = 0, j = 1, 2.

Assumption 2.2 n−1
Pn
t=1 (µnt − µ̄n) (µnt − µ̄n)0 = o

¡
`−1n
¢
, where `n →∞ and `n = o (n).

The following consistency result holds under Assumptions 2.1 and 2.2 and is an immediate conse-

quence of the previous remark.

Corollary 2.1. Assume {Xnt} satisÞes Assumptions 2.1 and 2.2. Then, if `n →∞ and `n = o
¡
n1/2

¢
,

�Σn,j −Σn P→ 0, j = 1, 2.

This result extends the previous consistency results by Künsch (1989) and Politis and Romano

(1994a) to the case of dependent heterogeneous double arrays of random vectors, where the stationary

mixing assumption is replaced by the more general assumption of a (possibly heterogeneous) double

array near epoch dependent on a mixing process.

In particular, for j = 2, Corollary 2.1 contains a version of Politis and Romano�s (1994a) Theorem 1

as a special case. Consider a strictly stationary α-mixing sequence {X1, . . . ,Xn} satisfying Assumption

2.1. Because a mixing process is trivially near epoch dependent on itself, the NED requirement is

automatically satisÞed. Corollary 2.1 achieves the same conclusion as Politis and Romano�s (1994)

Theorem 1 under the same moment conditions but weaker α-mixing size conditions (αk = O
¡
k−λ

¢
for

some λ > 2r
r−2 and r > 2 here in contrast to αk = O

¡
k−λ

¢
for some λ > 3(6+ε)

ε and ε > 0 there).

We allow more dependence here, with the familiar trade-off between moment and memory conditions.

Nevertheless, we require the stronger condition that `n = o
¡
n1/2

¢
, i.e. n1/2pn →∞ (with pn = `−1n →

0), while Politis and Romano (1994a) only require `n = o (n), i.e. npn →∞. Imposing stationarity in
our framework will ensure that Σn → Σ∞ as n → ∞, where Σ∞ = var (X1) + 2

P∞
τ=1 var (X1, X1+τ );

hence, �Σn,2 → Σ∞ in probability, as Politis and Romano (1994a) conclude.

Similarly, for j = 1, our Corollary 2.1 specializes to Künsch�s (1989) Corollary 3.1 when {Xt} is a
stationary α-mixing sequence, under the same moment conditions and weaker α-mixing conditions, but

under the stronger requirement that `n = o
¡
n1/2

¢
instead of `n = o (n).
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The next theorem establishes the Þrst order asymptotic equivalence between the moving blocks and

stationary bootstrap distributions and the normal distribution for the multivariate sample mean. A

slightly stronger dependence assumption is imposed to achieve this result. SpeciÞcally, we require {Xnt}

to be L2+δ−NED on a mixing process (see Andrews (1988)). We strengthen Assumption 2.1.b) slightly:

2.1.b0) For some small δ > 0, {Xnt} is L2+δ−NED on {Vt} with NED coefficients vk of size −2(r−1)
(r−2) ;

{Vt} is an α-mixing sequence with αk of size − (2+δ)r
r−2 .

Theorem 2.2. Assume {Xnt} satisÞes Assumptions 2.1 and 2.2 strengthened by 2.1.b0). Let Σn ≡
var

¡√
nX̄n

¢
be positive deÞnite uniformly in n, i.e. Σn is positive semideÞnite for all n and detΣn ≥

κ > 0 for all n sufficiently large. Then Σn = O (1) and

(i) Σ−1/2n
√
n
¡
X̄n − µ̄n

¢⇒ N (0, Id) under P, and

sup
x∈Rd

¯̄̄
P
h√
n Σ−1/2n

¡
X̄n − µ̄n

¢ ≤ xi−Φ (x)¯̄̄→ 0,

where Φ is the standard multivariate normal cumulative distribution function, � ≤ � applies to

each component of the relevant vector and �⇒ � denotes convergence in distribution.
Moreover, if `n →∞ and `n = o

¡
n1/2

¢
, then for any ε > 0, and for j = 1, 2,

(ii) Σ−1/2n
√
n
³
X̄
∗(j)
n − X̄n

´
⇒ N (0, Id) under P ∗ with probability P approaching one, and

P

(
sup
x∈Rd

¯̄̄
P ∗
h√
n
³
X̄∗(j)
n − X̄n

´
≤ x

i
− P £√n ¡X̄n − µ̄n¢ ≤ x¤¯̄̄ > ε

)
→ 0,

where P ∗ is the probability measure induced by the bootstrap, conditional on {Xnt}nt=1 .

For j = 2, this is an extension of Theorem 3 of Politis and Romano (1994a) for stationary mixing

observations to the case of NED functions of a mixing process. For j = 1 and d = 1, Theorem 2.2

states a weaker conclusion than does Theorem 3.5 of Künsch (1989), since we prove convergence in

probability, but not almost sure convergence. On the other hand, we permit heterogeneity and greater

dependence.

In part (i) we state the usual asymptotic normality result for the multivariate sample mean. In part

(ii) we prove the uniform convergence to zero (in probability) of the discrepancy between the actual

distribution of
√
n
¡
X̄n − µ̄n

¢
and the block bootstrap approximation to it. This result follows from the

9



fact that under our assumptions the distribution of Σ−1n
√
n
³
X̄
∗(j)
n − X̄n

´
, conditional on Xn1, . . . , Xnn,

converges weakly to the standard multivariate normal distribution for all double arrays {Xnt} in a set

with probability tending to one. In particular, we apply a central limit theorem for triangular arrays

and use Assumption 2.1.b0) to ensure that Lyapounov�s condition is satisÞed under our heterogeneous

NED context. Assumption 2.1.b) might well be sufficient to verify the weaker Lindeberg condition, as

in Künsch (1989, Theorem 3.5), although we have not veriÞed this.

Fitzenberger (1997) has recently proven the consistency of the moving blocks bootstrap approxima-

tion to the true sampling distribution of the sample mean for heterogeneous α-mixing processes. Our

result extends his by allowing for near epoch dependence on mixing processes. However, in the purely

strong mixing case, our moment and memory conditions are more stringent than his. In particular,

his Theorem 3.1 only requires E |Xt|2p+δ < C, for small δ > 0 and p > 2, and {Xt} strong mixing of
size − p

p−2 . Politis et al. (1997, Theorem 3.1) have also established the robustness of the subsampling

method for consistent sampling distribution estimation for heterogeneous and dependent data under

mild moment conditions (E |Xt|2+2ε ≤ ∆ <∞ for some ε > 0). Nevertheless, they also assume a strong

mixing process, asymptotic covariance stationarity, and slightly stronger size requirements than ours

on the mixing coefficients (αk of size −3(4+ε)
ε ).

A well known property of the MBB statistic
√
n
³
X̄
∗(1)
n − X̄n

´
is that its (conditional) expected value

is not zero. Indeed, under the MBB resampling scheme E∗
³
X̄
∗(1)
n

´
=
Pn
t=1 γntXnt, where the weights

γnt are deÞned as in (2.2). If `n = o (n), one can show that E
∗
³
X̄
∗(1)
n

´
= X̄n+OP

¡
`n
n

¢
(see e.g. Lemma

A.1 of Fitzenberger, 1997). Thus, the MBB distribution has a random bias
√
n
³
E∗
³
X̄
∗(1)
n

´
− X̄n

´
,

which is of order OP
³
`n
n1/2

´
. (For the SB no such problem exists since E∗

³
X̄
∗(2)
n

´
= X̄n.) As pointed

out by Lahiri (1992), this random bias becomes predominant for second order analysis and prevents the

MBB from providing second order improvements over the standard normal approximation. To correct

for this bias, he suggests recentering the MBB distribution around the bootstrap mean, that is, to

consider the bootstrap distribution of
√
n
³
X̄
∗(1)
n −E∗

³
X̄
∗(1)
n

´´
. The following result shows that under

the assumptions of Theorem 2.2 recentering the MBB distribution around the MBB bootstrap mean is

asymptotically valid (to Þrst order) in this heterogeneous NED context.
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Corollary 2.2. Under the assumptions of Theorem 2.2, for all ε > 0,

P

(
sup
x∈Rd

¯̄̄
P ∗
h√
n
³
X̄∗(1)
n −E∗

³
X̄∗(1)
n

´´
≤ x

i
− P £√n ¡X̄n − µ̄n¢ ≤ x¤¯̄̄ > ε

)
→ 0,

where P ∗ is the probability measure induced by the MBB bootstrap, conditional on {Xnt}nt=1.

Theorem 2.2 and Corollary 2.2 justify the use of the MBB and SB distributions to obtain an

asymptotically valid conÞdence interval for µ̄n instead of using a consistent estimate of the variance

along with the normal approximation. For example, an equal tailed (1− α) 100% stationary bootstrap

conÞdence interval for µ̄n when d = 1 would be [X̄n − q∗n
¡
1− α

2

¢
, X̄n − q∗n

¡
α
2

¢
], where q∗n

¡
α
2

¢
and

q∗n
¡
1− α

2

¢
are the α

2 and 1− α
2 quantiles of the SB bootstrap distribution of X̄

∗(2)
n − X̄n.

3. Conclusion

In this paper we establish the Þrst order asymptotic validity of block bootstrap methods for the sample

mean of dependent heterogeneous data. Our results apply to the moving blocks bootstrap of Künsch

(1989) and Liu and Singh (1992) as well as to the stationary bootstrap of Politis and Romano (1994a).

In particular, we show that the MBB and the SB covariance estimators for the multivariate sample mean

are consistent under a wide class of data generating processes, the processes near epoch dependent on

a mixing process. We also prove the Þrst order asymptotic equivalence between the block bootstrap

distributions and the normal distribution in this heterogeneous near epoch dependent context.

A. Appendix

This appendix contains abbreviated versions of the proofs of our results to conserve space. A version

of this appendix containing detailed proofs is available from the authors upon request.

In the proofs for simplicity we will consider {Xnt} to be real-valued (i.e. d = 1). The results

for the multivariate case follow by showing that the assumptions are satisÞed for linear combinations

Ynt ≡ λ0Xnt for any non-zero λ ∈ Rd. Throughout the Appendix, K will denote a generic constant that

may change from one usage to another. Furthermore, we shall use the notatation Ets (·) = E
¡·|F ts¢ for

t ≥ s, where F ts = σ (Vt, . . . , Vs) , with t or s omitted to denote +∞ and −∞, respectively. [x] will
denote the integer part of x. Finally, the subscript n in `n and pn will be implicitly assumed throughout.

The mixingale property of zero mean NED processes on a mixing process is an important tool in

11



obtaining our results. See for example Davidson (1994, DeÞnition 16.5) for a deÞnition of a mixingale.

We will make use of the following lemmas in our proofs.

Lemma A.1. (i) If {Xnt} satisÞes Assumption 2.1,
©
Xnt − µnt,F t

ª
is an L2-mixingale of size − 3r−2

3(r−2) ,

r > 2, with mixingale constants uniformly bounded cnt. (ii) If {Xnt} satisÞes Assumption 2.1 strength-
ened by Assumption 2.1.b0) with δ ≤ 4 and r > 2, then ©Xnt − µnt,F tª is an L2+δ-mixingale of size
−3r−(2+δ)

3(r−2) , with mixingale constants uniformly bounded cnt.

Lemma A.2. Let
©
Znt,F t

ª
be an L2−mixingale of size −1/2 with mixingale constants cnt. Then,

E

µ
maxj≤n

³Pj
t=1 Znt

´2¶
= O

¡Pn
t=1 c

2
nt

¢
.

Lemma A.3. Let
©
Znt,F t

ª
be an Lp−mixingale for some p ≥ 2 with mixingale constants cnt and

mixingale coefficients ψk satisfying
P∞
k=1 ψk <∞. Then,

°°°maxj≤n ¯̄̄Pj
t=1 Znt

¯̄̄°°°
p
= O

³¡Pn
t=1 c

2
nt

¢1/2´
.

Lemma A.1 follows from Corollary 17.6.(i) of Davidson (1994), Lemma A.2 is Theorem 1.6 of

McLeish (1975), and Lemma A.3 is a straightforward generalization of Hansen�s (1991b) maximal

inequality for Lp-mixingales, with1 p ≥ 2, to the double array setting. The following lemma generalizes
Lemma 6.7 (a) in Gallant and White (1988, pp. 99-100).

Lemma A.4. Assume Xnt is such that E (Xnt) = 0 and kXntk3r ≤ ∆ <∞ for some r > 2 and for all

n, t. If {Xnt} is NED on {Vt} and {Vt} is α-mixing, then for Þxed τ > 0 and all t < s ≤ t+ τ ,

|cov (XntXn,t+τ ,XnsXn,s+τ )|≤ K1

µ
α

1
2
− 1
r

[ s−t4 ]
+ v[ s−t4 ]

¶
+K2v

r−2
2(r−1)

[ s−t4 ]
+K3

µ
α
( 1

2
− 1
r )

[ τ4 ]
+ v[ τ4 ]

¶2
,

for some Þnite constants K1,K2 and K3.

Proof. First, note that |cov (XntXnt+τ ,XnsXn,s+τ )| ≤ |E (XntXn,t+τXnsXn,s+τ )|
+ |E (XntXn,t+τ )E (XnsXn,s+τ )| . Next, note that |E (XntXn,t+τ )| ≤ ∆

µ
5∆α

1/2−1/r
[ τ4 ]

+ 2v[ τ4 ]

¶
(see

Gallant and White, 1988, pp. 109-110), which implies the last bound on the covariance. To bound

|E (XntXn,t+τXnsXn,s+τ )| , deÞne m = s−t > 0 and �Ynmtτ ≡ Et+τ+[
m
2 ]

t−τ−[m2 ]
(XntXnsXn,t+τ ) , and note that

|E (XntXn,t+τXnsXn,s+τ )| ≤
¯̄̄
E
³
�YnmtτXn,s+τ

´¯̄̄
+
¯̄̄
E
³
Xn,s+τ

³
XntXnsXn,t+τ − �Ynmtτ

´´¯̄̄
. (A.1)

Since �Ynmtτ is a measurable function of
©
Vt−τ−[m/2], . . . , Vt+τ+[m/2]

ª
, it is measurable-F t+τ+[m/2].

By an application of the law of iterated expectations and repeated applications of Hölder�s inequal-

ity,
¯̄̄
E
³
�YnmtτXn,s+τ

´¯̄̄
=
¯̄̄
E
³
Et+τ+[m/2]

³
�YnmtτXn,s+τ

´´¯̄̄
≤ ∆3

°°Et+τ+[m/2]Xn,s+τ°°2. To bound
1Hansen (1992) gives the corrected version of this maximal inequality for 1 < p < 2. Here, we will only use the result

when p ≥ 2, and we omit the case 1 < p < 2.
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°°Et+τ+[m/2]Xn,s+τ°°2 , note that F t+τ+[m/2] = Fs+τ−k1 ⊆ Fs+τ−[m/2] with k1 = m − [m/2] ≥ [m/2] ,

implying that
°°Et+τ+[m/2]Xn,s+τ°°2 ≤ °°Es+τ−[m/2]Xn,s+τ°°2 by Theorem 10.27 of Davidson (1994).

By a similar argument as in McLeish (1975, Theorem 3.1), we have that
°°Es+τ−[m/2]Xn,s+τ°°2 ≤

v[m/4] + 5∆α
1/2−1/r
[m/4] . Thus,

¯̄̄
E
³
�YnmtτXn,s+τ

´¯̄̄
≤ ∆3

µ
5∆α

1
2
− 1
r

[m4 ]
+ v[m4 ]

¶
. To bound the second term

in (A.1), by the Cauchy-Schwarz inequality, it suffices to show that
°°°XntXnsXn,t+τ − �Ynmtτ

°°°
2
≤

Kv
r−2

2(r−1)

[m4 ]
. Following an argument similar to that used by Davidson (1992, Lemma 3.5) and writing

EJ (·) for Et+τ+Jt−τ−J (·) , X for Xnt, Y for Xns, and Z for Xn,t+τ , we obtain kXY Z −EJ (XY Z)k2 ≤
kXY Z −EJ (X)EJ (Y )EJ (Z)k2 by Theorem 10.12 of Davidson (1994). Also, adding and subtracting

appropriately, by the triangle inequality, |XY Z −EJ (X)EJ (Y )EJ (Z)| ≤ B
³

X, �X
´
d
³

X, �X
´
, where

X = (X,Y,Z)0; �X = (EJ (X) , EJ (Y ) , EJ (Z))
0; B

³
X, �X

´
= (|ZX|+ |ZEJ (Y )|+ |EJ (X)EJ (Y )|),

and d
³

X, �X
´
= (|X −EJ (X)|+ |Y −EJ (Y )|+ |Z −EJ (Z)|) . Now apply Lemma 4.1 of Gallant and

White (1988, p. 47) with b (X) = XYZ, b
³
�X
´
= EJ (X)EJ (Y )EJ (Z) , and with r > 2, q = 3r

2 and

p = q
q−1 =

3r
3r−2 . This yields kXY Z −EJ (XY Z)k2 ≤ K

¡
3∆2

¢(r−2)/2(r−1)
(6vJ)

(r−2)/2(r−1). The result

follows upon setting J = [m/2] =
£
s−t
2

¤
, given that v(·) is nonincreasing. ¥

Proof of Theorem 2.1. The proof consists of two steps: (1) show �Σn,j − Σn P→ 0, and (2) show

�Σn,j −
³
�Σn,j +Un,j

´
P→ 0. In (1), we consider an infeasible estimator �Σn,j which is identical to �Σn,j

except that it replaces X̄γ,n and X̄n in (2.1) and (2.4) with µnt for j = 1, 2, respectively.

Proof of step 1. (j = 1): DeÞne Znt ≡ Xnt − µnt and Rnt (τ) = E (ZntZn,t+τ ). By the triangle

inequality, ¯̄̄
E
³
�Σn,1

´
−Σn

¯̄̄
≤

nX
t=1

¯̄
βn,t,0 − n−1

¯̄ |Rnt (0)|+ 2 `−1X
τ=1

n−τX
t=1

¯̄
βn,t,τ − n−1

¯̄ |Rnt (τ)| (A.2)

+ 2
`−1X
τ=1

τ

`

n−τX
t=1

¯̄
βn,t,τ

¯̄ |Rnt (τ)|+ 2 n−1X
τ=`

n−1
n−τX
t=1

|Rnt (τ)| . (A.3)

The two terms in (A.2) are O
³

`
n−`+1

´
andO

³
`2

n−`+1
´
respectively, and therefore they are o (1). The two

terms in (A.3) combined are bounded by n
n−`+1ξn, where

n
n−`+1 → 1, and ξn ≡ 2

Pn−1
τ=1

τ
`n
−1Pn−τ

t=1 |Rnt (τ)|
is O

¡
`−1
¢
given the assumed size conditions on αk and vk. Thus, limn→∞

¯̄̄
E
³
�Σn,1

´
−Σn

¯̄̄
= 0 given

that `n →∞ and ` = o
¡
n1/2

¢
.

To show that var
³
�Σn,1

´
→ 0, deÞne �Rn0 (τ) =

Pn−|τ |
t=1 βn,t,τZntZn,t+|τ | and write var

³
�Σn,1

´
=P`−1

τ=−`+1
P`−1
λ=−`+1

³
1− |τ |

`

´³
1− |λ|

`

´
cov

³
�Rn0 (τ ) , �Rn0 (λ)

´
. We show that var

³
�Rn0 (τ)

´
is

O
³

n
(n−`+1)2

´
, which by the Cauchy-Schwarz inequality implies the result sinceP`−1

τ=−`+1
P`−1
λ=−`+1

³
1− |τ |

`

´³
1− |λ|

`

´
= `2 and ` = o

¡
n1/2

¢
. Following Politis and Romano (1994b),
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write

var
³
�Rn0 (τ)

´
=

n−|τ |X
t=1

β2n,t,τ var
¡
ZntZn,t+|τ |

¢
+ 2

n−|τ |X
t=1

n−|τ |X
s=t+1

βn,t,τβn,s,τ
¯̄
cov

¡
ZntZn,t+|τ |, ZnsZn,s+|τ |

¢¯̄
≤ 1

(n− `+ 1)2
n−|τ |X
t=1

var
¡
ZntZn,t+|τ |

¢
+

2

(n− `+ 1)2
n−|τ |X
t=1

t+|τ |X
s=t+1

¯̄
cov

¡
ZntZn,t+|τ |, ZnsZn,s+|τ |

¢¯̄
+

2

(n− `+ 1)2
n−|τ |X
t=1

n−|τ |X
s=t+|τ |+1

¯̄
cov

¡
ZntZn,t+|τ |, ZnsZn,s+|τ |

¢¯̄
,

given that βn,t,τ ≤ 1
n−`+1 for all t and τ . For K sufficiently large, and given the mean zero property of

{Znt} ,

(n− `+ 1)2 var
³
�Rn0 (τ)

´
≤ Kn

(
∆2 +

∞X
k=1

α
1
2
− 1
r

[k4 ]
+

∞X
k=1

v[ k4 ]
+

∞X
k=1

v
r−2

2(r−1)

[k4 ]

)

+Kn

Ã
|τ |α2(

1
2
− 1
r )h |τ|

4

i + |τ | v2h |τ |
4

i + 2 |τ |α( 1
2
− 1
r )h |τ |

4

i vh |τ |
4

i
!
, (A.4)

where we used Lemma A.4 to bound the covariances when t < s ≤ t+ |τ | and a result similar to Lemma
6.7 (a) in Gallant and White (1988, pp.99-100) when s > t + |τ |. The sums in the curly brackets are
Þnite, whereas the last term in (A.4) tends to 0 as |τ |→∞ by the size assumptions on αk and vk, their

monotonicity, and the fact that they tend to 0 as k→∞. Hence, var
³
�Rn0 (τ )

´
≤ Kn

(n−`+1)2 .

Proof of step 2. (j = 1): DeÞne Sn,1 =
P`−1
τ=−`+1

³
1− |τ |

`

´Pn−|τ |
t=1 βn,t,τXntXn,t+|τ |, and write

�Σn,1 = Sn,1 +
`−1X

τ=−`+1

µ
1− |τ |

`

¶ n−|τ |X
t=1

βn,t,τ
¡−X̄γ,nXnt − X̄γ,nXn,t+|τ | + X̄2

γ,n

¢
, and

�Σn,1 = Sn,1 +
`−1X

τ=−`+1

µ
1− |τ |

`

¶ n−|τ |X
t=1

βn,t,τ

³
−µn,t+|τ |Xnt − µntXn,t+|τ | + µntµn,t+|τ |

´
.

Then, �Σn,1 − �Σn,1 = An1 +An2 +An3 +An4, where

An1 = − ¡X̄γ,n − µ̄γ,n¢ `−1X
τ=−`+1

µ
1− |τ |

`

¶ n−|τ |X
t=1

βn,t,τ
¡
Znt + Zn,t+|τ |

¢
,

An2 =
`−1X

τ=−`+1

µ
1− |τ |

`

¶ n−|τ |X
t=1

βn,t,τ
¡
µnt − µ̄γ,n

¢
Zn,t+|τ |,

An3 =
`−1X

τ=−`+1

µ
1− |τ |

`

¶ n−|τ |X
t=1

βn,t,τ

³
µn,t+|τ | − µ̄γ,n

´
Znt,
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An4 =
`−1X

τ=−`+1

µ
1− |τ |

`

¶ n−|τ |X
t=1

βn,t,τ

³
X̄2
γ,n −

³
µnt + µn,t+|τ |

´
X̄γ,n + µntµn,t+|τ |

´
,

with µ̄γ,n =
Pn
t=1 γntµnt. If µnt = µ for all t, µ̄γ,n = µ since

Pn
t=1 γnt = 1, which implies An2 = An3 = 0

and An4 =
¡
X̄α,n − µ̄α,n

¢2
`, because

Pn−|τ |
t=1 βn,t,τ = 1 for every τ . Below we show that X̄γ,n − µ̄γ,n =

oP
¡
`−1
¢
, which implies An1 and An4 are oP (1) . Thus, �Σn,1 − �Σn,1

P→ 0. If µnt is not constrained to

equal µ for every n, t, we obtain An4 = A0n4 + Un,1, where

A0n4 =
¡
X̄γ,n − µ̄γ,n

¢2
`+ 2

¡
X̄γ,n − µ̄γ,n

¢
`µ̄γ,n

− ¡X̄γ,n − µ̄γ,n¢ `−1X
τ=−`+1

µ
1− |τ |

`

¶ n−|τ |X
t=1

βn,t,τ

³
µnt + µn,t+|τ |

´
, and

Un,1 =
`−1X

τ=−`+1

µ
1− |τ |

`

¶ n−|τ |X
t=1

βn,t,τ
¡
µnt − µ̄γ,n

¢ ³
µn,t+|τ | − µ̄γ,n

´
.

By Theorems 3.1 and 3.4 of Künsch (1989), Un,1 = var∗
³
n−1/2

Pn
t=1 µ

∗(1)
nt

´
. Thus, it suffices to show

that An1, An2, An3 and A0n4 are oP (1).

We now show that X̄γ,n − µ̄γ,n = oP
¡
`−1
¢
. DeÞne φnt (x) = ωntx, where ωnt ≡

min {t/`, 1, (n− t+ 1) /`}, and note that φnt (·) is uniformly Lipschitz continuous. Next, write X̄γ,n −
µ̄γ,n = (n− `+ 1)−1

Pn
t=1 Ynt, where Ynt ≡ φnt (Znt) is a mean zero NED array on {Vt} of the same size

as Znt by Theorem 17.12 of Davidson (1994), satisfying the same moment conditions. Hence, by Lemma

A.1
©
Ynt,F t

ª
is an L2-mixingale of size − 3r−2

3(r−2) , and thus of size −1/2, with uniformly bounded con-
stants, and by Lemma A.2 E

µ
max1≤j≤n

³Pj
t=1 Ynt

´2¶
= O (n). By Chebyshev�s inequality, for ε > 0,

P
£
`
¡
X̄γ,n − µ̄γ,n

¢
> ε
¤ ≤ `2

ε2(n−`+1)2E (
Pn
t=1 Ynt)

2 = O
³

`2n
(n−`+1)2

´
= o (1) , if ` = o

¡
n1/2

¢
. This implies

A0n4 = oP (1) and similarly An1 = oP (1), given that
P`−1
τ=−`+1

³
1− |τ |

`

´Pn−|τ |
t=1 βn,t,τ

¡
Znt + Zn,t+|τ |

¢
=

OP (`) .

To prove that An3 = oP (1) , deÞne Yntτ ≡ ωntτ
³
µn,t+|τ | − µ̄γ,n

´
Znt = φntτ (Znt) , where ωntτ =

min
n

t
`−|τ | , 1,

n−t−|τ |+1
`−|τ |

o
, and φntτ (x) = ωntτ

³
µn,t+|τ | − µ̄γ,n

´
x is uniformly Lipschitz continuous. Ar-

guing as above, for each τ ,
©Yntτ ,F tª is an L2-mixingale of size −1/2 by Lemma A.1, with mixingale

constants cYntτ ≤ Kmax {kYntτk3r , 1} ≤ Kmax {kZntk3r , 1} which are bounded (uniformly in n, t and
τ). Thus,

P

¯̄̄̄¯̄ `−1X
τ=−`+1

µ
1− |τ |

`

¶
1

n− `+ 1
n−|τ |X
t=1

Yntτ

¯̄̄̄
¯̄ ≥ ε

 ≤ 1

(n− `+ 1) ε

 `−1X
τ=−`+1

µ
1− |τ |

`

¶
E

¯̄̄̄
¯̄n−|τ |X
t=1

Yntτ

¯̄̄̄
¯̄

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≤ 1

(n− `+ 1) ε

 `−1X
τ=−`+1

µ
1− |τ |

`

¶E
n−|τ |X

t=1

Yntτ
21/2


≤ 1

(n− `+ 1) ε

 `−1X
τ=−`+1

µ
1− |τ |

`

¶K n−|τ |X
t=1

¡
cYntτ

¢21/2
 ≤ K `n1/2

n− `+ 1 → 0,

where the Þrst inequality holds by Markov�s inequality, the second inequality holds by Cauchy-Schwarz,

the third inequality holds by Lemma A.2 applied to {Yntτ} for Þxed τ , and the last inequality holds by
the uniform boundedness of cYntτ . The proof of An2 = oP (1) follows similarly.

The proof of the theorem for the SB follows closely that for the MBB, and we only present the rel-

evant details. In step 1, let �Σn,2 = �Rn0 (0) + 2
Pn−1
τ=1 bnτ

�Rn0 (τ) , where �Rn0 (τ) = n−1
Pn−τ
t=1 ZntZn,t+τ ,

and follow Gallant and White (1988, p. 111; see also Newey andWest, 1987) to show E
³
�Σn,2

´
−Σn → 0.

Let fn (τ) ≡ 1{τ≤n−1} |bnτ − 1|
µ
α

1
2
− 1
r

[ τ4 ]
+ v[ τ4 ]

¶
and ξ be the counting measure on the positive integers.

By the dominated convergence theorem, limn→∞
¯̄̄
E
³
�Σn,2

´
−Σn

¯̄̄
≤ limn→∞ 2K

Pn−1
τ=1 |bnτ − 1|

µ
α

1
2
− 1
r

[ τ4 ]
+ v[ τ4 ]

¶
= limn→∞

R∞
0 fn (τ)dξ (τ) = 0, given that for each τ ∈ N,

limn→∞ bn (τ) = 1, hence limn→∞ fn (τ) = 0, and given that
P∞
τ=1

µ
α

1
2
− 1
r

[ τ4 ]
+ v[ τ4 ]

¶
<∞ by the size con-

ditions on αk and vk. To prove that var
³
�Σn,2

´
→ 0, it then suffices that var

³
�Rn0 (τ)

´
= O

³¡
np2n

¢−1´
=

o (1) given that np2n →∞.
In step 2, deÞne Sn,2 = n−1

Pn
t=1X

2
nt + 2

Pn−1
τ=1 bnτn

−1Pn−τ
t=1 XntXn,t+τ and let �Cn (τ)

= n−1
Pn
τ=1XntXn,t+τ − X̄2

n denote the circular autocovariance, which is based on the extended time

series {Xn1, . . . ,Xnn, Xn,n+1, . . . ,Xn,2n, . . .} , where Xn,i+jn = Xni for 0 ≤ i ≤ n and j = 1, 2, . . . , with
Xn0 ≡ Xnn. As in Politis and Romano (1994a, Lemma 1), �Cn (τ) = �Rn (τ)+ �Rn (n− τ) , where �Rn (τ) =
n−1

Pn−τ
t=1

¡
Xnt − X̄n

¢ ¡
Xn,t+τ − X̄n

¢
.Using this property, �Σn,2 = Sn,2−X̄2

n−2X̄2
n

Pn−1
τ=1

¡
1− τ

n

¢
(1− p)τ ,

and

�Σn,2 = Sn,2 − 2n−1
nX
t=1

Xntµnt + n
−1

nX
t=1

µ2nt

− 2
n−1X
τ=1

³
1− τ

n

´
(1− p)τ

Ã
n−1

nX
t=1

Xntµn,t+τ + n
−1

nX
t=1

Xn,t+τµnt

!

+ 2
n−1X
τ=1

³
1− τ

n

´
(1− p)τ

Ã
n−1

nX
t=1

µntµn,t+τ

!
.

If µnt = µ for all n, t then �Σn,2 − �Σn,2 simpliÞes to −
¡
X̄n − µ

¢2 − 2 ¡X̄n − µ¢2Pn−τ
τ=1

¡
1− τ

n

¢
(1− p)τ ,

which is OP
¡
`
n

¢
, given that

¡
X̄n − µ

¢2
= OP

¡
n−1

¢
by a CLT for the sample mean, and given that
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Pn−τ
τ=1

¡
1− τ

n

¢
(1− p)τ = O ¡p−1n ¢. In the more general case, �Σn,2− �Σn,2 = ζn1+ ζn2+ ζn3+ ζn4+Un,2,

where

ζn1 = − ¡X̄n − µ̄n¢2 ; ζn2 = −2 ¡X̄n − µ̄n¢2 n−1X
τ=1

³
1− τ

n

´
(1− p)τ ;

ζn3 = −2n−1
nX
t=1

(Xnt − µnt) (µ̄n − µnt) ;

ζn4 = −2
n−1X
τ=1

bnτ

"
n−1

n−τX
t=1

(Xnt − µnt)
¡
µ̄n − µn,t+τ

¢
+ n−1

n−τX
t=1

¡
Xn,t+τ − µn,t+τ

¢
(µ̄n − µnt)

#
;

Un,2 = n−1
nX
t=1

(µnt − µ̄n)2 + 2
n−1X
τ=1

bnτn
−1

n−τX
t=1

(µnt − µ̄n)
¡
µn,t+τ − µ̄n

¢
.

Now show that ζn1 and ζn2 are OP
¡
n−1

¢
and OP

¡
`n
n

¢
respectively, and that the remaining terms are

oP (1) by an argument similar to the one used for the MBB to show that Ani = oP (1) . By Lemma 1 in

Politis and Romano (1994a), Un,2 ≡ var∗
³√
nµ̄

∗(2)
n

´
. ¥

Proof of Lemma 2.1. Immediate from the proof of Theorem 2.1. ¥
Proof of Corollary 2.1. Immediate from Theorem 2.1 and the remark that follows it. ¥
Proof of Theorem 2.2. (i) follows by Theorem 5.3 in Gallant and White (1988) and Polya�s

theorem (e.g. Serßing, 1980). To prove (ii), Þrst note that

Σ−1/2n

√
n
³
X̄∗(j)
n − X̄n

´
= Σ−1/2n

√
n
³
Z̄∗(j)n −E∗

³
Z̄∗(j)n

´´
+Σ−1/2n

√
n
³
E∗
³
Z̄∗(j)n

´
− Z̄n

´
+Σ−1/2n

√
n
³
µ̄∗(j)n − µ̄n

´
≡ A(j)n +B(j)n +C(j)n ,

where Znt ≡ Xnt − µnt and Z∗(j)nt ≡ X∗(j)
nt − µ∗(j)nt .

Proof for j = 1. By Lemma A.1 of Fitzenberger (1997), E∗
³
Z̄
∗(1)
n

´
= Z̄n +OP

¡
`
n

¢
. Thus, B(1)n =

OP
¡
`/n1/2

¢
= oP (1), given that Σn > κ > 0 and `n = o

¡
n1/2

¢
. Also, E∗

³
C
(1)
n

´
= O (`/n) → 0 and

var∗
³
C
(1)
n

´
= Σ

−1/2
n U2n,1 → 0, which implies C(1)n

P∗→ 0. Hence, it suffices to prove that A(1)n ⇒ N (0, 1),

given Zn1, . . . , Znn, with probability approaching one. Write Z̄
∗(1)
n = k−1

Pk
i=1 Uni, where {Uni} are

i.i.d. with P ∗
³
Uni = Zn,j+1+...+Zn,j+`

`

´
= 1

n−`+1 , j = 0, . . . , n − `. Thus, E∗
³
Z̄
∗(1)
n

´
= E∗ (Un1) and

A
(1)
n = Σ

−1/2
n

√
n
³
k−1

Pk
i=1 [Uni −E∗ (Un1)]

´
≡ Pk

i=1
�Zni, where �Zni = Σ

−1/2
n n−1/2` [Uni −E∗ (Un1)],

given k = n
` . In particular,

n
�Zni
o
are i.i.d. with E∗

³
�Zni
´
= 0 and var∗

³
�Zn1
´
= k−1

�Σn,1
Σn
. By Katz�s

(1963) Berry-Esseen Bound, for some small δ > 0,
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sup
x∈R

¯̄̄̄
¯̄̄̄P ∗

 Pk
i=1

�Znir
var∗

³Pk
i=1

�Zni
´ ≤ x

−Φ (x)
¯̄̄̄
¯̄̄̄ ≤ KÃ �Σn,1

Σn

!−1−δ/2
kE∗

¯̄̄
�Zn1

¯̄̄2+δ
.

Since
�Σn,1
Σn

P→ 1 by Corollary 2.1, it suffices to show that kE∗
¯̄̄
�Zn1

¯̄̄2+δ P→ 0. But

E

¯̄̄̄
kE∗

¯̄̄
�Zn1

¯̄̄2+δ ¯̄̄̄ ≤ n

` (n− `+ 1)
1

n1+
δ
2Σ

1+δ/2
n

n−X̀
j=0

"°°°°°X̀
t=1

Zn,t+j

°°°°°
2+δ

+ k`E∗ (Un,1)k2+δ
#2+δ

, (A.5)

where the inequality follows by the Minkowski inequality. Under our assumptions,°°°°°X̀
t=1

Zn,t+j

°°°°°
2+δ

≤
°°°°°°max1≤i≤`

¯̄̄̄
¯̄ j+iX
t=j+1

Znt

¯̄̄̄
¯̄
°°°°°°
2+δ

≤ K
 j+X̀
t=j+1

c2nt

1/2 ≤ K`1/2,
by Lemmas A.3 and A.4, given that the cnt are uniformly bounded. Similarly, k`E∗ (Un,1)k2+δ =
O
¡
`1/2

¢
, which from (A.5), implies E

¯̄̄̄
kE∗

¯̄̄
�Zn1

¯̄̄2+δ ¯̄̄̄
= O

³¡
`
n

¢δ/2´→ 0, given `n = o
¡
n1/2

¢
.

Proof for j = 2. First, note that B(2)n = 0 since for the SB we have E∗
³
Z̄
∗(1)
n

´
= Z̄n. Second,

C
(2)
n

P ∗→ 0, given that E∗
³
n−1/2

Pn
t=1

³
µ
∗(2)
nt − µnt

´´
= 0, by the stationarity of the SB resampling

scheme, and given that var∗
³
n−1/2

Pn
t=1

³
µ
∗(2)
nt − µnt

´´
≡ Un,2 → 0 by Assumption 2.2. To prove that

A
(2)
n ⇒ N (0, 1), we verify the conditions (C1), (C2) and (C3) in Politis and Romano�s (1994) proof of

their Theorem 2 and refer to their proof for more details. In our more general case, where Σn is not

assumed to have a limit value Σ2∞, the appropriate version of these conditions is as follows:

(C1) nZ̄2
n

np
P→ 0;

(C2) �Cn (0) + 2
P∞
τ=1 (1− p)τ �Cn (τ)−Σn P→ 0;

(C3) p

n1+ δ
2

P∞
b=1

Pn
τ=1

¯̄̄
Sτ ,b − Z̄n

p

¯̄̄2+δ
(1− p)b−1 p P→ 0,

where in (C3) Sτ ,b is deÞned as the sum of observations in block Bτ ,b.

Proof of (C1): This follows from Z̄n = OP
¡
n−1/2

¢
(by the CLT) and npn →∞.

Proof of (C2): First, deÞne �Σn,∞ = �Cn (0)+2
P∞
τ=1 (1− p)τ �Cn (τ) and �Σn = �Cn (0)+2

Pn−1
τ=1 (1− p)τ �Cn (τ).

Next, note that �Cn (i) = �Cn (i+ nj) for all i = 0, 1, . . . , n− 1 and j = 1, 2, . . ., by the circularity prop-
erties of the extended time series. It follows that �Σn,∞ = �Σn + 2

P∞
j=1

Pn−1
i=0 (1− p)nj+i �Cn (nj + i) =

�Σn+
³
�Σn + �Cn (0)

´P∞
j=1 (1− p)nj . By an argument similar to the proof of Theorem 2.1 for j = 2, we

can show that �Σn−Σn P→ 0. Hence, �Σn,∞−Σn P→ 0, since �Σn and �Cn (0) are OP (1) and
P∞
j=1 (1− p)nj

is oP (1), given npn →∞ and pn → 0.
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Proof of (C3): This follows provided E
¯̄̄Pτ+b−1

t=τ Znt

¯̄̄2+δ ≤ Kb1+
δ
2 , where the constant K only

depends on the mixingale coefficients of {Znt}. Apply Lemma A.4. ¥
Proof of Corollary 2.2. Immediate from the proof of Theorem 2.2 for j = 1. ¥
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